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Chapter 1 refers to time operator splitting techniques to numerically integrate time dependent
PDEs. The review on these schemes is not exhaustive but aims at giving sufficient information on
the theoretical characterization of splitting methods and some important issues often encountered
in the numerical solution of stiff problems. The reader may refer to the book of Hundsdorfer &
Verwer (Hundsdorfer and Verwer 2003) for further details on different types of splitting technique.

Chapter 2 deals with the time integration of stiff ODEs by one-step Runge-Kutta schemes. This
description complements the previous chapter and gives a more detailed insight into the numeri-
cal solution of stiff problems. In particular, we focus on Runge-Kutta methods given by implicit
and stabilized explicit techniques. A complete information can be found in the book of Hairer &
Wanner (Hairer and Wanner 1996).



Chapter 1

Time Operator Splitting for Multi-Scale
Evolutionary PDEs
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We are concerned with the numerical solution of time dependent PDEs involving reactive terms and
transport operators such as diffusion or both, issued from the mathematical modeling of general
multi-scale phenomena. This kind of problem is rather common in many applications so that effi-
cient solution schemes are of the utmost importance. In this chapter, our attention will be focused
on the so-called time operator splitting methods for the numerical solution of such problems. A
time operator splitting procedure allows us to consider dedicated solvers for the reaction part which
is numerically decoupled from the other physical phenomena like convection, diffusion or others,
for which there also exist dedicated numerical methods. A completely independent optimization
of the solution of each subsystem might be hence pursued in practice. These methods have been
used for a long time and there exists a large literature showing their efficiency for time dependent
problems, as we will briefly detail in the following. We will then describe the general configuration
of such methods and the classical first and second order, Lie and Strang, splitting schemes. A
mathematical characterization of the splitting approximation errors will be also provided for both
linear and nonlinear operators. In the second part of this chapter, we will introduce some mathe-
matical tools and previous theoretical results concerning the numerical behavior of such methods
for the solution of time and space multi-scale PDEs, illustrated in the context of reaction-diffusion
systems. All of these descriptions rely on the theoretical background of the PhD of M. Duarte (?).
A detailed survey and mathematical characterization of different types of splitting method can also
be found in the book of Hundsdorfer & Verwer (Hundsdorfer and Verwer 2003). Let us remark that
throughout this chapter we will describe the numerical solutions issued from splitting techniques
and the resulting splitting errors, considering neither time nor space discretization issues in the
time integration of the inner subproblems. The latter matters will be discussed in the forthcoming
chapter.

1.1 Time Operator Splitting

Operator splitting techniques (Marchuk 1968; Strang 1968; Marchuk 1975; Marchuk 1990), also
called fractional steps methods (Témam 1969a; Témam 1969b; Yanenko 1971), were first intro-
duced in the late sixties with the main objective of reducing computational resources. In this
context, a complex and potentially large problem can be split into smaller parts with an important
reduction of the algorithmic complexity as well as the computational requirements. The latter
characteristics were largely exploited over the past years to carry out numerical simulations in
several domains, going, for instance, from electrocardiology simulations (Bernus, Wilders, Zemlin,
Verschelde, and Panfilovz 2002; Trangenstein and Kim 2004), to combustion (Oran and Boris 2001;
Schwer, Lu, Green, and Semião 2003) or air pollution modeling (Ostromsky, Owczarz, and Zlatev
2001; Sportisse 2007) applications. These methods can be thus considered as a standard approach
in numerical applications and continue to be widely used mainly because of their simplicity of
implementation and their high degree of liberty in terms of choice of dedicated numerical solvers
for the split subproblems. Other advantages of these methods are given by the possibility of time
stepping for the various subproblems since each one of them is independently evolved in time.
Additionally, the global numerical stability of the splitting scheme is guaranteed as long as each
of the inner numerical solvers ensures stability, and the mathematical formulation remains valid.
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In the context of stiff problems, a particular care must be addressed to choose adequate methods
that properly handle and damp out fast transients introduced by the splitting procedure in the
split subproblems, for instance, in the reaction (Verwer, Blom, van Loon, and Spee 1996; Spee,
Verwer, de Zeeuw, Blom, and Hundsdorfer 1998; Verwer, Spee, Blom, and Hundsdorfer 1999) or
diffusion (Ropp and Shadid 2005; Ropp and Shadid 2009) terms.

In most applications, first and second order splitting schemes are implemented, for which a general
mathematical background is available (see, e.g., (Hairer, Lubich, and Wanner 2006) for ODEs and
(Hundsdorfer and Verwer 2003) for PDEs). Even though higher order schemes are theoretically
feasible, they are usually not suitable for the solution of PDEs and moreover stiff PDEs (Hunds-
dorfer and Verwer 2003), which constitutes a natural drawback to these schemes. On the other
hand, the separate time evolution of each subproblem during a given splitting time step intro-
duces naturally the so-called splitting errors into the numerical solutions. In the context of PDEs,
Lanser & Verwer conducted in (Lanser and Verwer 1999) a fine analysis on the splitting errors
in the solution of reaction-diffusion-convection systems, and defined the particular configurations
for which splitting errors arising from the numerical separation of convection, diffusion and reac-
tion subproblems, can be avoided. This type of study gave new insights into the use of splitting
techniques for PDE problems and furthermore, complemented the classical theoretical basis.

Nevertheless, for general problems that do not display the particular characteristics defined in
(Lanser and Verwer 1999), the splitting errors will likely remain throughout the numerical time
integration. On the other hand, it was shown that for more complex problems involving multi-scale
features, the classical mathematical characterization based on asymptotic analysis, i.e., sufficiently
small time steps, fails often because of time scales much faster than the considered splitting time
step. Actually, the same kind of order reduction that appears in the context of time integration of
stiff ODEs (see, e.g., (Hairer, Lubich, and Roche 1988; Hairer and Wanner 1996)), arise similarly
when considering splitting techniques for stiff problems. For PDEs, this stiffness is usually induced
by highly time/space multi-scale features which furthermore are very common in the mentioned
applications. All these numerical observations motivated more rigorous studies on the splitting
errors, specially for the solution of stiff problems, as we will present in the second part of this
chapter.

1.1.1 General Setting

Let us first consider a general linear initial value problem:

dtU = AU +BU, t > 0,

U(0) = U0,

}
(1.1)

with linear operators A, B ∈ Mm(R), whereMm(R) is the set of real square matrices of size m,
U0 ∈ Rm and U : R→ Rm, for which the exact solution is given by

U(t) = et(A+B)U0, t ≥ 0. (1.2)

A time operator splitting technique consists in successively solving the evolutionary problems
associated with each time operator in an independent way. For system (1.1) this amounts to
separately solve problems:

dtU = AU, t > 0, (1.3)

and
dtU = BU, t > 0, (1.4)
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with appropriate initial conditions for each subproblem. Then, for a time discretization given
by t0 = 0 < t1 < . . . < tN , the associated time steps or splitting time steps are defined as
∆tn = tn+1 − tn for n = 0, 1, . . . , N − 1.

Starting from the initial condition of (1.1): U0 = U(0), the splitting numerical approximation Un+1

of the exact values U(tn+1) is computed from the previous Un for n = 0, 1, . . . , N − 1, by means
of a composition of s ≥ 1 independent solutions of (1.3) and (1.4) with the recurrence relation:

Un+1 = eβs∆tnBeαs∆tnA . . . eβ2∆tnBeα2∆tnAeβ1∆tnBeα1∆tnAUn, (1.5)

where etAU0 and etBU0 are, respectively, the exact solutions of (1.3) and (1.4) for t ≥ 0 from initial
condition U0. The values of the real or complex coefficients of the scheme: (αi, βi)

s
i=1 such that∑

i αi =
∑

i βi = 1, will then define the order of approximation of the method. These splitting
schemes can be seen as composition methods for which the general order conditions are well known
(see (Hairer, Lubich, and Wanner 2006)).

1.1.2 First and Second Order Splitting Schemes

Taking into account the Taylor series expansion of the exact solution U(∆t) after time ∆t, if the
corresponding numerical approximation U1 is of order p, then the local error is given by

U(∆t)− U1 = O(∆tp+1). (1.6)

For system (1.1), the exact solution is given by U(∆t) = e∆t(A+B)U0, whereas U1 is the numerical
solution at ∆t, both computed from the initial value U0.

Keeping this in mind for the splitting schemes, we introduce the first order Lie (or Lie-Trotter
(Trotter 1959)) splitting formulae, for which p = 1 and

s = 1, α1 = β1 = 1, (1.7)

or alternatively,
s = 2, α1 = β2 = 0, α2 = β1 = 1, (1.8)

into (1.5). From a practical point of view and considering problem (1.1), the first scheme (1.7) is
performed by first considering the initial value problem:

dtU = AU,

U(0) = U0,

}
(1.9)

during a splitting time step ∆t, which yields U(∆t) = e∆tAU0. And then, problem:

dtU = BU,

U(0) = e∆tAU0,

}
(1.10)

also during ∆t, that yields finally the numerical solution:

U1 = L∆t
1 U0 = e∆tBe∆tAU0, (1.11)

according to (1.5) with coefficients given by (1.7). Alternatively, the second Lie scheme (1.8)
considers first problem (1.10), and then (1.9), so that

U1 = L∆t
2 U0 = e∆tAe∆tBU0. (1.12)
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Considering both Lie approximations, we can see that one corresponds to the adjoint method of
the other. That is, L∆t

1 (resp., L∆t
2 ) is the inverse map of L∆t

2 (resp., L∆t
1 ) with reversed time step

∆t:
L−∆t

1 L∆t
2 U0 = e−∆tBe−∆tAe∆tAe∆tBU0 = U0. (1.13)

In general it can be shown that composing one-step methods of order p yields a composition method
of at least order p+1 (Hairer, Lubich, and Wanner 2006). In particular, composing with half-sized
steps one method of odd order p with its adjoint, yields a symmetric p+1 method. In this way, we
can obtain a symmetric second order splitting scheme known as the Strang (or Marchuk (Marchuk
1968)) splitting formulae (Strang 1963; Strang 1968) by composing L∆t/2

1 (resp., L∆t/2
2 ) with its

adjoint method L∆t/2
2 (resp., L∆t/2

1 ):

S∆t
1 = L∆t/2

1 L∆t/2
2 , (1.14)

or alternatively,
S∆t

2 = L∆t/2
2 L∆t/2

1 . (1.15)

Symmetry is guaranteed because S∆t
1 is equal to its adjoint (the same follows for S∆t

2 ), i.e.,

S−∆t
1 S∆t

1 = L−∆t/2
2 L−∆t/2

1 L∆t/2
1 L∆t/2

2 = Id. (1.16)

Coming back to problem (1.1), we have thus the numerical solutions:

U1 = S∆t
1 U0 = e∆tB/2e∆tAe∆tB/2U0, (1.17)

or
U1 = S∆t

2 U0 = e∆tA/2e∆tBe∆tA/2U0, (1.18)

for which p = 2, and, respectively,

s = 2, α1 = 0, α2 = 1, β1 = β2 =
1

2
, (1.19)

or
s = 2, α1 = α2 =

1

2
, β1 = 1, β2 = 0, (1.20)

into (1.5).

Higher order splitting schemes are also possible. Nevertheless, the order conditions for such compo-
sition methods state that either negative or complex coefficients (αi, βi)

s
i=1 in (1.5) are necessary

(see, e.g., (Hairer, Lubich, and Wanner 2006)). Several higher order schemes of this type were
already proposed (see, e.g., (Yoshida 1990; Descombes 2001; McLachlan and Quispel 2002; Schatz-
man 2002; Thalhammer 2008; Castella, Chartier, Descombes, and Vilmart 2009; Hansen and Os-
termann 2009; Descombes and Thalhammer 2010)). The former implies usually important stability
restrictions and more sophisticated numerical implementations in terms of algorithmic complexity
with respect to less accurate but much simpler first and second order splitting schemes. In the
particular case of negative time steps, they are completely undesirable for PDEs that are ill-posed
for negative time progression like parabolic equations or very stiff terms issued, for instance, from
detailed chemical kinetics (Hundsdorfer and Verwer 2003).
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1.1.3 Classical Numerical Analysis for Splitting Schemes

In this section, we will introduce some classical mathematical tools used for the numerical analysis
of splitting schemes that are going to be used throughout this work. In a first step, we will describe
the Baker-Campbell-Hausdorff (BCH) formula on composition of exponentials.

For the linear operators A and B, for which their exponentials etA and etB can be understood as
a formal series expansion1, we define the commutator:

[A,B] = AB −BA, (1.21)

that we will also denote as2

∂AB = [A,B]. (1.22)

The main idea is then to find C(t) such that we can write

etAetB = eC(t). (1.23)

This exponential representation is known as the BCH formula for which it was demonstrated that
C(t) is the solution of the differential equation:

dtC = A+B +
1

2
[A−B,C] +

∑
i≥2

Bi
i!
∂iC(A+B), (1.24)

with initial value C(0) = 0 (Varadarajan 1974), where Bi are the Bernoulli numbers given by3

∑
i≥0

Bi
i!
xi =

x

ex − 1
. (1.25)

Taking into account the series expansions performed in the left-hand side of (1.23), we can infer
that for sufficiently small t, C(t) can be also written as

C(t) = tC1 + t2C2 + t3C3 + t4C4 + . . . (1.26)

which should naturally satisfy (1.23):

etAetB = etC1+t2C2+t3C3+t4C4+.... (1.27)

Therefore, in order to explicitly determine the coefficients of the series of C(t), we insert the
expansion (1.26) into (1.24), and compare like powers of t which yields

C1 = A+B,

C2 =
1

4
[A−B,C1] =

1

4
[A−B,A+B] =

1

2
[A,B],

C3 =
1

6
[A−B,C2] +

B2

6
∂2
C1

(A+B) =
1

12

[
A−B, [A,B]

]
=

1

12

[
A, [A,B]

]
+

1

12

[
B, [B,A]

]
,

C4 = . . . =
1

24

[
A,
[
B, [B,A]

]]
.


(1.28)

1That is, etA =
(∑+∞

n=0
tn

n!
An
)
.

2Notice that for fixed A, the operator ∂A· defines also a linear operator B 7→ [A,B] which is also called the
adjoint operator (Varadarajan 1974).

3See (Hairer, Lubich, and Wanner 2006) for more details.
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Using the BCH formula (1.23) and the coefficients (1.28) for C(t), it is straightforward to see that
the first order Lie formulae (1.11) and (1.12) verify, respectively,

U(∆t)− L∆t
1 U0 = e∆t(A+B)U0 − e∆tBe∆tAU0 = −∆t2

2
[B,A]U0 +O(∆t3), (1.29)

and

U(∆t)− L∆t
2 U0 = e∆t(A+B)U0 − e∆tAe∆tBU0 = −∆t2

2
[A,B]U0 +O(∆t3). (1.30)

It is important to notice that if the linear operators commute: [A,B] = 0, all the coefficients in
the series of C(t) are zero in (1.28) except for C1 = A + B, and both Lie operators L∆t

1 and L∆t
2

act as the flow e∆t(A+B) of the coupled system (1.1), according to (1.27).

Applying this time the BCH formula (1.23) to

etA/2etB/2 = eC(t), (1.31)

and taking into account that
etB/2etA/2 = e−C(−t), (1.32)

we can apply a second time the BCH formula (1.23) to

eC(t)e−C(−t) = etA/2etBetA/2 = eS(t), (1.33)

in order to obtain S(t):
S(t) = tS1 + t3S3 + t5S5 + . . . , (1.34)

with
S1 = A+B,

S3 = − 1

24

[
A, [A,B]

]
+

1

12

[
B, [B,A]

]
.

(1.35)

Notice that only odd powers of t are present in (1.34) since the adjoint method of the symmetric
scheme etA/2etBetA/2 is obtained by just changing the sign of t and therefore of eS(t), according to
(1.33). In this case, eS(t) is not other than the Strang scheme St2 according to (1.18), and we see
that the local errors can be written as

U(∆t)− S∆t
1 U0 = e∆t(A+B)U0 − e∆tB/2e∆tAe∆tB/2U0

=
∆t3

24

[
B, [B,A]

]
U0 −

∆t3

12

[
A, [A,B]

]
U0 +O(∆t4),

(1.36)

and
U(∆t)− S∆t

2 U0 = e∆t(A+B)U0 − e∆tA/2e∆tBe∆tA/2U0

=
∆t3

24

[
A, [A,B]

]
U0 −

∆t3

12

[
B, [B,A]

]
U0 +O(∆t4).

(1.37)

In this way, we can formally represent the local errors of both Lie and Strang schemes. We
remark that for both cases no splitting error is introduced for commuting operators. Furthermore,
the latter error expressions can be easily extended to an arbitrary number of linear operators.
However, it is important to notice that these estimates are asymptotically verified for sufficiently
small splitting time steps ∆t, since they are based on Taylor series expansions. Extension to general
nonlinear configurations is straightforward using a Lie operator formalism (Sanz-Serna and Calvo
1994), in which case the same previous estimates remain valid with linear operators defined by the
Lie derivatives associated with the various nonlinear operators, as we will show in what follows.
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1.1.4 An example of order reduction for splitting methods

We are considering a very simple case of an ordinary differential equation in R3, let A, P and D
be the following matrices:

A =

1 1 0
0 1 0
0 0 1

 P =

1 0 0
0 0 0
0 0 0

 D =

0 1 0
0 0 0
0 0 0

 , (1.38)

with A = I3 +D, and Q is defined by I3 = P +Q.

The system that we consider is the following:dtUε = AUε − P
ε Uε

Uε(0) = U0,
(1.39)

with exact solution
Uε(t) = et(A−P/ε)U0. (1.40)

The Lie and Strang approximations of the previous system are defined by:

L1ε(t) =etAe−tP/εU0,

L2ε(t) =e−tP/εetAU0,

S1ε(t) =etA/2e−tP/εetA/2U0,

S2ε(t) =e−tP/2εetAe−tP/2εU0.

Let us insist on the fact that A and P do not commute since [A,P ] = AP − PA = D.

The various operator involved can be evaluated exactly through the following lemma.
Lemma 1.1. We have the following expressions for the two Lie formulae and the exact flow:

etAe−tP/ε = et
(
e−t/εP + tD +Q

)
, (1.41)

e−tP/εetA = et
(
e−t/εP + te−t/εD +Q

)
, (1.42)

eA−tP/ε = et
(
e−t/εP + ε(1− e−t/ε)D +Q

)
. (1.43)

(1.44)

Proof. We need a few expressions, which can easily be verified:

A =

1 n 0
0 1 0
0 0 1

 , D2 = 0, DQ = D, QD = 0, DP = 0.

From there it is easy to that

etA = etI3 + αD, α = t+ 2
t2

2!
+ 3

t3

3!
+ . . .+ n

tn

n!
+ . . . = tet.

Besides, the projection matrix has a the straightforward flow:

e−tP/ε = e−t/εP +Q.
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The first two equalities of 1.41 are then obtained. Evaluating the exact flow requires a bit more
algebra. Let us denote C = A− P/ε, then:

C2 =

(1− 1
ε )2 2− 1

ε 0
0 1 0
0 0 1

 =

(
1− 1

ε

)2

P +

(
2− 1

ε

)
D +Q.

The generic term of Cn in P is (1− 1
ε )n and the one in Q is still 1. If αn is the generic one in D,

then α2 = 2− 1
ε = 1 + (1− 1

ε )1, and by recurrence, αn =
∑n−1

j=0 (1− 1
ε )j , so that finally:

αn =
1− (1− 1

ε )n

1− (1− 1
ε )

= ε

(
1−

(
1− 1

ε

)n)
.

The series
∑+∞

j=0 αn
tn

n! in front of D thus can be easily evaluated:

+∞∑
j=0

αn
tn

n!
= ε

(
et − 1− (et−t/ε − 1)

)
,

and the last and third estimate is obtained.

Consequently, we have the following result :
Proposition 1.2. For our special system, we can then have exact error estimates

Uε(t)− L1ε(t) =et
(
ε(1− e−t/ε)− t

)
D, (1.45)

Uε(t)− L2ε(t) =et
(
ε(1− e−t/ε)− te−t/ε

)
D. (1.46)

(1.47)

Let t > 0, for ε sufficiently small satisfying ε << t, we have the following estimates

lim
ε→0

etAe−tP/ε =etQ, (1.48)

lim
ε→0

e−tP/εetA =et(Q+ tD), (1.49)

lim
ε→0

et(A−P/ε) =etQ. (1.50)

(1.51)

This proposition shows that in the presence of stiffness, Lie formula ending with the stiff part is
the best candidate since it does not suffer from order reduction. In fact the other Lie formula ends
up with a local order of 1 and a global order of 0, which means that we are evaluating something,
but we are not even sure of convergence of the scheme. Another way of seing this is to consider
the limit of the various flows when ε→ 0. in order to recover in the limit of small ε the exact flow.
Even if the two lie formulae are symmetric and equivalent for non-stiff operators, they sensibly
differ when one operator is introducing strong stiffness into the system.

The proof of order reduction is based on the study of the difference of the two reduces problems
and in fact follows the diagram

System
O(exp(−t/ε))−−−−−−−−−−−−−−−−−→

Singular Perturbation
Reduced
Systemy
y

Splitting
O(exp(−t/ε))−−−−−−−−−−−−−−−−−→

Singular Perturbation
Reduced
Splitting
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The key point of this proof is the singular perturbation hypothesis (as in (Massot 2002)) : the
reduced problems are well-posed and the differences between all the problems and their reduced
problems behave like O(exp(−t/ε)).

1.1.5 The Lie Operator Formalism

We introduce the Lie operator formalism in order to generalize the use of exponentials of linear
operators in the context of nonlinear operators. Let X be a Banach space, T > 0, and an
unbounded nonlinear operator F from D(F ) ⊂ X to X, we consider the general autonomous
equation:

dtU = F (U(t)), 0 < t < T,

U(0) = U0, t = 0.

}
(1.52)

The exact solution of this evolutionary equation is formally given by

U(t) = T tU0, 0 ≤ t ≤ T, (1.53)

where T t is the semiflow associated with (1.52). The Lie operator DF associated with F is then
a linear operator acting on the space of operators defined in X (see, e.g., (Sanz-Serna and Calvo
1994; Hairer, Lubich, and Wanner 2006; Descombes and Thalhammer 2011)). More precisely, for
any unbounded nonlinear operator G from D(G) ⊂ X to X with Fréchet derivative G′, DF maps
G into a new operator DFG, such that for any v in X:

(DFG)(v) = G′(v)F (v). (1.54)

Using the chain rule for the solution U(t) of (1.52), we have that

∂tG(U(t)) = (DFG)(U(t)), (1.55)

and hence applying the Lie operator iteratively, we obtain

∂nt G(U(t)) = (Dn
FG)(U(t)). (1.56)

A formal Taylor expansion yields4

G(U(t)) =
+∞∑
n=0

tn

n!
(∂nt G(U(t)))

∣∣∣∣
t=0

=

(
+∞∑
n=0

tn

n!
Dn
FG

)
U0 =

(
etDFG

)
U0. (1.57)

If we now assume that G is the identity operator Id, we finally get

U(t) = T tU0 =
(
etDF Id

)
U0. (1.58)

Therefore, the Lie operator is indeed a way of writing the solution of a nonlinear ODE in terms of
a linear but differential operator.

Following (1.57), an important result obtained by Gröbner in (Gröbner 1967) considers the com-
position of two semiflows T t1 and T s2 associated with F1 and F2 for any v in X:

T t1T
s
2 v =

(
esDF2T t1

)
v =

(
esDF2 etDF1 Id

)
v. (1.59)

4We remark that if F (U(t)) is not an analytic function in (1.57), but F ∈ CN (R), then the series has to be
truncated and a O(tN ) remainder must be included.
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Notice that the order of the operators to the left and right are permuted for the equivalent rep-
resentations in (1.59). The latter result can naturally be extended to more than two semiflows
T t1, T

s
2 , . . . , T

r
m associated with F1, F2, . . . , Fm:

T t1T
s
2 · · ·T rmv =

(
erDFm · · · esDF2 etDF1 Id

)
v. (1.60)

The same analysis previously detailed to estimate the splitting errors can be analogously performed
by applying the Baker-Campbell-Hausdorff formula (1.23) to (1.59):

esDF2 etDF1 = eD(s,t), (1.61)

where the differential operator D(s, t) is given by

D(s, t) = sDF2 + tDF1 +
st

2
[DF2 , DF1 ] +

s2t

12

[
DF2 , [DF2 , DF1 ]

]
+
st2

12

[
DF1 , [DF1 , DF2 ]

]
+
s2t2

24

[
DF2 ,

[
DF1 , [DF1 , DF2 ]

]]
+ . . .

(1.62)

according to (1.28). The Lie bracket for differential operators is defined exactly as for linear
operators (1.21):

[DF1 , DF2 ] = DF1DF2 −DF2DF1 , (1.63)

and acts again as a linear differential operator:

[DF1 , DF2 ] =
(
F ′2F1 − F ′1F2

)
∂v, (1.64)

for any v in X according to (1.54).

In this way, considering a general system of nonlinear ODEs

dtU = F1(U(t)) + F2(U(t)), t > 0,

U(0) = U0,

}
(1.65)

with U0 ∈ Rm, U : R→ Rm, and F1, F2 : Rm → Rm, the same asymptotic expressions for the local
error estimates for the Lie and Strang formulae (1.29) and (1.30), and (1.36) and (1.37), can be
recast with the linear operators A and B replaced by the Lie operators DF1 and DF2 . The same
follows for an arbitrary number of operators. Furthermore, splitting order conditions can be then
deduced by using this Lie formalism for general nonlinear operators (Yoshida 1990; Hairer, Lubich,
and Wanner 2006). In particular, it was with this representation that the commuting conditions for
nonlinear or linear operators, yielding no splitting errors, were introduced in (Lanser and Verwer
1999) for the splitting solution of reaction-convection-diffusion systems (see (Hundsdorfer and
Verwer 2003) for more details). Exact splitting error representations introduced in (Descombes and
Schatzman 2002) can be also analyzed in this framework for general nonlinear PDEs (Descombes,
Duarte, Dumont, Laurent, Louvet, and Massot 2014).

1.2 Splitting Errors for Time/Space Multi-Scale PDEs

In this second part, we will present some theoretical results previously introduced in the literature,
to characterize the numerical behavior of splitting techniques for the solution of multi-scale PDEs.
These multi-scale features might arise in time because of the presence of different numerical or
physical evolution rates within a rather broad range, or in space because of the presence of steep
gradients or large higher order spatial derivatives within the computational domain. More likely,
they are coupled both in time and space throughout the numerical integration. As a consequence,
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there might be some perturbing effects in the accuracy of the numerical approximations of the
governing equations, traduced usually by an order reduction of the splitting method. This kind
of numerical difficulty might be theoretically characterized as a direct result of the stiffness of the
time dependent equations as we will discuss in the next chapter, and generally speaking we can
say that we are dealing with the numerical solution of stiff PDEs.

In what follows we detail some elements to describe the numerical behavior of splitting schemes
faced with the mentioned stiffness, in the case of reaction-diffusion systems. The study of this
kind of problem allows us to illustrate the numerical difficulties encountered in general, and the
resulting conclusions might be partially extended to more complex configurations. Nevertheless,
there is a continuous research in this field and more detailed mathematical descriptions are always
needed to further understand these issues.

1.2.1 Mathematical Framework: Reaction-Diffusion Systems

We focus on a class of multi-scale phenomena that can be modeled by general reaction-diffusion
systems of type:

∂tU − ∂x · (D(U)∂xU) = F (U), x ∈ Rd, t > 0,

U(0, x) = U0(x) x ∈ Rd,

}
(1.66)

where F : Rm → Rm, U0 : Rd → Rm and U : R× Rd → Rm, with the diffusion matrix D(U), which
is a tensor of order d×d×m. In case we are only considering linear diagonal diffusion, the elements
of the diffusion matrix are written as Di1i2i3(U) = Di3δi1i2 with indices i1, i2, i3 = 1, . . . ,m, so
that the diffusion operator reduces to the heat operator with scalar diffusion coefficient Di3 for
component u(i3) of U , and the system (1.66) becomes

∂tU −D∂2
xU = F (U), x ∈ Rd, t > 0,

U(0, x) = U0(x) x ∈ Rd.

}
(1.67)

In general, the source term F into (1.66) and (1.67) models reactive chemical mechanisms with a
broad time scale spectrum. On the other hand, complementary stiffness results from the potentially
fast scales introduced in the numerical solution when applying the diffusion operator to localized
steep spatial gradients or highly inhomogeneous distributions, as it is usually the case in physical
phenomena characterized by the presence of fronts or irregular space multi-scale configurations.
In this way, the associated stiffness will surely have an effect on the numerical behavior of the
splitting schemes as we will briefly describe in the following.

1.2.2 Splitting Order Reduction for Time Multi-Scale Systems

Even though splitting schemes are usually quite efficient for the solution of time dependent equa-
tions, several works showed that the standard numerical analysis of splitting schemes fails in
presence of scales much faster than the splitting time step (Goyal, Paul, Mukunda, and Desh-
pande 1988; D’Angelo 1994; D’Angelo and Larrouturou 1995; Yang and Pope 1998; Verwer and
Sportisse 1998; Sportisse, Bencteux, and Plion 2000), and that an order reduction of the methods
is numerically observed. In particular, a first major step towards a rigorous study of such cases was
conducted by Sportisse in (Sportisse 2000) in the framework of a linear system of ODEs, issued
from a reaction-diffusion system with a linear source term and diagonal diffusion. In this work, a
fast characteristic time was associated with the source term by means of a multiplying factor ε−1,
with small ε, to split the original system into a stiff and a non stiff subproblem. In this context,
a local order reduction of the splitting schemes was mathematically described based on singular
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perturbation theory, whereas splitting methods ending with the stiffest operator were also shown
to be more accurate than the others. Similar conclusions were obtained by Kozlov et al. in (Kozlov,
rnø, and Owren 2004) for nonlinear systems of ODEs, split also into stiff and non stiff parts,
using singular perturbation elements as well. In this framework, Descombes & Massot introduced
in (Descombes and Massot 2004) a general theoretical approach for nonlinear reaction-diffusion
systems with time multi-scale features issued from more realistic physical configurations. We will
briefly describe in the following a few results coming from (Descombes and Massot 2004).

Supposing that the system (1.67) shows a well partitioned structure such that U = (uε, vε)T and
thus F (U) = (f(uε, vε), g(uε, vε)/ε)T , where uε ∈ Rm

slow and vε ∈ Rm
fast stand, respectively, for the

slow and fast variables of the dynamical system associated with (1.67), and m = mslow +mfast; we
consider the following reaction-diffusion system:

∂tu
ε − ∂2

xu
ε = f(uε, vε), x ∈ Rd, t > 0,

∂tv
ε − ∂2

xv
ε =

g(uε, vε)

ε
, x ∈ Rd, t > 0,

uε(0, x) = u0(x), x ∈ Rd,

vε(0, x) = v0(x), x ∈ Rd,


(1.68)

for a small parameter ε and the identity in Mm(R), as diffusion matrix. For the sake of brevity,
we will only consider this diagonal case, even though a quasi-linear non-diagonal diffusion was also
analyzed in (Descombes and Massot 2004). We denote by (uε(t), vε(t)) = T tε (u0, v0) the solution
of (1.68) at some time t.

In order to settle an appropriate mathematical framework, we assume that this system admits
an entropic structure (Massot 2002) so that the source term admits a well partitioned Tikhonov
normal form (Tikhonov, Vasil’eva, and Sveshnikov 1985). Therefore, there is a partial equilibrium
manifold where the fast time scales have been relaxed, which is globally stable. In particular,
the entropy is a global Lyapounov function and we can thus perform a singular perturbation
analysis with asymptotic expansions (Massot 2002). In this context, we can consider the singular
perturbation analysis for the finite dimensional dynamical system:

dtū
ε = f(ūε, v̄ε), t > 0,

dtv̄
ε =

g(ūε, v̄ε)

ε
, t > 0,

ūε(0) = ū0,

v̄ε(0) = v̄0,


(1.69)

which corresponds to a homogeneous system without diffusion. The corresponding reduced system
can thus be written as

dtū = G(ū), t > 0,

ū(0) = ū0,

v̄(t) = h(ū(t)), t ≥ 0,

 (1.70)

where G(ū) = f(ū, h(ū)), and g(ū, v̄) = v̄ − h(ū) = 0. The inner boundary layer, because of the
well-partitioned structure of the dynamical system, can be considered as a projection step in an
affine manifold onto the partial equilibrium h(ū0) in the v̄ variable. Denoting by Π0v̄ the associated
variable centered at h(ū0), the boundary layer, parametrized by the spatial coordinate x, can be
described by the following differential equation:

dτΠ0v̄ = g(u0, h(u0) + Π0v̄), τ > 0,

Π0v̄(0) = v0 − h(u0),

}
(1.71)
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for a time scale defined by τ = t/ε.

Assuming that there exists a convex compact set K which contains the initial condition (ū0, v̄0) ∈
K, and which is invariant by (1.68), (1.70) and (1.71), it has been proved in (Massot 2002) that
for ε sufficiently small, we have for t ∈ [0,+∞):

v̄ε(t, ε) = Π0v̄(t/ε) + v̄(t) +O(ε), (1.72)

ūε(t, ε) = ū(t) +O(ε), (1.73)

and for some κ > 0, we obtain an estimate for the inner boundary layer

Π0v̄(t/ε) = O
(

e

(
−κt/ε

))
. (1.74)

Considering now the reduced problem associated with the complete system (1.68):

∂tu− ∂2
xu = G(u), x ∈ Rd, t > 0,

u(0, x) = u0(x), x ∈ Rd,

v(t, x) = h(u(t, x)), x ∈ Rd, t ≥ 0,

 (1.75)

and based on the previous singular perturbation analysis as detailed in (Descombes and Massot
2004), if we assume that (ū0(x), v̄0(x)) ∈ K for x ∈ Rd and that the solution T tu0 = (u(t), h(u(t))
of (1.75) leaves also K invariant, for ε sufficiently small, we have for t ∈ [0,+∞):

‖uε(t, ε)− u(t)‖L2 = O(ε), (1.76)

‖vε(t, ε)−Π0v̄(t/ε)− h(u(t))‖L2 = O(ε), (1.77)

and the corresponding estimate for the inner boundary layer:

‖Π0v̄(t/ε)‖L2 = O
(

e

(
−κt/ε

))
. (1.78)

With this framework, we introduce the standard decoupling of the diffusion and reaction problems
for system (1.68). Let us then denote by Xt(u0, v0) the solution of the diffusion problem:

∂tuD − ∂2
xuD = 0, x ∈ Rd, t > 0,

∂tvD − ∂2
xvD = 0, x ∈ Rd, t > 0,

}
(1.79)

for some initial data uD(0, ·) = u0(·) and vD(0, ·) = v0(·); and by Y t
ε (u0, v0) the solution of the

reaction problem:
∂tu

ε
R = f(uεR, v

ε
R), x ∈ Rd, t > 0,

∂tv
ε
R =

g(uεR, v
ε
R)

ε
, x ∈ Rd, t > 0,

 (1.80)

with initial data uεR(0, ·) = u0(·) and vεR(0, ·) = v0(·), where the spatial coordinate x can be
considered as a parameter. The Lie and Strang splitting formulae associated with (1.68) are given
by:

Lt1,ε(u0, v0) = XtY t
ε (u0, v0), (1.81)

Lt2,ε(u0, v0) = Y t
εX

t(u0, v0), (1.82)

St1,ε(u0, v0) = Xt/2Y t
εX

t/2(u0, v0), (1.83)

St2,ε(u0, v0) = Y t/2
ε XtY t/2

ε (u0, v0). (1.84)



1.2. Splitting Errors for Time/Space Multi-Scale PDEs 16

If we consider now the reduced problem of (1.80) when ε tends to zero:

∂tuR = f(uR, h(uR)) = G(uR), x ∈ Rd, t > 0,

uR(0, x) = u0(x), x ∈ Rd,

vR(t, x) = h(uR(t, x)), x ∈ Rd, t ≥ 0,

 (1.85)

with solution given by (uR(t), h(uR(t)) = Y tu0 as for (1.70), we define the corresponding reduced
splitting schemes:

Lt1u0 = XtY tu0, (1.86)

Lt2(u0, v0) = Y tXt(u0, v0), (1.87)

St1(u0, v0) = Xt/2Y tXt/2(u0, v0), (1.88)

St2u0 = Y t/2XtY t/2u0, (1.89)

where the fast scales have been previously relaxed in the reaction part by considering the reduced
problem (1.85).

To study the order of approximation of the exact solution T tε of the coupled problem (1.68) by the
splitting schemes (1.81)-(1.84), we investigate the order of approximation of T t associated with the
reduced problem (1.75) by the reduced splitting schemes (1.86)-(1.89). Defining the corresponding
local errors:

(uerr1, verr1) = T tu0 − Lt1u0,

(uerr2, verr2) = T tu0 − Lt2(u0, v0),

(uerr3, verr3) = T tu0 − St1(u0, v0),

(uerr4, verr4) = T tu0 − St2u0,


(1.90)

it was demonstrated in (Descombes and Massot 2004) that the local error for the slow and fast
variables of the various splitting schemes satisfies

‖uerr1‖L2 = O(t2), ‖verr1‖L2 = O(t), (1.91)

‖uerr2‖L2 = O(t2), ‖verr2‖L2 = O(t2), (1.92)

‖uerr3‖L2 = O(t3), ‖verr3‖L2 = O(t), (1.93)

‖uerr4‖L2 = O(t3), ‖verr4‖L2 = O(t3). (1.94)

Taking into account that, for instance, for Lt1,ε(u0, v0) the error of approximation with respect to
T tε (u0, v0) is given by

T tε (u0, v0)− Lt1,ε(u0, v0) = T tε (u0, v0)− T tu0 + T tu0 − Lt1u0

+Lt1u0 − Lt1,ε(u0, v0), (1.95)

and that

‖T tε (u0, v0)− Lt1,ε(u0, v0)‖L2 ≤ ‖T tε (u0, v0)− T tu0‖L2 + ‖T tu0 − Lt1u0‖L2

+‖Lt1u0 − Lt1,ε(u0, v0)‖L2 , (1.96)



1.2. Splitting Errors for Time/Space Multi-Scale PDEs 17

for ε sufficiently small and for t ≥ 0 sufficiently small, the local errors admit the following asymp-
totic expansions (Descombes and Massot 2004):

‖T tε (u0, v0)− Lt1,ε(u0, v0)‖L2 = O(t) +O
(

e

(
−κt/ε

))
+O(ε), (1.97)

‖T tε (u0, v0)− St1,ε(u0, v0)‖L2 = O(t) +O
(

e

(
−κt/ε

))
+O(ε), (1.98)

and

‖T tε (u0, v0)− Lt2,ε(u0, v0)‖L2 = O(t2) +O
(

e

(
−κt/ε

))
+O(ε), (1.99)

‖T tε (u0, v0)− St2,ε(u0, v0)‖L2 = O(t3) +O
(

e

(
−κt/ε

))
+O(ε), (1.100)

considering estimates (1.91)-(1.94) for the second term of the right hand side of (1.96), and (1.76)-
(1.78) for the other two terms.

Through this mathematical model and the corresponding numerical analysis, we can conclude
that no order reduction of the splitting schemes is expected for the slow variables whenever we
consider splitting time steps much larger than the fastest scales present in the problem: t > ε,
following (Descombes and Massot 2004). On the other hand, for a linear diagonal diffusion, if
we use splitting schemes ending with the reaction operator which includes the fastest scales, then
there is no reason to expect order reductions not even for the fast variables. In particular, in the
configuration of a partial equilibrium manifold with non zero curvature, a situation which can only
be obtained with a nonlinear reaction source term, the splitting schemes ending with the diffusion
operator encounter an order reduction related to the Lie bracket between the Laplacian operator
and the h function defining the partial equilibrium manifold (Descombes and Massot 2004). Finally,
let us recall that in practical implementations of splitting techniques, dedicated solvers must be
considered to properly handle the fast transients associated with the inner boundary layers given by
(1.74), as previously remarked (Verwer, Blom, van Loon, and Spee 1996; Spee, Verwer, de Zeeuw,
Blom, and Hundsdorfer 1998; Verwer, Spee, Blom, and Hundsdorfer 1999)5, and also to ensure
the mathematical framework detailed in this section in which the split reaction and diffusion
subproblems were exactly solved for estimates (1.97)-(1.100).

1.2.3 Splitting Errors with High Spatial Gradients

We have seen in the previous study that the classical error representations of splitting schemes are
not always enough to describe more precisely some important features related to the modeling equa-
tions. Therefore, more rigorous studies were performed and in particular an exact representation of
the local errors of splitting schemes was achieved by Descombes & Schatzman in (Descombes and
Schatzman 2002) for general linear problems like (1.1). Once again, extension to nonlinear opera-
tors is straightforward using a Lie operator formalism as shown in (Descombes, Duarte, Dumont,
Laurent, Louvet, and Massot 2014). These results led to many further mathematical studies on
splitting errors (see, e.g., (Descombes and Thalhammer 2010; Descombes and Thalhammer 2011)),
and such a precise error representation showed to be mandatory to better analyze some particular
issues like the influence of high spatial gradients on the solution of reaction-diffusion systems solved
by splitting techniques (Descombes, Dumont, Louvet, and Massot 2007; Duarte, Descombes, and
Massot 2011; Descombes, Duarte, Dumont, Laurent, Louvet, and Massot 2014). In this way, it

5The same remark is valid for the numerical integration of stiff ODEs (Hairer, Lubich, and Roche 1988; Hairer
and Wanner 1996).
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is possible to better depict some potential numerical difficulties issued this time from the space
multi-scale character of some physical phenomena modeled by the governing equations, e.g., (1.66),
as previously remarked and as analyzed, for instance, in (Ropp, Shadid, and Ober 2004; Ropp and
Shadid 2005).

Let us recall the initial value problem (1.1), for some linear operators A, B ∈ Mm(R), U0 ∈ Rm,
U : R→ Rm:

dtU +AU +BU = 0, t > 0,

U(0) = U0,

}
(1.101)

for which the exact solution is given by

U(t) = e−t(A+B)U0, t ≥ 0. (1.102)

The first order Lie and the second order Strang splitting formulae are given, for instance, by

Lt2U0 = e−tAe−tBU0, (1.103)

and
St2U0 = e−tA/2e−tBe−tA/2U0. (1.104)

In this context, it was proved in (Descombes and Schatzman 2002) that the following identities
hold:

Lt2 = e−t(A+B) +

∫ t

0

∫ s

0
e−(t−s)(A+B)e−(s−r)A(∂AB)e−rAe−sB dr ds, (1.105)

St2 = e−t(A+B)+

1

4

∫ t

0

∫ s

0
(s− r)e−(t−s)(A+B)e−(s−r)A/2(∂2

AB
)
e−rA/2e−sBe−sA/2 dr ds

−1

2

∫ t

0

∫ s

0
(s− r)e−(t−s)(A+B)e−sA/2e−rB

(
∂2
BA
)
e−(s−r)Be−sA/2 dr ds.

(1.106)

These new estimates provide then an exact representation of the local errors, comparing with
previous estimates for Lt2 (1.30) and St2 (1.37). It follows the same for Lt1 and St1.

In order to illustrate the influence of space multi-space phenomena given, for instance, by high
spatial gradients in the solutions of the PDEs, we will consider a simplified scalar reaction-diffusion
system coming from (1.67), with m = 1 and d = 1:

∂tu− ∂2
xu+ V (x)u = 0 x ∈ R, t > 0,

u(x, 0) = u0(x) x ∈ R,

}
(1.107)

where V : R→ R is supposed to be a positive and bounded function of class C∞(R) with all bounded
derivatives, and the L2-norm of the derivative of the smooth initial condition u0 is assumed to be
very high. Similar systems were considered in (Descombes, Dumont, Louvet, and Massot 2007;
Duarte, Descombes, and Massot 2011; Descombes, Duarte, Dumont, Laurent, Louvet, and Massot
2014) where in particular V can be seen as coming from the linearizion of the corresponding scalar
reaction term f(u) in (1.67). Considering that the linear operator A in (1.101) corresponds to the
multiplication by V and that B = −∂2

x (minus the second partial derivative with respect to x in
one dimension), their commutator (1.21) is given by

∂AB = [A,B] = (∂2
xV ) + 2(∂xV )∂x. (1.108)

If we now define
EtL2 = et(∂

2
x−V ) − e−tV et∂

2
x , (1.109)
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and consider (1.105), we can write the local error associated with the Lt2 scheme for system (1.107)
as

EtL2u0 = −
∫ t

0

∫ s

0
e−(t−s)(∂2x−V )e−(s−r)V (∂AB)e−rV es∂

2
xu0 dr ds, (1.110)

with commutator ∂AB given by (1.108). Taking norms, we have that in L2(R):

∥∥EtL2u0

∥∥
L2 ≤

∫ t

0

∫ s

0

∥∥∥e−(t−s)(∂2x−V )e−(s−r)V (∂AB)e−rV es∂
2
xu0

∥∥∥
L2

dr ds

≤
∫ t

0

∫ s

0

∥∥∥(∂AB)e−rV es∂
2
xu0

∥∥∥
L2

dr ds. (1.111)

Since (
∂AB

)
e−rV es∂

2
xu0 = (∂2

xV )e−rV es∂
2
xu0 + 2(∂xV )∂x

(
e−rV es∂

2
xu0

)
= (∂2

xV )e−rV es∂
2
xu0 − 2(∂xV )r(∂xV )e−rV es∂

2
xu0

+2(∂xV )e−rV ∂x

(
es∂

2
xu0

)
= (∂2

xV )e−rV es∂
2
xu0 − 2(∂xV )r(∂xV )e−rV es∂

2
xu0

+2(∂xV )e−rV es∂
2
x∂xu0, (1.112)

the integration of (1.111) yields

∥∥EtL2u0

∥∥
L2 ≤

(
t2

2
‖∂2

xV ‖∞ +
t3

3
‖∂xV ‖2∞

)
‖u0‖L2 + t2‖∂xV ‖∞‖∂xu0‖L2 . (1.113)

Nevertheless, we have supposed that the L2-norm of ∂xu0 is very high, therefore the latter error
bound is only interesting if the splitting time step t is sufficiently small. It is then specially relevant
in this stiff configuration to obtain alternative error estimates which do not involve the derivative of
the initial condition (Descombes, Dumont, Louvet, and Massot 2007). Thanks to the regularizing
effect of the Laplacian, we can demonstrate through a Fourier transform of the diffusion operator,
that for all u0 ∈ L2 and for t > 0:

‖∂xet∂
2
xu0‖L2 ≤

1√
2et
‖u0‖L2 . (1.114)

Therefore, taking into account that(
∂AB

)
e−rV es∂

2
xu0 = (∂2

xV )e−rV es∂
2
xu0 − 2(∂xV )r(∂xV )e−rV es∂

2
xu0

+2(∂xV )e−rV ∂x

(
es∂

2
xu0

)
, (1.115)

into (1.111), its integration now yields

∥∥EtL2u0

∥∥
L2 ≤

(
4

3
t
√
t
‖∂xV ‖∞√

2e
+
t2

2
‖∂2

xV ‖∞ +
t3

3
‖∂xV ‖2∞

)
‖u0‖L2 . (1.116)

An order reduction is thus shown to appear in the local error estimate (Descombes, Dumont,
Louvet, and Massot 2007). Similar conclusions are drawn considering the Lt1-Lie scheme, explicit
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computations of the estimates can be found in (Duarte, Descombes, and Massot 2011). Estimates
(1.113) and (1.116) describe then the behavior of the local errors, and we see that for t > 0:∥∥EtL2u0

∥∥
L2 ∝

(
‖∂xu0‖L2t2, ‖u0‖L2t1.5

)
. (1.117)

The first term is more relevant when t is sufficiently small, whereas the second one when t is not
small enough and ‖∂xu0‖L2 is very high. More precisely, there exists some constant θ > 0 such
that for t ≤ θ, ‖EtL2u0‖L2 behaves like t2 and for t ≥ θ, ‖EtL2u0‖L2 behaves like t1.5 (Descombes,
Dumont, Louvet, and Massot 2007; Duarte, Descombes, and Massot 2011; Descombes, Duarte,
Dumont, Laurent, Louvet, and Massot 2014).

In the same way, defining for the St2-Strang scheme

EtS2 = et(∂
2
x−V ) − e−tV/2et∂

2
xe−tV/2, (1.118)

and considering (1.106), we can also write the local error associated with the St2 scheme for system
(1.107). An order reduction can be once again detected and estimated for these stiff configurations.
The explicit computations are shown in (Duarte, Descombes, and Massot 2011), that finally yield∥∥EtS2u0

∥∥
L2 ∝

(
‖∂xu0‖L2t3, ‖u0‖L2t2

)
, (1.119)

so that the local error ‖EtS2u0‖L2 behaves either like t3 for small splitting time steps or like t2 with
a consequent order reduction of the scheme.

It can thus be seen through these theoretical illustrations that an order reduction may arise for
both Lie and Strang schemes whenever the solution features high spatial gradients. On the other
hand, the hypothesis of a linear source term in (1.107) have just allowed us to simplify the com-
putations and to better target the analysis on the effects of the diffusion operator on the solution.
These theoretical estimates were validated through some numerical tests presented in (Descombes,
Dumont, Louvet, and Massot 2007; Duarte, Descombes, and Massot 2011; Descombes, Duarte,
Dumont, Laurent, Louvet, and Massot 2014) for stiff problems coming from nonlinear chemical
dynamics. Taking into account that in the numerical applications envisioned in this work some of
them are characterized by propagating fronts with potentially steep spatial gradients, an influence
of the formers may be observed in the accuracy order of the splitting schemes. More precisely,
an order reduction will likely arise for both Lie and Strang formulae for sufficiently large splitting
time steps ∆t. Nevertheless, the mathematical description introduced in these studies confirms
that from a practical point of view the splitting errors are still set by the splitting time step
even for this type of stiff configuration, whereas on the other hand a more precise theoretical
understanding of the splitting errors for non asymptotic regimes was achieved. Finally, as in the
previous mathematical descriptions, the numerical solvers implemented in practice should solve
correctly the time evolution associated with each operator. For instance, Ropp & Shadid showed
in (Ropp and Shadid 2005; Ropp and Shadid 2009) that better results are obtained when using
an L-stable method for the numerical solution of the diffusion in, respectively, reaction-diffusion
and reaction-diffusion-convection problems6.

6We will see in the following chapter that L-stability allows us to rapidly damp out fast numerical transients
associated in this particular case with high frequencies or wave numbers arising when the discretized Laplacian
operator is applied to a given solution (see, e.g., (Hairer and Wanner 1996; Hundsdorfer and Verwer 2003)).
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In the last chapter, we have first considered splitting techniques for the solution of linear systems
of ODEs of type (1.1), with a general mathematical description on the numerical errors of such
methods. A formal extension to general nonlinear systems was also detailed by means of the Lie
operator formalism. We have then discussed the numerical solution by splitting methods of stiff
PDEs for reaction-diffusion systems like (1.66), modeling potentially multi-scale phenomena. A
theoretical characterization of the splitting errors was thus presented in the context of time and
space stiff reaction-diffusion problems, which has introduced a few criteria to take into account,
even for more complex PDEs. Even though the latter studies have led to the description of
some numerical difficulties issued from the modeling PDEs, we have not given any detail on the
solution of the split subproblems. Actually, throughout all these analyses we have assumed that
the subsystems of equations were exactly solved in order to characterize only numerical errors
coming from the splitting scheme. In this way, we have not considered yet either the time or space
discretizations, or the numerical time integration of the associated subproblems. Nevertheless, it is
quite natural to expect that the same numerical features of these modeling equations that influence
the splitting accuracy, will also be present during the numerical solution of each split subproblem.

We have seen that in the context of splitting techniques we aim at solving independently and
successively different time dependent systems of equations, starting from the immediately previous
numerical solution. Hence, several initial value problems or Cauchy problems for PDEs are to be
considered within each splitting time step. Therefore, in this chapter we will focus on the so-called
one-step integration methods which contrarily to multi-step methods, do not require initial lower
order approximations to build the numerical solution of each initial value problem. In this way, in
this chapter we will first characterize some numerical difficulties associated with the solution of the
ODEs issued from the previous problems to then describe some one-step Runge-Kutta methods
that were developed in the past years to efficiently cope with these matters. In particular, we
will concentrate on implicit and stabilized explicit Runge-Kutta schemes that have shown to be
very efficient for the numerical solution of, respectively, reaction and diffusion problems, as an
illustration of proper selection criteria of time integration solvers for the split subproblems issued
from a splitting technique. For further details, an exhaustive mathematical description and analysis
on the numerical solution of stiff systems of ODEs can be found in the book of Hairer & Wanner
(Hairer and Wanner 1996).

2.1 Characterization of Stiffness

Let us consider for t > 0, the scalar initial value problem:

dtu = f(t, u(t)),

u(0) = u0,

}
(2.1)

with some u0 ∈ R and u : R→ R, f : R× R→ R. We aim at obtaining a numerical approximation
un of the exact solution u(tn) of (2.1) for a time discretization given by t0 = 0 < t1 < . . . < tn < . . .,
and n = 0, 1, . . ..

Nevertheless, we assume, and therefore we must take into account, that (2.1) is a stiff problem for
which a precise and simple notion of stiffness is given in (Hairer and Wanner 1996):
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“Stiff equations are problems for which explicit methods don’t work.”

In order to illustrate this, we will first approximate the solution of (2.1) at some t1 = t0 + δt

u(δt) = u0 +

∫ t0+δt

t0

f(t, u(t)) dt, (2.2)

by
u1 = u0 + δtf(t0, u0), (2.3)

which implies an explicit time discretization solution of (2.2) and it is known as the explicit Euler
method, where δt is defined as the integration time step. It is straightforward to see that this is a
first order method according to (1.6).

Taking a very simple case for (2.1), given by

dtu = −100u,

u(0) = u0,

}
(2.4)

with exact solution u(δt) = e−100 δtu0 at t1 = δt. We have that u1 computed by (2.3) is given by

u1 = u0 − 100 δtu0. (2.5)

If we set, for instance, an initial condition u0 = 1, and a relatively small time step of δt = 0.5
compared with 100, the exact and numerical solutions give, respectively, u(0.5) = e−50 ≈ 1.9 ×
10−22 and u1 = −49. And integrating over another time step δt: u(1) = e−100 ≈ 3.7× 10−44 and
u2 = 2401. It follows then that the explicit time discretization given by (2.3) is not capable of
reproducing the right dynamics given by the exact solution. However, since this solution models
a rapid transition from u0 towards a final equilibrium value, we can easily identify the associated
time scale τ = 1/100 = 0.01 of the transient phase and therefore, we can expect that integration
time steps δt of the order or smaller than τ will be capable to track the right dynamics. For
instance, for δt = 0.001, we have u(0.001) = e−0.1 ≈ 0.904837418 and u1 = 0.9, and u(0.002) =
e−0.2 ≈ 0.818730753 and u2 = 0.81. These rapid variations or transients associated with fast scales
are typical of stiff equations, but they are neither sufficient nor necessary to qualify them as stiff.
Actually, an initial condition u0 close enough to the equilibrium manifold of the solution will not
develop such fast transients, and thus stiff features may not be observed.

As a first conclusion, we can deduce that an explicit time discretization scheme to solve (2.4) will
generally fail to approach the right dynamics, unless we consider integration time steps smaller
than the time scales disclosed by the equations. This may seem natural. Nevertheless, if we
consider the counter-part of (2.3), i.e., an implicit Euler method, also of order 1:

u1 = u0 + δtf(t1, u1), (2.6)

and the previous δt = 0.5, we obtain the numerical approximations u1 = 0.019607843 and u2 =
0.000384468. Therefore, although solutions are not quite accurate, they show convergence towards
the right solution with a time step several times the associated time scale. As a second conclusion,
we can then add that both explicit and implicit schemes are of the same order, and would therefore
yield results of the same accuracy for sufficiently small time steps. From a time step larger than
a given value, the explicit method will not deliver any valid result.

2.1.1 Some Typical Stiff Configurations

If we now consider a general nonlinear system

dtU = F (U) (2.7)
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with U : R → Rm, F : Rm → Rm and define a solution ϕ(t) ∈ Rm such that dtϕ(t) = F (ϕ(t)), we
can linearize F in its neighborhood:

dtU = F (ϕ(t)) + ∂UF (ϕ(t)) (U(t)− ϕ(t)) +O
(

(U(t)− ϕ(t))2
)
, (2.8)

to obtain
dtU = JU, (2.9)

where higher order terms in U(t) := U(t) − ϕ(t) are neglected, and with the Jacobian: J(U) =
∂UF (U). Supposing a constant Jacobian that is moreover diagonalizable, we can write the i-th
component u(i)(t) of U(t), solution of (2.9), as

u(i)(t) =

m∑
i=1

cie
λitu

(i)
0 , (2.10)

for some initial condition U0 ∈ Rm and constants ci, where the λi are the corresponding eigenvalues
associated with J . Therefore, we can see that the solutions u(i)(t) of (2.9) are clearly reproduced
by a linear combination of (

eλitu
(i)
0

)
i=1,2,...,m

, (2.11)

that is, solutions of the same type as for the previous linear problem (2.4), and thus the latter
simpler case mimics somehow the dynamics of more general nonlinear problems. We can then
expect the same behavior previously described for explicit and implicit schemes, depending in this
case on the spectrum of the Jacobian J and the set of initial conditions u(i)

0 , i = 1, 2, . . . ,m.

As a consequence, if (2.7) is a stiff system of ODEs, then it is very likely that some λi with
large negative real part Reλi ≤ 0, will take a leading role in the transient phase of the solution,
whenever the initial solution does not belong to a partial equilibrium manifold where the fast scales
are already relaxed. In particular, not only large eigenvalues will generate the fast variations
previously discussed, but also an important dispersion of the eigenvalues in the spectrum of J
will certainly induce multi-scale dynamics issued from the composition of the various time scales
(or eigenvalues) included in (2.10). This is a typical situation for example in the context of
chemical reaction systems modeling a set of reactions with different reaction scales, and hence time
scales for which fast projection of some species onto equilibrium manifolds are usually developed
(see, e.g., (Maas and Pope 1992)). These systems are usually very stiff and moreover, the stiffness
increases with the precision and the detail of description of the mathematical model.

Another classical example of a stiff problem, where stiffness is not necessarily related to the presence
of fast variables, is given by the system:

dtU = AU, (2.12)

with U : R→ Rm, A ∈Mm(R):

A =
1

∆x2



−1 1
1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1
1 −1


(2.13)

and ∆x = 1/(Nx + 1), issued from the spatial discretization on a grid of Nx = m points with
second order centered finite differences for the heat equation:

∂tu− ∂2
xu = 0, (2.14)
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for x ∈ [0, 1] and homogeneous Neumann conditions.

As previously seen, the solution of (2.14) in infinite dimension is given by

u(x, t) = et∂
2
xu0(x), (2.15)

for some initial condition u0(x), where the associated spectrum of the differential operator is given
by the whole set of numbers in the negative real axis. Furthermore, performing a Fourier transform
in the x direction

f̂(k) = F(f) :=

∫ ∞
−∞

e−ikxf(x) dx, (2.16)

of the heat equation (2.14) yields as solution:

û(k, t) = e−k
2tû0(k). (2.17)

Hence, a strong damping of the highest frequencies given by the frequency parameter1 k will arise
and will smoothen the initial condition. This is typical of diffusion problems. The analogy with
the previous linear case (2.4) can be then established by this analysis for which in particular, we
see that the frequency composition of the initial condition u0, will or will not activate these fast
decays, similar to (2.4). As a consequence, we can directly relate the stiffness associated with
equation (2.14) to the presence of high gradients or discontinuities in x in u0(x). For instance, if
we consider an extreme case for which u0(x) = δ(x), i.e., the Dirac delta function, all the frequency
spectrum will appear on (2.17) with fast decays, since û0(k) = 1.

Coming back to the discretized problem (2.12) which is the one that will be numerically integrated,
we can infer that the discretized counter-part mimics the previous theoretical analysis. This is
reflected, for instance, by the spectrum of the matrix A:

λj = − 4

∆x2
sin2

(
πj∆x

2

)
, j = 1, . . . , Nx, (2.18)

or alternatively,

λj = −4(Nx + 1)2 sin2

(
πj

2(Nx + 1)

)
, j = 1, . . . , Nx, (2.19)

for which we can identify potentially large eigenvalues increasing quadratically with the number of
discretization points Nx with a maximum dispersion between −4(Nx + 1)2 and 0, which explains
the spurious patterns found in some numerical approximations for this kind of problem (see some
illustrations in(Hairer and Wanner 1996)). In particular, we see that finer discretizations that
introduce naturally more resolution scales, result also in broader spectra to represent them. Once
again, these large eigenvalues will arise in the global solution depending on the distribution of the
initial conditions. Stiffer behavior will then take place for discontinuous or large variations within
the initial distributions.

With this brief introduction and illustrations, we introduce in the following the so-called Runge-
Kutta (RK) time integrations method, as well as some dedicated RK schemes conceived to handle
stiff systems of ODEs.

2.2 Runge-Kutta Time Integration Methods

We have previously considered the explicit Euler method given by (2.3). This kind of method is
called one-step integration method because we aim at recursively approximating the exact solution

1Also referred to as the wave number.
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(2.2) after one time step, based on the previous one. The Euler scheme is of first order but by
approximating the integral in (2.2) by a higher order quadrature formula, we can build higher
order one-step methods. A second order scheme can be constructed, for instance, by using the
mid-point approximation:

u1 = u0 + δtf

(
t0 +

δt

2
, u

(
t0 +

δt

2

))
, (2.20)

and the Euler method, which leads to the Runge method:

u1 = u0 + δtf

(
t0 +

δt

2
, u0 +

δt

2
f(u0)

)
. (2.21)

Generalizing this idea with higher order quadrature formulae leads to define the so-called s-stage
Runge-Kutta methods:

gi = u0 + δt
s∑
j=1

aijf (t0 + cjδt, gj) , i = 1, . . . , s;

u1 = u0 + δt
s∑
j=1

bjf (t0 + cjδt, gj) ,

 (2.22)

for which the arrays b, c ∈ Rs gather the various coefficients b = (b1, . . . , bs)
T and c = (c1, . . . , cs)

T ,
and A ∈Ms(R) such that A = (aij)1≤i,j≤s. These coefficients are usually arranged in a mnemonic
device, known as a Butcher tableau:

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

. . .
...

cs as1 as2 · · · ass

b1 b2 · · · bs

For instance, for the Runge method (2.21), we have

0

1

2

1

2
0 1

When aij = 0 for j ≥ i, the scheme is explicit in time (Explicit RK methods, ERK) with

gi = u0 + δt

i−1∑
j=1

aijf (t0 + cjδt, gj) , i = 1, . . . , s, (2.23)

in (2.22), whereas the case for which aij = 0 for j > i and at least one of the diagonal coefficients
is non-zero, aii 6= 0, is defined as a Diagonal Implicit RK method (DIRK). Otherwise, we are
considering Implicit RK methods (IRK). We will further describe these schemes in the following,
but first, we will introduce some basic theoretical and numerical properties for general RK methods:
the order and stability features, as well as the choice of the time steps of integration.
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2.2.1 Order and Stability of Runge-Kutta Schemes

We now consider the Dahlquist test equation (Dahlquist 1963):

dtu = λu,

u(0) = 1,

}
(2.24)

with λ ∈ C (a particular case was given by (2.4)), and we can successively compute the gj of the
explicit RK method (2.23) for problem (2.24). We obtain

u1 = R(z)u0, z = δtλ, (2.25)

where
R(z) = 1 + z

∑
j

bj + z2
∑
j,k

bjaj,k + . . . , (2.26)

is a polynomial of degree ≤ s. If the RK method is of order p we know that u1 = R(z)u0 must
satisfy

ez −R(z) = O(δtp+1) = O(zp+1), (2.27)

where ezu0 is the exact solution of (2.24), and thus R(z) is given by

R(z) = 1 + z +
z2

2!
+ . . .+

zp

p!
+O(zp+1). (2.28)

In particular, for all explicit RK methods of order p with s = p intermediate stages, we have

R(z) = 1 + z +
z2

2!
+ . . .+

zs

s!
. (2.29)

A classical analysis based on the Dahlquist test equation (2.24) allows us to define R : C→ C given
in general by (2.25), as the stability function of a given method. That is, R(z) is the numerical
solution of (2.24) given by the method itself after one time step δt. Furthermore, the numerical
solution recursively computed can be written as

un = (R(z))n u0 (2.30)

which allows us to define the stability domain of the method given by the set of z for which un
remains bounded for n→∞, i.e.,

S := {z ∈ C s.t. |R(z)| ≤ 1} . (2.31)

For instance, considering the explicit Euler method (2.3) for which

R(z) = 1 + z, (2.32)

according to (2.28), its stability domain S is given by all z ∈ C such that

|1 + z| = |z − (−1)| ≤ 1, (2.33)

which is the circle of radius 1 and center −1 in the complex plane. Coming back to the previous
example (2.4) with λ = −100, we can see that an explicit Euler method will remain stable as
long as z = δtλ ∈ S, i.e., 0 ≤ δt ≤ 2/100, which explains the previous bad results for δt = 0.5.
Alternatively, considering the implicit Euler method (2.6) yields

R(z) =
1

1− z
, (2.34)
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as stability function, with stability domain given by all z ∈ C such that∣∣∣∣ 1

1− z

∣∣∣∣ ≤ 1 ⇒ |z − 1| ≥ 1, (2.35)

that is, the exterior of the circle with radius 1 and center +1 in the complex plane. For problem
(2.4), we can then see that R(z) will remain bounded for any time step δt > 0, as it is shown by
(R(z = −100 δt))n = (1 + 100 δt)−n into (2.30). This better performance of an implicit discretiza-
tion for large negative λ into (2.24), characteristic of stiff ODEs, leads us to give more details on
these schemes in a forthcoming section. In particular, it was demonstrated that for p ≥ 5 there is
no explicit RK method of order p with s = p stages (Butcher 1964c; Butcher 1964d). This and
other order constraints for explicit RK schemes are known as the Butcher Barriers (see more details
in (Hairer, Nørsett, and Wanner 1987)). Finally, it is important to recall that in a general case,
we can perform the same analysis on the linearized problem (2.9), similar to the Dahlquist test
equation, taking into account the complex eigenvalues λi, i = 1, · · · ,m, of the associated Jacobian
J .

2.2.2 Time Step Selection

Whether the time discretization schemes are explicit or implicit, or if the orders of approximations
are high or low, a key question for a numerical time integration method is the choice of the time
step of integration. We have seen, for instance, that for stiff problems, explicit methods should
consider rather small time steps to guarantee the stability of computations. However, for a given
problem if we suppose that we are only considering time steps contained in the stability domain,
the former ones must be chosen such that the numerical solutions yield approximations within a
desired accuracy. In this case, a constant time step might be sufficient for some kind of problem
to efficiently solve the corresponding dynamics. In a more general context, more sophisticated
techniques must be consider to dynamically select these time steps in order to render computations
efficient or even possible in practice. In any of both cases, the main goal is to choose a time step
δt such that the local error verifies

‖u(δt)− u1‖ = Cδtp+1 ≤ Tol , (2.36)

where Tol is the desired accuracy requested to the numerical computations. It is straightforward
to see that higher order methods would satisfy (2.36) with larger time steps. Furthermore, for
a given scheme the expression (2.36) might be satisfied with time steps evolving in time. For
problems describing different dynamics, having an adaptive time step strategy would then involve
important savings of numerical work. In this context, a lot of research has been conducted to
develop time step control or adaptive time stepping techniques. A review of some explicit solvers
with automatic time step selection can be found in (Hairer, Nørsett, and Wanner 1987) for non stiff
problems. A complementary idea developed for explicit schemes was to use these control techniques
to automatically detect stiffness (see, e.g., (Shampine 1977; Shampine and Hiebert 1977; Hairer and
Wanner 1996)) in order to automatically switch to a more suitable method.

One of the most standard ways of time stepping is based on computing a numerical approximation:
err , of the exact local error in (2.36), by considering a solution û1 computed by a lower order
method of order p̂ < p (Hairer, Nørsett, and Wanner 1987), such that

‖u(δt)− u1‖ / err = ‖u1 − û1‖. (2.37)

Since
u1 − û1 = (u1 − u(δt))− (û1 − u(δt)) = O(δtp+1) +O(δtp̂+1) ≈ O(δtp̂+1), (2.38)
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and thus,
err ≈ C̃δtp̂+1, (2.39)

we can suppose that the optimal time step δtopt such that err ≈ Tol :

Tol ≈ C̃δtp̂+1
opt , (2.40)

is given by

δtopt = fac · δt
(
Tol

err

)1/p̂+1

, (2.41)

where fac is a safety factor usually close to 1.

In this way, we can compute the time step needed to integrate problem (2.1) with a local accuracy
given by Tol , where the p̂-order method should be embedded into the p-order method in order
to minimize the required number of operations. Additionally, we can use the expression (2.41) to
dynamically compute the time steps in time. In this case, we use the computations at the n-th
step to predict the error at the next step:

errn+1 = ‖un − ûn‖ ≈ C̃nδtp̂+1
n , (2.42)

which yields as new time step:

δtnew = fac · δtn
(

Tol

errn+1

)1/p̂+1

, (2.43)

by assuming C̃n+1 ≈ C̃n into
Tol ≈ C̃n+1δt

p̂+1
new . (2.44)

The next step δtn+1 will be then given by δtnew if errn+1 ≤ Tol . Alternatively, the current n-th
time step will be rejected if errn+1 > Tol , and in this case the procedure works as an a posteriori
verification where the same n-th step will be integrated again with the new time step δtnew.

Based on the same ideas and on more rigorous theoretical studies carried out by Gustafsson
(Gustafsson 1994), a better procedure assumes that logCn is a linear function of n, and thus
logCn+1 − logCn is constant or, equivalently (Hairer and Wanner 1996)

Cn+1

Cn
≈ Cn
Cn−1

, (2.45)

which finally yields

δtnew = fac · δtn
(

Tol

errn+1

)1/p̂+1 δtn
δtn−1

(
errn
errn+1

)1/p̂+1

. (2.46)

This technique is also known as the step size strategy with memory of Watts (Watts 1984) and
Gustafsson (Gustafsson 1994), and usually shows better performances than the standard technique
(2.43). In particular, it allows us fast reduction of time steps without rejection in the context of
stiff problems (Hairer and Wanner 1996). There are other step size control techniques to numeri-
cally estimate or predict local errors and therefore, to guarantee a given accuracy of computations
according to (2.36). We mention, for instance, time step computations using extrapolation tech-
niques (Deuflhard 1983; Shampine 1987), or theoretical or numerical estimates of the leading term
of the local error expansion (Hindmarsh 1980; Sommeijer, Shampine, and Verwer 1997).
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2.3 Implicit Runge-Kutta Methods

Let us consider now the implicit RK scheme (2.22). We apply it to the Dahlquist test equation
(2.24), and we obtain

g = u01 + δtλAg,

u1 = u0 + δtλbT g,

}
(2.47)

with g = (g1, . . . , gs)
T and 1 = (1, . . . , 1)T . The linear system for g1, . . . , gs gives

g = (Id− λδtA)−1u01, (2.48)

and the corresponding stability function may be written as

R(z) = 1 + zbT (Id− zA)−11. (2.49)

However, a better representation might be obtained by considering the solution of (2.47):(
Id− zA 0

−zbT 1

)(
g

u1

)
= u0

(
1

1

)
, (2.50)

using the Cramer’s rule:

u1 =

det

(
Id− zA u01

−zbT u0

)

det

(
Id− zA 0

−zbT 1

) , (2.51)

and taking into account that

det

(
Id− zA 1

−zbT 1

)
= det

(
Id− zA+ z1bT 0

−zbT 1

)
= det

(
Id− zA+ z1bT

)
. (2.52)

This yields

R(z) =
P (z)

Q(z)
=

det
(
Id− zA+ z1bT

)
det(Id− zA)

, (2.53)

so we can see that for implicit RK schemes, the stability function R(z) becomes a rational function
with polynomial numerator P (z) and denominator Q(z) of degree less than or equal to s.

A direct consequence of this rational stability function as seen for the implicit Euler method
(2.6), is that the associated schemes can be stable on the entire left-half plane C−. This set of z
corresponds precisely to eigenvalues of negative real part for which the exact solutions are bounded
in time |ez| ≤ 1 and for which we have seen before, the numerical method should preserve this
stability property.

A method is then called A-stable if its stability domain satisfies (Dahlquist 1963)

S ⊃ {z ∈ C s.t. Re z ≤ 0} . (2.54)

For instance, the implicit Euler method (2.6) is A-stable. Even though this is a desirable and
necessary stability property to properly handle stiff problems, it is not sufficient for very stiff prob-
lems. For eigenvalues with very large real part, the stability function R(z) of an A-stable method
will surely keep the numerical approximations bounded during the fast transients. Nevertheless,
only a R(z) much smaller that 1, can guarantee that the numerical solutions will rapidly approach
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the exact solution, damping out the numerical transients phases. Numerical methods with such a
property are known as L-stable (Ehle 1969).

Taking into account that for rational functions

lim
z→∞

R(z) = lim
z→−∞

R(z), (2.55)

a method is called L-stable if it is A-stable and if in addition

lim
z→∞

R(z) = 0. (2.56)

Considering that for an implicit RK method we have that

R(∞) = 1− bTA−11, (2.57)

according to (2.49), it follows that if an A-stable implicit RK method with nonsingular A satisfies
one of the following conditions:

asj = bj , j = 1, . . . , s; (2.58)

ai1 = b1, i = 1, . . . , s, (2.59)

then R(∞) = 0 in (2.57), and the method is also L-stable. In particular, methods satisfying
(2.58) are called stiffly accurate (Prothero and Robinson 1974) and are particularly important for
the solution of singular perturbation problems and for differential-algebraic equations (Hairer and
Wanner 1996).

Finally, there are some implicit schemes with large stability domains that are not A-stable. In
order to characterize these methods, A(α)-stability constitutes another stability property for which
a method is said to be A(α)-stable if a sector α is contained in the stability region (Widlund 1967):

Sα = {z ∈ C s.t. | arg(−z)| < α, z 6= 0} . (2.60)

In this work, we consider only one-step integration methods. Nevertheless, dedicated multi-step
integration methods for the resolution of stiff problems were also developed. These schemes consider
several time steps in order to reconstruct the numerical solution that satisfies the differential
equations at each considered time step. Moreover, the Second Dahlquist Barrier states that an
A-stable multi-step method must be of order p ≤ 2 (Dahlquist 1963). Nevertheless, there are many
multi-step schemes performing good A(α)-stability properties for high orders, and L-stability for
lower ones, which can be efficiently used to solve stiff problems. Some examples are the LSODE
(Hindmarsh 1980; Hindmarsh 1983) (Livermore Solver for ODEs) or the VODE solver (Brown,
Byrne, and Hindmarsh 1989) (Variable-coefficient ODE solver), both based on a variable-order
(up to fifth) Backward Differentiation Formulae developed by Gear (Gear 1971) (see (Hairer and
Wanner 1996) for more details on dedicated multi-step methods for stiff problems).

2.3.1 Construction of Implicit Runge-Kutta Methods

As previously detailed for the explicit case, an implicit RK method is of order p if condition (2.27)
is satisfied, in which case we see that R(z) is this time a rational approximation to ez according
to (2.53). In this context, the construction of fully implicit RK methods relies heavily on the
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following conditions (Hairer and Wanner 1996):

B(p) :

s∑
i=1

bic
q−1
i =

1

q
, q = 1, . . . , p;

C(η) :

s∑
j=1

aijc
q−1
j =

cqi
q
, i = 1, . . . , s, q = 1, . . . , η;

D(ζ) :

s∑
i=1

bic
q−1
i aij =

bj
q

(1− cqj), j = 1, . . . , s, q = 1, . . . , ζ.


(2.61)

The first condition B(p) states that the quadrature formula (bi, ci)
s
i=1 is of order p, whereas it was

proved by Butcher (Butcher 1964a) that if the coefficients bi, ci, aij of a RK method satisfy B(p),
C(η), D(ζ) with p ≤ η + ζ + 1 and p ≤ 2η + 2, then the method is of order p.

With these tools, one way of building these RK schemes considers collocation methods based on
quadrature formulae. The main goal is to find a polynomial p(t) of degree s such that p(tn) = un,
and that for a set of collocation points 0 ≤ c1 < . . . < cs ≤ 1, it verifies

dtp(tn + ciδt) = f (p(tn + ciδt)) , i = 1, . . . , s; (2.62)

such that u(tn+1) = u(tn+δt) will be approximated by un+1 = p(tn+δt) (Guillon and Soulé 1969;
Wright 1971). We can then determine the collocation points based on the quadrature formulae
used to numerically approximate∫ t0+δt

t0

f(t) dt ≈ δt
s∑
i=1

bif(t0 + ciδt). (2.63)

If the quadrature method yields approximations of order p, an important mathematical result is
that the collocation method will also yield approximations of order p for the differential problem
(2.62) (Guillon and Soulé 1969).

In this way, Butcher (Butcher 1964b) introduced RK methods based on Radau quadrature formulae
(Radau 1880), for which the collocation points c1, . . . , cs, are the zeros of the polynomials

I : ds−1
x

(
xs(x− 1)s−1

)
, (2.64)

II : ds−1
x

(
xs−1(x− 1)s

)
, (2.65)

and the weights b1, . . . , bs, are computed in order to verify B(s) for the quadrature formula
(bi, ci)

s
i=1 into (2.61). Finally, we have that B(2s − 1) since p = 2s − 1 for a Radau quadra-

ture formula. Both polynomials have positive zeros with c1 = 0 and ci < 1, i = 2, . . . , s for (2.64),
and ci > 0, i = 1, . . . , s− 1 and cs = 1 for (2.65), whereas the remaining coefficients are computed
based on the order conditions (2.61). These first schemes were not A-stable but based on these
ideas, Ehle (Ehle 1969) constructed some A- and L-stable schemes which gave birth to the fami-
lies of formulae called RadauIA and RadauIIA, depending on the used quadrature formula (2.64)
or (2.65). Tables 2.1 and 2.2 show, respectively, the corresponding coefficients for RadauIA and
RadauIIA of order p = 5 with s = 3 stages. L-stability can be retrieved in this case for p = 5, by
verifying, respectively, conditions (2.59) and (2.58).

Alternatively, other schemes were derived based on other quadrature formulae. For instance, a
family of s-stage Gauss methods were constructed this time from Gaussian quadrature formulae,
and perform A-stability properties with the maximum possible order: p = 2s (Butcher 1964a;
Ehle 1968). Nevertheless, these schemes are usually not L-stable. Another large group considers
Lobatto quadrature formulae which yields some A- and L-stable schemes of order p = 2s − 2
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Table 2.1 – RadauIA method of order 5.
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Table 2.2 – RadauIIA method of order 5.
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(Butcher 1964a; Ehle 1968; Chipman 1971; Axelsson 1972). In what follows, we will recall some
of the previous concepts and give some insights into the practical implementation of these implicit
RK methods by considering the Radau5 solver developed by Hairer & Wanner (Hairer and Wanner
1996).

2.3.2 The Radau5 Solver

Let us recall the general nonlinear problem (2.1), this time of dimension m, that is, u0 ∈ Rm,
u : R→ Rm, and f : R× Rm → Rm, to keep the previous notations:

dtu = f(t, u(t)),

u(0) = u0.

}
(2.66)

The solution of this problem by a s-stage fully implicit RK method (2.22) will lead to the solution
of a nonlinear system of equations of size m × s in order to determine the unknowns g1, . . . , gs.
In order to avoid solving these large systems, a family of diagonally implicit RK schemes called
SDIRK (Singly Diagonally Implicit RK) were developed, that considers a less expensive alternative
by solving s successive stages with only m-dimensional systems to be solved at each stage. Nev-
ertheless, more stages than the previously seen for fully implicit RK schemes are usually needed
to build A- or stiffly accurate L-stable methods, for instance, p = s + 1 or p = s. A further sim-
plification considered the linearization of DIRK schemes in order to replace the nonlinear systems
by a sequence of linear problems. These methods are usually called linearly implicit RK methods
or simply Rosenbrock methods, and show good A(α)-stability properties. A survey and analysis of
these and other methods can be found in (Hairer and Wanner 1996).

As a consequence, we can infer that an efficient solution of large nonlinear systems is mandatory
for practical purposes and constitutes the main difficulty in the implementation of a fully implicit
RK method (Hairer and Wanner 1996). In this context, Hairer & Wanner developed the Radau5
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solver for which they had to introduce a few performing tools to overcome the many numerical
difficulties associated with the practical implementation of implicit RK schemes. All of these issues
are discussed in details in their book (Hairer and Wanner 1996), but we will present here some of
them that are usually common to various implicit RK solvers, for the sake of completeness of this
work.

Radau5 implements the fifth order, 3-stage Ehle’s method RadauIIA, given in Table 2.2. This is
a high order, A- and L-stable scheme, very suitable for highly stiff problems. The solver considers
RadauIIA because among other reasons, this is a stiffly accurate scheme given by condition (2.58).
From a practical point of view and for very stiff problems such as singularly perturbed problems,
condition (2.58) implies that the numerical solution becomes also an internal stage in the solution
of the g1, . . . , gs (c3 = 1 in Table 2.2). Therefore, we can expect that fast transients in the exact
solution will be better reproduced by numerically considering the relaxed fast variables after one
time step δt (Hairer and Wanner 1996).

Considering the general implicit RK scheme (2.22), we define a new set o variables z1, . . . , zs, for
the computation of the g1, . . . , gs:

zi = gi − u0, (2.67)

in order to reduce the influence of round-off errors (Hairer and Wanner 1996). This yields

zi = δt

s∑
j=1

aijf(t0 + cjδt, u0 + zj), i = 1, . . . , s;

u1 = u0 + δt
s∑
j=1

bjf(t0 + cjδt, u0 + zj).

 (2.68)

Therefore, knowing the solution z1, . . . , zs implies an explicit formula for u1, for which s additional
function evaluations are required. These extra computation can nevertheless be avoided if the
matrix A = (aij) is nonsingular, which is the case for RadauIIA. Actually, considering that z1

...
zs

 = A

 δtf(t0 + c1δt, u0 + z1)
...

δtf(t0 + csδt, u0 + zs)

 , (2.69)

the computation of u1 is equivalent to

u1 = u0 +

s∑
i=1

dizi, (2.70)

where
(d1, . . . , ds) = (b1, . . . , bs)A

−1. (2.71)

Taking into account the coefficients in Table 2.2, we see that for RadauIIA: d = (0, 0, 1), since
bi = asi for all i according to (2.58).

To solve the nonlinear system (2.69), Radau5 considers an iterative Newton’s method. This
amounts to solve at each iteration a linear system with the matrix: Id− δta11∂uf(t0 + c1δt, u0 + z1) . . . −δta1s∂uf(t0 + csδt, u0 + zs)

...
. . .

...
−δtas1∂uf(t0 + c1δt, u0 + z1) . . . Id− δtass∂uf(t0 + csδt, u0 + zs)

 . (2.72)

If we approximate all Jacobians ∂uf(t0 + ciδt, u0 + zi) by

J ≈ ∂uf(t0, u0), (2.73)
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we consider a simplified Newton’s method for

G(Z) = Z − (Id− δtA⊗ J)F (Z) = 0, (2.74)

where Z = (z1, . . . , zs)
T , and F (Z) = (f(u0 + c1δt, u0 + z1), . . . , f(t0 + csδt, u0 + zs))

T , so that the
(k + 1)-th approximation of the solution Z is recursively computed by

(Id− δtA⊗ J)∆Zk = −Zk + δt(A⊗ Id)F (Zk),

Zk+1 = Zk + ∆Zk.

}
(2.75)

Each iteration requires then s evaluations of f to compute F (Zk), and the solution of am×s linear
system to compute the increments ∆Zk = (∆zk1 , . . . ,∆z

k
s )T . Fortunately, the matrix (Id−δtA⊗J)

is the same for all iterations with the approximated Jacobians (2.73), and its inversion by an LU-
decomposition, usually quite expensive, is done only once. Furthermore, exploiting the special
structure of the matrix (Id− δtA⊗ J), a decomposition of the linear system into two subsystems
following a procedure introduced by Butcher (Butcher 1976), leads to an important reduction of the
number of operations, which is also implemented in the Radau5 solver (Hairer and Wanner 1996).
If no analytical expression is available, the Jacobians can always be numerically approximated by

Jij ≈
f (i)(t0, u

(j) + δu(j))− f (i)(t0, u
(j))

δu(j)
, i, j = 1, . . . ,m, (2.76)

for relatively small, positive perturbations: δu = (δu(1), . . . , δu(m)). Finally, Hairer & Wanner
defined also dedicated stopping criteria for the iterative method as well as appropriate starting
values Z0 for the Newton iterations (Hairer and Wanner 1996).

In order to select the time step and guarantee a prescribed accuracy, Radau5 uses a lower order
embedded method to numerically estimate the local error in the same spirit of section § 2.2.2. We
illustrate this procedure for this particular case. A lower order approximation of the solution û1

according to (2.37) is computed by

û1 = u0 + δtb̂0f(t0, y0) + δt
3∑
i=1

b̂if(t0 + ciδt, gi), (2.77)

using the same collocation points c1, c2, c3 of RadauIIA (see Table 2.2), and thus the same
evaluations of f . An extra evaluation of f is needed at t0, whereas b̂0 = γ̂0, where γ̂−1

0 is a real
eigenvalue of A−1 previously computed. In order to set the new weights b̂1, b̂2, b̂3 we consider the
difference:

û1 − u1 = δtγ̂0f(t0, y0) + δt
3∑
i=1

(b̂i − bi)f(t0 + ciδt, gi), (2.78)

into (2.61) for B(3) such that û1− u1 = O(δt4). Considering the representation (2.70), this yields
finally

û1 − u1 = δtγ̂0f(t0, y0) +
3∑
i=1

d̂iz3, (2.79)

where
(d̂1, d̂2, d̂3) =

γ̂0

3
(−13− 7

√
6,−13 + 7

√
6,−1). (2.80)

With these solutions, Radau5 computes the approximation:

err = (Id− δtγ̂0J)−1(û1 − u1), (2.81)
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as error estimate in order to simultaneously guarantee that the difference (2.79) is bounded for
δt→ 0 and δtλ→∞ (if f(u) = λu and J = λ), for stiff problems (Hairer and Wanner 1996).

The time steps are then computed by taking the minimum of

δtnew = fac · δtn
(

1

‖errn+1‖

)1/4

, (2.82)

and

δtnew = fac · δtn
(

1

‖errn+1‖

)1/4 δtn
δtn−1

(
‖errn‖
‖errn+1‖

)1/4

, (2.83)

based, respectively, on (2.43) and (2.46) with

‖err‖ =

√√√√ 1

m

m∑
i=1

(
err (i)

sci

)2

, (2.84)

with err (i) = (Id − δtγ̂0J)−1
(
û

(i)
1 − u

(i)
1

)
, and sci = Atol i + max(|u(i)

0 |, |u
(i)
1 |) · Rtol i, where Atol

and Rtol are defined as absolute and relative accuracy tolerances (Hairer and Wanner 1996). With
the definition of the error estimate given by (2.84), the current time step is accepted if ‖err‖ ≤ 1,
otherwise it is rejected. In this case as well as for the first step, Radau5 uses a second error estimate
instead of (2.81):

ẽrr = (Id− δtγ̂0J)−1

(
δtγ̂0f(t0, y0 + err) +

3∑
i=1

d̂iz3

)
, (2.85)

which implies an additional evaluation of f , but we have that ẽrr → 0 is satisfied for δtλ→∞, in
the same way as the numerical solution u1 does.

2.4 Stabilized Explicit Runge-Kutta Methods

In many cases, there are stiff problems for which A-stable methods are not necessarily required.
Some remarkable examples come from the discretization of parabolic PDEs which lead to stiff
problems with a Jacobian matrix involving (possibly large) eigenvalues close to the real negative
axis. This is the particular case of the discretized heat equation (2.14) in § 2.1.1, for which the real
negative eigenvalues (2.18) increase with finer spatial discretizations. Therefore, instead of A-stable
but time consuming implicit procedures, stabilized explicit RK methods should be preferred. These
explicit methods avoid the solution of algebraic systems, while featuring an extended stability
domain along the negative real axis, very appropriate for this type of problem. A detailed survey
on these schemes can be found in (Verwer 1996), and in the book of Hundsdorfer & Verwer
(Hundsdorfer and Verwer 2003).

The main goal is to construct methods of order p with a family of stability polynomial Rs of degree
s:

Rs(z) = 1 + z + · · ·+ zp

p!
+

s∑
p+1

αi,sz
i, (2.86)

with s ≥ p+ 1, and αi,s ∈ C, such that Rs(z) remains bounded as much as possible along the real
negative axis, i.e.,

|Rs(z)| ≤ 1, z ∈ [−`s, 0], (2.87)
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with `s as large as possible. One way of building such stability polynomials considers the family
of Chebyshev polynomials:

Ts(cos(z)) = cos(s z), (2.88)

defined also by the recurrence relation:

T0(z) = 1, T1(z) = z, Ts(z) = 2zTs−1(z)− Ts−2(z), (2.89)

which remain bounded between 1 and −1 for z ∈ [−1, 1], and in particular yield boundaries `s
proportional to s2.

These schemes are usually called Runge-Kutta-Chebyshev methods, and feature extended real sta-
bility intervals proportional to s2, a good property inherited from Chebyshev-type polynomials.
For instance, for p = 1, the optimal polynomials that satisfies (2.86) are directly the shifted
Chebyshev polynomials:

Rs(z) = Ts

(
1 +

z

s2

)
, (2.90)

which are shown to yield the optimal `s = 2s2. However, in the points where Rs(z) = ±1 for
z ∈ R−, the stability domain has zero width and therefore, there is no damping at all of high
frequencies. The standard way to overcome this difficulty considers a small parameter ε > 0 in
order to build damped Chebyshev stability functions (Guillou and Lago 1961):

Rs(z) =
1

Ts(w)
Ts(w0 + w1z), w0 = 1 +

ε

s2
, w1 =

Ts(w0)

T ′s(w0)
. (2.91)

As a consequence, the stability domains are reduced by approximatively ε: |Rs(z)| ≤ 1− ε, while
the stability length is shortened by approximatively (4ε/3)s2; nevertheless, the order of the scheme
is preserved and a safe distance from the real axis is guaranteed (Hairer and Wanner 1996).

Based on these ideas, a first family of method called Lebedev-type methods (Lebedev 1989; Lebedev
1994), aims at building RK schemes based on the optimal stability polynomials that satisfy (2.86)
for a given p. For p = 1 we have seen that these polynomials are the shifted Chebyshev polynomials
(2.90), so the idea is to write them as (Saul’ev 1960; Guillou and Lago 1961):

Rs(z) =

s∏
i=1

(1 + δiz), δi = − 1

zi
, (2.92)

where zi are the roots of Rs(z), and to represent the RK scheme as a composition of explicit Euler
steps:

g0 = u0,

gi = gi−1 + δtδif(gi−1), i = 1, . . . , s,

u1 = gs.

 (2.93)

The main difficulty constitutes finding the best sequence of integration of the Euler steps to ensure
stability properties of the scheme (Lebedev 1993a; Lebedev 1993b). Formulae of order up to
four were also achieved even though there is no analytical expression for the optimal stability
polynomials of order p ≥ 2 (Lebedev and Medovikov 1998; Medovikov 1998). The computations
of these polynomials are therefore performed numerically and yield, for instance, second order
schemes with practically optimal `s ≈ 0.82 · s2 for s� 1. These results have been implemented in
the DUMKA code (Lebedev 1994; Lebedev 2000).

Based on numerical approximations of the optimal boundaries `s (van der Houwen 1977), and
knowing that among all polynomials of order p and degree s satisfying (2.86), the optimal one
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satisfies the so-called equal ripple property which states that there exist s− p+ 1 points z0 < z1 <
· · · < zs−p < 0, with z0 = −`s, such that

R(zi) = −R(zi+1), i = 0, . . . , s− p− 1,

|R(zi)| = 1, i = 0, . . . , s− p;

}
(2.94)

another approach known as the Van der Houwen-Sommeijer methods (van der Houwen and Som-
meijer 1980), constructs the RK schemes based on a linear combination of scaled and shifted
Chebyshev polynomials that aim at approximating the optimal polynomial by verifying (2.94),
and generates about 80 % of the optimal interval `s. First and second order schemes known as
RKC methods were built with these approximated optimal polynomials using the three-term re-
currence formula (2.89):

g0 = u0,

g1 = g0 + µ̃1δtf(g0),

gi = (1− µi − νi)g0 + µigi−1 + νigi−2

+ µ̃iδtf(gi−1) + γ̃iδtf(g0), i = 2, . . . , s,

u1 = gs,


(2.95)

where all the coefficients (µ̃i, µi, νi, γ̃i) are available in analytical form for arbitrary s ≥ 2 (Sommei-
jer and Verwer 1980). In this way, an efficient second order solver known simply as RKC proposed
by Sommeijer et al. in (Sommeijer, Shampine, and Verwer 1997), gained notorious reputation over
the last years. The RKC solver also features local error control, with variable step sizes, computed
on an approximation of the leading term of the local error expansion, theoretically derived from
a detailed stability and convergence analysis presented in (Verwer, Hundsdorfer, and Sommeijer
1990). The stability bound is given by `s ≈ 0.653 · s2 for the second order RKC scheme, and hence
for a given time step computed according to a prescribed accuracy tolerance, an adequate number
of stages s is chosen in order to ensure the stability of the method.

2.4.1 The ROCK Method

A third approach that combined the previous ones by searching practically optimal stability bounds
`s, and by using a three-term recurrence relation, gave birth to the ROCKmethods (for Orthogonal-
Runge-Kutta-Chebyshev) (Abdulle and Medovikov 2001; Abdulle 2002). A preliminary important
result of Abdulle (Abdulle 2000) was that the optimal stability polynomials satisfying (2.86) for
a given p and the equal ripple property (2.94), possess exactly p complex roots if p is even and
exactly p − 1 complex roots if p is odd. Therefore, if p is even, we can then split the stability
function in the following form:

Rs(z) = wp(z)Ps−p(z), (2.96)

where wp retains the p complex roots and Ps−p, the remaining (s−p) real roots. The idea developed
by Medovikov & Abdulle in (Abdulle and Medovikov 2001) for p = 2, and then extended to p = 4
by Abdulle in (Abdulle 2002), was to approximate Rs(z) by

R̃s(z) = w̃p(z)P̃s−p(z), (2.97)

with the orthogonal polynomials P̃s−p, associated with the weight function w̃2
p(z)/

√
1− z2, such

that R̃s(z) results in a p-order stability polynomial which remains bounded as much as possible
along the negative real axis, taking also into account some damping. The techniques to compute
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the orthogonal polynomials and the weight function are given in (Abdulle and Medovikov 2001)
and (Abdulle 2002).

Once the stability functions have been computed, a three-term recurrence relation:

P̃0(z) = 1, P̃1(z) = 1 + µ1z, P̃i(z) = (µiz − νi)P̃i−1(z)− κiP̃i−2(z), (2.98)

with i = 2, . . . , s− p, satisfied by the orthogonal polynomials, is used to define the internal stages
of the RK method following the idea of (van der Houwen and Sommeijer 1980):

g0 = u0,

g1 = g0 + µ̃1δtf(g0),

gi = µ̃iδtf(gi−1)− νigi−1 − κigi−2, i = 2, . . . , s− p.

 (2.99)

Considering dtu = λu and z = λδt, the resulting P̃s−p(z) is the stability function associated with
(2.99): gs−p = P̃s−p(z)u0. The coefficients (µi, νi, κi) are computed by a procedure introduced in
(Abdulle and Medovikov 2001).

The case p = 2 yields thus the second order ROCK2 method (Abdulle and Medovikov 2001) for
which w̃2(z) is a two-stage finishing procedure applied to gs−2 = P̃s−2(z)u0. For dtu = λu and
z = λδt, this implies

u1 = w̃2(z)gs−2 = w̃2(z)P̃s−2(z)u0 = R̃s(z)u0. (2.100)

The order conditions for p = 2 are classical to explicit RK schemes and allow us to compute the
coefficients of the final stages. In particular for second order, the order conditions are the same
for both linear and nonlinear problems. A solution û1 of order p̂ = 1, is computed embedded
at the final step w̃2(z), and an estimate of the local error err = (û1 − u1), is computed for the
step size selection, according to the same criteria used by Radau5 (Hairer and Wanner 1996) with
expressions (2.82) and (2.83). The nearly optimal stability interval is given by ˜̀

s ≈ 0.81 · s2

(the optimal ratio is about 0.82 (van der Houwen 1977)). Therefore, with the time step fixed by
the prescribed accuracy (Atol and Rtol), the number of stages needed to guarantee stability is
computed by

δtρ (∂uf(u)) ≤ 0.81 · s2, (2.101)

where ρ is the spectral radius of the Jacobian of the system of ODEs. A dynamic computation
of this spectral radius is provided by ROCK2 using a non-linear power method which is a slight
modification of the algorithm proposed in (Sommeijer, Shampine, and Verwer 1997) for the RKC
code.

Just like before, for the fourth order ROCK4 (p = 4) the coefficients of the weight function w̃4(z)
must be computed such that the order conditions of order 4 are satisfied. As in (Medovikov
1998), a theory of composition of methods (the “Butcher group”) is applied to achieve a fourth
order method denoted WP , where the first method, denoted by P is given by the three-term
recurrence relation in (2.99) this time with p = 4, whereas the coefficients of the four stages
method W associated with w̃4(z) are computed such that the “composite” method WP is of order
4 as shown in (Abdulle 2002). As in the previous second order case, an embedded method Ŵ is
built embedded into W in order to keep the same recurrence formulae (2.98) for both the fourth
order and embedded methods. A third order embedded RK scheme is thus constructed by adding
a new stage to w̃4(z), and the coefficients are computed with the same composition technique such
that the “composite” method ŴP is of order 3, and that the stability polynomials of the embedded
methods are bounded in the same interval as the ones of the ROCK4 scheme. The latter feature
is indispensable to guarantee stability of the lower order method, and to obtain thus reliable error
estimates.
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The practically optimal stability interval is this time given by ˜̀
s ≈ 0.35 · s2 (the optimal ratio for

fourth order is about 0.34 in (van der Houwen 1977) and 0.35 in (Medovikov 1998)). The ROCK4
solver implements the same tools as ROCK2 for time step selection in terms of estimates (2.82)
and (2.83), as well as the numerical computation of the spectral radius. For a given time step δt,
computed based on the prescribed accuracy (Atol and Rtol), the number of stages that ensures
stability of computations is now given by

δtρ (∂uf(u)) ≤ 0.35 · s2. (2.102)

A notorious advantage of the three-term recurrence formulae used by the RKC (2.95) and ROCK
(2.99) methods, is that even though an arbitrary number of stages s might be required to guarantee
stability, only the current three arrays in the recurrence relations need to be saved. Considering
the two-stage w̃2(z) for the second order ROCK2, five solution arrays need thus to be saved to
perform all the computations. The same follows for ROCK4 for which seven arrays shall be
required. Notice that the construction of the ROCK schemes through (2.96) involves at least
s = 3 and s = 5 internal stages, respectively, for ROCK2 and ROCK4 schemes. The main
advantage of the ROCK schemes compared with previous stabilized RK schemes is that it combines
the best features of both Lebedev- and Van der Houwen-Sommeijer-type methods by using the
three-term recurrence formulae with practically optimal stability polynomials. The latter implies
larger stability domains in the practical implementations considering that `s is approximated by
0.81 · s2 for ROCK2 compared with 0.65 · s2 for the also second order RKC solver (Sommeijer,
Shampine, and Verwer 1997). In particular, a higher order, stabilized explicit scheme of easy
implementation with an optimal stability interval, was achieved with the ROCK4 solver. In this
way, the stability domains of explicit RK methods are extended without altering the orders of the
numerical approximations, and furthermore without requiring excessive supplementary memory
space with respect to a standard explicit RK scheme.
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