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1. INTRODUCTION 
THE one-dimensional thermal theory of constant-pressure 
deflagration has been discussed in a recent publication by 
the senior author and G. Millan. In this paper an explicit 
relation was given for the linear burning velocity in flames 
supported by first-order global reactions. 1 It is the purpose 
of the present analysis to extend this work by dropping 
the assumptions (a) that the average molecular weight 
of the gas mixture remains constant, and (b) that the 
thermal conductivity is constant. As the result, the one­
dimensional theory of constant-pressure deflagration described 
in this paper is complete except in so far as the following 
reasonable approximations are concerned: (a) a constant 
average specific heat equal to the ratio of heat release per 
gram of reactant to total temperature rise may be used; (b) the 
ideal gas law constitutes a satisfactory equation of state for 
reacting gas mixtures. 

In section 2, we present general expressions fer the rate of 
formation of reaction products by an arbitrary irreversible 
global reaction. The general relation is then applied to 
reactions of the type nC----+n'D. 

In Section 3, the appropriate equations for one-dimensional, 
constant-pressure deflagration are solved for flames supported 
by global reactions of the type C----+2D. The method of 
solution follows along the lines of the treatment given in 
Ref. 1. 

The results obtained in Section 3 are applied to the hydrazine 
decomposition flame in Section 4. This application is based 
on the assumption that the global reaction corresponds to 
the rate-controlling step used by Hirschfelder et al.,2 i.e. to 
the unimolecular N-N bond splitting: N 2H 4----+2NH2 • The 
numerical value for the linear burning velocity obtained from 
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our thermal theory is then compared with results obtained 2 

by numerical calculations. In order to facilitate a comparison 
of the results, we are using in our analytical method the values 
for the physico-chemical parameters given by Hirschfelder 
et al., with the exception that the diffusion coefficient is put 
equal to zero. It is found that the calculated values are 
consistent with the principle that diffusion of reaction products 
decreases the laminar burning velocity. 

2. RATE OF FORMATION OF REACTION PRODUCTS FOR 

AN ARBITRARY IRREVERSIBLE GLOBAL REACTION 

An arbitrary irreversible global reaction may be represented 
by the relation 

m m 
}; v/Mj --+}; v/Mj , 

j=l j=l 
(1) 

where v/ and v/ denote, respectively, the stoichiometric 
coefficients of species Mj in the global reaction. The total 
number of chemical species involved in the global reaction 

m 
is m and the overall order ofthe (forward) reaction is n = }; v'. 

, j=l J 

Application of the" law of mass action" to Eq. (1) leads to 
the following expression for the net rate of production of 
species Mi in moles per unit volume per unit time : 

m , 

DcdDt = (v/ -v/)kjII(cjt 
j=l 

(2) 

Here kj is the specific reaction rate for the global reaction 
and cj represents the concentration of species Mj (in moles 
per unit volume). We proceed by transforming Eq. (2) to 
the form used in Ref. (1), which is particularly well-suited 
to the study of chemical reactions in flow systems. 

The weight fraction Yj is related to the mole concentration 
cj by the expression 

C· = PYj, . 
J W. 

} 

(3) 

where p is the density of the gas mixture and Wj represents 
the molecular weight of Mj . Let Wi = Wi (DcJDt) represent 
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the net rate of production of mass of species M; per unit 
volume. Combining Eqs. (2) and (3) leads to the result 

m (y. )V/ 
Wj = (v;" -v/)kf WiP~IT WJ 

J ~ 1 j 
(4) 

The specific reaction rate is customarily expressed by a relation 
of the form 

(5) 

where the" frequency factor" B has the dimension of sec-1 

(volumeJmole)n-1. The activation energy A is assumed to 
be independent of temperature. It is now convenient to 
introduce a parameter Ki of dimension sec-1 by the relation 

1m , 

Ki = (v/, -v;')BWi (ps)n-1 IT(Wj)Vj, 
j=l 

where Ps is a conveniently chosen reference density. 
Eqs. (4), (5) and (6) it follows that 

(6) 

From 

(7) 

For ideal gases the density of the gas mixture is given by 
the equation of state 

WPo 
P=--' RT (8) 

In Eq. (8) R is the molar gas constant, Po is the constant 
pressure and W equals the average molecular weight of the 
gas mixture, which is defined as 

or W=-m---
Ely)'Yj ) 

j=l 

(9) 

From Eqs. (7), (8) and (9) the desired general expression for 
the mass rate of production per unit volume of species 1\1; is 
obtained, viz. 

K p n m (y )v.' A 
W. = i 0 IT j , e -RT . (10) 

I Ps n-1RnTn j=l [.I:(yjJWj)] n 

J=l 
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As a simple illustration for the use of Eq. (10) we consider 
the reaction 

n~n'D. (la) 

It is then evident that if YD = € then Ye = 1-€, and Eq. (10) 
becomes 

KDPon (l_€)n _~ 
w D = e RT 

psn-lRnTn ( € l-€)n -+-
W D We 

. (lOa) 

For steady flow the quantity W D can be expressed as 

d€ d€ 
w D = P dt = pu dx' 

where t represents time, u is the linear flow velocity, and x 
is the length coordinate across the flame. For the special case 
where n = 1, n' = 2, We = 2WD , Eq. (lOa) becomes 

d€ K Pol -€ - ~ (11) m- =---- e RT 
dx RgT 1+€ ' 

where Rg = RrWe, K = KD and m = pu IS the mass flow 
rate for steady burning. 

3. LAMINAR BURNING VELOCITY FOR FLAMES SUPPORTED 

BY THE GLOBAL REACTION C~2D 

A. Formulation of the Eigenvalue Problem for the 
Reaction Zone 

It has been shown in Ref. (1) that the equation for con­
servation of energy can be written in the form 

. (12) 

if A equals the thermal conductivity, cp is a constant average 
specific heat defined as the ratio of the heat of reaction per 
unit mass of reactant to (T I-To), and the subscripts 0 and f 
identify initial conditions and equilibrium conditions after 
reaction, respectively. But dT/dx = (dT/d€)(d€/dx); hence, 
using Eqs. (11) and (12) 

_A_Kpo 1-€ e-fT dT = (T-T )-€(T -T). . (13) 
m2cp RgT 1+€ d€ 0 I 0 
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We introduce the non-dimensional parameters 

B=T,B =~,B =To,B.=T i 

T f a RTf 0 T f I T f 
. (14) 

where T; is an "ignition temperature ", i.e. a temperature 
below which the rates of chemical reaction are negligibly 
small. As in the treatment given in Ref. (1), it will be shown 
that the laminar burning velocity is substantially independent 
of Bi for all reasonable values of Bi. With this result in mind, 
there can be no logical objection to the use of the concept of 
an " ignition temperature" on the grounds that the chemical 
reaction rates are always non-zero. 

In terms of the parameters introduced through Eq. (14) 
the eigenvalue problem for the "reaction zone" reduces to 
the solution of the following differential equation: 

~Tf Kpo 1-E e-~dB = (B-1)+(1-8
o
}{1-E). 

m cpT R g T f 1 + E dE 

The boundary conditions are 

B = Bi at E = 0 and B = 1 at E = ]. 
We assume that the thermal conductivity is, approximately, 

a linear function of the temperature, i.e., 

Let 
A - AjPoK To _ Af Kpo 

- m2cp T f - m2cp RgTf 

where use has been made of the relation 

Po 
Po = R T' 

g 0 

(15) 

(16) 

Using the notations introduced by Eqs. (15) and (16), the 
problem of laminar flame propagation reduces to the solution 
of the following eigenvalue problem for A : 

A 1-E e-~~~ = (B-1)+(1-8 o)(1-E) ;}' 
1-j-E dE 

with the boundary conditions (17) 

B = B, for E = 0; B = 1 for E = 1. 
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As in Ref. (1) the temperature distribution is determined 
solely by thermal conduction for 8< 8j • 

B. Solution of the Eigenvalue Problen~ 

The following solution of the eigenvalue problem is 
patterned after the procedure described in Ref. 1. Briefly, 
asymptotic solutions are found for the regions near e = 0 
and near e = 1. The solutions are then joined by requiring 
that both 8(e) and d8/de are continuous at the point at which 
the asymptotic solutions have been joined. It turns out that 
the end result is independent of the point at which the two 
solutions are joined. 

From Eq. (17) it is apparent that in the singular point 
e = 1,8 = 1 

lim d8 = 1-80 

8, <-+1 de 1 + A -8' - e a 
2 

(18) 

and for small values of e 

d8 8-80 d c= --oa (1 +e). 
e Ae-e-

. (19) 

Introducing Eq. (18) on the right hand side of Eq. (17) for 
8 and e close to unity leads to the following approximation 
for the 8 versus e curve : 

r A ' 

1-8 = (1-8
0
)(I-e) 11 _ 2

e
-

oa t 
I 1+ ~ e-OaJ 
\ 2 

(20 ) 

Eq. (20) is now used on the right hand side of Eq. (17) to give 
a better approximation to d8/de than is provided by Eq. (18) 
for 8 and e close to unity. The result is 

1 -Oa -e _Oa 2 
e e d8 = (1-8 0 )----:--- (l+e)de. 

1-1-~ e -Oa , 2 

(21) 

Let (0 I' e t) represent the point at which 8 and d8/de 
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(obtained from Eqs. (19) and (21)) are to be joined. We then 
integrate Eq. (19) from B = Bj , . E = 0 to B = Bt , E = E t • 

The result is 
Ba 

_ ~ + (1+E t )2 = ~fBt e-7J dB. 
4 4 2 B, B-Bo 

The quantity exp( - B a/ B) decreases rapidly with decreasing B 
so that the following approximation is justified, as in Ref 1, 
provided that Bj is somewhat greater than B 0 : 

Ba 

J
oet e-7J dB =:= _1_ JBt e-~ dB. 
8i B-Bo Bt-Bo Bi 

This last integral can be evaluated readily by setting z = B / B a 

and integrating by parts. In this manner it is found that 

_~+(1+Et)2= A X 
4 4 2(B t -BJ 

{ ( ~ ~) [ ". ( B) . ( B) ] } X Bte-Bt - Bie-Bi + Ba E~ - B: - E~ - B: (22) 

where the exponential logarithm is defined as 
00 

-E~( -x) = - dt >0. . 1 e-
t 

x t 
(23) 

The functions Ei( -x) have been tabulated. 
Integration of Eq. (21) between the limits (Bt, E t ) and 

(1, 1) leads to the equation 

A 1+ _ e- Ba 
1_(l+Et )2= 2 X 

4 (l-Bo)e-Ba 

X {(e-Ba_Bte-~)+Ba[Ei(-Ba)-Ei(-::)]} • (24) 

Similarly, from Eq. (19), 

and, from Eq. (21), 

(
dB) = (1+E t )(B:

a
-Bo), 

dE Bt, <t Ae-­Bt 

(~:) Bt,!t 
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whence 
A . (25) 

2(8 t -80) (1-80)e-8~· 

Addition of Eqs. (22) and (24), noting Eq. (25), now yields 
the result 

~(1-80)c-8a = [e-8a-8je~~] +8a[Ei(-8a)-Ei(_8a)], 
4 1+ ~ e-8a 8j 

2 
3 ~ 

A=2e8a f 4 (
1 
-80

) -1( (26) 

l [ 1-8/a-~J + 8ac8a [Ei( -8a ) -Ei ( - :;)] J 
Eq. (26) can be used to evaluate A as a function of 8i for 
fixed values of 8 a and of 8

0
• For all reasonable values of 8i , 

i.e. if 8j is somewhat larger than 8
0 

and somewhat less than 1, 
Eq. (26) reduces to the relation 

r 3 (1-8 ) } 
A = 2c8a , 4 0 -1. 

ll+t1ae8aEi( -8a ) 

• (27) 

For many chemical reactions 8 a~ 1. In this case, it is 
convenient to integrate Eq. (23) repeatedly by parts to obtain 
the following semi -convergent series : 

1_~+2! 
8a 8a

2 

Ei( -8a ) = 

hence, for 8a}>1, Eq. (27) becomes 

A = 2eea 'l( ~ 8a(l-8 0)(1 + ~ - ... ) -I}. 
4 8a 

. (27a) 

Explicit relations for the laminar burning velocity, u
O

' are 
obtained by using Eq. (16) with m = PoUo• 

4. ApPLICATION TO THE HYDRAZINE 

DECOMPOSITION FLAME 

The detailed reaction kinetics of the hydrazine decom­
position flame are not known. However, Hirschfelder and 



CONSTANT-PRESSURE DEFLAGRATlON 57 

collaborators 2 have assumed that the slow and rate-controlling 
chemical reaction step is the unimolecular breaking of the 
N-N bond, viz. N2HC-+2NH2 with· the rate constant (in 
sec. -1) 3 

60.000 
k j = 4X 1012 e- 1tT . (28) 

The slow reaction step in a chain reaction is to be identified 
with the global reaction. Hence K = 4X 1012 and A = 60,000 
cals./mole. Also2 To = 4230 K, T j = 19330 K whence 8

0 
= 

0·22, 8a = 15·6, Cp = 0·6623 cal.jgm.o K, Aj = 6·7 X 10-3 

cal./cm. ° K sec.2 

Introduction of the numerical values given above into 
Eq. (27a) leads to the result 

A=I'lxl08 

whence 

/A KR T 2 
U o = "V f g 0 = 300 cm.lsec. 

AcpPoTf ' 

The value for U o obtained by Hirschfelder et al., using numerical 
calculations and including diffusion of the reaction product 
NH2, is 93 or 127 cm./sec. depending on the value chosen 
for the diffusion coefficient. Comparison of this result with our 
estimate emphasises the well-known fact that the laminar 
burning velocity decreases as the upstream transport of 
reaction product by diffusion increases. 

The experimentally determined value 2 of cp is 200 cm./sec. 
which is roughly 33 per cent. smaller than the result obtained 
from our thermal theory but is 57 per cent. larger than the 
value calculated by including the iliffusion transport 2 and using 
the value of the diffusion coefficient indicated by Hirschfelder 
as "his best choice". This observation is in line with 
expectations since it is clearly incorrect to assume that all of 
the NH2 formed by a slow chemical reaction step, e.g. the 
breaking of the N-N bond in NH2, should be included in 
estimating diffusion transport. Some of the NH2 must be 
removed by rapid chemical reactions and hence a "best 
estimate" of diffusion of NH2 must be too high. For this 
reason, it appears that the use of the normal equation for 
diffusion transport in calculations Of the burning velocity is 
probably not justified when the idealisation of a global or 
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rate-controlling reaction step is introduced in the treatment 
of flames supported by chain reactions. 
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