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Abstract

Radau IIA methods are successful algorithms for the numerical solution of sti� di�erential equations. This article
describes RADAU, a new implementation of these methods with a variable order strategy. The paper starts with a survey
on the historical development of the methods and the discoveries of their theoretical properties. Numerical experiments
illustrate the behaviour of the code. c© 1999 Elsevier Science B.V. All rights reserved.
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The methods described in this paper emerged around 1969 as the fruit of two independent devel-
opments, on the one side the study of sti� di�erential equations principally in the light of multistep
methods, and on the other side the theory of implicit Runge–Kutta methods. This is outlined in the
�rst two sections of this paper. Sections 3 and 4 collect properties of the Radau IIA methods and
the last two sections are devoted to their implementation and to a new order selection strategy for
implicit Runge–Kutta methods. Several numerical experiments are presented.

1. Sti� equations and stability analysis

Sti� problems are characterized by the fact that the numerical solution of slow smooth movements
is considerably perturbed by nearby rapid solutions. A typical example is the equation

y′ =−50(y − cos x): (1)
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Fig. 1. Solution curves of (1) with explicit Euler, implicit midpoint rule, and implicit Euler solution.

Its solution curves are shown in Fig. 1. We see that the ‘smooth’ solution close to y ≈ cos x is
reached by all other solutions after a rapid ‘transient phase’. The three �gures present, in addition,
for the initial value y0=0:15, the numerical solutions for the explicit Euler method (left), the implicit
midpoint rule (middle, where else?), and the implicit Euler method (right). The chosen step size for
the explicit Euler method is tightly below the stability boundary. With larger step sizes, this method
would overshoot the solution and produce serious numerical instability. The two other methods are
stable for all h, but do not possess the same smoothing property.

1.1. First sti� problems

Sti� di�erential equations appeared half a century ago scattered here and there in the literature,
and some ten years later one could say, in the words of G. Dahlquist, that ‘around 1960 : : : everyone
became aware that the world was full of sti� problems’ [28, p. 2].
The famous paper by Crank and Nicolson [10] treated a heat equation problem with nonlinear

internal heat generation. For a numerical treatment, this problem is then reduced to a set of ordinary
di�erential equations by ‘replacing the space derivative’. This procedure, attributed by Crank and
Nicolson to D.R. Hartree and named ‘method II’, is today known as ‘method of lines’. If we omit
the nonlinear term, the equation is @�=@t = @2�=@x2 and becomes, after partial discretization, the
system

�′i =
1
�x2

(�i+1 − 2�i + �i−1)
(�0 = �n+1 =0; (n+1)�x=1): It can be treated by the trapezoidal rule (as did Crank and Nicolson),
or with the explicit or implicit Euler method. The results are shown in Fig. 2 and show precisely
the same phenomena as for problem (1).
The �rst appearence of the term ‘sti�’ is in the paper by Curtiss and Hirschfelder [12] on problems

in chemical kinetics. Without giving a precise de�nition, they call a di�erential equation sti�, if the
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Fig. 2. Explicit Euler (left), trapezoidal rule (middle), implicit Euler (right).

implicit Euler method performs much better than the explicit Euler method. They discuss the concept
of sti�ness by considering the equation

dy
dx
= [y − G(x)]=a(x; y):

“If �x is the desired resolution of x or the interval which will be used in the numerical integration,
the equation is ‘sti�’ if∣∣∣∣a(x; y)�x

∣∣∣∣�1
and G(x) is well behaved”. Eq. (1) above is just a special case of such an equation. The article by
Curtiss and Hirschfelder is also famous because it introduces the backward di�erentiation formulas
(BDF). Today’s readers of this classical paper are often surprised by the fact that Curtiss and
Hirschfelder were thinking of equations with positive a(x; y), thus were seeking stable numerical
solutions of unstable problems.
Another early contribution to sti� di�erential equations is the article by Fox and Goodwin [21].

Hidden as the last section in a paper on various methods for ODEs, the authors consider the problem

y′ =−10y + 6z; z′ = 13:5y − 10z; (5.1)

with exact solution y(x)=2e(e−x+e−19x)=3; z(x)=e(e−x− e−19x), in order to explain phenomena of
‘building-up errors’: ‘For values of x greater than unity the second exponential term is completely
negligible, and it would be expected that the equation (5.1) could be integrated with con�dence at
a fairly large interval, say h= 0:2’. Fig. 3 presents some solutions of this equation together with a
numerical solution computed by their ‘Method II’, which is the trapezoidal rule. We again observe
precisely the same phenomena as before.
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Fig. 3. Example of Fox and Goodwin [21], trapezoidal rule, h= 0:2.

1.2. Linear stability analysis

The explanation of the behaviours of the errors observed above in the neighbourhood of a smooth
solution of y′(x)=f(x; y(x)) is done by linearization and leads to the so-called variational equation

y′ = Jy where J ≈ @f=@y (2)

[40,13]. Other authors [10,21] were analysing linear equations anyway, or Loud [34] started from
the beginning with a linear constant-coe�cient case by saying that ‘if a numerical method is to be
of value in solving general di�erential equations, it should be extremely reliable with the simplest
types : : : .’ In higher dimensions, this equation is then diagonalized and leads to

y′ = �y; where � represents eigenvalues of J: (3)

This equation is called the ‘Dahlquist test equation’, since Dahlquist stressed its importance in his
famous paper [14]. Crank and Nicolson had analysed the errors in the Fourier modes as ‘proposed
to the authors by Prof. D.R. Hartree, following a suggestion by Prof. J. von Neumann’. This is
equivalent to the foregoing diagonalization, since for the heat equation the Fourier base functions
sin k�x coincide with the eigenvectors of J .
The above mentioned numerical methods, when applied to (3), lead to the following ampli�cations

of the errors

ym+1 = R(z)ym where z = h� (4)

and the so-called ‘stability function’ R(z) is

R(z) = 1 + z (explicit Euler method);

R(z) = 1+z=2
1−z=2 (trapezoidal and implicit midpoint rule);

R(z) = 1
1−z (implicit Euler method): (5)

Instability appears if for an eigenvalue � the modulus |R(z)|¿ 1. This happens for the explicit
Euler method if, in the case of real eigenvalues, z = h�¡− 2. The other two methods do not have
such a restriction for negative �. Their di�erent smoothing properties are explained by the fact that
limz→∞ R(z) =−1 for the trapezoidal rule, and limz→∞ R(z) = 0 for the implicit Euler method.
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Fig. 4. Facsimile of Radau’s formula of order 5 [38, p. 303].

1.3. A-stability

We quote from [14]: ‘A k-step method is called A-stable, if all its solutions tend to zero, as
n→ ∞, when the method is applied with �xed positive h to any di�erential equation of the form

dx=dt = qx;

where q is a complex constant with negative real part’. This famous de�nition can also be applied
to one-step methods. The method is A-stable if the stability domain

S := {z; |R(z)|61} (6)

covers the entire left half plane C−.
Immediately after this de�nition Dahlquist writes ‘In most applications A-stability is not a neces-

sary property. For certain classes of di�erential equations, however, it would be desirable to have
an A-stable method : : :’ and mentions applications in control engineering and chemical engineering.
Dahlquist then proves his famous order barrier (p62) for A-stable multistep methods and discusses
the stability for nonlinear problems. Mainly as a consequence of this severe order barrier, the search
for A-stable, high-order methods attracted many numerical analysts during many years.

2. Early implicit Runge–Kutta methods

2.1. Radau quadrature

Rodolphe Radau 3 published in 1880 an extensive memoir [38] on quadrature formulas, with
main emphasis, naturally, on Gauss, Lobatto, and Chebyshev methods. What we now call ‘Radau
formulas’, formulas of maximal order with one end point as a prescribed node, occur very briey
and incidentally, merely for the sake of completeness. See in Fig. 4 Radau’s publication of ‘his’
formula of order 5 for the interval [−1; 1] with prescribed node −1. The Radau methods which will
be most interesting to us are those with a �xed right endpoint. In today’s notation, the formulas for
the interval [0; 1] with s stages have nodes ci (i = 1; : : : ; s), which are zeros of

ds−1

dxs−1
(xs−1(x − 1)s); (7)

and the weights bi are determined by the quadrature conditions
s∑
i=1

bic
q−1
i =

1
q

for q= 1; : : : ; s: (8)

3 Born 1835 in Prussia, studied Astronomy in K�onigsberg, moved 1858 to Paris, was a highly educated man (languages,
music) and became a very fertile and successful author in Astronomy, Physics, Geodesy, Meteorology, and Applied
Mathematics, died in 1911.
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For more details about the old literature on Gaussian quadrature see the contribution by Runge and
Willers in the Enzyklop�adie der Math. Wiss., Bd. 2, Teil 3, erste H�alfte, pp. 49�. There, it can
be seen that not only French (Radau), but also German (Gauss, Jacobi, Christo�el, Grunert), Dutch
(Lobatto) and Russian (A. Markov) mathematicians have their heroes in this subject.

2.2. Runge–Kutta methods

The long story of the extension of quadrature formulas to methods which solve systems of ordinary
di�erential equations

y′ = f(x; y)

is, for example, outlined in [9]. This results in the formulas

Yi = y0 + h
s∑
j=1

aijf(x0 + cjh; Yj); i = 1; : : : ; s; (9)

y1 = y0 + h
s∑
j=1

bjf(x0 + cjh; Yj): (10)

Whenever there are nonzero coe�cients aij with i6j, the method is called implicit and relation (9)
constitutes a nonlinear system of equations for the unknowns Y1; : : : ; Ys. It is interesting to notice,
that Butcher’s important publication on implicit Runge–Kutta methods [5] was not allowed to be
published in a ‘computational’ journal, unless an appendix on the solution of these implicit equations
with �xed-point iterations was added. It turned out later that, in the case of sti� di�erential equations,
Newton-type iterations are necessary (Liniger and Willoughby [33], see Section 5 below).
The a priori unknown coe�cients aij are determined by the requirement that the expansion in

powers of h of the numerical solution coincides with that of the true solution up to and including
a certain order p. This requirement turns out to be a very complicated set of algebraic equations. The
construction of higher order Runge–Kutta methods became only accessible after the discovery (in
particular cases by A. Hu�ta [31], and in full clarity by J. Butcher [5]) of the so-called ‘simplifying
assumptions’

C(�):
s∑
j=1

aijc
q−1
j =

cqi
q
; i = 1; : : : ; s; q= 1; : : : ; �; (11)

D(�):
s∑
i=1

bic
q−1
i aij =

bj
q
(1− cqj ); j = 1; : : : ; s; q= 1; : : : ; �: (12)

With the help of these conditions, Butcher was able to construct implicit Runge–Kutta methods of
order p = 2s of arbitrarily high order (Gauss methods). They are generalizations of the implicit
midpoint rule.

2.3. Butcher’s Radau methods

Soon after this famous paper, Butcher [6] published a paper on implicit Runge–Kutta methods
based on Radau quadrature formulas. These quadratures made it possible to derive Runge–Kutta
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processes that were not as ‘terribly’ implicit as the Gauss processes, because the �xed left or right
node as endpoint allowed the �rst or last stage to be explicit. Butcher named his methods which
correspond to the �xed right endpoint, with an explicit last stage, as ‘II-processes’.

3. Radau IIA methods for sti� problems

3.1. Stability analysis for Runge–Kutta methods

Applying a Runge–Kutta method to Dahlquist’s test equation y′ = �y gives a numerical approx-
imation y1 = R(�h)y0, where R(z) is a polynomial in the case of explicit one-step methods, and
a rational function in general. It is called stability function of the method. For the Runge–Kutta
method (9)–(10) one obtains

R(z) = 1 + zbT(I − zA)−15; (13)

where bT = (b1; : : : ; bs); A= (aij)si; j=1; 5= (1; : : : ; 1)T.
The stability functions for the above mentioned Gauss methods were computed by Ehle [19], who

obtained the diagonal Pad�e approximations Rss to the exponential function ez. The general formula
is Rkj = Pkj=Qkj where

Pkj(z) = 1 +
k

j + k
z +

k(k − 1)
(j + k)(j + k − 1) ·

z2

2!
+ · · ·+ k(k − 1) : : : 1

(j + k) : : : (j + 1)
· z

k

k!
(14)

and Qkj(z)=Pjk(−z). The diagonal approximations were known to be A-stable (Birkho� and Varga
[3]), but possess a similar bad damping property as the implicit midpoint rule in Figs. 1–3 above.
Still more disappointing were the resulting stability functions for Butcher’s Radau II methods,

which led to Pad�e approximations above the diagonal (j= k − 1). These tend to ∞ for z → ∞ and
therefore only have a bounded stability domain.
Ehle [19] (and independently Axelsson [1]) thus undertook the search for other extensions of the

Radau formulas, which he named ‘Radau IIA’ methods, by working with Eqs. (11) and (12) in
such a way that the stability functions appear to be below the diagonal so that limz→∞ R(z)=0. The
resulting methods of orders 1, 3, and 5 are (for s= 1 the implicit Euler method)

(15)

with stability functions Rs−1; s

1
1− z ;

1 + 1
3z

1− 2
3z +

1
3
z2

2!

;
1 + 2

5z +
1
10
z2

2!

1− 3
5z +

3
10
z2

2! − 1
10
z3

3!

: (16)
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Fig. 5. Stability domains for RADAU methods of orders 1,5,9,13.

Their stability regions (for s= 1; 3; 5; 7 and p= 1; 5; 9; 13, respectively) are presented in Fig. 5. For
the proof of their A-stability, one �rst studies the behaviour of |R(iy)| on the imaginary axis. The
condition |R(iy)|261 becomes E(y) := |Q(iy)|2 − |P(iy)|2¿0. For methods with k ¡ j and order
¿2s − 2 this polynomial is of the form C2y2s and stability on the imaginary axis is clear. Next
one inspects the location of the poles, which must be all in C+. Then, A-stability follows from the
maximum principle. Ehle (as well as Axelsson) proved this property for all s. Ehle still proved that
the whole second sub-diagonal j = k + 2 was A-stable too, and stated the conjecture that all other
Pad�e approximations were not A-stable.
Two later elegant discoveries shed new light on Ehle’s methods: the order stars and the interpre-

tation of these formulas as collocation methods.

3.2. Order stars

The crucial idea is to replace the stability domain (6) by (see [42])

A := {z; |R(z)|¿ |ez|} (17)

which compares the stability fuction to the exponential function, i.e., to the true solution (Fig. 6).
With the help of this idea one is able to give an elegant proof for the A-stability of the Gauss and
Radau IIA methods, as well as for Ehle’s conjecture.
It came as a surprise that other outstanding problems could be solved too (restricted Pad�e approx-

imations, multistep methods and the Daniel–Moore conjecture). For details we refer to [28, Sections
IV.4, V.4].

3.3. Collocation methods

Hammer and Hollingsworth [29] discovered that the trapezoidal rule can be interpreted as gener-
ated by parabolas ‘pieced together’ in such a way that they ‘agree in direction with that indicated
by the di�erential equation at two points’. These authors conclude that the extension of this idea
‘to higher order integration methods is straightforward’. It was then the elegant paper of Wright
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Fig. 6. Order stars for RADAU methods of orders 1,5,9,13.

[43] (see also Guillou and Soul�e [24]) who identi�ed many known classes of implicit Runge–Kutta
methods as collocation methods. They are de�ned in the following way: Search for a polynomial
u(x) of degree s, whose derivative coincides at s given points x0 + cih (i= 1; : : : ; s) with the vector
�eld of the di�erential equation, i.e.,

u(x0) = y0 (initial value);

u′(x0 + cih) = f(x0 + cih; u(x0 + cih)); i = 1; : : : ; s:

The numerical solution after one step is then given by y1=u(x0+h). Radau IIA methods are precisely
the collocation methods with the nodes given by (7). Fig. 7 illustrates the collocation methods of
Gauss (order 4) and Radau IIA (order 3) at a nonsti� problem (above), as well as a sti� problem
(below). The fourth-order method appears to be better in the nonsti� case only.
The equivalence of collocation methods with Runge–Kutta methods is established by applying

Lagrange’s interpolation formula to u′(x0 + th) with u′(x0 + cih) = ki. Then

aij =
∫ ci

0
‘j(t) dt; bj =

∫ 1

0
‘j(t) dt (i; j = 1; : : : ; s) where ‘j(t) =

∏
k 6=j

(t − ck)
(cj − ck) :

These coe�cients satisfy (8) and (11) for q= 1; : : : ; s.
Another interesting consequence of the collocation idea is that an approximation to the solution

is available on the whole interval [x0; x0 + h] and not only at the endpoint (‘dense output’).
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Fig. 7. Gauss method, s= 2 (left), Method Radau IIA, s= 2 (right).

3.4. B-stability

After the �rst success of the linear stability theory, people started to feel that the stability analysis
based on linearization of the di�erential system which leads to the variational Eq. (2) and the
subsequent suppression of the dependence of J on x is lacking rigour. It was �nally Dahlquist
[15] who found a satisfying frame for handling general nonlinear problems, and Butcher [7] who
transferred these ideas to Runge–Kutta methods. The main idea is the following: two neighbouring
solutions of a nonlinear system are approaching in the Euclidean norm if

〈f(x; y)− f(x; z); y − z〉60: (18)

The requirement for what is then called B-stability of a method is that then the same property must
also hold for two neighbouring numerical solutions

‖y1 − z1‖6‖y0 − z0‖:
Butcher proved, among others, that the Radau IIA methods are B-stable. An elegant derivation of
this property has been found in [41] by using the collocation idea.
For further references on the subsequent very rich development of this theory we refer especially

to [16]; see also [9, Section 7] and [28, Chapter IV.12].
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4. Convergence analysis for sti� problems

Convergence proofs for sti� di�erential equations are much more di�cult than for nonsti� prob-
lems. The reason is that the factor exp((xn−x0)L), which is present in standard convergence estimates,
is very large so that these estimates become useless (L is a Lipschitz constant of the problem).

4.1. Sti� accuracy

Prothero and Robinson [37] proposed the problem

y′ = �(y − ’(x)) + ’′(x); y(x0) = ’(x0); R�60;

which allows explicit formulas for the local and global errors and provides much new insight. For
� → −∞ one can verify that the internal stages of a Runge–Kutta method (with invertible matrix
aij) are very close to the exact solution Yi ≈ ’(x0 + cih), but the numerical approximation y1 may
be far away (see Fig. 7, lower pictures). This suggests to consider methods, for which y1 is already
one of the internal stages, say Ys. This means that asi = bi (all i) and is known as ‘sti� accuracy’,
a property that is satis�ed by Radau IIA methods.

4.2. Convergence for singular perturbation problems

An important class of sti� di�erential equations are of singular perturbation type:

y′ = f(y; z);

�z′ = g(y; z);
(19)

where �¿ 0 is small and the eigenvalues of @g=@z satisfy R�6−1 along the solution. The problems
considered by Fox and Godwin and Curtiss and Hirschfelder (1) as well as (29) and (30) below
are of this type or can be brought to this form.
A typical convergence result is the following [26]: assume that the Runge–Kutta method is

A-stable, is of classical order p, has a nonsingular coe�cient matrix, statis�es |R(∞)|¡ 1, and
has stage order q (condition C(q) of (11)). Then the global error satis�es

yn − y(xn) = O(hp) + O(�hq+1); zn − z(xn) = O(hq+1): (20)

If in addition asi = bi for all i, we have

zn − z(xn) = O(hp) + O(�hq): (21)

For the s-stage Radau IIA methods, for which p = 2s − 1 and q = s, we have (21) and the even
sharper estimate yn − y(xn) = O(h2s−1) + O(�2hs) for the y-component.

4.3. B-convergence

Another type of convergence results can be obtained for sti� di�erential equations y′ = f(x; y)
satisfying a one-sided Lipschitz condition (compare with (18) above)

〈f(x; y)− f(x; z); y − z〉6�‖y − z‖2;
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where � is of moderate size. The analysis was developed by Frank et al. [22,23] and Dekker and
Verwer [16]. As in the convergence results for singular perturbation problems, the stage order q
plays an important role (see also [28, Chapter IV.15]).

4.4. Di�erential-algebraic equations

In the limit � → 0, the problem (19) becomes a di�erential equation for y coupled with an
algebraic relation:

y′ = f(y; z);

0 = g(y; z):
(22)

Implicit Runge–Kutta methods can be applied directly to (22) [36]. The idea is to apply the method
to (19) and to consider in the resulting formulas the limit �→ 0. Obviously, the numerical solution
of sti�y accurate methods satis�es exactly the algebraic relation of (22). In the case that this
algebraic relation can be solved for z (index 1), the investigation of convergence is easy, and it is
an essential ingredient for the convergence results of singular perturbation problems. If the algebraic
relation cannot be solved for z (higher index), the study of the global error is more complicated
[27]. Typically an order reduction takes place, and methods with high stage order (such as Radau
IIA) have favourable convergence properties.

4.5. Nonlinear parabolic di�erential equations

The study of Runge–Kutta methods applied to abstract di�erential equations in a Hilbert space
(including parabolic problems) has been initiated by Crouzeix [11]. For B-stable methods energy
estimates can be established which then allow elegant stability and convergence proofs [35]. It is in-
teresting to note that the so-called ‘discontinuous Galerkin methods’ are, after a suitable discretization
of the occurring integrals, equivalent to the Radau IIA methods [30].

5. Implementation

Runge–Kutta methods have been developed for ordinary di�erential equations y′ = f(x; y), but
they can easily be adapted to problems of the form

My′ = f(x; y); (23)

where M is a constant (possibly singular) matrix. If we formally replace (23) by y′ =M−1f(x; y),
apply the Runge–Kutta method, and then multiply the formulas by M , we obtain the nonlinear
system

M (Yi − y0) = h
s∑
j=1

aijf(x0 + cjh; Yj) (24)

instead of (9). For sti�y accurate methods (such as the Radau IIA methods) the numerical solution
after one step is given by y1 = Ys.
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Remark. More general problems than (23) can be handled by introducing new variables for the
derivatives. For example, the general implicit di�erential equation F(y′; y) = 0 is equivalent to the
system

(
I 0

0 0

)(
u′

v′

)
=

(
v

F(v; u)

)
;

by using the new variables u=y and v=y′. The special structure of the right-hand side of this system
can be exploited when solving linear systems. This compensates the doubling of the dimension of
the system.

5.1. Solving the nonlinear Runge–Kutta system

For nonlinear di�erential equations (23) the system (24) has to be solved iteratively. Newton’s
method needs for each iteration the solution of a linear system with matrix




M − ha11 @f@y (x0 + c1h; Y1) : : : −ha1s @f@y (x0 + csh; Ys)
...

...

−has1 @f@y (x0 + c1h; Y1) : : : M − hass @f@y (x0 + csh; Ys)



:

In order to simplify this, we replace all Jacobians (@f=@y)(x0 + cih; Yi) by an approximation J ≈
(@f=@y)(x0; y0). Then, the simpli�ed Newton iterations for (24) become, in the variables Zi :=Yi−y0,

(I ⊗M − hA⊗ J )�Zk = : : : ; Zk+1 = Zk +�Zk: (25)

The supervector Z collects the stage values (Z1; : : : ; Zs) and the upper index in Zk indicates the
iteration number. Every iteration requires s evaluations of f and the solution of a n · s-dimensional
linear system, where the matrix (I⊗M −hA⊗J ) is the same for all iterations. Its LU -decomposition
would be too costly. Therefore, Butcher [8] and Bickart [2] independently introduced an algorithm
that exploits the special structure of the matrix I⊗M −hA⊗J in (25) and thus reduces considerably
the numerical work. The idea is to premultiply (25) by (hA)−1 ⊗ I (assuming that A is invertible)
and to transform A−1 to a simple matrix (diagonal, block diagonal, triangular or Jordan canonical
form)

T−1A−1T = �:

With the transformed variables Wk = (T−1 ⊗ I)Zk , iteration (25) becomes equivalent to
(h−1�⊗M − I ⊗ J )�Wk = : : : ; W k+1 =Wk +�Wk; (26)

and the huge linear system is split into s linear systems of dimension n (for complex eigenvalues
of A we have to deal with complex matrices).
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5.2. Step size selection

Due to the superconvergence of the Radau IIA methods (classical order p=2s−1) it is not possible
to have an embedded method of order p − 1 without extra cost. By taking a linear combination
of hf(x0; y0) and the internal stage values Y1; : : : ; Ys it is however possible to get an approximation
ŷ 1 of order s. The expression err = ‖(M − h0J )−1(ŷ 1 − y1)‖, where 0 is chosen such that the
LU -factors of M − h0J are already available from the solution of the nonlinear system, can be
used for step size selection. The assumption errn+1 ≈ Cnhs+1n (error in the nth step) together with
Cn+1 ≈ Cn leads to the standard strategy

hnew = fac · hn
(

1
errn+1

)1=(s+1)
: (27)

Here the user prescribed tolerance is incorporated in the norm (see [28, p. 124]).
A more sophisticated step size strategy (‘step size control with memory’) is based on the assump-

tion Cn+1=Cn ≈ Cn=Cn−1. It leads to the formula [25, 44]

hnew = fac · hn
(

1
errn+1

)1=(s+1) hn
hn−1

(
errn
errn+1

)1=(s+1)
: (28)

Our experience has shown that taking for hn+1 the minimum of the step sizes proposed by (27)
and (28) results in a robust strategy. It automatically selects the step size of (27) in regions where
the steps increase, and that of (28) where the steps decrease. In this way many step rejections are
avoided that would appear by considering the strategy (27) only.

6. New order selection strategy and numerical results

If a class of methods with various orders is available, it is natural to search for an algorithm of
a variable order implementation. The standard strategy (as used in extrapolation codes [18], in BDF
codes, in STRIDE [4] and GAM [32]) is to choose the order p in such a way that the error per
unit step is minimal, i.e.,

C(p)=h(p) → min;

where C(p) and h(p) denote the cost factors and the proposed step sizes for the method of order p.
For implicit Runge–Kutta methods (such as Radau IIA) it is di�cult to estimate the cost factors
(the number of Newton iterations may depend strongly on the order), and it is also di�cult to get
reliable predictions for the optimal step sizes (‘: : : a disadvantage of codes based on RK-formulas
is that an order variation strategy is a hard task to handle because of the di�culty of having
a convenient representation of the local truncation errors’. [32]).
During the preparation of the second edition of our monograph [28], we had written a code

RADAUP which implements the Radau IIA methods of orders 5, 9, and 13, but only in �xed order
mode. Many numerical experiments with this code have shown an interesting phenomenon which is
explained in the following example.
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Fig. 8. Convergence of �xed-order Radau IIA codes.

6.1. Example

We consider the classical problem due to Robertson [39] which models a chemical reaction (prob-
lem ROBER in [28]). The equations and initial values are given by

y′
1 =−0:04y1 + 104y2y3; y1(0) = 1;

y′
2 = 0:04y1 − 104y2y3 − 3× 107y22 ; y2(0) = 0;

y′
3 = 3× 107y22 ; y3(0) = 0;

(29)

and the integration interval is [0; 1011]. We apply our �xed-order code RADAUP, named as RADAU5
for order 5, RADAU9 for order 9, and RADAU13 for order 13, with many di�erent tolerances
Rtol = 10−2−m=4 (m = 0; 1; : : : ; 40) and Atol = 10−6 Rtol. In Fig. 8 we plot the computing time
as a function of the global error (the maximum error at x = 1; 10; 102; : : : ; 1011) in a double
logarithmic scale. The interesting observation is that for low tolerances the high-order methods
perform much worse than as might be expected. Demanding less accuracy even increases the
computer time. This is due to the fact that for the high-order methods the local error is very
small, so that the step size strategy proposes very large steps. With these large step sizes the
simpli�ed Newton method for the nonlinear Runge–Kutta system has di�culties to converge. In
Fig. 8 we have indicated by a black symbol the situations where convergence failed in at least one
step. A grey symbol stands for slow convergence. As a conclusion we can say that high-order
methods perform better than low-order methods as soon as the convergence of the simpli�ed
Newton iterations is su�ciently fast. For the Robertson problem this phenomenon can be ob-
served very clearly, and experiments with many other problems indicate that this conclusion
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Fig. 9. Variable order code RADAU for Robertson’s problem and for the Van der Pol oscillator.

applies in general. We are thus led to the following cheap and robust order selection
strategy:

6.2. New order selection strategy (orders 5, 9, and 13)

We let �k := ‖�Wk‖=‖�Wk−1‖ (for k¿1) be the quotient of two consecutive increments in the
simpli�ed Newton iteration (26), and denote

	1 :=�1; 	k :=
√
�k ·�k−1 for k¿2:

The last 	k in a step is called contractivity factor. We then select the orders as follows:

• start the computation with low order (say, p = 5), and do not change the order during the �rst
10 steps;

• increase the order by 4, if the contractivity factor is 60:002 and if p¡ 13;
• decrease the order by 4, if the contractivity factor is ¿0:8 or no convergence occurs and if
p¿ 5;

• after a decrease of the order, an order increase is not allowed during 10 steps.
This order selection strategy is easy to implement and the choice of the threshold values prevents

frequent oscillations in the order selection. Our variable order code, based on the Radau IIA methods
of orders 5, 9, and 13 and on the above order selction strategy, is called RADAU. Its performance for
the Robertson problem (29) is illustrated in Fig. 9 (the black stars). The larger symbols correspond
to integer exponents in the tolerance 10−2; 10−3; : : : ; 10−12. We see that for a given tolerance this
code performs exactly as the best code among RADAU5, RADAU9, RADAU13. We cannot hope for
more. The number of steps taken with the di�erent orders are given in Table 1. For low tolerances,
the code does not switch to higher orders at all. Fort stringent tolerances, the code takes a few steps
with order 5, then some steps with order 9, and soon switches to the optimal order 13. Since the
solution of the Robertson problem tends to a steady-state solution, the code never decreases the order
again.
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Table 1
Number of steps of orders 5, 9, and 13 taken by RADAU

Rtol 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

Order 5 87 111 144 195 10 10 10 10 10 10 10
Order 9 0 0 0 0 98 116 138 12 14 12 12
Order 13 0 0 0 0 0 0 0 90 102 117 134

Fig. 10. RADAU for linear problem B5 and for the ring modulator.

6.3. Further examples

As a second example we consider Van der Pol’s equation

y′
1 = y2; y1(0) = 2;

�y′
2 = (1− y21)y2 − y1; y2(0) = 0;

(30)

with � = 10−6 on the interval [0; 11] (problem VDPOL of [28]). Its solution tends to a limit cy-
cle, in which transient parts in the solution alternate with intervals where the problem is very sti�.
Fig. 9 (right picture) shows the computing times of the �xed-order codes together with those of
the new code RADAU as a function of the global error (similar to the previous �gure). For large
tolerances (Rtol¿ 10−5) the code RADAU works with order 5 in the sti� regions, and it takes order
9 in the (nonsti�) transients, where small step sizes are used. For more stringent tolerances the order
switches in a similar way between order 9 and order 13. For very stringent tolerances (Rtol610−8)
the code quickly switches to order 13 and remains at this high order until the end of integration.
For linear di�erential equations with constant coe�cients, the simpli�ed Newton method gives the

exact solution after one iteration already. Therefore, after a short initial phase the code RADAU will
switch to the highest possible order 13. Fig. 10 (left picture) shows the results for the famous problem
‘B5’ of [20] with eigenvalues −10±100i; −4; −1, −0:5 and −0:1. We have taken Atol=10−6 Rtol.
It turns out that already for low tolerances the high-order methods are most e�cient.
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As a last example we consider a more engaging problem of dimension n=15, the ring modulator.
It is a model for a small circuit and has been introduced by Horneber in 1976. Promoted by
[17,27] as a test problem for sti� integrators, it is included in the Amsterdam test set (CWI) at
http://www.cwi.nl/cwi/projects/IVPtestset.shtml. We choose the parameter value CS=2×10−12 and the
interval [0; 10−3]. The Jacobian of the problem along the solution has complex conjugate eigenvalues
(approximately −2× 104± i3× 107), so that some components of the solution are highly oscillatory
with amplitude of size 0:1 (much larger than the tolerance). There are real positive eigenvalues of
size ≈ 105 (nonsti�), and also real negative eigenvalues of size ≈ −1011 which make the problem
very sti�. For this problem the high-order methods are very expensive at low tolerances, but are
very e�cient for Rtol610−5. The variable order code RADAU correctly selects a nearly optimal
order at all tolerances (see Fig. 10, right picture).
All our codes (including RADAU) are available on the Internet at the address
http://www.unige.ch/math/folks/hairer/
Experimentations with these codes are welcome.
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