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PC4 : Numerical Integration of
Ordinary Differential Equations (Part II)

1 Introduction

The Petite Classe is divided into three parts. We first investigate the stability properties of the RK
methods as well as some other explicit methods available in the community, such as the Dormand and
Price class of methods and draw some stability diagrams in order to properly understand the influence
of stability function / diagram on the performances of the method. The second part is devoted to
the integration of the Belousov-Zhabotinsky oscillating reaction. The objective of this second part
is two-fold. First, we want to characterize the stiffness of the system of equations and investigate
how a standard Runge-Kutta method is dealing with such a stiffness, and what is the impact on the
global error. Second, we will use an adaptative embedded Runge-Kutta method in order to experiment
the time step adaptation and clarify the impact of such a numerical strategy at two levels : 1- the
size of the time steps and the correspondance with the local stiffness of the dynamics of the system
of equations, 2- what is the local error estimate, its link to the effective local error, and finally the
resulting global error. At this level it is essential to have a clear understanding of the various errors as
well as a clear picture of the relevance of the local error estimate. Finally, we switch to one of the most
difficult and renown test case: the van der Pol oscillator1. The purpose is here to get a precise idea
about the influence of the concepts of stability / accuracy / order, and their response to the presence
of stiffness for high order Runge-Kutta methods, whereas we have investigated such a behavior in the
contexte of Euler methods in PC 3.

2 Stability diagrams: graphical representations and their use

The notebook proposed with this PC contains a program in order to plot the stability diagram studied
during the course.
2.1 Compare the four diagram for the four Runge-Kutta methods of order 1, 2, 3 and 4. Comment
on the evolution of the stability conditions with the order of the method. What is the meaning of the
part of the stability diagram for high order methods for which the real part of z is positive?
2.2 Relying on the notebook of the previous PC on the Curtiss and Hirschfelder model, what happens
when the time step is chosen so that the method is still in its stability domain, but close to the
boundary? Does stability imply an accurate integration of the system?
2.3 Propose a representation of the stability domain of the DOPRI methods. How does it compare
to the ones of the RK methods. What is going to be the impact on the resolution of the system?

1For those interested in the history of this model, we refer to the nice article [2].
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3 High order RK methods for BZ reaction dynamics integration

The dynamics of the oscillating reaction discovered by Belousov and Zhabotinsky [4, 1], can be modeled
through the so-called Brusselator model [7] depending on two parameters:

dty1 = 1− (b+ 1)y1 + a y2
1y2

dty2 = b y1 − a y2
1y2

y1(0) = y0
1

y2(0) = y0
2

(1)

For the purpose of illustrating the concepts introduced in the course, we use a = 1, b = 3, y0
1 = 1.5

and y0
2 = 3. For that set of parameters, the dynamics admits a limit cycle as ω-limit set for large

times and after a short transition period of time, the dynamics of the system approaches a periodic
behavior.

3.1 Stiffness?

3.1.1 Using the proposed parameters, integrate the system in the interval [0, 20] and explain why we
reach what is called a quasi-exact solution. Propose a representation of the eigenvalues of the Jacobian
matrix of the non-linear system (1). Explain in what sense the model is considered to have a stiff
dynamics. Propose an order of magnitude in terms of variation of the dynamics.
3.1.2 Using a change of the initial condition, comment on the impact of the stiffness of the system.
Is the stiffness the same on the limit cycle and in the initial time dynamics leading the dynamics on
the limit cycle?

3.2 Integration of the system using high order RK methods with fixed time steps

3.2.1 In the spirit of what has been done in PC 3, explain how we can reach the stability limits
and what happens when the time step for various RK methods are too large for the stability to be
guaranteed. Since the notion of stability is only valid for eigenvalues with negative real part, clarify
in what part of the dynamics, the stability criterion is going to be valid.
3.2.2 In connection with the previous exercise on stability diagrams and previous questions on stiffness,
explain what will be the limiting factor in terms of stability for the time step of the RK methods
(Heuristics proposed in the notes and in Class). What will be the influence of the initial conditions?
3.2.3 For a given discretization, what is the impact of switching form first order to higher orders?
Provide and answer in terms of 1- stability, 2- accuracy, 3- computational cost (number of evaluation
of the function).
3.2.4 When you increase the number of time steps in the proposed interval and thus reduce the time
step, what is the influence on the global error? In what part of the dynamics is the global error the
most important? Relate the answer to the stiffness of the system and explain if this is related to the
problem of stability of the method.
3.2.5 Choosing a time step of 1/60 and a first order RK method, does the global error build up? That
is, to what extent do the errors issued from the stiff zone influence the dynamics afterwards? Try to
explain why.
3.2.6 If we switch to a first order implicit method for this system of equations, the method is supposed
to be A-stable. However, there is a maximum time step beyond which we can not retrieve the periodic
dynamics. Can you propose an equivalent theory as the one of the stability, but for equations with
eigenvalue with a positive real part?
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3.3 Integration of the system using adaptive time stepping

In this part, we will rely on the embedded Runge-Kutta described in class, based on the 3/8 rule
fourth-order Runge-Kutta method. The purpose is here to investigate how an adaptive time stepping
strategy can lead to a given error within a limited amount of numerical work. An appendix is provided
in order to describe such a strategy.
3.3.1 Explain and illustrate how the adaptive time-stepping is related to the stiffness of the system.
Compared to the 4th order RK method with fixed time step, evaluate the number of time steps as a
function of the global error.
3.3.2 Is the number of time steps the only key issue? How can we evaluate the actuel cost of the
methods?
3.3.3 Plotting on the same graph, the local error estimate, the exact local error (describe how it
is calculated), as well as the global error, comment on how the embedded method is efficient for
the proposed problem. Is the proposed error estimate relevant? Illustrate your answer and consider
various tolerances.
3.3.4 What is the evolution of the number of steps as well as of the computational cost when we
decrease the tolerance. Compare to the fixed time step methods.

3.4 Integration of the system using Dormand and Price method

In this part, we will rely on the Dormand and Price [5] method with time step adaptation. The
purpose is here to compare the efficiency of the method to the one of the previous method.
3.4.1 For various levels of tolerance, evaluate the number of time steps needed for both methods as
well as the precision of the results.
3.4.2 What is the impact of using a higher order and more precise method?
3.4.3 In terms of computational cost (based here on the number of accepted time step), what conclu-
sion can be drawn from the calculations conducted with various levels of tolerance?

4 The van der Pol oscillator: a discriminating test-case

In the third part of the Petite Classe, we will tackle the van der Pol oscillator [11, 12, 2, 6], which is a
very nice and discriminating test-case for numerical methods. It is an autonomous system of ordinary
differential equation (ODE) written as :{

dty1 = y2

dty2 = ε (1− y2
1) y2 − y1 avec ε > 0

(2)

where the stiffness can be tuned through the ε parameter.

4.1 Stiffness?

4.1.1 For a range of ε ranging from 1 to 20, how much time does the solution take in order to reach
the limit cycle? Is the initial transient stiffer than the rest of the dynamics? Where does the stiffness
comes from (summarize what has been explained in Class and presented in the second appendix)?
4.1.2 Describe the evolution of the stiffness of the system through time. How does it compare to the
one encountered in the Brusselator case for a range of ε ranging from 1 to 20. How does it evolve
through one period on the limit cycle?
4.1.3 The system is integrated using the Dormand and Price solver with various tolerances. How
many time steps does it take to integrate the system as a function of tolerance on the one side, and ε
on the other side? Propose a synthetic view on the results and explain.
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4.1.4 Describe the work conducted by the method for the integration using Dormand and Price in
the case ε = 20 and compare to what would be needed with a RK4 method with fixed time stepping
leading to the same level of error.
4.1.5 Compare this to the DOPRI853 method for the same level of tolerance.
4.1.6 Conclude on the advantages and limits of the proposed schemes, making the link with the
stiffness of the equation.

Appendix A: Adaptive time stepping strategy

The idea is to adapt the time step to the local dynamics in order to provide an efficient integrations
strategy. The user should provide a tolerance and the adaptation has to rely on an error estimate
and should produce a time step so that the local error estimate is below the given tolerance. The
idea, in order to provide such an error estimate is to combine two methods with different orders such
that the difference between the two is a conservative error estimate. However, building up a lower
order method from a given one, should not result in an important increase of the computational effort.
Thus the idea of embedded methods in order to minimize the number of function evaluations, and
consequently the computational effort.

We will rely on the a Runge-Kutta of order 4 with 4 stages, known as the 3/8 rule [5] :

0
1/3 1/3
2/3 -1/3 1
1 1 -1 1

1/8 3/8 3/8 1/8

(3)

and will construct a 3rd order embedded method. Starting from the ki values, i = 1, 2, 3, 4, obtained
through the previous Runge-Kutta method, we will build a s+ 1 stages method of order 3

ŷ1 = y0 + ∆t (b̂1k1 + . . . , b̂sks + b̂s+1 f(t1, y1)),

where the last point has to be evaluated anyway and b̂s+1 provides more flexibility. The order condi-
tions are obtained using the usual way, except that we have another stage here (as+1,i = bi, i = 1, . . . , s)
and yield four equations:

b̂1 + b̂2 + b̂3 + b̂4 + b̂5 = 1
b̂2c2 + b̂3c3 + b̂4 + b̂5 = 1/2
b̂2c

2
2 + b̂3c

2
3 + b̂4 + b̂5 = 1/3

b̂3a32c2 + b̂4(a42c2 + a43c3) + b̂5/2 = 1/6.

(4)

We have five unknowns and four equations. We choose b̂5 = 1/6 and obtain:

b̂1 = 2b1 − 1/6, b̂2 = 2(1− c2)b2, b̂3 = 2(1− c3)b3, b̂4 = 0,

Thus, using a time step ∆t, we obtain:

y1 − ŷ1 = y1 − y(t0 + ∆t) + y(t0 + ∆t)− ŷ1 = O((∆t)p+1) +O((∆t)p̂+1) ≈ C (∆t)p̂+1. (5)

The optimal time step ∆topt is given by the fact that

Tol ≈ C (∆topt)p̂+1

so that by eliminating the constant C between the last two equations we get

∆topt = 0.9 ∆t
p̂+1
√

Tol

||y1 − ŷ1||
, (6)
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where the 0.9 factor is called a security factor.
For practical purposes and robustness of the method, it is standard to replace the last evaluation

of the time step by

∆topt = ∆t min
(

5,max
(

0.2, 0.9
p̂+1
√

Tol

||y1 − ŷ1||

))
, (7)

and the norm is taken as a mix of the relative and absolute l2 norm:

||y1 − ŷ1|| =

√√√√√ 1
m

m∑
j=1

(
yj1 − ŷj1

1 +max(|yj0|, |yj1|)

)2

(8)

In order to be clear on what has been coded in the notebook, here is the algorithm, which starts
from an initial condition y0, a tolerance Tol and a given time step ∆t1 at n = 1:

Algorithm 1 Automatic selection of the adaptive time step
A) With the current time step ∆tn and from yn−1 evaluate yn, ŷn and err = ||yn − ŷn|| as well as
∆topt,n using the definitions above
B) Advance in time or adapt the time step
if err ≤ Tol then

(the time step is accepted)
tn+1 := tn + ∆tn
∆tn+1 = min(∆topt,n, tend −∆tn)
the new state of the system if taken as yn, n := n+ 1

else
(the time step is rejected)
∆tn = ∆topt,n

end if
C) If the current time is tn = tend the simulation is over, else we start again at A)

Appendix B: Van der Pol’s equation

The first examples have been introduced by Rayleigh in 1883 [10] and then by Baltasar Van der Pol
(1920-1926) in a series of papers on nonlinear oscillations [11, 12]. In general, given α, the equation
of the oscillator:

d2
t y + αdty + y = 0, (9)

admits a damped solution for α > 0 and an unstable solution for α < 0. The idea here is to make α
depend on the solution so that it is positive for large enough y and negative for small enough y. One
possibility is to take α(y) = ε(y2 − 1), ε > 0, that is:

d2
t y + ε(y2 − 1)dty + y = 0, (10)

or switching to a first order system of equations:{
dty1 = y2,

dty2 = ε (1− y2
1) y2 − y1,

(11)

which is the system we will study. One expects the existence of a limit cycle and the convergence of
the dynamics toward a unique periodic solution in time, whatever the initial condition, or at least in
a neighborhood of the limit cycle. The existence of a limit cycle can be studied using the notion of
Poincaré map [9] and uniqueness was first proved by Liénard in 1928 [8, 3]. Such a result can also be
obtained by Poincaré-Bendixon Theorem, which we will study in the remaining of the course.
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For ε sufficiently large, we can look for quasi-stationary states through a singular perturbation
analysis. For that purpose, we change the time scale and introduce τ = t/ε. We then take z1 = y1,
z2 = εy2 and introduce µ = 1/ε2: {

dτz1 = z2,

µdτz2 = (1− z2
1) z2 − z1.

(12)

As µ tends to 0 with ε→ +∞, the dynamics of the systems lies on the slow manifold:

z̄2 = z̄1
1− z̄2

1
, ȳ2 = ȳ1

ε(1− ȳ2
1)
, (13)

and injecting this relation in the first equation, the slow dynamics of the system reads:

dtȳ1 = ȳ1
ε(1− ȳ2

1)
, (14)

for which we have a solution:
log(ȳ1)− ȳ1

2 = t− t0
ε

+ cst. (15)

It can be shown that the solution lives on such quasi-stationary states for long periods of time before
switching abruptly to another branch, all the more abruptly as ε is small.
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Figure 1: Phase portrait and solution of the Van der Pol equation reproduced from the original work in [5].
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