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OF THE COLD BOUNDARY DIFFICULTY

IN FLAME PROPAGATION THEORY
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1. Introduction. Our aim in this paper is to describe a rigorous mathemati
cal answer to the well-known paradox called the "cold boundary difficulty" in flame
propagation theory. We essentially report here on some work done by J. M. Roque
joffre (see [23], [24J, [25] where it appears in detail) in collaboration with the first
two authors.

This cold boundary difficulty lies in the fact that the governing equations mod
elling a steady planar premixed flame propagating in an infinite tube (that is, the
simplest problem of flame propagation theory) admit no solution, whereas such
solutions are expected to exist on an experimental basis: steady planar premixed
flames are actually observed (although not in infinite tubes !).

The origin of the difficulty is the following: when modelled using the (widely
accepted) Arrhenius law, the chemical reaction rate does not vanish in the fresh
mixture. Therefore, the temperature of the fresh gases keeps increasing because of
the small but non-zero reaction rate, and no steady state exists. This explains why
the cold boundary difficulty has been "solved" by modifying the expression of the
reaction term, for instance using an ignition temperature assumption.

In this paper, we mathematically solve the cold boundary difficulty in the fol
lowing sense; we show that the unmodified model (with the actual Arrhenius term)
leads to a well-posed initial value problem, and that the unique time-dependent so
lution of the Arrhenius model remains close to a steady planar flame during a long
time (in fact, during a time which is larger and larger as the activation energy of the
chemical reaction increases), before it diverges from the steady flame for even larger
values of the time t. Our rigorous analysis therefore reaches the same conclusions
as the multiple-time-scale asymptotic analysis of Zeldovich [29].

The paper is organised as follows. In section 2, we describe the governing equa
tions used in our analysis and present the cold boundary difficulty. Mathematical
results showing the existence and uniqueness of a time-dependent solution of the Ar
rhenius model and of a steady solution of a modified (ignition temperature) model
are presented in Section 3. The long-time behaviour of the time-dependent solution
is examined in Section 4, which leads us to the "mathematical solution" of the cold
boundary difficulty in Section 5. Lastly, we illustrate our analysis by showing a
numerical example in Section 6.
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2. Governing equations. We start with the classical isobaric approximation
of flame propagation theory (see e.g. [5], [71, [17], [27]): we consider a planar
unsteady premixed flame propagating in an infinite channel with the assumption of
one-step chemistry. The governing equations describing this phenomenon involve
the conservation equations for mass, momentum, energy and mass of reactant, and
an isobaric equation of state. In Eulerian coordinates, these equations take the
form

(2.1) I
PT + (PU)e = 0 ,

PUT + PUUe = -Pe ,

pCpTT+ puCpTe = (ATe)e + mQw(pY, T) + PT ,

pYT+ puYe = -mw(pY, T) + (pDYe)e ,

pROT = mP(r) .

(2.2)

We use standard notations: in (2.1), ~ and r are the space and time coordinates
respectively, p is the mixture density, U is the mixture velocity, T is the mixture
temperature and Y is the mass fraction of the reactant; in the framework of the
isobaric approximation, P(r) is the average pressure, which is assumed to depend
only on time, and p(~, r) is the small pressure variation around this average value.
Moreover, Cp is the specific heat at constant pressure of the mixture, which is

assumed to be constant, >. is the mixture thermal conductivity, Q > 0 is the heat
released by the reaction per unit mass of reactant, m is the molecular weight of the
reactant, D is its diffusion coefficient, and RO is the universal gas constant. Lastly,
w(pY, T) is the chemical reaction rate, and has the form

pY pY (E )w(pY, T) = -;;; F(T) = 8 -;;; TO' exp - ROT '

where 8, a and E are three positive constants: 8 is called the Arrhenius prefactor,
and E is the activation energy of the chemical reaction.

2.1. Steady flames: the cold boundary difficulty. Let us first consider the
case of steady planar flames. For a steady solution of (2.1), the mass conservation
equation (2.l.a) writes

(2.3) (pU)e = 0 ,

(2.4)

whence pu = e, an unknown constant. Setting G(T) = ;~F(T) (P is constant

for a steady solution), we can then rewrite (2.1) under the following form:

{
eCpTe = QYG(T) + (>'Te)e ,

eYe = -YG(T) + (pDYde ,

(2.5)

I

mP
p = ROT'

e
u--

pe-=P-~ue .
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It therefore appears that equations (2.4) are decoupled from (2.5). In fact, one only
studies system (2.4) in order to determine T, Y and the real constant c (see e.g.
Theorem 2 below), since solving system (2.5) for the variables p, u and p is then
straightforward.

The boundary conditions associated with equations (2.4) are of the following
type:

(2.6) {
T(-oo) = Tu , Y(-oo) = Yu ,

T(+oo) =n, Y(+oo) =0,

where Tu and Tb are the temperatures of the fresh mixture and of the burnt gases
respectively, and where Yu is the mass fraction of reactant in the fresh mixture
ahead of the flame; the last equality in (2.6) states that complete consumption of
the reactant occurs in the flame. These values satisfy 0 < Tu < n (the burnt gases
are hotter than the unburnt mixture), and 0 < Yu ::; 1 (the fresh mixture actually
contains some reactant). Furthermore, the burnt gas temperature is simply given
by writing the overall energy balance equation (obtained by integrating from -00
to +00 the sum of the first equation (2.4.a) and of the second equation (2.4.b)
multiplied by Q):

(2.7)

The problem (2.4)-(2.6) (or the simpler problem which arises in the so-called
.x

"equidiffusional" case, that is when the Lewis number L = pCpD is constant

and equal to unity; see (3.21) below), has been investigated by many authors (see
Aronson-Weinberger [I], Johnson [10], Johnson-Nachbar [11], Kanel' [12], [13], Kol
mogorov et al. [14], Zeldovich [28], Zeldovich et al. [30], [31], and more recently
Berestycki et al. [6], Marion [19], [20], Berestycki-Larrouturou [4], [5]), under vari
ous hypotheses under the nonlinear reaction term G.

This investigation raises the well-known "cold boundary difficulty", on which
a lot of ingenuity has been spent for several years (see for instance Buckmaster
Ludford [7], Clavin [8], Williams [27], just to mention some prominent work on the
question). The difficulty is the following: the value of the reaction rate w(pY, T)
does not vanish in the fresh mixture, because G(Tu ) =F O. It is then easy to see that
(2.4)-(2.6) has no solution (the fact that lim [cCpTe - (ATe)e] =F 0 contradicts the

x--oo
fact that T is bounded in the neighbourhood of -(0). i,From the physical point of
view, the origin of the difficulty is clear: the state (Yu , Tu ) prescribed at -00 is not
an equilibrium state, and the problem is therefore ill-posed.

On the other hand, there is a well-established experimental evidence that steady
planar premixed flames do exist, and solutions of (2.4)-(2.6) are therefore expected
to exist.

In fact, the difficulty is essentially mathematical: the actual value of the reaction
rate w inside the fresh mixture is non zero, but is extremely small compared to the
reaction term value inside the flame: this is due to the fact that the activation energy
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E is large, i.e., that the ratio :T is large for temperatures T in the considered range
e-E / RTu

of temperature [Tu , Tb]. In practice, the ratio e- E / RT. may well be of the order of

e-50 .

In other words, the characteristic time T u of the chemical reaction in the fresh
mixture (at temperature Tu ) is extremely large (as large as a big number of billions
of years I). One may therefore think, if one believes in the Arrhenius expression of
the chemical reaction term (2.2), that the experimentally observed "steady premixed
flames" are not really steady; but they are evolving over a characteristic time which
is of the same order of magnitude as T u • Therefore, although there exists no steady
solution in the mathematical sense to system (2.1), where the quantity F(Tu ) is
small but positive, one may expect that (2.1) has an unsteady solution, which
remains "during a long time" "very close" to a steady flame. This is exactly what
comes out from the work of J. M. Roquejoffre [23], [25J, which we now describe.

2.2. Unsteady solutions. We therefore turn to the unsteady solutions of
(2.1).

It is now well known that the unsteady solutions of (2.1) are more easily inves
tigated using instead of (2.1) the Lagrangian form of (2.1). Thus, we introduce the
change of coordinates (~, T) +---+ (x, t) where x(~, T) represents the mass-weighted
Lagrangian coordinate of the particle which is located at the abcissa ~ at time T

(inversely, ~(x,t) is the position at time t of the fluid particle whose Lagrangian
coordinate is x), and where t = T. This change of variables is defined by the
relation

(2.8) l
e(X,t)

p(x', t)dx' = x
e(O,t)

which imply xe = p, X r = -pu (we refer to e.g. [15J, [171 for the details about this
transformation). The Lagrangian form of the flame propagation equations (2.1) can
then be derived: for any quantity w we have

(2.9)

and (2.1) becomes

(2.10)

W r =Wt - PUW x , we = pwx ,

Pt + p2 ux = 0,

Ut +Px = 0,

'T' _ mQ w(pY, T) .2.-( \ T ) _1_ p '(t)
.J.t - C + C AP X X + C '

p p p p p

y. _ _ w(pY, T) (2DY )
t- m +p xx,

p

pY
pRoT = mP(t) , w(pY, T) = -F,(T) .

m
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We now use the notation F, instead of F for the reaction term in order to stress the
dependence of this term on the activation energy: f is a (small) positive parameter,
proportional to the inverse of the activation energy.

Introducing the Lewis number .c = ; D' we can rewrite (2.10) as
p p

(2.11)

(2.12)

{

T.: g, YF.(T) + ~, (ApT.ld p~/'(t),

Yi - -YF,(T) + C .c (oXpYx)x ,
p

{

pROT = mP(t) ,

U x = (.!.) ,
p t

Px = -Ut .

Thus, the use of the Lagrangian coordinate x uncouples the equations (2.11) for
the "combustion variables" T and Y (which take the form of a reaction-diffusion
system) from the equations (2.12) for the "hydrodynamical variables" p, U and p

(which reduces to a system of linear partial differential equations).

Let us now write initial and boundary conditions associated with (2.11)-(2.12).
The form of the equations suggests which conditions should be used in order to get
a possibly well-posed problem: first, we need an initial condition and two boundary
conditions for the unknowns T and Y of the parabolic system (2.11). We will
therefore write the following conditions for the temperature and mass fraction:

(2.13)

(2.14)

T(x,O) = TO(x) , Y(x,O) = yO(x) ,

{
T(-oo,t) = Tu(t), Y(-oo,t) = Yu(t),

T(+oo,t) = n(t), Y(+oo,t) = Yb(t),

(2.15)

where the functions Tu(t), Yu(t), Tb(t), Yh(t) are defined by

T~(t) = C
Q

Yu(t)F,[Tu(t)] + _(I)C P'(t) , Tu(O) = Tuo ,
p Pu t p

Tb(t) = C
Q

Yh(t)F, [Tb(t)] + _(I)CP'(t) , Th(O) = TbO ,
p Ph t p

Y~(t) = -Yu(t)F,[Tu(t)] , Yu(O) = YuO ,

in (2.15), we have set T.1 = TO(-oo), T~ = TO(+oo), Y~ = yO(-oo), y"o =
yO(+oo), and Pu(t) = p(-oo,t), ph(t) = p(+oo,t). Of course, the differential
system (2.15) has been deduced from (2.11).
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Moreover, since the second and third equations in (2.12) give U x and Px, a
single boundary condition might be adequate for the velocity and for the pressure;
we write

(2.16) U( -00, t) = Uu , p( -00, t) = Pu(t)

(the boundary value Uu is not allowed to vary with time from (2.12.c), since we
need Px to vanish at -00 from (2.16)).

Lastly, we need an additional condition in order to determine the evolution of
the pressure P(t). Since mP(t) = Pu(t)ROTu(t), it suffices to specify the value of
Pu(t). But we also need U x to vanish at -00 from (2.16), and (2.12) then says that
Pu(t) is not allowed to vary with time, so that we write

(2.17) p(-oo,t) = pu ,

a given constant.

We will see below that problem (2.11 )-(2.17), which was proposed by Ludford
[18J, is a well-posed initial-boundary value problem.

3. Existence and uniqueness results. In this section, we will mainly state
two existence and uniqueness results, one for time-dependent solutions of (2.11)
(2.17), and one for steady solutions of a similar problem where the reaction term is
appropriately modified in order to remove the cold boundary difficulty.

3.1 Normalized equations. Let us first rewrite (2.11)-(2.17) in a simpler
normalized form. For the sake of simplicity, we will assume in the sequel that the
product )"p is constant, which will simplify the expression of the diffusive terms
in (2.11) (we refer to [24] for the analogous existence and uniqueness result with
genuinely non linear diffusive terms). We can then choose the reference values for
x, t, T, Y, P, p, u and P such that, in normalized variables, (2.11)-(2.17) becomes

(3.1)

(3.2)

(3.3)

(3.4)

{

"Y-1T~(t)

Tt = Y!,(T) + TX~ +-"Y- Tu(t? '

Yt = -Y!,(T) + ,£Yxx ,

T(x,O) = TO(x) , Y(x,O) = yO(x) ,

{
T( -00, t) = Tu(t) , Y( -00, t) = Yu(t) ,

T( +00, t) = Tb(t) , Y( +00, t) = Yb(t) ,

T~(t) = "YYu(t)!,[Tu(t)] , Tu(O) = T2 = TO( -00) ,

"Y-1T~(t) ° O( )
T~(t) = Yb(t)!,[Tb(t)] + -"Y-T,,(t?b(t) , Tb(O) = Tb = T +00 ,

Y~(t) = -Y,,(t)!,[Tu(t)] , Yu(O) = yo? = YO(-00) ,

Y;(t) = -Yb(t)!,fTb(t)] , Yb(O) = Ybo = yO(+oo) ,



(3.5)

(3.6)

{

pT = Tu(t) ,

Pt + p2 U • = 0,

P. = -Ut ,

{

p( -00, t) = 1 ,

u( -00, t) = Uu ,

p( -00, t) = Putt) .
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Referring to [23J for the details about this normalization, we simply mention

here that the nonlinearity I, is proportional to F" and that the ratio ,- 1 in (3.1),
,-I RO

and (3.4) comes from Mayer's relation -- = -c,where "'( is the specific heat
, m p

ratio of the mixture.

3.2. Existence and uniqueness of unsteady solutions. Problem (3.1)
(3.6) has been studied in [23], where the differential system (3.4), the reaetion
diffusion problem (3.1)-(3.3) and lastly problem (3.5)-(3.6) are investigated in this
order in three consecutive steps. Before stating the main result of [23] about the so
lutions of (3.1)-(3.6), we need to describe the mathematical hypotheses. Introducing
a function r satisfying

(3.7)

and setting

(3.8)

we will assume that

{

r E C=(lR, lR) ,

r=:Oon(-oo,-l),

r =: Ion (1,+00) ,

{
TO(x) = T~ + (T~ - T~)r(x) + q,°(x) ,

yO(x) = y~ + (Y"o - y~)r(x) + t/J°(x) ,

(3.9)

(3.10) Tmin = inf TO(x) > 0, inf yO(x) ~ 0 .
.eJR .eJR

Moreover, we assume that

(3.11) {
I, E C3 (lR+,1F4) ,

I, is bounded and Lipschitz-continuous on lR+ .

Then, the investigation of problem (3.1)-(3.6) begins by considering the system
(3.4) of ordinary differential equations (ODEs). The proof of the following result
involves classical arguments of the ODE theory (see [23]):
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PROPOSITION 1. Assume tbat tbe bypotbeses (3.9)-(3.11) bold. Tben, tbere
exists a unique solution [Tu(t), T6(t), Y.(t), Y6(t)] to system (3.4). Tbis solution is
bounded and exists for all time, and satisfies

(3.12)
{

Tu(t) > 0 , T~(t) ~ 0 ,
T6(t) > 0 , Tt(t) ~ 0,

Yu(t) ~ 0 , Y~(t) :::; 0, limt_+oo Y.(t) = 0 ,

Y6(t) ~ 0 , Y;(t) :::; 0 , limt_+oo Y6(t) = 0 .

In the sequel, we will use the notations

(3.13) T:;" = lim Tu(t) > 0 , T6°O = lim n(t) > 0 .t-+oo t-+(X)

Then, one proves the following result for (3.1)-(3.3):

THEOREM 1. Assume tbat tbe bypotbeses (3.9)-(3.11) bold. Tben, tbere exists
a unique solution [T(x, t), Y(x, t)J on JR x 1R+ to system (3.1)-(3.4). This solution
satisfies

(3.14)

{

T, Y E Lt::c(JR+, LOO(JR)) ,

0:::; Y(x,t):::; sup yO(x) ,
xEJR

T(x,t) ~ Tm;n .•

To prove Theorem 1, one introduces the unknowns tP, fjJ defined by

(3.15) {
tP(x, t) = T(x, t) - Tu(t) - (T6(t) - Tu(t))r(x) ,

fjJ(x, t) = Y(x, t) - Yu(t) - (Y6(t) - Y.(t))r(x) ,

which satisfy homogeneous boundary conditions, and one writes problem (3.1)-(3.3)
under the form

(3.16)

where 4>(t) = [tP(., t), fjJ(., t)J and where the operator A is defined in the appropriate

functional space by A(tP, fjJ) = (-tPxx, - fjJ~X). The proof then relies on classi<"al
arguments of partial differential equations theory, based on the application of the
linear semigroup theory (see [15J, [23J for the details).

Once problem (3.1)-(3.4) is solved, studying problem (3.5)-(3.6) is an easy task.
We refer to [15], [23J for the precise result, since we will restrict now our attention
to the combustion variables T and Y.
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3.3. Existence and uniqueness of traveling-wave solutions. It is clear
that a steady solution in Eulerian coordinates corresponds to a traveling wave so
lution in Lagrangian variables, since the identities Tr = 0, Yr = 0 then imply
Tt - cTx = 0, Yt - cYx =0 from (2.3) and (2.9).
We therefore wish to consider traveling-wave solutions. In order to remove the

cold boundary difficulty, we modify the reaction term. We consider a non linear
function fo. satisfying

{

fo. E C3 (IR+,IR+) ,

(3.17) fo. is bounded and Lipschitz-continuous on 1R+ ,

3Tjo E (T2,T~), fo. == 0 on [T2,TP1, fo. > 0 on (TP,+oo) ,

where TP is an ignition temperature, and look for T(x), Y(x) and c E 1R satisfying
(compare with (3.1»

{

cT. = Y fo.(T) + Tx

1

x ,

(3.18)
cYx = -Yfo.(T) + ZY.. ,

{
T(-oo) = T2 , Y(-oo) = Y~ ,

(3.19)
T(+oo) = T~ , Y(+oo) = Yb

o .

In agreement with Section 2, we assume here that the boundary values T2, T~, Y~,

and Ybo satisfy

(3.20)

the first relation in (3.20) being the normalized analogue of (2.7).

About problem (3.18)-(3.19), we will simply state below the simplest existence
and uniqueness problem: in the equidiffusional case, that is when I:- = 1, (3.18)
(3.19) imply that T +Y == Tr The problem therefore reduces to a single ordinary
differential equation; it remains to find a C2 function T(x) and a real c satisfying

{
c(T)x = 90.(T) +(T).. ,

(3.21 )
T(-oo) = 1'2, T(+oo) = T~ ,

(we have set 90.(T) = (T~ - T)fo.(T»). The result, proved in e.g. [4]' [6], is the
following (its proof essentially relies on a shooting argument):

THEOREM 2. Under the hypotheses (3.17), there exists a solution (T,c) of
(3.21), with c > O. Moreover, this solution is unique up to a translation of the
origin.•

4. Long-time behaviour. In this section, we consider the long-time be
haviour of the time-dependent solutions of (3.1)-(3.4).

We will consider two basically different situations, depending on the assumptions
on the reaction term. On one hand, we consider problem (3.1)-(3.4), where the
nonlinear term f. corresponds to the actual Arrhenius reaction term; we will call
this problem (P.). On the other hand, we will consider the similar problem with
fo. instead of ff> that is with the assumption of an ignition temperature: we will
call this second problem (Po.).

For problem (P.), we have the following result:
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THEOREM 3. Assume that the hypotheses (3.9)-(3.11) hold, and that f, satis
fies

(4.1 ) min f,(T) > 0 .
T~Tmi"

Let (T, Y) be the unique solution of problem (P,). Then, for any x E JR, we have

(4.2)

(4.3)

1· T( ) T;:O + Tboo
1m x,t = 2 'i-+oo

lim Y(x,t)=O .•
t-+oo

The proof of Theorem 3 is sketched in Section 4.2 below; the reader is referred
to [23J for the detailed proof. Let us also add here that the limit (4.3) is uniform in
JR: one shows indeed that IIY(., t)lIoo exponentially decays to 0 as t tends to +00.
On the other hand, the limit (4.2) is uniform on every compact subset of JR; in the
particular case where T;:O = Tboo, this limit is uniform in all of JR.

Let us now tum to problem (Po,). We will simply consider the equidiffusional
case, where there exists a unique traveling-wave solution T from Theorem 2; more
over, we will assume that the initial conditions (3.2) satisfy

(4.4)

Then problem (Po,) reduces to (4.5)-(4.6) below:

{

Tt = 90,(T) + Txx ,

(4.5) T(x,O) = TO(x) ,

T( -00, t) = T~ = TO( -00) , T(+00, t) = T~ = TO(+00) ,

(4.6) T(.,t)+Y(.,t)=T~.

The long-time behaviour of the solutions is then given by the next result, which

says that the traveling-wave solution of (4.5) is stable:

THEOREM 4. Assume that the hypotheses (3.9)-(3.10), (3.17) and (4.4) hold.
Let (T, Y) be the unique solution of problem (Po,) (i.e. (4.5)-(4.6)), and let (T, c)
be the unique solution of (3.21). Assume moreover that T2 :$ TO(x) :$ T~ for any

x E JR and that lim TO(x) exists in JR+. Then there exist a real Xo and two
, x--ooexp(cx)

positive constants K and r such that, for any x and t:

(4.7) IT(x,t) - T(x + Xo + d)l:$ Ke-rt .•

The main ideas of the proof of this convergence result are presented in Section

4.2 below; the complete proof can be found in [25J.
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4.1. Complete asymptotic burning. We sketch here the proof of Theorem
3.

From (3.14) and (4.1), there exists a constant S such that f,(T(x, t» 2 S > 0
for all x E JR and t 2 O. Let Y6(t) be the solution of

{

d;6 == -SY6(t) ,
(4.8)

Y6(O) == 11Y0 1100 ,
that is, Y6(t) == lIyoliooe-6t. An additional application of the maximum principle
yields Y(t,x) ~ Y6(t), which is the desired estimate for Y.

Thus, the reason why the reactant eventually vanishes is clear from a physical
point of view: it is a straightforward consequence of the fact that, with the present
hypotheses, the reaction term f,(T) is always positive and bounded away from O.

From an heuristic point of view, we can see now why the temperature has the
behaviour (4.2). Because of (4.3), one may think that the reaction rate Yf,(T)
eventually vanishes on all of JR; moreover, the term T~(t) also tends to 0 as t
tends to +00. One therefore expects that the temperature asymptotically be
haves like the solution 0 of the linear heat equation 0 t == 0 xx with the bound
ary conditions 0(-00,t) == T:7:, 0(+00,t) == T/:. But 0 has the behaviour (4.2):

lim 0(x,t)== T:7:+
T

b
oo

).
t-+oo 2
The rigorous mathematical proof of (4.2) exactly follows these lines, using the

semi-group expression of the solution T and some technical but simple arguments
(see [23]).

4.2. Stability of the traveling-front solution. The proof of Theorem 4 is
based on the same ideas as the one of the stability result of Fife-McLeod [9J for
a model arising in biology, with some differences related to the behaviour of the
nonlinear function 90, near the cold boundary T~. In particular, the third step
in the proof below, which involves here some local stability results obtained by
Sattinger [26J in a general framework, is simpler for the model of [9].
From now on, we assume that (T,c) is the unique solution of (3.21) such that

T(O) == Tp. Moreover, examining the solution of (4.5) in the reference frame of the
traveling-front solution T, we assume that T now satisfies

{

Tt + cT. == 90,(T) + Tn ,

T(x,O) == TO(x) ,

T( -00, t) == T~ == TO( -00) , T(+00, t) == T~ == TO(+00) ,

instead of (4.5) (that is, we change x into x + et). The whole proof will then be
given in the reference frame of the traveling wave.

The proof of Theorem 4 is sketched below, in four steps. We refer to [25J for
the details.

Step 1: Estimates near +00 and -00.

This step consists in proving the following estimates:
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PROPOSITION 2. There exist to > 0 and three positive constants k, >. and j1.

such that, for all t 2: to:

(4.10)

(4.11 ) IT(x, t) - T21 + ITx(x, t)1 + ITxx(x, t)1 :S I< eCx , 'Ix :S 0 .•

The proof of this proposition relies on the construction of upper and lower solu
tions; namely one proves from the maximum principle that the following inequalities
hold for t large enough:

where

(4.13)

(4.14)

for suitably chosen XI, X2, WI > 0 and W2 > O. The inequalities (4.12) yield the
desired estimates for T; the similar estimates for the first and second derivatives are
obtained from (4.12) combined with classical Schauder-type estimates. In addition
to (4.10)-(4.11), these Schauder estimates show that the functions Txx (., t) for t 2: to
are equicontinuous.

~: Convergence of a subsequence.

The next result is the following:

PROPOSITION 3. There exists Xo E JR. and a sequence (t n) with lim t n = +00
n-+oo

such that, for any x E JR.:

(4.15) lim T(x,tn)=T(x+xo) .•
n-+oo

This result is obtained by classical arguments of dynamical systems theory. One
first introduces the following Lyapunov functional:

(4.16) V(t) = ;+00 e-CX[.!.T; _ G(T) + G(I)H(x)]dx ,
-00 2

where G(s) = i' 90,(s)ds and where H(x) denotes the Heaviside step function.

Proposition 2 then guarantees that this function of t is well-defined and bounded;
it is then easy to see that V is differentiable and that

(4.17) ;

+00
V'(t) = - -00 e-CZ[Txx - cTx + 90,(T)j2dx :S 0 .
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Thus, there exists a sequence (tn) with lim t n = +00 such that
n-+oo

(4.18) lim V'(tn) = 0 .
n-+oo

Since one can show from Step 1 and Ascoli's theorem that the set {T(., t), t :::: to} is
compact in C2( lR), we can extract a subsequence (tn.) such that T(., tn.) converges
in C2(JR). But the limit necessarily satisfies (3.21) from Proposition 2 and (4.17)
(4.18), which concludes the proof of Proposition 3.

~: Uniform convergence.

The next lemma now follows from the previous steps:

LEMMA 1. There exists a C1 positive function Wo such that

(4.19) ( ex) ( ex) ,sup exp --2 wo(x) + sup exp --2 IWo(x)1 < +00 ,
rEJR rEJR

and two sequences (t n), (on) with lim t n = +00 and lim On = 0 such that,
n-+oo n-+oo

for all n and all x E lR:

(4.20)

Now, the local stability theorems of Sattinger [26] apply: they yield the existence
of a C1 function h(o) defined in the neighbourhood of 0, and of positive constants
k and K sum that the solution l' of the Cauchy problem:

(4.21 )

satisfies

(4.22)

{

Tt + cT. = 90«1') + Txx ,

T(x,O) = T(x+xo)+owo(x) ,

1'(-00, t) = T~ , 1'(+00, t) = T~ ,

IT(x,t) - T(x + Xo + oh(o))1 $ Ke- kt
,

for any x E lR and t :::: 0 (the property (4.19) of Wo is a necessary condi tion for
the local stability result (4.22) to hold). Using now Lemma 1 and the maximum
principle, we obtain that, for any n and any t ~ tn

(4.23)
T(x+xo-onh(-on))-Ke-k(t-t n ) $ T(x,t) $ T(x+xo+onh(on))+Ke-k(t-l n ).

This proves the uniform convergence:

(4.24) lim IIT(., t) - T(. + xo)lIoo = 0 .
t-+oo

~: Exponential convergence.
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This step is identical to the last step of Fife and McLeod's proof. One now looks
for a C1 function aCt) which, at each time t, minimises a certain distance between
T(., t) and all translations of the traveling-wave solution; namely one looks for aCt)
satisfying Ft(a(t» = min Ft(f3), Ft being defined by

PER

(4.25)

The Euler equation for the minimum reads

(4.26) 1
+00

-00 e-CX[T(x, t) - T(x + Xo + a(t»]T'(x + Xo + a(t)dx = 0 .

Using (4.26) and the implicit function theorem, one can prove that aCt) exists for
large t. Then, some technical arguments are needed to prove successively that

(4.27) IT(x, t) - T(x + Xo + a(t))1 ::; Ce-wt ,

for some positive constants w and C, and that a(t) ::; C'e-w't for other positive
constants w' and C'. This ends the proof of Theorem 4.

5. The cold boundary difficulty. The long-time behaviours of the solutions
of problems (P,) and (Po,) therefore appear from Section 4 to be thoroughly differ
ent. But in fact, the two situations do not differ so much, just because the activation
energies that are involved are large: we will see in this section that Theorems 3 and
4 provide a mathematical answer to the paradox of the cold boundary difficulty.

In view of the expression (2.2) of the Arrhenius term, we make a mathematical
"large activation energy analysis". Keeping in mind that f, is the actual Arrhenius
non linear reaction term and that E is proportional to the inverse of the activation
energy, we now assume that we have two families of functions (J,) and (Jo,) such
that (i) for any E > 0, f, satisfies (3.11), (ii) for any E > 0, fo, satisfies (3.17), and
(iii) there exists a sequence (8,) with lim 8, = 0 and,-0

(5.1 ) lifo, - f,lIoo ::; 8, .

Comparing the solutions of problems (P,) and (Po,) is the subject of the next
lemma:

LEMMA 2. Assume that the hypotheses of Theorems 3 and 4 hold, and that
(4.1) hold. Let (T" 1';) be the solution of (P,), and let (To" Yo,) be the solution of

(Po,).

Then there exist two sequences (8;) and (t,) with lim 8; = 0 and lim t, = +00
t"-O IE-O

such that

(5.2) IIT,(.,t) - To,(.,t)lloo + IIY,(.,t) - Yo,(.,t)lIoo::; 8;.
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The proof of Lemma 2 relies on an appropriate use of Gronwall's lemma.

Now, this result provides a mathematical answer to the Pllradox of the cold
boundary difficulty. Under the preceding assumptions, Lemma 2 shows that, if € is
small enough (that is, if the activation energy is large enough), the time-dependent
solution of the Arrhenius model (1',) remains close during a long time to the time
dependent solution of the model with an ignition temperature (1'0,; but Theorem
4 then says that the latter solution converges exponentially to the corresponding
traveling wave To,. Therefore, we have proved that the solution of the Arrhenius
model behaves like a traveling wave during a period of time which is larger and larger
as the activation energy increases, before it has the asymptotic behaviour described
in Theorem 3. This is the mathematical answer to the cold boundary difficulty.

6. Numerical illustration. In this last section, we illustrate the preceding
analysis by showing a numerical example.

6.1. The numerical method. Before discussing the numerical results, let us
briefly present the numerical method used in the calculation. We solve problem
(3.1)-(3.4) (that is, problem (1',» on a finite interval [-L,L], using a computa
tional grid which is equally spaced in space and time. In order to avoid too severe
restrictions on the time step, while still describing accurately the transient flame
evolution, we use an integration scheme which is implicit for the diffusive terms but
explicit for the reactive terms (we refer to [3J for a discussion on the choice of the
time step). Moreover, we use homogeneous Neumann conditions at both boundaries
-L and +L. The scheme (S) can therefore be written as

(6.1)

(6.2)

T!*l _ 2Tn+1+T!*l T' ( R)
J-l J jf-! +Y!'f (TR )+ 1-1 _u_t_T'! for 1<'<N

~x2 J 'J I Tu(tn) J ~-,

Tt+
1
- To

n
+

1
Y;Rf (TR ) 1- 1 T~(tn) Tn ~ .

~x2 + ° , ° + -1- Tu(tn) ° ,or J = 0 ,

(6.4)

with the similar equations for Y. The terms TU(t R
) and T~(tn) are evaluated and

stored in a preliminary step using an explicit Runge-Kutta scheme. In (6.1)-(6.3),

~t is the time step, and N is the number of interior mesh points and ~x = N
2L

+1
is the mesh spacing. For 0 :s: j :s: N + 1, we set Xj = j~x - L.

Since we want to observe the time-dependent behaviour of the solution to (3.1)

(3.4), it is of interest to know that the above scheme (S) converges, in the following
sense:

PROPOSITION 4. Assume in addition to (3.9)-(3.11) tbat tbere exist two positive
constants A and a sucb tbat tbe initial data (3.2) satisfy

{
ITO(x) - T~I + IYO(x) - Y'?I :s: Aexp(ox) Vx < 0 ,
ITO(x) - T~I + IYO(x) - ybol :s: Aexp( -ox) Vx > 0 .
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Let (T, Y) be tbe unique solution of (3. 1)-(3.4). Lastly, let (Tt, lin) be tbe numerical
solution of tbe scheme (5), and assume tbat tbe time step b.t satisfies

(6.5)

Tben, for any to > 0, tbere exists a positive constant K = K(to) sucb that, for any
j and n witb 0 ~ j ~ N + 1, 0 ~ nb.t ~ to:

We refer to [23J for the proof of this convergence result (see also [2] where a
similar result is proved for a two-dimensional explicit scheme).

6.2. Numerical results. We will now use the scheme (5) to solve the nor
malized problem (3.1)-(3.4)), with the following non linear function:

(6.7) f,(T) = exp (-~) ,

and the following initial boundary values:

(6.8) {
T:?=l,T~=l1,

Y~ = 1 , Ybo = 0 ,

and with a unit Lewis number.

Of course, these values are not realistic, since we want to observe the long-time
behaviour described at the end of Section 5: with realistic parameters, we should
have to perform the calculation during an extremely long time before the fresh gases
temperature increases substantially above its initial value (see e.g. [16], [22), where
the steady solution T is approached by solving numerically the problem (1',) with
the actual Arrhenius tenn (and not (1'0'))' because the "very-long-time behaviour"
(complete burning) described in Theorem 3 occurs only extremely far after the
"convergence" to steady-state).

We have taken L = 100, and used the foJlowing initial data (which are inspired
from the planar steady-state temperature and mass fraction profiles obtained using
high activation energy asymptotics; see e.g., [21]):

(6.9)

(6.10)

o {1-eXP(60-X) if-100~x~60,
Y (x)-

o if 60 ~ x ~ 100 ,

The results are shown for 12 successive (inequally spaced) time levels. Notice, that

the variable e = !:o- T2
0
is plotted instead of T, and that the scale on the e axis

.Ii -Tu
changes at time t9 (Figure 5).
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In full agreement with the preceding analysis, we observe that the flame initially
"converges" towards a traveling wave (in the interval [t 1 , t2 ]) and propagates at
constant speed (in the interval [t 1 ,t4 )). At time t4 , the fresh mixture temperature
has just begun to increase over its initial value T2 (as explained above, the induction
time t4 would be extremely larger if realistic values of the parameters were used).
In the interval [t4' t lO ], the temperature increases on the whole domain: as it is
well-known from the study of homogeneous combustion, there is a rather sudden
transition where the fresh gas tenperature Tu(t) increases to its final value (notice
that the time lag between two consecutive figures has been reduced in this interval).
Again here, one should add that this transition would be much more sudden with
more realistic parameter values. Lastly, after t lO , complete burning has occured,
and heat diffusion very slowly conducts the temperature to its final value
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Figure 1. Temperature and mass fraction profiles at t] = a and t2 = 10.
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Figure 2. Temperature and mass fraction profiles at t3 = 20 and t4 = 40.
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