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Summary. Stabilized methods (also called Chebyshev methods) are ex-
plicit Runge-Kutta methods with extended stability domains along the neg-
ative real axis. These methods are intended for large mildly stiff problems,
originating mainly from parabolic PDEs. The aim of this paper is to show
that with the use of orthogonal polynomials, we can construct nearly optimal
stability polynomials of second order with a three-term recurrence relation.
These polynomials can be used to construct a new numerical method, which
is implemented in a code called ROCK2. This new numerical method can
be seen as a combination of van der Houwen-Sommeijer-type methods and
Lebedev-type methods.

Mathematics Subject Classification (199&%5L20, 65M20

1 Introduction

The integration of initial value problems of differential equations is usually
done byexplicitmethods (in the non-stiff case) or byiplicit methods in the
stiff case. The latter have the advantage of being unconditionally stable, but
the disadvantage that they need the solution of implicit equations, which can
cost a considerable amount of computations, especially for high dimensional
problems.

In many situations, namely when the stiffness is “mild”, the dimension
is high and the eigenvalues of the Jacobian matrix are known to be in a long
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narrow strip along the negative real axitabilized explicit Runge-Kutta
methodg(which are a compromise between the two precedent methods),
are very efficient. These methods possess large stability domains along the
negative real axis. The good performance of such explicit methods for stiff
problems is mainly due to the property that the size of the stability domain,
along the negative real axis, increageadraticallywith the stage number.
A typical application of such methods is the time integration of parabolic
PDEs converted by the method of lines into a system of ODEs.

Up to now, there exist two types of second order stabilized explicit meth-
ods:

a) Lebedev-type methodshich have the advantage that the stability poly-
nomials are optimal. But there is no recurrence relation, and an appropriate
ordering of the zeros is needed for ensuring stability properties of the nu-
merical method (see [9,10,13]).

b) Van der Houwen-Sommeijer methplased on a linear combination of
shifted Chebyshev polynomials. Here the advantage is the three-term recur-
rence relation of Chebyshev polynomials, which can be used to construct
the numerical method. But the stability region on the negative real axis is
only about’80% of the optimal interval (see [8]).

For more details concerning these two approaches we refer to [6, pp. 31-36]
and [17].

In this paper we discuss a method which combines the advantages of the
two precedent methods in the following way. We search for polynomials
which possess:

1. Second order accuracy;
2. Athree-term recurrence relation;
3. A nearly optimal stability interval.

This will allow us to derive new stabilized Runge-Kutta methods.

The paper is organized as follows: In Sect. 2, we motivate our strategy
with the help of a theorem of Bernstein. In Sect. 3, we explain how to con-
struct the stability functions based on orthogonal polynomials, and give in
Sect. 4 results on existence and on the error constants of the constructed
stability polynomials. In Sect. 5, we show how to compute numerically the
recurrence coefficients of the polynomials. We describe in Sect. 6 the con-
struction of the numerical method based on a three-term recurrence relation,
implemented in a code called ROCK2 (for second order Orthogonal-Runge-
Kutta-Chebyshev, appropriately permuted to make it sound more solid). Fi-
nally, Sect. 7 contains numerical experiments with ROCK2 and comparisons
with the code RKC of Sommeijer, Shampine and Verwer [15], based on van
der Houwen-Sommeijer methods.
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2 From optimal stability polynomials to orthogonal polynomials

We start from the optimal stability polynomials of second order {Ze-
R4(z) = O(2%)), upon which the Lebedev-type algorithm is based

Rs(z) =1+ 2+ %? + 30 szt with ;s € R,
1)

|Rs(2)| <1 for ze[-1:0] withl,as large as possible.

We know (see [14]) that such polynomials exist and are unique (for all orders
and degrees). These polynomials satisfy an equal ripple property-oh
points, i.e. there existl; = zp < 21 < 22 < ... < z5_2 < 0 such that

Ry(2) = —Rs(2i11) Vi=0,...,5—3

(2) B
IRo(2)| = 1 Vi=0,...,5—2.

These polynomials possess exa&lgomplex zeros. A description of the
zeros and the error constant of these polynomials (for all orders and degrees)
is given in [1]. It is desirable in practice to replace (1)|B%(z)| <7 < 1
(damping), where is a small positive parameter. The stability domains
become a bit shorter, but a small strip around the negative real axis is included
in the stability region. Throughout this paper we will chogse 0.95.

Remark 1.No explicitanalytical solutions are known for second order op-
timal stability polynomials. Analytic expressions in terms of an elliptic in-
tegral have been obtained by Lebedev [11]. In practice their computation is
done numerically [10, 13].

Example 1.For orderl, the optimal polynomials arg;(1+ %), the shifted
Chebyshev polynomials. They satisfy an equal ripple property and a condi-
tion similar to (1) (for orden) with [, = 2s? (see Fig. 1). The Chebyshev
polynomials (shifted if—1,1]) are at the same time orthogonal polyno-
mials associated with the weight functiop,/(1 — z2). Thus, for ordet,
optimal stability polynomials are orthogonal polynomials.

Inspired by Example 1 we try, for ordé€r to find an approximation of
optimal stability polynomials involving orthogonal polynomials. As we will
use orthogonal polynomials da-1, 1], we shift R¢(z) in this interval (by
settingr = 1 + %) and write it as (using the same notation for the shifted
polynomial) )

3) Rs(x) = w(x)Ps—o(x),

! We use the notatioi®?, because we reserg, for the stability polynomials we will
construct in Sect. 3
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Fig. 1. A shifted Chebyshev polynomial and its stability domairg)
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wherew(z) is a polynomial of degre (depending on) which possesses
the2 complex zeros ofis (). As Rs(1) = 1, we will suppose thab(1) =

Ps_5(1) = 1. The order and the stability conditions (1) can be written in
the intervall—1, 1] as

72

4) Rs1)=1, R1)=ds, R{(1)=ds".
whered; = I,/2, and )
5) max |R,(z)] = 1.

z€[—1,1]

Inorder to introduce orthogonal polynomials we consider a minimization
problem. Among all polynomials of degree— 2 equal tol atx = 1
(normalization), the polynomiab;_»(x) of (3) satisfies
(6) max |w(z)Ps_o(z)| — min,

z€[—1,1]
wherew(x) is the polynomial defined above. Indeed, suppose that a poly-
nomial Q(z) of degrees — 2 equal tol atz = 1 is a solution of equation
(6). Then, due to the equal ripple property (2)®fz)P;_2(z) and the
normalization, the difference

w(z)(Ps—z(z) — Q(2))

hass — 1 zeros not at the origin. Thu@(z) = Ps_2(x) sincew(x) has only
complex zeros.

After having formulated this minimization problem, the motivation for
constructing a stability function involving orthogonal polynomials comes
from a theorem of Bernstein. Let us state this theorem (see [2] or [16, p.
290] for a proof):

Theorem 1. [2] Let ¢(z) be a positive weight function on the interval
[—1, 1] which satisfie® < A < ¢(z) < Aand|g(z +0) — q(x)|| In 5|} <
L (where, A, ¢, L are fixed positive numbers).

Then the orthogonal polynomia#$, (x) associated with the weight func-

tion q(z)/ (V1 — x?), satisfy uniformly o—1, 1]:
(7) q(x)?Py(z) = cos(nf + 1(0)) + O(In(n) ™), 6 = arccos(z).
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Fig. 2. Rs(z) (shifted) and its stability domain, witts(z) in dotted line,, = 0.95
(damping)
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Fig. 3. Ro(z) (shifted) and its stability domain, witlie(z) in dotted line,n = 0.95
(damping)
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The functiomy)(0) is called the Sze@Bernstein phase function. Under the
preceding assumptions it is continuous and satisfigy = ¢ (w) = 0
(again see [2]).

If we setq(z) = w(z)? andn = s — 2, then formula (7) shows that with
an accuracy oP(In(n) ™€), w(z) Ps—2(x) alternates (with absolute valug
ons — 1 points of[—1, 1]. Thus, it is asymptotically a solution of (6).

Ourideais to use the orthogonal polynonial » () instead ofP, o ().
More precisely, we want to find:

w(z) a positive polynomial of degre(depending or);
e P, _o(x), an orthogonal polynomial associated with the weight function

w(z)?/(v/1 — x2) such that
Ry(z) = w(z)Ps_a(x)

results in a second order stability polynomial, which remains bounded as
long as possible on the negative real axis (see Figs. 2 and 3, the optimal
polynomial and its approximation are very close).

For a givens, we will then construct a family of orthogonal polynomials
associated with the computed weight functioiz)?/(+v/1 — 22). These
polynomials denoted by’;(z) (j = 0,...,s — 2) possess a three-term
recurrence relation which will be used to define the numerical method.
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3 The stability polynomials

In this section we will explain how to construct our stability polynomi-
als. Given a degree > 3, letw(z) = (z — (o 4+ i8))(z — (o — i0))
and letP;_o(x) be the orthogonal polynomial dr-1, 1] of degrees — 2,
associated with the weight functian(x)?/+/1 — z2. If we normalize the
polynomial w(z)Ps_2(x) such thafw(z)Ps_a(z)| < 1 for z € [-1,1],
thenw(1)Ps_2(1) is usually different froml. Therefore, we introduce a
parameter. close tol, set

w(x)Ps—o(x)

(8) Rs(r) = w(a)Py_a(a)’

and we search second order conditions at the point

We will use sometimes the notatidiy(x, «, ) which emphasizes the
dependence aRs(z) ona andp. Sincew(x) depends quadratically on,
we will restrict ourselves to parametgts> 0. We emphasize that not only
w(z) but alsoPs_s(z) depends orv and 3 in a non-linear way via the
orthogonality condition. In Sect. 4 we will show that feand in a certain
region the non-linear equations (9) below have a solution.

Problem: find a, d, o, 8 such that

9) R (a,o,8) =d, Rl(a,a,p)=d*
(10) |Rs(x)| <1 xe€]-1,d]
(11 l=(14a)d aslarge as possible.

Then, if we set: = (z — a)d and denote byR,(z) = R.(a + z/d) the
shifted polynomial, we have

(12) R, (0)=1 R.L0)=1, R'0)=1

(13) IRs(2)] <1 zel[-1,0].
To compute the parameteatsd, «, 3, we will proceed in two steps:

1) Givena andd we have to determine,,.,, Bnew SUch that (9) is satisfied.
This is a system of non-linear equations

Rls(aj Onew; ﬁnew) =d
(14)
R;/(a, Onews ﬁnew) = d2-

Numerical computations show that ferandd # 0 given, the solutions of

(14) are locally unigue, thus we can solve the two non-linear equations by an
iterative method. We will show in Sect. 5 that there exist explicit formulas for
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Fig. 4. Approximation polynomials (shifted) of degr@ewith a,;qs = 1.01 (left), ancw =
0.99 (right), n = 0.95 (damping)

the polynomialR,(z) and its derivatives which can be used for the iterative
method.

2) Given a second order polynomiBL (x) we will computea,,.,, such that
(10) is satisfied and optimize the paramétef (11).

i) Computation ofa,,cq.

The second order polynomidls(x) given by equations (14) does not nec-
essarily satisfy
(15) max |Rs(z)| =1,
z€[—1,a—¢]

wheree > 0 is the smallest number such tha(z) has a local extremum
ata — e. We seta = a,;q and we search,,.,, such that (15) is satisfied (see
Fig. 4).
This can be done in the following way:
letm = max,c_1,4,,,—¢ [ Rs(T)];
e if m > 1 we searchi,c,, > aoq such thatRs(ane,) = m;
o if m < 1 we searchi,c,, < aqq such thatRs(ane,) = m.
SinceR,(x) is increasing forn > max (a, vs—2), Wherey,_s is the largest
zero of R¢(x), and sinceR4(x) is decreasing if: tends toys_o, it is always
possible to findiy,,, such thatRs(anew) = m.

We finally set

w(z)Ps—2(x)

(16) ) = o) Pra(anen)

if) Computation ofl,,¢,, (OF dpew).

We have now to choose a new valuelofr his gives a new value af =

[/(1 + a). Notice that this value must be bounded by the corresponding
value for the optimal stability polynomialgsee (4) and (5)). We know that

if a polynomial of ordeR and degrea alternates (with absolute valugon

s — 1 points of the stability interval, then it possesses the largest stability
interval. We know also thak,(z) alternates asymptotically on- 1 points
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Fig. 5. Approximation polynomials (shifted) withy = 50 (left), o = 60.5 (right), a =
0.99, n = 0.95 (damping); see Fig. 3 for the polynomial of the same degree given after
several iterations of the algorithm

of [-1, 1] (see Sect. 2). We therefore try to chodse that the local extrema
of Rs(x) are close td (see Fig. 5). We define
i = max |Rg(x)] i=1,...,8—2 Mmin = Min g;
€Y, Yit1] i

17
lnew = lold + C(l - ,Umin)v

wherey; (i = 1,...,s — 2) are the real zeros @@s(z), 7s_1 = a — € (e as
in (15)), and( is a positive parameter (for examgle= 0.5). If I,,0,, > [ OF
if 1T — umin < tol, wheretol is a small positive parameter, then we define
lnew = lold- B

In the end of this section we will give an asymptotic estimatiof ttfie
optimal stability interval (depending on the degree). Since we have neces-
sarily that! < [ (I is the optimal value for the real stability domain for a
given degrees, see Sect. 2), we can use a fraction (for exan%plef [ as
initial value forl.

We summarize now our algorithm. We suppose that initial values are
given fora andi.

Algorithm.

1. Comput@y,ew, Brew Which satisfy (14)

2. Computer,.,, such that (15) is satisfied and compitg, by (17)

3. Returnto step 1 untit,e,, — aoia| < eps and|lyew —loa| < eps, where
eps is a small positive parameter

The outputs of this algorithm for a given degree ate3, a andl. As
explained in Sect. 2, in practice we will use a dampijng 0.95. Thus con-
dition (15) should be replaced byax,c|_; ,—q | Rs(x)| = 1, and condition
(17) bylpew = lora + 4(77 - Nmin)-

It was observed by several authors that for olJéhe maximum of the
stability interval for the optimal stability polynomials is given by

(18) [ = éy(s)s?,
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Table 1. The stability parameters @t (z)

Degree  Stability Value Degree Stability Value

s regionls  ca(s) = ls/s? s regionl ca(s) = 15/8°

5 19.063 0.762553 100 8098.4966 0.809850
10 79.5131 0.79513 250 50623.5000 0.809976
20 321.5129 0.803782 500 202498.5000 0.809994
50 2023.4864 0.809395 1000  809998.5000 0.809999

wherecy(s) is rapidly approaching the limit valu@82 (without damping)
(see [17, p. 365] and [6, p. 34]). With damping, this value must be smaller
since the maximum of the stability interval decreases.

We have computed our approximation polynomials of ogjéwr degree
3 up to degrees more thdn00 with dampingn = 0.95. Table 1 gives, for
some polynomials, the values afandcy(s) = I, /s2.

It can be observed that behaves likd, ~ 0.81s2. For the stability
polynomials used in van der Houwen-Sommeijer methods, the correspond-
ing bound (with the same damping= 0.95) behaves liké.65s (see Fig. 6
for an example of such polynomials).

4 Results on existence and on the error constant dR(x)

In this section we will discuss the non-linear equations (9) (see Lemma 1 and
Theorem 2). We will also show that the error constanRefz) is positive
and we will give a bound for it (Theorem 3).

Fors > 3 given, we denote by

s—2
Pog@)=[J@-v) -1<m<..<72<l,
=1
the orthogonal polynomial oj+-1, 1] of degrees — 2 > 1 associated with
the weight functiono(z)?/v/1 — 22, wherew(z) = (z — (o +i8))(z —
(o —iB)). We setR(z) = w(z)Ps_a(z).
Troughout this section we will work with the following assumption (on
the parameters, ( of the functionw(x)):

(H) 3&.& satisfyingy,_» < & < & < o such thati?, (&) =0,

wherey,_, is the largest real zero &, () anda the real part of the complex
zeros ofw(x). It was shown in [1] that optimal stability polynomials of even
order satisfy (H).

We will prove in Lemma 1 that there existandg such that the polyno-
mial f{s(a:) satisfies the assumption (H). Under the assumption (H) we will
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then show that for every and g, with —6 <1 —a < dand0 < 3 < §
(for somes > 0), there exisu, d such that the non-linear equations (9) are
satisfied.

Lemma 1. Lety,_, be the largest zero ok, (). There exist$ > 0 such
that for everye and g, with—6 <1 — a < é and0 < g < 4, there exist;
(i = 1,2) satisfyingy,—2» < &1 < & < a such that

(19) R.(&) =0 i=1,2.

Proof. Let Ry(z) = (z — (a +if))(z — (a — i) [[I=2(x — ), with
—1<y <...<7s—2 < l.Forx > v,_, define

x:ﬂ:2x—a T —a) 282
g9(x) T2 =) ( )+ (( )? +5%) ;x

Leta = 1andf = 0. We setn = s — 2 ande = (1 — ~,)/2 (e > 0).
Theng(1 + £) > 0 and we will show thay(1 — <) < 0. Sincey; depends
continuously onx andg the same property holds in a neighborhood df
- <1—-—a<dand0d < g < § with somed > 0.

Sinceg(x) > 0 if = tends tov, (from the right), there exis{;, &2
satisfyingy, < & < & < asuchthatR)(&) =0 i=1,2.

The estimatg(1 — ) < 0 folows from

n

1 n n n
e R e o €
( ; 2¢ — = 7 €

Z0-5-9 1-f-m

d
We now prove that there exist polynomialg (z) = W

- . s a)Ps_2(a)’
defined in (8), satisfying (9):
Theorem 2. Suppose thaﬁs(x) satisfies (H) angd # 0, then there exist
a > & (wheret, is the largest zero aR, (z)) andd such thatR, () = Rale)

o Rs(a)
satisfies
(20) R’S(a, a, ) =d, R’S’(a,a,ﬂ) = d2.

as

Proof. Sinces + 0 R, () hass—2real zeros and because of the assumption
(H), R’( ) hass — 1 real zeros, and its Iargest ZefD> v5_o, Wherey,; o
is the largest zero ok, (z). This  implies thatk (z) > 0 for z > &. Thus

if we definep(z) = (R.(z))? — R, ( )R"(z), we havep(&s) < 0.
Sincep(r) = O(22573) + s2?*~2, we havep(z) > 0 for x large. Hence,
there exists, > &; such thap(a) = 0, ie.

(R<>> _ o)
Rs(a) Rs(a)
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Table 2. Zeros ofw(x) and parameter;

Degree Zero Zero Parameter
s Qs Bs as

5 0.876008 0.138447 1.009632
10 0.968456 3.399721D-02  1.001578
20 0.992172 8.455313D-03  1.000433
50 0.998801 1.342920D-03 1.000114

100 0.999704 3.355449D-04 1.000032
250 0.999953 5.367668D-05 1.000006
500 0.999988 1.342131D-05 1.000001
1000 0.999997 3.354930D-06 1.0000003

Define Ry(z) = ggz; andd = R/ (a) > 0; this gives formula (20). O

In Table 2 we give the values of, o, 8 corresponding to the polyno-
mials of Table 1 (Sect. 3).

Lemma 1 and Theorem 2 show that for a givelr 3 and for everyn
andg, with —6 < 1—a < dand0 < g < § (for somes > 0), there
exista, d such that the polynomiak(x) as defined in (8) satisfies the non-
linear equations (9). Numerical computations show that the outputs of the
algorithm of Sect. 3 are given asymptotically by = 1 — ¢; 35 = €5 with
es — 0 (see Table 2).

Let Rs(z) be a polynomial given by Theorem 2. The next theorem deals
with the error constant of

2
Re(2) =Ry(a+2/d) =142+ = +azgz®+...

2!
This polynomial is of second order, with an error constant given by
1 RY(a
(21) C= 393 where a3 = 3!653),

whered = R),(a). We will prove thatC' € (0, #) (for all s > 3). Notice that
for the parameted given by Theorem 2335 > 0.

Lemma 2. Suppose that)(z) is a polynomial of order2 (i.e. Q(z) =
1+z+ g—? +a3z® +...) such that)’(z) has only real zeros. Then the error
constantC' = . — a3 of Q(z) is strictly positive.

Proof. By hypothesi€)’(z) = ]_[f;ll(l +7:2) = 1+ 2z+3a3z*+. .. where
~; are reals. We have

s—1
= Z% =1 and sy = Z’Yﬂj = 3ag.
=1

1<j



12 A. Abdulle, A.A. Medovikov

. 2
Sinces? — 2s, > 0 we haves; < 3 = 1, henceus < 2. 0

We can now prove the following Theorem on the error constarit,6t ):

Theorem 3. Supposer(z) satisfies (H) and let andd be given by The-
orem 2. Then the error constadt of Rs(z) = Rs(a + z/d) satisfies
C € (0,3).

Proof. SinceR/,(z) possesses only real zeros (becaliser) satisfies (H)),
we have by Lemma 2 that the error constantf z) is strictly positive.
The estimate” < 1/6 follows from the fact thatiz > 0. O

Remark 2.A similar, but more sharper bound than in Theorem 3, was shown
for the error constants of optimal stability polynomials (for arbitrary orders
and degrees).

5 Explicit formulas for orthogonal polynomials
and recurrence relation

In the sequel we set < s — 2 (s > 3 given), and denote by; = a + i/,
x9 = a — i3 the complex conjugate zerosofx) (3 + 0). Notice that all
polynomials depend on

The aim of this section is to find a simple formula in order to com-
pute the orthogonal polynomial3, () associated with the weight function
w?(x)/+/(1 — 2), and its recurrence coefficients. We will use a formula
connecting two systems of orthogonal polynomials associated with different
weight functions. The first such result was obtained by Christoffel [3].

Let us show that

(22)
To(z1)  Ta(ze) Ty(z1) Th(z2) Talx)
Tota (1) Tosa(a2) Ty yy (1) Ty (02) Toga (@)
w(x)?Po(2) = C |Tpsa(a1) Toga(w2) T)po(21) Ty o) Tata(x)
Tots(z1) Tots(w2) T’VIH—S (1) r/z+3(x2> Thny3(z)
Tnva(@1) Tnga(we) Tyy(@1) Ty 4(w2) Thva())|
=Q(x)

whereT, (z) are the Chebyshev polynomials of degneendC' is a constant
depending on the normalization. Indeed, fot 1 and2,

Q(z;) =0and Q'(z;) =0 = Q(x) = Cy(z — 1'1)2(1' — aﬁg)QSn(x)
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where S, (z) is a polynomial of degreel n. We also have thaf)(z) =
S o biTnri(2) (definition of Q(x)). It remains to show thas,, () is or-
thogonal with respect ter(z)?/v/1 — 22. Let p(z) be a polynomial of de-
gree< n — 1 then

/1 @)5n(@) 29— [ o) i:r (2)————dz = 0
. p n N . p £ n+i N )

where the last equality is true because of the orthogonality property of the
Chebyshev polynomials. It is not difficult to show (see [16, p. 29] for more
details) thats,,(z) # 0, thus of degree, and the proof of formula (22) is
complete.

In the sequel, we set again= (x — a)d, in order to work in the interval
[—1,0] (see (13)), and denote By,(z) = P,(a + z/d) the shifted poly-
nomial. It is well-known that orthogonal polynomials possess a three-term
recurrence relation. Let us denote by

(23) Pn(z) = (,unz - Vn)pn—l(z) - ’inpn—2(z)

the recurrence formula of this system of orthogonal polynomials. The recur-
rence parameters,, v,, K, can be determined by solving a linear system.
We simply insert three different values fointo (23)

(28) pin7iPo1(ri) — vnPo_1(1i) — knPr_a(ri) = Pu(ri) i=1,2,3

such that . .
r1Bn1(r1) Pro1(r1) (r1)
(25) roPn_1(r2) Pao1(r2) Pra(r2) # 0.
3P, —1(r3) Pn1(r3) Pn_2(r3)
Then (24) consists in a linear system which determines uniqugly,, and
Rn.

Pan
Pn—2

6 Construction of the numerical method and ROCK?2
6.1 Definition of the method

In this section, we want to construct a Runge-Kutta method which possesses
the polynomialsi,(z) = @ (z)P,_»(z) (constructed in Sect. 3) as stability
polynomials.

Following the idea of [8], the three-term recurrence relation (23) can be
naturally used to define the internal stages of the numerical method

90 == Yo
(26) g1 = yo + hp1 f(go) .
gj = hpif(gj-1) —vigj—1 — Kjgj—2 J=2,...,5—2.
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Fig. 6. Ro(z) and the stability polynomial of the methad in dotted line (left),R(z) =
ag + boTo(wo + w1 2) (right); in both figures the stability polynomials of all internal stages
are drawn

Then, the quadratic facta(z) = 1 + 20z + 722 is represented by a two-
stage “finishing procedure” similar as in [9]

gs—1 = gs—2 + haf(gs_z)
(27) g5 = gs—1+hof(gs—1)
gs =95 —ho(l— %)(f(.%—l) — f(gs—2))-

Fory’ = Ay we obtain

sz)go j=0,...,s—2
w

g
(28) s = (2)ges

gs

wherez = h\. Hence, )
(29) gs = Rs(z)go-

In Fig. 6 (left), we sketched an example (fer= 9) of Rs(z) and
Pj(z), the stability functions of the internal stages. For the same degree
we sketched the van der Houwen-Sommeijer stability polynoii{al) =
ag + boTy(wo + w1 2), and its internal stability polynomials (Fig. 6 right).

6.2 Error estimate

For the error estimate; can be used as an embedded method. The stability
polynomial of this method is

(30)  Ri(2) = (14 202+ 022%)Ps_o(2) = w*(2) Ps_o(2).

5

SinceRy(z) = (1 + 202 + 722)Py_y(2) = w(2)Ps_s(2) is of order2,
R%(z) is of orderl.
Recall thatio(z) > 0z and tha{ R,(z)| < nfor z € [—I,, —¢], wheree
is a small positive number (see Sect. 3 and 4). Let us show that the absolute
value of R*(z) is bounded by, in the same interval a&,(z) (see Fig. 6

left).
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Lemma 3. Suppose thatR,(z)| < 7 for z € [—I,, —€] andi(z) > 0 V=.
Then the polynomiak’ (=) as defined in (30) satisfies

|R:(2)] <nVz e (—ls,—¢€).

Proof. A simple computation shows that (z) > 0Vz. Now, sincew(z) >
0 ¥z, we have that > o2, hence(z) — w*(z) = (7 — 02)2? > 0. This
yields

R (2)] = [w*(2)]| Psma(2)] < [0(2)||Ps—2(2)] < V2 € [, —].
We conclude the proof by noting that the first inequality is an equality only
if PS,Q(Z) = 0. g

As a measure of the error after one step we take
(31) err = |lgs — g5||-
For the step size selection, we used the “ step size control with memory ”
introduced by Watts [18] and Gustafsson [4]

12 hn , €My (172

e, 1 hpo1 €,
in order to allow the step size to decrease more than a featanithout step
rejections. The conventional prediction is obtained by deleting the terms
after the first brackets in (32). As advised in [6, p.125] we used fefythe

minimum of the step sizes proposed by (32) and the conventional strategy.
This latter strategy is also used after a step rejection.

(32) hnew = fac- h,(

6.3 Step size and stage number selection, spectral radius estimation

We showed in Theorem 3 that the error constant&gf:) are all in the
interval (0, £). It was found numerically that the error constantsf z),
rapidly decrease to a limit value (this was discussed in [1] for optimal stabil-
ity polynomials). It means that the error constants are almost independent
of the number of stages of the numerical method. Thus, at each step, our
code chooses first the new stepsize in order to control the local error, then it
selects the number of stages in order to satisfy the stability condition

(33) hp (%(y)) < 0.81s7%,

wherep is the spectral radius of the Jacobian matrix of the ODE.

We also implemented an automatic computation of this spectral radius.
For that we used a non-linear power method which is a slight modification of
the algorithm proposed by B.P. Sommeijer, L.F. Shampine and J.G. Verwer
(see [15]). The user has still the choice to give an estimation of the spectral
radius by himself.
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Fig. 7. Comparison of Chebyshev codes

7 Numerical experiments

We conclude this paper by presenting some results of numerical experiments.
The numerical methods described in Sect. 6 have been incorporated in an
experimental code called ROCK2. The performance of this code has been
compared with the latest version of RKC [15]. Both codes have second order.

We chose the following stiff problems from [6] (first and second edi-
tions):

1. BRUSS: The Brusselator, chemical reaction (diffusion) converted into
ODE'’s by the method of lines. This is a systeml600 equations with
the largest eigenvalues close+@0000. This problem is very stiff.

2. FINAG: The FitzHug and Nagumo nerve conduction equation, converted
into ODE’s by the method of lines. This is a systemi0f equations.

3. HIRES: A chemical reaction proposed by 8fdr, which is given by
equations.
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4. CUSP: The Zeeman'’s “cusp catastrophe” model(= v>+ ay +b) for
the nerve impulse mechanism, combined with the van der Pol oscillator,
converted into ODE’s by the method of lines. This is a systertof
eqguations.

All parameters and outputs for these problems are chosen as in [6] (first
and second editions). We solved these problems by varying the value of the
tolerance:

Tol =1072™/*% m=1,2,3,....

The results are represented in Fig. 7 in logarithmic scales (in the abscissa
the accuracy, in the ordinate the computed time in seconds). The integer
exponent tolerancd®) 2,103, . . . are displayed as enlarged symbols. The
tolerancel 0~ is distinguished by its gray colour. For all problems we took
scalar tolerancestol = rtol = tol and we provide for both codes an
estimation of the spectral radius of the Jacobian matrix. We see on Fig. 7
that ROCK2 behaves well and that it also preserves nicely the tolerance
proportionality.

Source code for ROCK2 and some examples are available on the Internet
at the address
http://www.unige.ch/math/folks/hairer/software.html
Experiences with this code are welcome.

AcknowledgementsThe authors are grateful to Ernst Hairer, Gerhard Wanner and V.1. Lebe-
dev for helpful discussions.
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