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Summary. Stabilized methods (also called Chebyshev methods) are ex-
plicit Runge-Kutta methods with extended stability domains along the neg-
ative real axis. These methods are intended for large mildly stiff problems,
originating mainly from parabolic PDEs. The aim of this paper is to show
that with the use of orthogonal polynomials, we can construct nearly optimal
stability polynomials of second order with a three-term recurrence relation.
These polynomials can be used to construct a new numerical method, which
is implemented in a code called ROCK2. This new numerical method can
be seen as a combination of van der Houwen-Sommeijer-type methods and
Lebedev-type methods.

Mathematics Subject Classification (1991):65L20, 65M20

1 Introduction

The integration of initial value problems of differential equations is usually
done byexplicitmethods (in the non-stiff case) or byimplicit methods in the
stiff case. The latter have the advantage of being unconditionally stable, but
the disadvantage that they need the solution of implicit equations, which can
cost a considerable amount of computations, especially for high dimensional
problems.

In many situations, namely when the stiffness is “mild”, the dimension
is high and the eigenvalues of the Jacobian matrix are known to be in a long
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narrow strip along the negative real axis,stabilized explicit Runge-Kutta
methods(which are a compromise between the two precedent methods),
are very efficient. These methods possess large stability domains along the
negative real axis. The good performance of such explicit methods for stiff
problems is mainly due to the property that the size of the stability domain,
along the negative real axis, increasesquadraticallywith the stage number.
A typical application of such methods is the time integration of parabolic
PDEs converted by the method of lines into a system of ODEs.

Up to now, there exist two types of second order stabilized explicit meth-
ods:

a)Lebedev-type methods, which have the advantage that the stability poly-
nomials are optimal. But there is no recurrence relation, and an appropriate
ordering of the zeros is needed for ensuring stability properties of the nu-
merical method (see [9,10,13]).

b) Van der Houwen-Sommeijer methods, based on a linear combination of
shifted Chebyshev polynomials. Here the advantage is the three-term recur-
rence relation of Chebyshev polynomials, which can be used to construct
the numerical method. But the stability region on the negative real axis is
only about80% of the optimal interval (see [8]).

For more details concerning these two approaches we refer to [6, pp. 31–36]
and [17].

In this paper we discuss a method which combines the advantages of the
two precedent methods in the following way. We search for polynomials
which possess:

1. Second order accuracy;
2. A three-term recurrence relation;
3. A nearly optimal stability interval.

This will allow us to derive new stabilized Runge-Kutta methods.
The paper is organized as follows: In Sect. 2, we motivate our strategy

with the help of a theorem of Bernstein. In Sect. 3, we explain how to con-
struct the stability functions based on orthogonal polynomials, and give in
Sect. 4 results on existence and on the error constants of the constructed
stability polynomials. In Sect. 5, we show how to compute numerically the
recurrence coefficients of the polynomials. We describe in Sect. 6 the con-
struction of the numerical method based on a three-term recurrence relation,
implemented in a code called ROCK2 (for second order Orthogonal-Runge-
Kutta-Chebyshev, appropriately permuted to make it sound more solid). Fi-
nally, Sect. 7 contains numerical experiments with ROCK2 and comparisons
with the code RKC of Sommeijer, Shampine and Verwer [15], based on van
der Houwen-Sommeijer methods.
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2 From optimal stability polynomials to orthogonal polynomials

We start from the optimal stability polynomials of second order (i.e.ez −
Rs(z) = O(z3)), upon which the Lebedev-type algorithm is based1:

R̄s(z) = 1 + z + z2

2! +
∑s

i=3 αi,sz
i,with αi,s ∈ R,

|R̄s(z)| ≤ 1 for z ∈ [−l̄s, 0] with l̄s as large as possible.
(1)

We know (see [14]) that such polynomials exist and are unique (for all orders
and degrees). These polynomials satisfy an equal ripple property ons − 1
points, i.e. there exist−l̄s = z0 < z1 < z2 < . . . < zs−2 < 0 such that

R̄s(zi) = −R̄s(zi+1) ∀i = 0, . . . , s− 3

|R̄s(zi)| = 1 ∀i = 0, . . . , s− 2.
(2)

These polynomials possess exactly2 complex zeros. A description of the
zeros and the error constant of these polynomials (for all orders and degrees)
is given in [1]. It is desirable in practice to replace (1) by|R̄s(z)| ≤ η < 1
(damping), whereε is a small positive parameter. The stability domains
become a bit shorter, but a small strip around the negative real axis is included
in the stability region. Throughout this paper we will chooseη = 0.95.

Remark 1.No explicitanalytical solutions are known for second order op-
timal stability polynomials. Analytic expressions in terms of an elliptic in-
tegral have been obtained by Lebedev [11]. In practice their computation is
done numerically [10,13].

Example 1.For order1, the optimal polynomials areTs(1+ z
s2 ), the shifted

Chebyshev polynomials. They satisfy an equal ripple property and a condi-
tion similar to (1) (for order1) with l̄s = 2s2 (see Fig. 1). The Chebyshev
polynomials (shifted in[−1, 1]) are at the same time orthogonal polyno-
mials associated with the weight function1/

√
(1 − x2). Thus, for order1,

optimal stability polynomials are orthogonal polynomials.

Inspired by Example 1 we try, for order2, to find an approximation of
optimal stability polynomials involving orthogonal polynomials. As we will
use orthogonal polynomials on[−1, 1], we shiftR̄s(z) in this interval (by
settingx = 1 + 2z

l̄s
) and write it as (using the same notation for the shifted

polynomial)
R̄s(x) = w̄(x)P̄s−2(x),(3)

1 We use the notation̄Rs because we reserveRs for the stability polynomials we will
construct in Sect. 3
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Fig. 1. A shifted Chebyshev polynomial and its stability domain (s=5)

wherew̄(x) is a polynomial of degree2 (depending ons) which possesses
the2 complex zeros of̄Rs(x). As R̄s(1) = 1, we will suppose that̄w(1) =
P̄s−2(1) = 1. The order and the stability conditions (1) can be written in
the interval[−1, 1] as

R̄s(1) = 1, R̄′
s(1) = d̄s, R̄′′

s(1) = d̄s
2
.(4)

whered̄s = l̄s/2, and
max

x∈[−1,1]
|R̄s(x)| = 1.(5)

In order to introduce orthogonal polynomials we consider a minimization
problem. Among all polynomials of degrees − 2 equal to1 at x = 1
(normalization), the polynomial̄Ps−2(x) of (3) satisfies

max
x∈[−1,1]

|w̄(x)P̄s−2(x)| −→ min,(6)

wherew̄(x) is the polynomial defined above. Indeed, suppose that a poly-
nomialQ(x) of degrees − 2 equal to1 atx = 1 is a solution of equation
(6). Then, due to the equal ripple property (2) ofw̄(x)P̄s−2(x) and the
normalization, the difference

w̄(x)(P̄s−2(x) −Q(x))

hass−1 zeros not at the origin. ThusQ(x) ≡ P̄s−2(x) sincew̄(x) has only
complex zeros.

After having formulated this minimization problem, the motivation for
constructing a stability function involving orthogonal polynomials comes
from a theorem of Bernstein. Let us state this theorem (see [2] or [16, p.
290] for a proof):

Theorem 1. [2] Let q(x) be a positive weight function on the interval
[−1, 1] which satisfies0 < λ < q(x) < Λ and|q(x+ δ)− q(x)|| ln δ|1+ε <
L (whereλ,Λ, ε, L are fixed positive numbers).

Then the orthogonal polynomialsPn(x) associated with the weight func-
tion q(x)/(

√
1 − x2), satisfy uniformly on[−1, 1]:

q(x)1/2Pn(x) = cos(nθ + ψ(θ)) + O(ln(n)−ε), θ = arccos(x).(7)
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Fig. 2. R5(x) (shifted) and its stability domain, with̄R5(x) in dotted line,η = 0.95
(damping)
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Fig. 3. R9(x) (shifted) and its stability domain, with̄R9(x) in dotted line,η = 0.95
(damping)

whereψ(θ) = 1
2π

1∫
−1

ln q(z)−ln q(x)
z−x

√
1−x2

1−z2 dz.

The functionψ(θ) is called the Szeg̈o-Bernstein phase function. Under the
preceding assumptions it is continuous and satisfiesψ(0) = ψ(π) = 0
(again see [2]).

If we setq(x) = w̄(x)2 andn = s− 2, then formula (7) shows that with
an accuracy ofO(ln(n)−ε), w̄(x)Ps−2(x) alternates (with absolute value1)
ons− 1 points of[−1, 1]. Thus, it is asymptotically a solution of (6).

Our idea is to use the orthogonal polynomialPs−2(x) instead ofP̄s−2(x).
More precisely, we want to find:

• w(x) a positive polynomial of degree2 (depending ons);
• Ps−2(x), an orthogonal polynomial associated with the weight function
w(x)2/(

√
1 − x2) such that

Rs(x) = w(x)Ps−2(x)

results in a second order stability polynomial, which remains bounded as
long as possible on the negative real axis (see Figs. 2 and 3, the optimal
polynomial and its approximation are very close).

For a givens, we will then construct a family of orthogonal polynomials
associated with the computed weight functionw(x)2/(

√
1 − x2). These

polynomials denoted byPj(x) (j = 0, . . . , s − 2) possess a three-term
recurrence relation which will be used to define the numerical method.
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3 The stability polynomials

In this section we will explain how to construct our stability polynomi-
als. Given a degrees ≥ 3, let w(x) = (x − (α + iβ))(x − (α − iβ))
and letPs−2(x) be the orthogonal polynomial on[−1, 1] of degrees − 2,
associated with the weight functionw(x)2/

√
1 − x2. If we normalize the

polynomialw(x)Ps−2(x) such that|w(x)Ps−2(x)| ≤ 1 for x ∈ [−1, 1],
thenw(1)Ps−2(1) is usually different from1. Therefore, we introduce a
parametera close to1, set

Rs(x) =
w(x)Ps−2(x)
w(a)Ps−2(a)

,(8)

and we search second order conditions at the pointa.
We will use sometimes the notationRs(x, α, β) which emphasizes the

dependence ofRs(x) onα andβ. Sincew(x) depends quadratically onβ,
we will restrict ourselves to parametersβ ≥ 0. We emphasize that not only
w(x) but alsoPs−2(x) depends onα andβ in a non-linear way via the
orthogonality condition. In Sect. 4 we will show that forα andβ in a certain
region the non-linear equations (9) below have a solution.

Problem: find a, d, α, β such that

R′
s(a, α, β) = d, R′′

s(a, α, β) = d2(9)

|Rs(x)| ≤ 1 x ∈ [−1, a](10)

l = (1 + a)d as large as possible.(11)

Then, if we setz = (x − a)d and denote bŷRs(z) = Rs(a + z/d) the
shifted polynomial, we have

R̂s(0) = 1 R̂′
s(0) = 1, R̂′′

s(0) = 1(12)

|R̂s(z)| ≤ 1 z ∈ [−l, 0].(13)

To compute the parametersa, d, α, β, we will proceed in two steps:

1)Givena andd we have to determineαnew, βnew such that (9) is satisfied.
This is a system of non-linear equations

R′
s(a, αnew, βnew) = d

R′′
s(a, αnew, βnew) = d2.

(14)

Numerical computations show that fora andd /= 0 given, the solutions of
(14) are locally unique, thus we can solve the two non-linear equations by an
iterative method. We will show in Sect. 5 that there exist explicit formulas for
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Fig. 4. Approximation polynomials (shifted) of degree9 with aold = 1.01 (left), anew =
0.99 (right), η = 0.95 (damping)

the polynomialRs(x) and its derivatives which can be used for the iterative
method.

2)Given a second order polynomialRs(x) we will computeanew such that
(10) is satisfied and optimize the parameterl of (11).

i) Computation ofanew.

The second order polynomialRs(x) given by equations (14) does not nec-
essarily satisfy

max
x∈[−1,a−ε]

|Rs(x)| = 1,(15)

whereε > 0 is the smallest number such thatRs(x) has a local extremum
ata− ε. We seta = aold and we searchanew such that (15) is satisfied (see
Fig. 4).

This can be done in the following way:

letm = maxx∈[−1,aold−ε] |Rs(x)|;
• if m > 1 we searchanew > aold such thatRs(anew) = m;
• if m < 1 we searchanew < aold such thatRs(anew) = m.

SinceRs(x) is increasing fora > max (α, γs−2), whereγs−2 is the largest
zero ofRs(x), and sinceRs(x) is decreasing ifa tends toγs−2, it is always
possible to findanew such thatRs(anew) = m.

We finally set

Rs(x) =
w(x)Ps−2(x)

w(anew)Ps−2(anew)
.(16)

ii) Computation oflnew (or dnew).

We have now to choose a new value ofl. This gives a new value ofd =
l/(1 + a). Notice that this value must be bounded by the corresponding
value for the optimal stability polynomials̄l (see (4) and (5)). We know that
if a polynomial of order2 and degrees alternates (with absolute value1) on
s − 1 points of the stability interval, then it possesses the largest stability
interval. We know also thatRs(x) alternates asymptotically ons− 1 points
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Fig. 5. Approximation polynomials (shifted) withl9 = 50 (left), l9 = 60.5 (right), a =
0.99, η = 0.95 (damping); see Fig. 3 for the polynomial of the same degree given after
several iterations of the algorithm

of [−1, 1] (see Sect. 2). We therefore try to choosel so that the local extrema
of Rs(x) are close to1 (see Fig. 5). We define

µi = max
x∈[γi,γi+1]

|Rs(x)| i = 1, . . . , s− 2 µmin = min
i
µi

lnew = lold + ζ(1 − µmin),
(17)

whereγi (i = 1, . . . , s− 2) are the real zeros ofRs(x), γs−1 = a− ε (ε as
in (15)), andζ is a positive parameter (for exampleζ = 0.5). If lnew > l̄ or
if 1 − µmin < tol, wheretol is a small positive parameter, then we define
lnew = lold.

In the end of this section we will give an asymptotic estimation ofl̄, the
optimal stability interval (depending on the degree). Since we have neces-
sarily thatl < l̄ (l̄ is the optimal value for the real stability domain for a
given degrees, see Sect. 2), we can use a fraction (for example4

5 ) of l̄ as
initial value forl.

We summarize now our algorithm. We suppose that initial values are
given fora andl.

Algorithm.

1. Computeαnew, βnew which satisfy (14)
2. Computeanew such that (15) is satisfied and computelnew by (17)
3. Return to step 1 until|anew −aold| < eps and|lnew − lold| < eps, where
eps is a small positive parameter

The outputs of this algorithm for a given degree areα, β, a and l. As
explained in Sect. 2, in practice we will use a dampingη = 0.95. Thus con-
dition (15) should be replaced bymaxx∈[−1,a−ε] |Rs(x)| = η, and condition
(17) bylnew = lold + ζ(η − µmin).

It was observed by several authors that for order2, the maximum of the
stability interval for the optimal stability polynomials is given by

l̄ = c̄2(s)s2,(18)
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Table 1. The stability parameters ofRs(x)

Degree Stability Value Degree Stability Value
s regionls c2(s) = ls/s2 s regionls c2(s) = ls/s2

5 19.063 0.762553 100 8098.4966 0.809850
10 79.5131 0.79513 250 50623.5000 0.809976
20 321.5129 0.803782 500 202498.5000 0.809994
50 2023.4864 0.809395 1000 809998.5000 0.809999

wherec̄2(s) is rapidly approaching the limit value0.82 (without damping)
(see [17, p. 365] and [6, p. 34]). With damping, this value must be smaller
since the maximum of the stability interval decreases.

We have computed our approximation polynomials of order2, for degree
3 up to degrees more than1000 with dampingη = 0.95. Table 1 gives, for
some polynomials, the values ofls andc2(s) = ls/s2.

It can be observed thatls behaves likels ≈ 0.81s2. For the stability
polynomials used in van der Houwen-Sommeijer methods, the correspond-
ing bound (with the same dampingη = 0.95) behaves like0.65s2 (see Fig. 6
for an example of such polynomials).

4 Results on existence and on the error constant ofRs(x)

In this section we will discuss the non-linear equations (9) (see Lemma 1 and
Theorem 2). We will also show that the error constant ofRs(x) is positive
and we will give a bound for it (Theorem 3).

Fors ≥ 3 given, we denote by

Ps−2(x) =
s−2∏
i=1

(x− γi) − 1 < γ1 < . . . < γs−2 < 1,

the orthogonal polynomial on[−1, 1] of degrees − 2 ≥ 1 associated with
the weight functionw(x)2/

√
1 − x2, wherew(x) = (x − (α + iβ))(x −

(α− iβ)). We setR̃s(x) = w(x)Ps−2(x).
Troughout this section we will work with the following assumption (on

the parametersα, β of the functionw(x)):

(H) ∃ ξ1, ξ2 satisfyingγs−2 < ξ1 < ξ2 < α such thatR̃′
s(ξi) = 0,

whereγs−2 is the largest real zero of̃Rs(x) andα the real part of the complex
zeros ofw(x). It was shown in [1] that optimal stability polynomials of even
order satisfy (H).

We will prove in Lemma 1 that there existα andβ such that the polyno-
mial R̃s(x) satisfies the assumption (H). Under the assumption (H) we will
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then show that for everyα andβ, with −δ ≤ 1 − α ≤ δ and0 ≤ β ≤ δ
(for someδ > 0), there exista, d such that the non-linear equations (9) are
satisfied.

Lemma 1. Let γs−2 be the largest zero of̃Rs(x). There existsδ > 0 such
that for everyα andβ, with−δ ≤ 1 − α ≤ δ and0 ≤ β ≤ δ, there existξi
(i = 1, 2) satisfyingγs−2 < ξ1 < ξ2 < α such that

R̃′
s(ξi) = 0 i = 1, 2.(19)

Proof. Let R̃s(x) = (x − (α + iβ))(x − (α − iβ))
∏s−2

i=1 (x − γi), with
−1 < γ1 < . . . < γs−2 < 1. Forx > γs−2 define

g(x) =
R̃′

s(x)∏s−2
i=1 (x− γi)

= 2(x− α) + ((x− α)2 + β2)
s−2∑
i=1

1
x− γi .

Let α = 1 andβ = 0. We setn = s − 2 andε = (1 − γn)/2 (ε > 0).
Theng(1 + ε

n) > 0 and we will show thatg(1 − ε
n) < 0. Sinceγi depends

continuously onα andβ the same property holds in a neighborhood of1, if
−δ ≤ 1 − α ≤ δ and0 ≤ β ≤ δ with someδ > 0.

Sinceg(x) > 0 if x tends toγn (from the right), there existξ1, ξ2
satisfyingγn < ξ1 < ξ2 < α such thatR̃′

s(ξi) = 0 i = 1, 2.
The estimateg(1 − ε

n) < 0 folows from

n∑
i=1

1
(1 − ε

n − γi) ≤ n

1 − ε
n − γn =

n

2ε− ε
n

≤ n
ε
.

��
We now prove that there exist polynomialsRs(x) = w(x)Ps−2(x)

w(a)Ps−2(a) , as
defined in (8), satisfying (9):

Theorem 2. Suppose that̃Rs(x) satisfies (H) andβ /= 0, then there exist

a > ξ2 (whereξ2 is the largest zero of̃R′
s(x)) andd such thatRs(x) = R̃s(x)

R̃s(a)
satisfies

R′
s(a, α, β) = d, R′′

s(a, α, β) = d2.(20)

Proof. Sinceβ /= 0 R̃s(x) hass−2 real zeros and because of the assumption
(H), R̃′

s(x) hass− 1 real zeros, and its largest zeroξ2 > γs−2, whereγs−2

is the largest zero of̃Rs(x). This implies thatR̃′′
s(x) > 0 for x ≥ ξ2. Thus

if we definep(x) = (R̃′
s(x))2 − R̃s(x)R̃′′

s(x), we havep(ξ2) < 0.
Sincep(x) = O(x2s−3)+sx2s−2, we havep(x) > 0 for x large. Hence,

there existsa > ξ2 such thatp(a) = 0, i.e.(
R̃′

s(a)

R̃s(a)

)2

=
R̃′′

s(a)

R̃s(a)
.
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Table 2. Zeros ofw(x) and parameteras

Degree Zero Zero Parameter
s αs βs as

5 0.876008 0.138447 1.009632
10 0.968456 3.399721D-02 1.001578
20 0.992172 8.455313D-03 1.000433
50 0.998801 1.342920D-03 1.000114
100 0.999704 3.355449D-04 1.000032
250 0.999953 5.367668D-05 1.000006
500 0.999988 1.342131D-05 1.000001
1000 0.999997 3.354930D-06 1.0000003

DefineRs(x) = R̃s(x)
R̃s(a)

andd = R′
s(a) > 0; this gives formula (20). ��

In Table 2 we give the values ofas, αs, βs corresponding to the polyno-
mials of Table 1 (Sect. 3).

Lemma 1 and Theorem 2 show that for a givens ≥ 3 and for everyα
andβ, with −δ ≤ 1 − α ≤ δ and0 ≤ β ≤ δ (for someδ > 0), there
exista, d such that the polynomialRs(x) as defined in (8) satisfies the non-
linear equations (9). Numerical computations show that the outputs of the
algorithm of Sect. 3 are given asymptotically byαs = 1 − εs βs = εs with
εs −→ 0 (see Table 2).

LetRs(x) be a polynomial given by Theorem 2. The next theorem deals
with the error constant of

R̂s(z) = Rs(a+ z/d) = 1 + z +
z2

2!
+ a3z3 + . . .

This polynomial is of second order, with an error constant given by

C =
1
3!

− a3 where a3 =
R′′′

s (a)
3!d3

,(21)

whered = R′
s(a). We will prove thatC ∈ (0, 1

6) (for all s ≥ 3). Notice that
for the parametera given by Theorem 2,a3 > 0.

Lemma 2. Suppose thatQ(z) is a polynomial of order2 (i.e. Q(z) =
1 + z+ z2

2! +a3z3 + . . .) such thatQ′(z) has only real zeros. Then the error
constantC = 1

3! − a3 ofQ(z) is strictly positive.

Proof. By hypothesisQ′(z) =
∏s−1

i=1 (1+γiz) = 1+z+3a3z2 + . . .where
γi are reals. We have

s1 =
s−1∑
i=1

γi = 1 and s2 =
∑
i<j

γiγj = 3a3.
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Sinces21 − 2s2 > 0 we haves2 <
s2
1
2 = 1

2 , hencea3 < 1
6 . ��

We can now prove the following Theorem on the error constant ofR̂s(z):

Theorem 3. SupposeRs(x) satisfies (H) and leta andd be given by The-
orem 2. Then the error constantC of R̂s(z) = Rs(a + z/d) satisfies
C ∈ (0, 1

6).

Proof. SinceR̂′
s(z) possesses only real zeros (becauseRs(x) satisfies (H)),

we have by Lemma 2 that the error constant ofR̂s(z) is strictly positive.
The estimateC < 1/6 follows from the fact thata3 > 0. ��

Remark 2.A similar, but more sharper bound than in Theorem 3, was shown
for the error constants of optimal stability polynomials (for arbitrary orders
and degrees).

5 Explicit formulas for orthogonal polynomials
and recurrence relation

In the sequel we setn ≤ s− 2 (s ≥ 3 given), and denote byx1 = α+ iβ,
x2 = α− iβ the complex conjugate zeros ofw(x) (β /= 0). Notice that all
polynomials depend ons.

The aim of this section is to find a simple formula in order to com-
pute the orthogonal polynomialsPn(x) associated with the weight function
w2(x)/

√
(1 − x2), and its recurrence coefficients. We will use a formula

connecting two systems of orthogonal polynomials associated with different
weight functions. The first such result was obtained by Christoffel [3].

Let us show that

(22)

w(x)2Pn(x) = C

Tn(x1) Tn(x2) T ′
n(x1) T ′

n(x2) Tn(x)
Tn+1(x1) Tn+1(x2) T ′

n+1(x1) T ′
n+1(x2) Tn+1(x)

Tn+2(x1) Tn+2(x2) T ′
n+2(x1) T ′

n+2(x2) Tn+2(x)
Tn+3(x1) Tn+3(x2) T ′

n+3(x1) T ′
n+3(x2) Tn+3(x)

Tn+4(x1) Tn+4(x2) T ′
n+4(x1) T ′

n+4(x2) Tn+4(x)︸ ︷︷ ︸
:= Q(x)

whereTn(x) are the Chebyshev polynomials of degreen andC is a constant
depending on the normalization. Indeed, fori = 1 and2,

Q(xi) = 0 and Q′(xi) = 0 =⇒ Q(x) = C1(x− x1)2(x− x2)2Sn(x)
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whereSn(x) is a polynomial of degree≤ n. We also have thatQ(x) =∑4
i=0 biTn+i(x) (definition ofQ(x)). It remains to show thatSn(x) is or-

thogonal with respect tow(x)2/
√

1 − x2. Let p(x) be a polynomial of de-
gree≤ n− 1 then∫ 1

−1
p(x)Sn(x)

w(x)2√
1 − x2

dx =
∫ 1

−1
p(x)

4∑
i=0

Tn+i(x)
1√

1 − x2
dx = 0,

where the last equality is true because of the orthogonality property of the
Chebyshev polynomials. It is not difficult to show (see [16, p. 29] for more
details) thatSn(x) �≡ 0, thus of degreen, and the proof of formula (22) is
complete.

In the sequel, we set againz = (x− a)d, in order to work in the interval
[−l, 0] (see (13)), and denote bŷPn(z) = Pn(a + z/d) the shifted poly-
nomial. It is well-known that orthogonal polynomials possess a three-term
recurrence relation. Let us denote by

P̂n(z) = (µnz − νn)P̂n−1(z) − κnP̂n−2(z)(23)

the recurrence formula of this system of orthogonal polynomials. The recur-
rence parametersµn, νn, κn can be determined by solving a linear system.
We simply insert three different values forz into (23)

µnriP̂n−1(ri) − νnP̂n−1(ri) − κnP̂n−2(ri) = P̂n(ri) i = 1, 2, 3(24)

such that
r1P̂n−1(r1) P̂n−1(r1) P̂n−2(r1)
r2P̂n−1(r2) P̂n−1(r2) P̂n−2(r2)
r3P̂n−1(r3) P̂n−1(r3) P̂n−2(r3)

/= 0.(25)

Then (24) consists in a linear system which determines uniquelyµn, νn and
κn.

6 Construction of the numerical method and ROCK2

6.1 Definition of the method

In this section, we want to construct a Runge-Kutta method which possesses
the polynomialsR̂s(z) = ŵ(z)P̂s−2(z) (constructed in Sect. 3) as stability
polynomials.

Following the idea of [8], the three-term recurrence relation (23) can be
naturally used to define the internal stages of the numerical method

g0 := y0
g1 := y0 + hµ1f(g0)
gj := hµjf(gj−1) − νjgj−1 − κjgj−2 j = 2, . . . , s− 2.

(26)
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Fig. 6. R̂9(z) and the stability polynomial of the methodg�
9 in dotted line (left),R(z) =

a9 + b9T9(w0 + w1z) (right); in both figures the stability polynomials of all internal stages
are drawn

Then, the quadratic factor̂w(z) = 1 + 2σz + τz2 is represented by a two-
stage “finishing procedure” similar as in [9]

gs−1 := gs−2 + hσf(gs−2)
g�s := gs−1 + hσf(gs−1)
gs := g�s − hσ(1 − τ

σ2 )(f(gs−1) − f(gs−2)).
(27)

Fory′ = λy we obtain

gj = P̂j(z)g0 j = 0, . . . , s− 2
gs = ŵ(z)gs−2

(28)

wherez = hλ. Hence,
gs = R̂s(z)g0.(29)

In Fig. 6 (left), we sketched an example (fors = 9) of R̂s(z) and
P̂j(z), the stability functions of the internal stages. For the same degree
we sketched the van der Houwen-Sommeijer stability polynomialR(z) =
a9 + b9T9(w0 + w1z), and its internal stability polynomials (Fig. 6 right).

6.2 Error estimate

For the error estimate,g�s can be used as an embedded method. The stability
polynomial of this method is

R�
s(z) = (1 + 2σz + σ2z2)P̂s−2(z) = w�(z)P̂s−2(z).(30)

SinceR̂s(z) = (1 + 2σz + τz2)P̂s−2(z) = ŵ(z)P̂s−2(z) is of order2,
R�

s(z) is of order1.
Recall thatŵ(z) > 0 ∀z and that|R̂s(z)| ≤ η for z ∈ [−ls,−ε], whereε

is a small positive number (see Sect. 3 and 4). Let us show that the absolute
value ofR�

s(z) is bounded byη in the same interval aŝRs(z) (see Fig. 6
left).
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Lemma 3. Suppose that|R̂s(z)| ≤ η for z ∈ [−ls,−ε] andŵ(z) > 0 ∀z.
Then the polynomialR�

s(z) as defined in (30) satisfies

|R�
s(z)| < η ∀z ∈ (−ls,−ε).

Proof. A simple computation shows thatw�(z) ≥ 0 ∀z. Now, sinceŵ(z) >
0 ∀z, we have thatτ > σ2, henceŵ(z) − w�(z) = (τ − σ2)z2 > 0. This
yields

|R�
s(z)| = |w�(z)||P̂s−2(z)| ≤ |ŵ(z)||P̂s−2(z)| ≤ η ∀z ∈ [−ls,−ε].

We conclude the proof by noting that the first inequality is an equality only
if P̂s−2(z) = 0. ��

As a measure of the error after one step we take

err = ‖gs − g�s‖.(31)

For the step size selection, we used the “ step size control with memory ”
introduced by Watts [18] and Gustafsson [4]

hnew = fac · hn(
1

errn+1
)1/2 hn

hn−1
(

errn
errn+1

)1/2,(32)

in order to allow the step size to decrease more than a factorfacwithout step
rejections. The conventional prediction is obtained by deleting the terms
after the first brackets in (32). As advised in [6, p.125] we used forhnewthe
minimum of the step sizes proposed by (32) and the conventional strategy.
This latter strategy is also used after a step rejection.

6.3 Step size and stage number selection, spectral radius estimation

We showed in Theorem 3 that the error constants ofR̂s(z) are all in the
interval(0, 1

6). It was found numerically that the error constants ofR̂s(z),
rapidly decrease to a limit value (this was discussed in [1] for optimal stabil-
ity polynomials). It means that the error constants are almost independent
of the number of stages of the numerical method. Thus, at each step, our
code chooses first the new stepsize in order to control the local error, then it
selects the number of stages in order to satisfy the stability condition

hρ

(
∂f

∂y
(y)
)

≤ 0.81s2,(33)

whereρ is the spectral radius of the Jacobian matrix of the ODE.
We also implemented an automatic computation of this spectral radius.

For that we used a non-linear power method which is a slight modification of
the algorithm proposed by B.P. Sommeijer, L.F. Shampine and J.G. Verwer
(see [15]). The user has still the choice to give an estimation of the spectral
radius by himself.
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Fig. 7. Comparison of Chebyshev codes

7 Numerical experiments

We conclude this paper by presenting some results of numerical experiments.
The numerical methods described in Sect. 6 have been incorporated in an
experimental code called ROCK2. The performance of this code has been
compared with the latest version of RKC [15]. Both codes have second order.

We chose the following stiff problems from [6] (first and second edi-
tions):

1. BRUSS: The Brusselator, chemical reaction (diffusion) converted into
ODE’s by the method of lines. This is a system of1000 equations with
the largest eigenvalues close to−20000. This problem is very stiff.

2. FINAG: The FitzHug and Nagumo nerve conduction equation, converted
into ODE’s by the method of lines. This is a system of400 equations.

3. HIRES: A chemical reaction proposed by Schäfer, which is given by8
equations.
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4. CUSP: The Zeeman’s “cusp catastrophe” model (−εẏ = y3+ay+b) for
the nerve impulse mechanism, combined with the van der Pol oscillator,
converted into ODE’s by the method of lines. This is a system of96
equations.

All parameters and outputs for these problems are chosen as in [6] (first
and second editions). We solved these problems by varying the value of the
tolerance:

Tol = 10−2−m/4 m = 1, 2, 3, . . . .

The results are represented in Fig. 7 in logarithmic scales (in the abscissa
the accuracy, in the ordinate the computed time in seconds). The integer
exponent tolerances10−2, 10−3, . . . are displayed as enlarged symbols. The
tolerance10−5 is distinguished by its gray colour. For all problems we took
scalar tolerancesatol = rtol = tol and we provide for both codes an
estimation of the spectral radius of the Jacobian matrix. We see on Fig. 7
that ROCK2 behaves well and that it also preserves nicely the tolerance
proportionality.

Source code for ROCK2 and some examples are available on the Internet
at the address
http://www.unige.ch/math/folks/hairer/software.html
Experiences with this code are welcome.

Acknowledgements.The authors are grateful to Ernst Hairer, Gerhard Wanner and V.I. Lebe-
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