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PC9 : Hamiltonian systems and symplectic integrators

1 Introduction

The Petite Classe is divided into several parts. In the first part, we tackle some generic Hamiltonian
systems, consisting in a particle in a double well potential as well as the bead on a hoop, for which we
propose some standard integrators as well as symplectic integrators such as symplectic Euler as well as
Stormer-Verlet scheme [9]. The objective of this first part, which has been investigated a bit in PC3,
is to explain why the use of a dedicated integrator is important for conservative dynamical systems.
In particular, the key issue is to show that even using high order Runge-Kutta methods, which are
not symplectic, is not leading to a happy conclusion for long time integration of Hamiltonian systems.
Furthermore, we want to highlight the impact of the order of the symplectic methods. The second
part is dedicated to celestial mechanics, more precisely the solar system. In this case, the purpose is to
use a series of symplectic methods and to investigate the accuracy of the solution, as well as to show
that any use of non-symplectic integrator is a dead end. The use of high order composition methods
is here essential in predicting the proper long time dynamics accurately. We also come back to the
Arenstorf orbit [1, 2, 14], which we had already envisioned in the early parts of the course. The final
part is related to the integration in time of a semi-discretized version of the Korteweg de Vries PDE
(solitary water waves) [13, 10, 3, 5]. The idea is to combine a semi-discretization in space with time
integrators in order to see to what extent we are able to capture solitary waves, which are homoclinc
orbits of travelling wave type and which appear as a combination of a non-dispersive nonlinear term
and a dispersive linear term.

2 Double well problem

In this first part of the PC, we consider the double-well problem, where a particle is place in a
double-well potential, that is we investigate the dynamical system:

d?tq = _aqU(Q)’ (1)
which can be also written
dig =p, dip=—-0,U(q), (2)
or 1
dig = 0H(p,a),  dp = —0pH(p,0), H(p.a) = 50" p+U(9), (3)

where ¢ is the position of the particle in R and p its momentum and where U(q) = (¢®> — 1)? is the
double-well potential energy. The Hamiltonian of the system is denoted H and is also the total energy
of the system.

2.1 Show that we have the exact energy conservation in time through the previous dynamical
system, that is H(p, q) = cst.

2.2 Through the notebook, use various classical schemes (explicit and implicit Euler) in order
to integrate the dynamics and explain what you observe in terms of energy conservation and
qualitative dynamics.

2.3 Use the various symplectic schemes (symplectic Euler, Stérmer-Verlet and Composition
scheme optimized 8-15) in order to provide a solution in time. Plot the energy of the system
and provide a synthesis of the comparison between the various resolution schemes.



3 Bead on a hoop

A circular wire hoop rotates with constant angular velocity w about a vertical diameter. A small bead
moves, with or without friction, along the hoop, where the dynamics of the bead is described through
the 6 angle. The equation of motion, using the standard notation in classical mechanics, can be shown
to be [12]:

f = —w?sinf + w?sinf cosf — ab (4)

with w. = \/g/R, where the gravity acceleration is denoted by ¢ and the radius of the hoop is denoted
R. The coefficient « is related to the friction in the system and can be idealized to be zero in the
frictionless configuration.

In order to recast the system into our more mathematical notations, we introduce the following
notation. Let y; = 0 and yp = 0, its time derivative. Then, we can switch to a first order system of
differential equations, when there is no friction:

{dtw =1
dsyo = siny; (w2 cosy1 — wz)

()

3.1 Show that there is an invariant for this dynamical system.

3.2 Based on what has been done during PC6 and relying on the notebook, integrate in time
the system for various rotation velocities, using the various classical integrators. Explain what
happens in terms of energy conservation.

3.3 Conduct the same types of simulations with the symplectic integrators and plot the evolution
of the invariant versus time.

3.4 Conclude in terms of the influence of the symplectic integrators on the accuracy of the
resolution of the dynamics.

4 Solar System - celestial mechanics

Following [8, 7], let us consider the Sun-Jupiter-Saturn system, where for simplicity we neglect the
other bodies and influences in the solar system. Surprisingly, applying a standard numerical method
yields a dramatically wrong solution, where one of the planets is ejected from its orbit. In contrast,
a well chosen symplectic integrator with the same initial data yields the correct behavior. In 1687,
Isaac Newton, inspired by the three laws of Kepler, proposes the universal law of gravitation, that all
cosmic objects attract each other pairwise with equal forces (but in opposite directions) proportional
to the product of their masses and inversely proportional to the square of the distance between them.
It is this law that we will use to calculate the position of the planets. The gravitational force F. S_.p
applied by a body S to a body P is given by the following formula:

Gmgmp
—p b (6)

where G is the universal constant of gravitation, mg , mp are the masses of the bodies S and P, d is
the (Euclidean) distance between S and P, and « is a vector with unit length in the direction from S
to P .

We consider the Sun-Jupiter-Saturn system where we neglect the other planets and influences in
the solar system. We represent the positions of these bodies by three functions of time, ¢;(t) € R3,
1 € 0,1,2 where the index ¢ = 0 corresponds to the Sun, i = 1 corresponds to Jupiter, and i = 2
corresponds to Saturn. The respective masses of the three bodies are denoted by m;, ¢ € 0,1, 2,
while the universal constant of gravitation is denoted GG. We also consider the momenta p;(t) € R3,
1 € 0,1,2. Newton’s second law of dynamics then reads

Fs.p=—-Fp,s=—

dipo = Fsass + Fros, dipr = Fssy+ Fsasy, dip2 = Fs_50 + Fr5a, (7)

and we apply our numerical schemes to the above system of differential equations.



body | mass (relative to the Sun) | position (A.U.) | velocity (A.U./day)

mo = 1.00000597682 0 0
Sun 0 0
(sun + other planets) 0 0

—3.5023653 +0.00565429

Jupiter | mp = 9.54786104043 10~* —3.8169847 —0.00412490

—1.5507963 —0.00190589

+9.0755314 +0.00168318

Saturne | mo = 2.8558373315110~* —3.0458353 +0.00483525

—1.6483708 +0.00192462

We provide in Table 1 the positions and initial velocities for the Sun, Jupiter and Saturn at a given
date (here September 5th 1994), expressed in astronomical units, based on the Earth-Sun distance (1
A.U. is about 150 million kilometers), and the time is in earth days.

Notice that these trajectories are almost in a plane, but they evolve in 3D. The Sun itself is slightly
moving as well (this is by the way a common methodology to detect exoplanets), but we represent the
trajectories with respect to the Sun, chosen as a reference, and located at the origin. Note that the
code can be straightforwardly adapted to include additional planets of the solar system.

4.1 Using the classical integrators such as Euler (forward/backward), explain what happens to
the dynamics of the problem. Explain what happens in terms of energy conservation.

4.2 Relying on the notebook, integrate in time the system for various symplectic integrators.
Plot the evolution of the gravitational energy versus time and comment the results as a function
of discretization time.

4.3 Conclude in terms of the influence of the symplectic integrators on the accuracy of the
resolution of the dynamics.

5 Arenstorf Orbits

We consider a reduced three body problem consisting of the motion of a satellite in the framework of
the attraction of the moon and the earth. For the purpose of the exercise, we assume that the system
earth-moon is in circular rotation at constant speed in a planar motion with the mass center of gravity
located at the origin and that the mass of the satellite € is small enough compared the mass of the
earth 1 — u and the mass of the moon p to so that we can neglect its impact on the earth-moon system.
We also assume that the motion of the satellite is governed by the attraction of the two bodies earth

and moon through the Newton gravitation law.
The motion of the satellite in the complex plane satisfies the equation:
e(l—p) A-Y €l B-Y

ed?y = +

. 8
A—YIEA—Y] T B-YIE B (®)

In order to eliminate the factor e in A = —pe® and A = (1 — p)e’, we introduce the variable
y = e Y = y; +iyo. In this new referential the earth and the moon are motionless. We have

Y = ety and d?Y = —e'ly + 2ief'dsy + e*d?y and the equation of motion thus read:

K=y I—p—-y
(9)

) , _
diy+2idy —y=(1—p) etolf =yl

Introducing the real and imaginary parts of y and then switching to a first order system of differ-
ential equations, we obtain:

diyn = s,

diy2 = wa, ) (10)
deys = yr+2ys— (1 —p)(yr + p)/r3 — plyr — 1+ p) /73,

diya = yo—2y3 — (1 — p)ya/r? — py2/r3,



with 71 = (1 4 )2 + ¥3)V/2 and ((y1 — 1+ p)? + 43)"/2.

For the initial values, we have chosen:
y1(0) = 0.994, y2(0) =0, wy3(0) =0, y4(0)=—2.00158510637908252240537862224. (11)

The motion of the satellite is on a periodic orbit with period T' = 17.0652165601579625588917206249.

5.1 Remind the reader about what has been done in PC3 (conservative_system.ipynb) using
standard Runge-Kutta schemes.

We will then show that the previous system [1, 2], even if it is a restricted three-body problem [14],
has a symplectic structure [11] but it is not the canonical Hamiltonian structure.
5.2 Show that the previous system can be recast into the following form

Ay = JOyH(t, D), (12)
with
0 I 0 2
(i) (%) s
H(t,Y) = E™{p)+ E*(q), q=(yi,y2)" p=(ys,y0)", Y =1(d".p")", (14)
cingyy — L (2o 2y 2 L peotgy - _Yitw _lop p
Ep) = 5 (1 +03) = gl Bt g = AT - R R (15)

The purpose of this part is to use an equivalent scheme as the Stormer-Verlet scheme (splitting method)
designed for canonical Hamiltonian systems, but in the present case of a non-canonical Hamiltonian
system of ODEs. This scheme is called Scovel’s method [11]:

qn+1/2 = q¢", pn+1/2 = pt— %aquot(qn)
¢ = TP (At Pt = exp(AtR)pt2, (16)
qn+1 — q*, pn—i-l — p* _ %aquot (qn+1)

where F(t)po = [i exp(s R)pods.

5.3 Explain, from the previous definition of the scheme (or referring to [11]), why the scheme
can be characterized as a splitting scheme.

5.4 Integrate in time the system for various time steps and explain what is the influence of the
symplectic integrators (Scovel’s method and related optimized 815 composition method). Does
it succeed in producing a coherent result for a one period solution? How does it compare to the
other schemes you have used.

5.5 Conduct the same types of simulations with the symplectic integrators but on longer time
integration (3 periods). Provide a synthesis of what is going on.

6 Korteweg de Vries equation

The final part is related to the integration in time of a semi-discretized version of the Korteweg de
Vries PDE (solitary water waves) [13, 10, 3, 4, 5. The KdV equation is a PDE, which combines a
non-linear non-dispersive and a linear dispersive terms, which can interact in such a way as to produce,
solitons also called solitary waves. Such waves have remarkable properties and have been a fascinating



subject of research initiated by John Scott Russell', who clearly, beyond the controversy with Airy
and Stokes [4, 5] resolved by Rayleigh, understood many features of such solitary waves, 130 years
before a sound mathematical theory was built.
The PDE reads:
Opu + 6udpu 4+ 92, u =0, (17)

where the 6 factor is purely there for the sake of simplifying the integration. It wan be shown that
this PDE admits special types of traveling wave solutions called solitary waves or solitons u(t,z) =
z(x — ct) = z(§), where z satisfies the ODE:

—cdgz +620:2 + 8?552 =0, (18)

for which there exists an analytical solution:

c c
2(€) = = cosh ™2 ve , (19)
2 2
where it is clear that the amplitude of the wave is strongly connected to its speed of propagation.
The key point is also that there are invariants for this equation, as well as for the solitary wave [6].
The idea of this part is to combine a semi-discretization in space with a symplectic time integrator

in order to see to what extent we are able to capture solitary waves, which are homoclinc orbits of
travelling wave type.
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