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Guest Editorial

Lyapunov Centenary Issue

One hundred years ago A. M. Lyapunov's major memoir on the stability of
motion was published. To mark the centenary the present issue of the International
Journal of Control is devoted to Lyapunov's work. Most of the issue is taken up
with an English translation (by the present editor) of the 1892 memoir; in addition
a bibliography of Lyapunov's published works and a translation of a biography
have been prepared by 1. F. Barrett.

Another contribution to the study of stability, that of E. 1. Routh, was similarly
marked with a centenary issue of the International Journal of Control; see Vol. 26,
No.2 (1977).

Translation notes
Aleksandr Mikhailovich Lyapunov's The General Problem of the Stability of

Motion was published in Russian by the Mathematical Society of Kharkov in 1892.
A French translation by E. Davaux appeared in the Annales de la Faculte des
Sciences de l'Uniuersite de Toulouse, Vol. 9 (1907), pp. 203-474, and this was
reprinted by Princeton University Press in 1949. Lyapunov himself reviewed and
corrected the French version, and introduced some additional material.

While the French translation has done excellent service over the past 85 years,
there is no doubt that work of this length and depth is much easier to absorb if it
is in one's own language. For this reason the present English version has been
prepared.

The English is a translation from the French, and to reduce the risk of deviating
too far from Lyapunov's original treatment, a rather literal translation of the
French is given. Thus the temptation to split up some of Lyapunov's longer and
more involved sentences has been resisted. (It seems that the French translation is
also a rather literal one.)

Lyapunov's mathematical style is economical, so much so that he sometimes
leaves his readers at a temporary loss as to which equations or other relations he
has in mind. The present writer has therefore inserted occasional interpretive
comments, in square brackets.

Lyapunov numbered his sections but did not provide them with titles. To
improve readability, titles have been inserted in the English version; these have been
obtained from the brief descriptions which Lyapunov gave in his contents list.

A few minor errors which have been found in the French have been silently
corrected in the English. When, however, the errors evidently go back to the
Russian original, attention is drawn to them.

Historical notes
One of Lyapunov's main results is to the following effect. Suppose that for a

given dynamical system we can find a function of the state coordinates which is
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522 Guest Editorial

positive-definite, and for which the rate of change following a small displacement
from equilibrium is always negative or zero. Then the equilibrium is stable. Control
scientists are familiar with this stability criterion, which Lyapunov gives as Theorem
I in his section 16. Let us look into the historical background to the result.

During the 18th century, astronomers and mathematicians made great efforts to
show that the observed deviations of planets and satellites from fixed elliptical
orbits were.in agreement with Newton's principle of universal gravitation, provided
that due account was taken of the disturbing forces exerted by the bodies on one
another. The deviations are of two kinds: first, oscillatory motions with relatively
short periods, i.e. periods of the order of a few years, and second, residual slow
changes in the ellipse parameters, which changes may be non-oscillatory or may be
oscillatory with very long periods, perhaps of the order of tens of thousands of
years. The first kind are known as periodic inequalities, and may be accounted for
as the response of a body to the periodic forces exerted on it by its neighbours'
continual tracing of their orbits. The second kind are called secular inequalities, and
for the solar system the question arises as to whether the secular inequalities will
build up over the millennia and destroy the system.

Laplace ( 1784, sections 1-4, 13, 14) investigated secular inequalities, and arrived
at the following results. Consider a system of k satellites describing ellipses with
varying parameters round a central body with relatively large mass. Suppose that
the jth satellite has mass mj , its ellipse has major semi-axis aj and eccentricity ej ,

and the plane of the ellipse is inclined to a fixed reference plane at an angle ~. In
earlier work Laplace had found that, at least approximately, the aj are not subject
to secular inequalities, and a further study by Lagrange (1776) had arrived at the
same conclusion. This property enabled Laplace to treat the aj as constants; and on
allowing the ej and the ij to vary with time, and restricting attention to secular
inequalities, he claimed that

k

V,(e"e2"" ,ek) == L mj(aj)'/2eJ=const.
)=1

k

V ( . . . ) =" () '/2 2'_2 ',,12"'" Ik - L, mj aj tan Ij -const.
)=1

( I)

(2)

The constancy of these expressions means that if e" e2 , ••• , ek and li,l, li21, ... , lik I
are all initially small, they will remain so, i.e. we have stability. Thus Laplace's
results tended to support the hypothesis that the solar system is stable. However,
since various approximations were made in his analysis, this conclusion was not
established rigorously.

Actually - V, represents a contribution made by the e's to an expression for the
total angular momentum, under the assumption that these eccentricities are all
small. It is conservation of angular momentum that requires this contribution to be
constant. Similarly - V2 represents a contribution to angular momentum made by
the i's, assuming that these inclinations are all small. (Incidentally the last assump­
tion implies that tan ~. in (2) can be replaced by ij . )

Now the functions V, and V2 in (I) and (2) are each positive-definite and with
zero rate of change. Thus they are examples of what we now call Lyapunov
functions. Lyapunov was the son of an astronomer, and was himself mainly
interested in mathematical problems of astronomy. He would therefore have been
familiar with Laplace's application of V, and V2 to the study of stability.
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Guest Editorial 523

Next let us turn to another part of the background against which Lyapunov's
technique was developed. A principle already used in the 17th century was as
follows: if a system of interconnected heavy bodies is in equilibrium, the centre of
gravity is at the lowest point. This is known as Torricelli's principle, since he was
the first to publish material relating to it (Torricelli 1644). But Torricelli was a
friend and disciple of Galileo, and according to Gliozzi (1976) the principle was
already known to Galileo.

In a more modern formulation, Torricelli's principle amounts to the result that
for a mechanical system a configuration with minimum potential energy corre­
sponds to a point of equilibrium. Lagrange (1788) gave a proposition to the effect
that for a conservative system an isolated minimum of the potential energy
corresponds to a stable point of equilibrium. Lagrange's proof was not convincing,
since in effect it involved neglecting nonlinear terms in the differential equations and
confining attention to the resulting linear system. Dirichlet (1846) took up the
problem of finding a more rigorous demonstration of Lagrange's principle, and
supplied what was essentially the following argument.

Let the kinetic and potential energies of the system be T and U respectively.
Consider the point of equilibrium as embedded within a small region R of
configuration space. Let Urn be the minimum value of the potential energy for
points on the boundary of this region. Then since the point of equilibrium
corresponds to a local minimum of potential energy we may choose the initial
position in R so close to this point that the initial potential energy Uo satisfies

(3)

Let us further choose the initial velocities so small that the initial total energy
satisfies

(4)

Suppose next that the system subsequently reaches the boundary of region R. At
this point we have U ~ Urn and T ~ 0, so that

T+ U~ Urn

But (4) and (5) contradict conservation of energy which requires

T+ U= To+ Uo

(5)

(6)

Hence the above supposition that the system can reach the boundary of R is false,
i.e. stability holds.

Joseph Liouville (1842, 1855) applied Lagrange's principle to the study of
equilibrium figures of rotating fluid bodies in which the particles attract each other
gravitationally. Actually Liouville used a maximum kinetic energy principle rather
than minimum potential energy; but since the total energy is constant the two
principles are equivalent (Lagrange had mentioned both principles). Liouville
published only enigmatic excerpts from his work on this problem; however, Lutzen
(1984, 1990) has located much of the missing material in Liouville's manuscripts.

In 1882 Chebyshev proposed to Lyapunov the problem of finding whether for
rotating fluid bodies there exist non-ellipsoidal figures of equilibrium which are
close to the known ellipsoidal figures. This problem led Lyapunov to the study of
the stability of ellipsoidal figures of equilibrium, and he published his master's
dissertation on the subject in 1884. His approach was similar to that of Liouville,
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524 Guest Editorial

i.e, he investigated conditions for the figure to have a minimum of potential energy,
or rather of potential energy modified to allow for centrifugal force. Presumably
Lyapunov learned of Liouville's work on rotating fluids from Chebyshev, who had
often travelled to France and was a friend of Liouville.

So some eight years before he published his 1892 memoir on stability (which
was his doctoral dissertation) Lyapunov was already fully conversant with
Lagrange's principle of minimum potential energy. It no doubt occurred to him that
in Dirichlet's proof the fact that the total energy is composed of two positive-defin­
ite functions T and V is inessential. What is essential is that the total energy is
positive-definite and with zero rate of change (i.e., as we would now say, the total
energy is a Lyapunov function).

Thus suppose that instead of T + V we consider a single positive-definite
function V of the state coordinates, such that V = 0 at a point of equilibrium, and
let Vm be the minimum value of V for points on the boundary of a small region S
containing the point of equilibrium in its interior. Let us choose the initial position,
at time t = to, so close to the point of equilibrium that the initial value Vo of V
satisfies

Vo < Vm

Then if the state reaches the boundary of region S we have there

V:;:. Vm

Inequalities (7) and (8) yield

V> Vo

which is incompatible with the assumed property

dV
dt ,;;; 0 (t > to)

(7)

(8)

(9)

( 10)

Hence the boundary of region S cannot actually be reached; in other words we have
stability.

This proof of his stability criterion is basically the one given by Lyapunov in his
section 16, although he disguises it a little. He acknowledges that it uses the same
considerations as in Dirichlet's proof.

The work of Routh and of Poincare further influenced Lyapunov's treatment of
stability problems; and he also made use of the second edition (1879) of Thomson
and Tait's Treatise on Natural Philosophy.

For further notes and references on the early history of stability theory, see
Fuller (1982, section 4). For a discussion of methods of investigating the stability
of the solar system see Message (1984).

Lyapunov's first method
Another of Lyapunov's results is as follows. Suppose that for the system

dx,
d/ =1.(x" X2"'" x,,) (i = 1,2, ... , n)

the 1's are analytic functions with

1.(0,0, ... ,0) = 0 (i = 1,2, ... , n)

( 11)

( 12)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
O
t
t
a
w
a
]
 
A
t
:
 
0
9
:
5
9
 
2
7
 
A
p
r
i
l
 
2
0
1
0



Guest Editorial 525

( 13)

Consider the linear system of the first approximation, obtained by expanding the!'s
in power series and dropping all except the linear terms. Suppose that the linear
system is asymptotically stable, i.e. that the lx, I, starting from small initial values,
all approach zero when t approaches infinity. Then the nonlinear system (II) also
is asymptotically stable.

In his sections 11-13 Lyapunov proves a more general version of this result by
using what he calls his first method, i.e. by finding series solutions for system (II).
The proof is involved due to the multiplicity of the terms which arise, and because
he allows the f's to depend explicitly on t. However, a preliminary idea of his
technique can be obtained by working with a simple example.

Thus suppose we take the scalar nonlinear system

dx
- = -x+x2

dt

The linear system of the first approximation is

dx
dt =-x

with solution

x(r) = x( O)e-'

( 14)

( 15)

and is consequently asymptotically stable. We have to show that the same property
holds for the nonlinear system (13).

Let us try to fit a solution of the form

x = x, + X 2 + X 3 + ... ( 16)

(17)

where Ix,l is small and Ix,l, Ix21, Ix31, ... are assumed to have successively decreasing
orders of magnitude. Substitution of (16) in (13) gives

dx, dX2 2dt + dt + ... = -(x, + x 2 + ...) + (x, + X2 + ...)

Equating terms with the same order of magnitude, we get

dx,
dt = -x,

dx, r- I

-d = -x, + L XjX,_j (r = 2,3, ...)
t j~'

The solution of (18) is

x, = ae:'

where a is an arbitrary constant. Substituting (20) in (19) with r = 2 we find

dX2
-- = -x +a2e- 2

'
dt 2

This linear equation is easily integrated, and a particular solution is

(18)

( 19)

(20)

(21)

(22)
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526 Guest Editorial

In the same way equations (19) can be solved with further values of r taken
successively, and induction leads to

(23)

Thus the series solution (16) for the nonlinear system (13) takes the form

(24)

Putting

(25)

we have

X=q_q2+ q 3 _ q4+... (26)

This series is convergent if Iql < I. If we choose lal < I we shall have Iq(t)I< I for
all t > 0, and thus x(t) will be finite for all t > O. Furthermore since q(t) -.0 when
t -. 00, equation (26) gives

x(t) -.0 for t -. 00

i.e. the nonlinear system is asymptotically stable.
Note that series (26) sums to

x =q(1 +q)-I =a/(a +e')

(27)

(28)

and it can be readily checked that this function satisfies the differential equation
(13). 0

Singular cases
When the linear system of the first approximation is on the boundary of

stability, the nonlinearities have a decisive influence on whether the actual system is
stable or not. Lyapunov devoted considerable effort to exploring the simplest of
these singular cases. For this purpose he used his second method, i.e. application of
Lyapunov functions (see his sections 28-41,56-64).

In his 1892 memoir he deliberately omitted discussion of one of these cases­
that where the linear system of the first approximation has two zero eigenvalues.
However, a treatment of this case was published posthumously, and an English
translation is available (Lyapunov 1966). It may be noted that the English version,
despite its title Stability oj Motion, is not a translation of the 1892 memoir.

Stability and asymptotic stability
Lyapunov's definition of stability allows the system to perform persistent small

oscillations about a point of equilibrium, or about a state of motion. Control
engineers are more interested in achieving asymptotic stability, in which any small
oscillations eventually die out, and they may wonder why Lyapunov gives so much
consideration to ordinary as opposed to asymptotic stability. The reason is that
Lyapunov was, as already mentioned, mainly concerned with astronomical prob­
lems. In such problems, as idealized mathematically, there are no dissipative forces,
so that asymptotic stability does not occur. The best that can be hoped for is
ordinary stability in which the bodies perform small oscillations (called librations
by astronomers) about their nominal motions.
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Guest Editorial 527

For such cases the system is at best on the boundary of stability, and the
question of whether nonlinearities in the differential equations will cause the system
to move off the boundary into instability is a matter of some delicacy. In fact
Lyapunov was unable to resolve the problem of stability of motion for Hamiltonian
systems of high enough order to be relevant to astronomical problems, although he
obtained partial results in this direction (see his section 45).

When a system has ordinary but not asymptotic stability, if a Lyapunov
function can be found its rate of change will be zero, so that the function will be
an integral of the system. Thus the search for Lyapunov functions in astronomical
problems is equivalent to the search for new integrals of their differential equa­
tions-a formidable task indeed.

Lyapunov's failure to make much progress with some of the stability problems
of astronomy would have been a disappointment to him, and this is perhaps what
induced him to abandon his original plan of writing a more extensive treatise on
stability, and to content himself with the still substantial memoir which is now
before us. He could scarcely have foreseen the interest in his methods that would
eventually arise in the field of control science.

For further discussion of Lyapunov's work see Pressland (1931) and Grigorian
(1974).
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The general problem of the stability of motion

A. M. LYAPUNOV

Translated from Russian into French by Edouard Davaux, Marine Engineer at
Toulon·t
Translated from French into English by A. T. Fuller.j

Preface
In this work some methods are expounded for the resolution of questions

concerning the properties of motion and, in particular, of equilibrium, which are
known by the terms stability and instability.

The ordinary questions of this kind, those to which this work is devoted, lead
to the study of differential equations of the form

dx, dX2
dt = X" dt = X2 ,

of which the right-hand sides, depending on time t and on unknown functions
XI' X 2, ... , x, of t, may be developed, provided the x, are sufficiently small in
absolute value, in series of positive integer powers of the x,, and vanish when all
these variables are equal to zero.

The problem reduces to finding if it is possible to choose the initial values of the
functions x, so small that, for all time following the initial instant, these functions
remain in absolute value less than limits given in advance, which may be as small
as one wishes.

When we know how to integrate our differential equations, this problem
certainly presents no difficulties. But it will be important to have methods which
permit it to be resolved independently of the possibility of this integration.

It is known that there exist cases where the problem considered reduces to a
problem of maxima and minima.§ But the range of the questions which can be
resolved by this procedure is very limited, and in most cases it is necessary to resort
to other methods.

The procedure ordinarily used consists in neglecting, in the differential equations
under study, all the terms of higher than first order with respect to the quantities X s

t Mr Lyapunov has very graciously authorized the publication in French of his memoir
Obshchaya zadacha ob ustoichivosti dvizheniya printed in 1892 by the Mathematical Society
of Kharkov. The [French] translation has been reviewed and corrected by the author
[Lyapunov], who has added a note based on an article which appeared in 1893 in
Communications de fa Societe mathematique de Kharkow.

t [Comments in square brackets are by A.T.F.]
§ We have in mind the cases where there applies the known theorem of Lagrange on the

maxima of the force-function [this is minus the potential energy function], relating to the
stability of equilibrium; also, the cases where there applies a more general theorem of Routh
on the maxima and minima of the integrals of the equations of motion, allowing the
resolution of certain questions relative to the stability of motion (see The advanced part of
A Treatise on the Dynamics of a System of Rigid Bodies, fourth edition, 1884, pp. 52, 53).

0020·7179/92 $3.00 © 1992 Taylor & Francis Ltd

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
O
t
t
a
w
a
]
 
A
t
:
 
0
0
:
5
8
 
2
8
 
A
p
r
i
l
 
2
0
1
0



532 A. M. Lyapunov

and in considering, in place of the given equations, the linear equations thus
obtained.

It is in this way that the question is treated in the work of Thomson and Tait,
Treatise on Natural Philosophy (Vol. I, Part I, (879), in the works of Routh, A Treatise
on the Stability of a Given State of Motion (1877) and A Treatise on the Dynamics
of a System of Rigid Bodies (Part II, fourth edition, 1884) and, finally, in the work
of Zhukovski [Joukowsky] 'On the stability of motion', Memoires Scientifiques de
l' Universit~ de Moscou, Section physico-mathematique (4me Cahier, 1882) [Uchenie
zapiski Moskovskogo universiteta, otdel fiziko-matematicheskii, 1882, Vip. 4].

The procedure just mentioned certainly involves an important simplification,
especially in the case where the coefficients of the differential equations are
constants. But the legitimacy of such a simplification is not at all justified a priori,
because for the problem considered there is then substituted another which might
turn out to be totally independent. At least it is obvious that, if the resolution of the
simplified problem can answer the original one, it is only under certain conditions,
and these last are not usually indicated.

Nevertheless it should be noted that some authors (thus, for example, Routh),
recognized that this procedure is not rigorous, not limiting themselves to a first
approximation resulting from the integration of the above-mentioned linear equa­
tions, but considering equally a second and some further approximations, obtained
by the usual methods. But in operating thus one makes little advance, for, in
general, by this approach one obtains only a more exact representation of the
functions x, within the limits of a certain interval of time. This certainly does not
give new data for obtaining any conclusions on stability.

The only attempt, as far as I know, at a rigorous solution belongs to Poincare,
who, in the remarkable memoir composed of several papers-'Sur les courbes
definies par les equations differentielles' (Journal de Mathematiques, third series,
Vols. VII and VIII; fourth series, Vols. I and II), and, in particular, in the two last
parts, considered questions of stability for the case of second order systems of
differential equations, and arrived also at some related questions pertaining to
systems of third order.

Although Poincare limited himself to very special cases, the methods he used
allow much more general applications and could still lead to many new results. This
will be seen in what follows, for, in a large part of my researches, I was guided by
the ideas developed in the above-mentioned memoir.

The problem that I set myself in undertaking the present study can be formu­
lated as follows: to indicate the cases where the first approximation really resolves
the question of stability, and to give procedures which allow it to be resolved, at
least in certain cases, when the first approximation no longer suffices.

To arrive at some results, it will be necessary at the outset to make certain
hypotheses, relative to the differential equations considered.

The simplest hypothesis, and at the same time one which will facilitate the more
important and interesting applications, consists in this: that the coefficients in the
developments of the right-hand sides of these equations are constant quantities. The
more general hypothesis that the coefficients are periodic functions of time also
corresponds to very numerous questions of interest.

It is under these two hypotheses that I principally treat the question.
For the rest, I touch on the more general case where the said coefficients are

arbitrary functions of time which never exceed, in absolute value, certain limits.
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Stability of motion: general problem 533

It is under this general hypothesis that the question is treated in the first chapter
of my work, where I demonstrate a proposition concerning the integration of the
relevant differential equations with the aid of certain series,t and where I indicate
some conclusions relative to stability which follow from it. Under the same
hypothesis some further propositions are demonstrated here, forming the basis for
later conclusions.

The first chapter forms only a sort of introduction where I demonstrate some
fundamental propositions, while the second and third constitute the main part; and
it is there that the cases of constant and periodic coefficients are considered.

I begin in each of these two chapters with some remarks concerning the linear
differential equations which correspond to the first approximation, and in the third
chapter, where the case of periodic coefficients is treated, I enter in some detail into
the subject of what is called the characteristic equation.

Passing next to the principal question, I make apparent under what conditions
it is resolved with the first approximation, and I then come to the singular cases
where it is necessary to take account of terms of higher order than the first.

Now the cases of this kind are very varied, and in each of them the problem has
its own special character, so that there cannot be any question of general methods
which could embrace all cases.

Thus the different possible cases are to be considered separately, and I limit
myself here to the simplest ones which present the less serious difficulties. It is their
study, and the exposition of the corresponding methods for the resolution of
stability questions, which constitute the greater part of the last two chapters.

Without entering into lengthier detail on the content of this work, I will
however note that in the second chapter I treat the question of periodic solutions
of nonlinear differential equations. This question is found to have a direct relation
with the methods which I have proposed for one of the singular cases. Moreover its
examination leads to some conclusions on conditional stability for the more
interesting cases where the differential equations have the canonical form [Hamilto­
nian equations). These conclusions constitute almost all that can be said of a
general nature on these important cases.

The reader will not find in the present work a solution of such and such a
problem of mechanics. According to the original plan, applications of this kind
were to form a fourth chapter. But subsequently I dropped the intention of adding
this, having in view the following considerations.

All the more interesting and important questions of mechanics (such as, for
example, those which lead to canonical equations) are such that, in the singular
cases where the first approximation does not suffice, the problem becomes more
difficult, and at present one cannot indicate any method to resolve it. This is why,
in the examination of these questions, T would have had to limit myself solely to
examples of two kinds: to those where the question reduces to a problem of maxima
and minima (by virtue of the theorem of Routh), or indeed to those where it is

t The series in question here have been considered, under more special hypotheses, in my
memoir 'Sur les mouvements helicoidaux permanents d'un corps solide dans un liquide'
(Communications de la Societe mathematique de Kharkow, second series, Vol. I, 1888). I
subsequently learnt that Poincare had considered these series, under the same hypotheses, in
his thesis Sur les proprietes des fonctions definies par les equations aux differences partielles
( 1879).
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534 A. M. Lyapunov

resolved with the first approximation. But these examples, although they present a
certain interest, are not relevant to the principal object of my researches which, as
already mentioned, consist of the examination of methods relating to singular cases
belonging to certain categories. As regards examples relevant to these methods, one
would be obliged to choose them from the sphere of those questions of mechanics
where the resistances of the medium are considered. One could without doubt cite
as many examples of this kind as one would like; but they would not in themselves
present a great interest, and would only be of importance for illuminating the said
methods. Now if one had in view exclusively this last aim, the examples of an
analytic nature that I have given at suitable points in the last two chapters are
largely sufficient.

I may remark, in finishing, that my work is not a treatise on stability, where the
consideration of problems of mechanics of all kinds would be obligatory. Such .a
treatise would include many questions which are not even touched on here.

I have had in mind solely to expound in this work that which I have arrived at
up to the present moment, and which, perhaps, may serve as a point of departure
for other researches of the same kind.

During the printing of this work, which extended over more than two years,
there have appeared two very interesting works by Poincare, treating questions
related to many of those which I have considered. I refer to his memoir 'Sur Ie
problerne des trois corps et les equations de la dynamique' which appeared in Acta
mathematica, Vol. XIII, a short time after I had begun to arrange the printing of
my work, as well as the first volume to appear of his treatise entitled Les methodes
nouvelles de /a mecanique celeste (Paris, 1892).

In the first are found certain results analogous to those which I have obtained,
which I indicate at suitable points of my work. As for the second, I have not yet
had time to study it in detail; but insofar as the questions which I have considered
are concerned, it does not seem to contain essential additions to the memoir of Acta
mathematica.

I should mention an expression of which I often make use, as do French and
German mathematicians, for brevity, namely this: a series satisfying formally such
and such equations.

This expression has a very vague sense; but I judged it superfluous to enter into
explanations, since there cannot arise any doubt about its meaning in the cases
where I have occasion to use it.

A. LVAPUNOV

Kharkov, 5 April 1892
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Stability of motion: general problem

CHAPTER I. Preliminary analysis

Generalities on the question under study
I. [The problem of stability from a general point of view. Definition of stability]

Let us consider a material system with k degrees of freedom. Let

539

q" q2, ..., qk

be k independent variables by which we agree to define its position.
We shall suppose that we have taken for these variables quantities which remain

real for each position of the system.
In considering these variables as functions of time t, we shall designate their first

derivatives with respect to t as

In each problem of dynamics in which the forces are given in a determinate way,
these functions will satisfy k differential equations of the second order.

Let us suppose as found for these equations a particular solution

q, =f, (t), q2=f2(t), ..., qk =fk(t),

in which the quantities qj are expressed as real functions of t, only giving for the qj'
whatever the value of t, real values.f

To this particular solution will correspond a determinate motion of our system.
In comparing it, in a certain respect, with other possible motions for this system
under the action of the same forces, we shall call it the undisturbed motion, and all
the others with which it is compared will be termed disturbed motions.

In taking to as a given time instant, let us designate the corresponding values of
the quantities qj' qj, in an arbitrary motion, as qjO, qp.

Let

qlO =fl (to) + £" q20 =f2(tO) + £2, ... , qkO =fk(to) + £k>

q'lO =1', (to) +£;, q~o =f~(to) + £;, ..., q'w =f~(to) + o~,

where OJ' oj are real constants.
These constants, which we shall call perturbations, define a disturbed motion.

We shall suppose that we can attribute to them all sufficiently small values.
In speaking of disturbed motions near to an undisturbed motion, we shall

understand by this motions for which the perturbations are sufficiently small in
absolute value.

After these preliminaries, let Q" Q2' ..., Q. be given real and continuous func­
tions of the quantities

t It can happen that for the quantities qj' depending on the way the latter are chosen.
only values between certain limits are real.
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540 A. M. Lyapunov

For the undisturbed motion they will become known functions of t, which we
shall designate by F" F2 , ••• , F; respectively. For a disturbed motion they will be
functions of the quantities

When all the Sj' sj are equal to zero, the quantities

Q,-F" Q2-F2, o.:».
will be zero for each value of t. But if, without making the constants Sj' sj zero, we
suppose them infinitely small, the question arises of knowing whether it is possible
to assign to the quantities Qs - F, infinitely small limits, such that these quantities
never surpass them in absolute value.

The solution of this question, which constitutes the object of our researches,
depends on the character of the undisturbed motion under consideration, as well
as the choice of the functions Q" Q2, ..., Qn and of the time instant to. Thus, this
choice being fixed, the answer to this question will characterize in a certain respect
the undisturbed motion, and it is this answer which will express for it the property
which we call stability, or the opposite property, which will be called instability.

We shall concern ourselves exclusively with cases where the solution of the
question considered does not depend on the choice of the instant to at which the
perturbations are produced. This enables us to adopt here the following definition.

Let L" L2 , ••• , L; be given positive numbers. Iffor all values of these numbers, no
matter how small, we can choose positive numbers

such that, the inequalitiest

ISjl ~ s; lSi I~ Ei (j = I, 2, ..., k),
being satisfied, we have

IQ,-F,I<L" IQ2- F21<L2, IQn-Fnl<Ln,

for all values of t greater than to, the undisturbed motion will be called stable WITH
RESPECT TO THE QUANTITIES Q" Q2, ..., Qn; in the contrary case, it will be
called, with respect to the same quantities, unstable.

Let us cite some examples.
If a particle, attracted to a fixed centre in proportion to the inverse square of the

distance, describes a circular trajectory, its motion, with respect to the radius vector
drawn from the centre of attraction, and equally with respect to its speed, is stable.
The same motion, with respect to the rectangular coordinates of the particle, is
unstable.

If the same particle describes an elliptical trajectory its motion is unstable, not
only with respect to the rectangular coordinates, but also with respect to the radius
vector and the speed. But it is stable, for example, with respect to the quantity'[

p
r - -,----=-----

l+ecosqJ'

t In general, we agree to understand by Ixl the absolute value of the quantity x, or its
modulus when x is complex.

:I: [This quantity equated to zero gives the equation of the ellipse in polar coordinates. p
is the latus rectum of the ellipse.]

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
O
t
t
a
w
a
]
 
A
t
:
 
0
0
:
5
9
 
2
8
 
A
p
r
i
l
 
2
0
1
0



Stability of motion: general problem 541

where p and e are a parameter and the eccentricity of the ellipse described by the
particle in the disturbed motion, and rand r/J are the radius vector of the particle
in the disturbed motion and the angle made by this radius vector with the smallest
radius vector in the undisturbed motion.

When a solid body with one fixed point, and not subjected to any force, rotates
about the greatest or least of the axes of the ellipsoid of inertia relative to this point,
its motion is stable with respect to the angular speed and to the angles made by the
instantaneous axis with fixed axes or with axes attached to the body. In contrast,
when it turns about the mean axis of the ellipsoid of inertia, its motion with respect
to these same quantities is unstable.

It can happen that it is impossible to find limits Ej , Ej satisfying the preceding
definition, when the perturbations are arbitrary, but it is possible to do so as soon
as the perturbations are subject to conditions of the form

f=O or f~ 0

where f is a function of the quantities

becoming zero when all these quantities are assumed equal to zero.
In such cases we shall say that the undisturbed motion is stable for perturba­

tions subject to such and such conditions.
Thus, in the preceding example, the elliptical motion of the particle is stable

with respect to its rectangular coordinates or to any other coordinates, for pertur­
bations satisfying the condition of constancy of total energy or, according to the
terminology of Thomson and Tait, for conservative perturbations.

In this way, for unstable motions, one will be able to speak of conditional
stability.

2. [General form of the differential equations studied for disturbed motion]

The resolution of our question depends on the study of the differential equations
of the disturbed motion or, in other words, on the study of the differential
equations satisfied by the functions

Q,-F,=x" Q2-F2=X2,

The order of the system of these last equations will be, in general, the same, that
is to say 2k; but in certain cases it can be lower.

We shall suppose the number n and the functions Q, to be such that the order
of this system is n and that the system reduces to the normal form:

dx, -X
dt - 1,

dX2dt =X2 ,
dXn =x
dt "'

(I)

and throughout what follows we shall work with these last equations, calling them
the differential equations of the disturbed motion.

All the X, in equations (I) are known functions of the quantities
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becoming zero for

A. M. Lyapunov

x) = X2 = ... = x" = O.
We shall now make some hypotheses regarding these functions, and throughout

what follows we shall treat equations (I) exclusively under these. hypotheses.
We shall allow that the functions Xs are given not only for real values, but also

for complex values of the quantities XI' X 2, ... , X" for which the moduli are suffi­
ciently small, and that, at least for each value of I real and greater than or equal to
10 , these functions may be developed in positive integer powers of the quantities
XI' X 2, ... , X" as absolutely convergent series for all values of the x, satisfying the
conditions

where AI> A 2 , ... , A" are either non-zero constants or functions of I which never
become zero.

In this manner all the Xs will be holomorphic t functions [analytic functions] of
the quantities X), X 2, ... , X", at least for I real and greater than 10 ,

Let

where the summation extends over all the non-negative values of the integers
m), m2 , ... , m; satisfying the condition

m) + m2 + ... +m; > I.

In these developments all the coefficients p,., p~ml.m2' .... mn) are functions of
I, which, in accordance with our hypothesis, must remain finite and, by the
very nature of the problem, real for every real value of t greater than or equal to
10 , We shall suppose, moreover, that for all these values of t these are continuous
functions.

In attributing to t anyone of the said values and in considering, in the
development of X" the ensemble of terms of dimension higher than the first, for all
complex values of the quantities XI' X 2, ... , x, of which the moduli are respectively
equal to A), A 2 , ... , An' let us designate by M, an upper bound for the modulus of
this ensemble. Then we shall have, according to a known theorem [compare
Goursat Cours d'analyse mathematique.Noi. Yt (1905), p. 273],

(2)

t In making use of this expression for brevity in all that follows. we believe it necessary
to state in a precise manner what we understand by the term. In considering a function of
the variables x). X2 • .. .. Xn • we shall call it holomorphic with respect to these variables
whenever it can be presented in the form of a multiple series of order n. ordered according
to positive integer powers of the quantities x., at least for values of these last for which the
moduli do not exceed certain non-zero limits.
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Stability of motion: general problem 543

In general, in what follows we shall consider only real values of t, not less than
to. and if in such and such a case the need arises to consider other values of t, we
shall always say so expressly.

Let us note that if, in the place of time. we take for the independent variable any
real continuous function of time, increasing indefinitely with it. this function will be
able to play the same role as time in questions of stability. For this reason the
independent variable t in equations (I) need not designate time; but. in every case
it will be a function of time satisfying the condition just enunciated.

Let us make further the following remark.
Let a" a2 , ••• , an be the values of the functions XI' X2, ••.• x; for t = to. Then, to

each system of real and sufficiently small] values of the quantities

(3)

there will correspond a system of real values of the quantities

(4)

Moreover, however small a given positive number A, we can always make the
quantities (4) smaller than A by subjecting the quantities (3) to the condition of
being. in absolute value. below a sufficiently small limit E.

We shall now assume that. however small the given positive number E. it will
always be possible to find a positive number A such that to each system of real
values of the quantities (4) which are smaller than A there corresponds one or more
systems of real values of the quantities (3) smaller than E.

Under this condition, the quantities (4) can play the same role in the question
of stability as the quantities (3). provided that the functions x, satisfying equations
(I) are entirely determined by specifying the quantities (4). This last condition.
because of the hypotheses which we shall make later relative to equations (I)
(Section 4), will always be satisfied. This is why in what follows we shall consider
the quantities (4) in place of the quantities (3).

3. [Integration by means of series ordered according to the powers of arbitrary
constants]

For the integration of equations (I) in the problem we are concerned with, there
presents itself naturally the method of successive approximations, based on the
assumption that the initial values (i.e. corresponding to t = to) of the functions
being sought are sufficiently small.

This method. in its simplest form, leads to series which can be obtained in the
following manner.

On putting

x, = x~1) + X~2) + X~3) +... (s = 1,2. ..., n) (5)

and on considering the quantities x\m). x~)• .... x~m), as well as their derivatives with
respect to t, as being of mth order. let us substitute these expressions for the

t In saying that a quantity is small, we shall always suppose that its absolute value is
meant.
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544 A. M. Lyapunov

functions x, in equations (I), and in each of these last let us equate terms of the
same order on the two sides of the equality. In this way we shall obtain the
following systems of differential equations:

(s = I, 2, ..., n), (6)

dx'["_._ =p x(m) +p x(m) + +p x(m) + R(m)dt 51 I 52 2 ... sn n s

(m > I, s = I, 2, ..., n). (7)

The R~m) here are entire rational functions [polynomial functions] of the
quantities x~) with coefficients representing sums of products which are the
functions p~ml' m, • . .. . m.) multiplied by positive integers. Moreover, the R~m) corre­
sponding to a given value of m only depend on the x~) for which Jl < m.

As a consequence, the functions x~m) which we have introduced will be calcula­
ble on giving m successively the values I, 2, 3, ...

The first problem we shall have to concern ourselves with will thus consist of
integrating the system of linear homogeneous equations (6).

On taking account of the continuity admitted for the coefficients Ps., it is not
difficult to show that there will always exist a set of n2 functions, finite and
continuous for all the values of I considered,t this set representing a system of n
independent solutions for the system of equations (6).

This proposition can be proved by forming in effect certain expressions for the
functions x~'), satisfying the equations considered for every value of I greater than
10 , and taking the given values for 1= 10 , Such expressions can be obtained in the
form of series, on considering, for example, the equations which may be deduced
from equations (6) by multiplying the right-hand sides by a parameter e, and
seeking to satisfy these new equations by series ordered according to positive integer
powers of e. If these series are formed under the hypothesis that the values of the
functions sought for I = 10 do not depend on s, they will be absolutely convergent
for all the values considered for I, whateoer the value of e. On putting s = I, we shall
obtain the above-mentioned expressions for the X~l).

Let us suppose, then, that we have succeeded in finding by some means a system
of n independent particular solutions for equations (6).

Let

be the functions of I, representing the function X~l), in these solutions.
Then the general integral of system (6) will be expressed by the equations

(8)

where ai' a2 , ... , an are arbitrary constants.

t In speaking of values of t, weshall always have in mind definite numbers. Thus weshall
never consider infinity as a value of t.
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Stability of motion: general problem 545

After having found the functions x\1), we shall be able to determine the other
x;m) by successive integration of the systems of non-homogeneous linear equations
(7), corresponding to m = 2, 3, ...

Each of these integrations may be effected by means of quadratures. Moreover,
each of them will introduce n arbitrary contants and, to determine the latter, we
shall be able to fix on any hypothesis, provided that the series obtained are
convergent, at least within certain limits.

These constants will be entirely determined if we introduce the condition that all
the x~n) for m > I become zero for t = to.

Let us seek, under this hypothesis, formulae for determining the functions x\m)
when all the x~) for J1 < m are already found.

Let us put

=~.

This determinant will be a function of t, not vanishing for any of the values
considered for t, for, according to a known theorem [see e.g. E. Goursat, E. R.
Hedrick and O. Dunkel Differential Equations, Boston, 1917, pp. 152-154]

J
"
LP.n dt

~=Ce I ,

where C is a constant different from zero.
Let us designate the minor of this determinant, corresponding to the element Xii'

by ~ij'

Then the required formulae may be written thus:

n n I' ~x(ml = l: l: x.. zuR(m) dt
s i=lj=l'SJ loL\ I

(s = I, 2, ..., n). (9)

The functions x;m) defined by these formulae remain finite and continuous for
all the values considered for t.

Relative to the constants a" a2, ..., an these are entire and homogeneous func­
tions [polynomials] of the mth degree.

Moreover, if the chosen system of particular solutions of equations (6) is such
that for t = to all the Xii take real values, the coefficients in these functions remain
real for all the values considered for t.

After having obtained in this way the functions x;m), let us come to the question
of the convergence of the series (5), which will present themselves as ordered
according to positive integer powers of the constants a,.

4. [Study of the convergence of these series in the case where the arbitrary
constants are taken as the initial values of the functions sought]

We have already made some hypotheses relating to the coefficients in the
expansions of the right-hand sides of equations (1). Now we add one more.
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546 A. M. Lyapunov

We shall assume that we can take for the quantities AI' A 2 , ... , An'
M I , M 2 , ... , M; functions of 1 such that for every value of T greater than 10 , 1

varying between the limits 10 and T, there exists for each of the functions As a
non-zero lower bound, and for each of the functions M, an upper bound.

Under this assumption we are going to demonstrate that for all values of 1

between 10 and T, no matter how large the given number T, the preceding series
(considered as ordered according to the powers of the quantities as) will be
absolutely convergent, as long as the moduli of the as do not exceed a certain limit
dependent on T.

We shall prove this, as for other similar theorems which we shall meet later,
with the help of the method commonly used in such cases, which is due to Cauchy.

Let us note at the outset that, 1 being comprised between the limits 10 and T, we
can assign constant upper bounds to the moduli of all the xlj and Iii) Ii, or
equivalently to the moduli of all the

Xi; -I, Xu (i 'jj),

Ii lilj
--.!!.-l (i 'j j).
Ii ' Ii

(10)

( II)

Let K be such an upper bound for the quantities (10), and K' one for the
quantities (II).

If the considered system of particular solutions of equations (6) is defined by the
condition that, for 1 = 10 ,

Xu = I, x ij = 0 (i 'jj),

we can take for K and K' continuous functions of T which become zero for T = 10,
Let us designate, in a general manner, by {u} the result of the replacement, in

an arbitrary function u of the quantities a" a2 , ... , an, of all the terms by their
moduli.

Then, on designating by a the greatest of the quantities las I, we obtain from (8)
and (9) the following inequalities:

{X;'l} < (I + nK)a,

{x;ml} < [ {R;m)} dt + (K + K' + nKK') JI [{Rjml} dl.

These inequalities will hold for every value of I between 10 and T.
We note further that, by the nature of the original expression for Rjm) as a

function of the quantities x;"), Pjm' ..... m. >, on replacing in it these last by upper
bounds for the quantities

we shall have an upper bound for the quantity {R~ml}.

If then we designate by Xl") a common upper bound for quantities

{xl"l}, {xr l } , {x~)}

over the limits considered for I, and by R(m) what each of the functions
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Stability of motion: general problem 547

becomes when we replace in them the x~) by the Xl") and the p~m,.m, .....m.) by upper
bounds plm,.m'.....m.), independent of i, for their absolute values over the same
limits of t, we obtain

{x~m)} < (1 + nK)( I + nK')(T - to)Rlm).

We see from this that we can take

x(\) = (1 + nK)a,

x lm) = (I + nK)( I + nK')(T - to)Rlm) (m = 2, 3, ...).

On the other hand, in conformity with inequalities (2), we can take for the
plm' .....m.) the following expressions:

where M is a common upper bound for all functions M, over the specified limits
for t, and A is a common lower bound for all the functions As over the same limits
for t.

Now if we replace the coefficients p~m, .....m.) by these expressions, the ensembles
of terms of degree higher than the first in the functions Xs become identical with the
expansion of the function]

In consequence, for the choice made for the quantities P'"> .....m. I, the quantity
RIm) will represent the ensemble of terms of the mth dimension relative to the
indices of the quantities XIs) in the expansion of the expression

{(
I 00 )-n n 00 }M I - - L XIs) - I - - LXI.,) .
As~1 As~1

From this it results that, if we consider the equation

x = ( I + nK)a + Ah {( I - ~) -n - I - n 1} ,
where

h = (I + nK)( I + nK') M(T
A-

to) ,

the series

Xli) + Xl21 + X(3) + ...

t [Use is made here of the following identity:

(I + y, + y; + ...)(1+ 12 + y~ + ...)...(1+ Yn + Y~ + ...) = LY1"'Y2"".y~'·

the sum being over all non-negative integer values of m,. m2 • .. . . m•. ]

( 12)
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548 A. M. Lyapunov

will represent the expansion in positive integer powers of a of the root x of this
equation, vanishing for a = O. Hence this series will certainly converge if a is less
than the quantity

representing the smallest of the moduli of all the values of a for which equation (12)
has multiple roots. This series will moreover be convergent even for a = g, for it has
positive coefficients, and on the other hand, for the root in question, when a
approaches g ; there exists a limit.t

Now, because of the very definition of the quantities x 1m). the convergence of the
series considered implies the absolute convergence of the series (5) for all 1 between
10 and T.

We can thus conclude that, for these values of I, the series (5) will be absolutely
convergent if the moduli of the constants as do not exceed the quantity g.

We obtain at the same time an upper bound for the moduli of the sums of these
series, under the conditions

' 0';:; 1 ,;:; T. las I,;:; g (s = 1,2, ..., n). ( 13)

This limit is represented by the value, corresponding to a = g, of the root in
question of equation (12) and, as is easy to convince ourselves. it does not exceed
A.

It results from this last circumstance that if we substitute series (5) in the
functions X" we can represent these functions by series ordered according to
positive integer powers of the quantities a..

We may thus write, under these conditions, the equalities

which by virtue of equations (6) and (7) can be presented in the form

dXI I ) d;>;;!2) dX(3)

X,= d; + d; + d; + ... (s=I,2, ...• n).

Now the series which appear on the right-hand sides are, under the conditions
considered, uniformly convergent for all values of 1 between 10 and T, and as a
consequence they represent the derivatives of the functions defined by the series (5).

Finally then, under conditions (13) the series (5) represent functions which
really do satisfy equations (I).

On the subject of the number g it is to be noted that, for T = 10 , it takes the
value of the quantity

A
I +nK'

t [In this paragraph Lyapunov is using (12), which may be written f(x) = 0, to replace
the inequality f(x) < o. This is justifiable since consideration of the graph of f(x) shows that
f(x) =0 can have two real roots with 0 < x < A, and the smallest of these is greater than a
corresponding x satisfying f(x) < o. Lyapunov then finds a condition for f(x) = 0 to have
such a real root.]
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Stability of motion: general problem 549

for the same T. Now this value, conforming to what we have remarked above, can
be supposed equal to the corresponding value of the quantity A, if the system that
we have chosen of particular solutions to equations (6) is such that, for t = to,

x; = I, x ij = 0 (i 'jj).

Under this last hypothesis the constants a, are the values of the functions X s for
t = to' [Use (8) and recall that x~m)(to) = 0 (m> I).]

We can therefore affirm that, Ao being the smallest of the values taken by the
functions As for t = to, and the as representing arbitrary given numbers of which the
absolute values are below Ao' we can find a limit T greater than to, such that the
functions X" satisfying equations (I) and taking the values a, for t = to, are
susceptible of being represented by absolutely convergent series ordered according
to increasing powers of the a" for every value of t between to and T.

Remark

One can certainly obtain, for representing the functions X s over the same limits
of variation of t, an infinity of other absolutely convergent series, ordered according
to positive integer powers of arbitrary constants.

All the series of this kind can be deduced from the preceding ones by means of
substitutions of the form

as = f,(!Y." !Y.2 , ... , !Y.,,) (s = 1,2, ..., n), ( 14)

the Is being holomorphic functions of the quantities !Y.. that one may adopt as new
arbitrary constants.

In considering such series, let us take it that all the functions Is become zero for
!Y.) = !Y. 2 = ... =!Y.n = 0, but that the functional determinant [Jacobian] of these func­
tions with respect to the quantities !Y.. does not then become zero.

Then, if we take, in the series in question, the ensembles of terms of degree not
greater than the mth relative to the constants !Y.., these ensembles will represent
what we shall call the expressions for the functions x, at the mth approximation.

It is known that, under the hypotheses made relative to the functions Is, we can
always satisfy equations (14), on taking for the !Y.. certain holomorphic functions of
the quantities an vanishing for a, = 0.2 = ...= an = 0, and that, the quantities
\!Y.. I, las Ibeing subject to the condition of not exceeding sufficiently small limits, this
solution will be the only one possible.

By consequence, the different mth approximations furnished by the various
series of the kind considered, being expressed in terms of the constants a" will be
developable in series ordered according to positive integer powers of the a" and
these series will only differ from one another in the terms of degree higher than the
mth.

5. [Two principal hypotheses under which the question will be studied. Steady
motion and periodic motion. Two classes of method in the study of stability]

From the general point of view with which we have considered the problem up
to now, we have had in mind only to establish that there always exist, at least for
t not going outside certain limits, functions satisfying equations (I) and taking at a
given instant given sufficiently small values, and that the method of successive

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
O
t
t
a
w
a
]
 
A
t
:
 
0
0
:
5
9
 
2
8
 
A
p
r
i
l
 
2
0
1
0



550 A. M. Lyapunoo

approximations yields series which, under certain conditions, can serve to determine
these functions. But, as we move on to procedures for the resolution of questions
of stability, we shall be obliged to abandon this point of view, limiting ourselves in
our study to more precise hypotheses relating to the differential equations of the
disturbed motion. .

We shall consider principally the following two cases:

(I) when all the coefficients P,o, p~ml . .... mn) are constant quantities, and

(2) when these are periodic functions of t with one and the same real period.

The first case could be considered as a special case of the second. We prefer
however to examine it separately, for a number of reasons.

In the first case, following the example of Routh, we shall call the undisturbed
motion (for the quantities with respect to which the stability is studied) steady; in
the second case, we shall call it periodic.

In considering these two cases we shall see that, for our problem, the study of
the first approximation will be of great importance.

We shall show under what conditions this study suffices to resolve completely
the question of stability, and under what conditions it becomes, in general,
insufficient. At the same time we shall give methods to resolve the question in
certain cases in this last category.

But, before passing to the detailed examination of the question, we shall pause
to consider some general propositions which will serve as points of departure for
our researches.

All the procedures that we can indicate for resolving the question which
concerns us can be divided into two categories.

In one, we shall gather together all those which reduce to the direct study of the
disturbed motion, and which, as a result, depend on the search for general or
particular solutions of the relevant differential equations.

We shall have, in general, to seek these solutions in the form of infinite series,
of which the simplest type is furnished by the series considered in the preceding
section. These are series ordered according to the positive integer powers of arbitrary
constants. But we shall also meet in what follows certain series of another nature.

The collection of all the procedures for the study of stability, belonging to this
category, will be called the first method.

In the other category, we shall collect every kind of procedure which is
independent of the search for solutions of the differential equations of the disturbed
motion.

Such is, for example, the known procedure for the examination of stability of
equilibrium in the case where there exists a force-function [potential energy
function times ( - I)].

These procedures can reduce to the search for and study of integrals of
equations ( I), and in general all those which we shall meet in what follows will be
based on the search for functions of the variables X,, X 2, ... , x.; t, for which the total
derivative with respect to t, formed under the hypothesis that x,, X2' ... , x; are
functions of t satisfying equations ( I), has to satisfy such and such given conditions.

The collection of all the procedures in this category will be called the second
method.

The principles of the latter, expressed in some general theorems, will be
expounded at the end of this chapter. For the present we shall give some attention
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Stability of motion: general problem 551

to the application of the first method to a rather general case of the differential
equations of the disturbed motion, which embraces the case of steady motion as
well as that of periodic motion.

This is the case where we can assume that for t ~ to there exist for the functions
As a non-zero lower bound A and for the functions M, an upper bound M, and
where we can assign, for the same values of t, an upper bound for the absolute
values of all the coefficients Ps.'

We shall begin with the study of the linear differential equations corresponding
to the first approximation.

On certain systems of linear differential equations

6. [Characteristic numbers offunctions]

Let us agree to begin with on some expressions, and let us demonstrate some
auxiliary propositions.

We are going to consider functions of a real variable t, taking completely
determined values for every value of t which is greater than or equal to a certain
limit to. Moreover, we shall only consider functions of which the moduli have upper
bounds, as long as t is subjected to remaining in the interval (to, T), T being an
arbitrary number greater than to'

If the modulus of such a function admits an upper bound under the sole
condition t > to, we shall say that it is a bounded function. If, on the contrary, for
a suitable choice of values of t greater than to, the modulus of the function
considered can become greater than any given number, however great it may be,
this function will be called unbounded. Finally, every bounded function which tends
to zero when t increases indefinitely will be said to be a vanishing function.

When we have to consider at the same time as the function x the function I [x,
we shall assume that, T being any number greater than to, the greatest lower bound
of the function x in the interval (to, T) is different from zero.

With these definitions, we have the following propositions.

LEMMA I. If x is a bounded function of t, xe:" will be a vanishing function,
whatever the positive constant ,t.

This lemma follows immediately from the preceding definitions.

LEMMA II. If x is not a vanishing function of t, xe! will be an unbounded function,
whatever the positive constant A.

In fact, if x is not a vanishing function, we can always find a positive constant
a such that, for a suitable choice of values of t greater than a limit T given
arbitrarily, however great this may be, the modulus of the function x can be made
greater than a. Thus, in considering only values of t chosen in this way, we shall
have

The lemma is proved by this, since the right-hand side of the inequality can be
made as great as we wish on choosing T sufficiently great.
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552 A. M. Lyapunov

LEMMA III. On taking x as a function of t, and AI and A' as real constants, let us
assume that the function z = xe" is vanishingfor A= A» and is unboundedfor A= A'.
Then we canfind a real number AO such that the function z for A = A.o + E is unbounded
or vanishing according as E is a positive or a negative constant, and this will hold no
matter how small E may be.

In fact it results from the preceding lemmas that, if there exists a constant value
of A for which the function z is bounded and non-vanishing, this value will be the
value 'sought.

In the contrary case, on inserting between the numbers AI and A' a series of
intermediate numbers and on passing successively in this series from the smallest to
the largest, starting from AI (for AI is necessarily less than A') we shall, to begin
with, meet only numbers for which the function z is vanishing, and then only
numbers for which it is unbounded.

Consequently, in the last case we can always obtain, by successive insertions of
intermediate numbers according to some law chosen in a suitable way, two infinite
series of numbers: non-decreasing

and non-increasing

A', ),", A"', ...

such that every number of the first series is less than every number of the second
series, that the difference

A (n) - An

can be made as small as we wish by choosing n sufficiently large, and that, for every
value of n, the function

is vanishing and the function

is unbounded.
These two series define a number Ao, not less than any of the numbers of the

first series and not greater than any of the numbers of the second series, which will
be the required number.

We shall call the number Ao the characteristic number of the function x. [Thus
the characteristic number of a function xU) is a measure of the rate of exponential
decay of x(t) for large t.]

Remark
The function x, for which the product xe" is a vanishing function for every

value of A or unbounded for every value of A, does not have a characteristic
number. But we can agree to say that in the first case the characteristic number is
+ 00, and in the second case - 00. With this convention, every function will have
a characteristic number, finite or infinite.

Let us cite some examples.
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Stability of motion: general problem 553

For every constant different from zero the characteristic number is zero, and for
zero it is + 00.

For the function t'" (m constant) the characteristic number equals O.

For the function e'COS(I/') the characteristic number equals -I.

For the function e-'COS(I/') the characteristic number equals + I.

For the function e ±ts;n' the characteristic number equals -I.

For the function ere,in r the characteristic number equals -e.

For the function e-re,io, the characteristic number equals +~.
e

For the function t' the characteristic number equals - 00.

For the function t :' the characteristic number equals + 00.

[Thus, taking the last function, we have

1-1 =e-(Iogt)l

In the exponent here t is multiplied by ( -log t), which approaches - 00 when t
increases. Hence the characteristic number is + 00.]

Remark
In general, if f(t) is a real function and A is a real constant, such that we can

make as small as we like the quantity

IA - f(t) 1

by suitable choice of the values of t greater than a given arbitrary limit, and if,
further, for every positive constant 8 no matter how small it may be, we can find a
limit T such that we have

A-f(t) <8

t being greater than T, then Awill be the characteristic number of the function

e -'[(f).

We shall confine ourselves, in the propositions which follow, to cases where the
characteristic numbers are finite. But Lemmas IV, V and Vl l] will also be true in
all the cases of infinite characteristic numbers where they retain a definite meaning.

LEMMA IV. The characteristic number of the sum of two functions is equal to the
least of the characteristic numbers of the functions when these numbers are different,
and is not less than these numbers when they are equal.

Thus, let AI and )'2 be the characteristic numbers of the functions XI and X2' and
let AI <;; Az·

The functions
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554 A. M. Lyapunov

will then be vanishing for every negative value of E. The same will then hold for
their sum. On the other hand, if we have AI < A2, and if Eis subject to the inequality

o< E< A2 - AI

the first of these functions will be unbounded, the second vanishing; hence their sum
will be unbounded. Now the latter will thus be unbounded for every positive value
of E.

As a consequence the characteristic number of the function XI + X 2, never being
less than AI' becomes equal to AI if AI < A2'

Remark

When the component functions having equal characteristic numbers are such that
their ratio is a purely imaginary quantity, or, in general, a complex quantity with
a constant argument differing from an odd multiple of n, the characteristic number
of the sum is always equal to the characteristic number of the component functions.

LEMMA V. The characteristic number of the product of two functions is not less
than the sum of their characteristic numbers.

In fact, if AI and A2 are the characteristic numbers of the functions XI and X 2, the
function

is vanishing for every negative value of E.

That the characteristic number of the product can be greater than the sum of the
characteristic numbers of the factors appears clearly enough from the examples
cited above. [E.g. the characteristic numbers of e,,;n t and e -cr sin t are both -I, but
the characteristic number of their product is 0, not - 2.)

COROLLARY. The sum of the characteristic numbers of the functions X and Ilx is
not greater than zero.

LEMMA VI. If
x =e-t(f+icp),

where i = p, f and cp being real functions of t, for the sum of the characteristic
numbers of the functions X and I IX to be equal to zero, it is necessary and sufficient
that the function f should have a limit when t increases indefinitely.

Indeed, if with t increasing indefinitely the function f tends to a number A, the
latter will obviously represent the characteristic number of the function x, and -).
will be the characteristic number of the function I[x. The indicated condition is thus
sufficient.

As for the necessity of the same condition, it results from this: that if Aand - A
are the characteristic numbers of the functions X and IIx, the two functions
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Stability of motion: general problem 555

z =xy,

will be vanishing for every given positive value of e, however small it may be; and
this last condition is possible only if we have

IA -fl < e

for all values of t greater than a sufficiently large limit.

LEMMA VII. If the sum of the characteristic numbers of the functions x and l/x is
equal to zero, the characteristic number of the product z of the function x and an
arbitrary function y is equal to the sum of the characteristic numbers of these latter.

Thus, let A, u, S be the characteristic numbers of the functions x, y, Z, and let us
suppose that the characteristic number of the function llx is equal to -.A..

Then, on applying Lemma V to each of the two inequalities

1
y =Z-,

x

we shall have

whence

S = A + u.

Let x be an integrable function of t.
Designating by t, a given number not less than to, let us consider the integral

u = 11 xdt
I,

if the characteristic number of the function x is negative or equal to zero, and the
integral

u = I'" x dt

if this characteristic number is positive.
Then we shall demonstrate the following proposition.

LEMMA VIII. The characteristic number of an integral is not less than the charac­
teristic number of the function to be integrated.

Let A be the characteristic number of the function x. The function

will then be vanishing, and consequently bounded, whenever tT is a posiuve
constant. Let us designate by M an upper bound for its modulus for t ~ to.

If A> 0, we have, on assuming that tT < A,

I'" Mlul<M e-U-,)ldt=--e- O - , )' ,
, A -/1
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from which there results that

A. M. Lyapunov

ue(A.-t)t

is a vanishing function for every value of e greater than Y/. Now, we may suppose
that Y/ is as small as we like. By consequence, the preceding function is vanishing for
every positive value of e.

If A :0;;; 0, we have

I, M
lu I< M e -I' - "" dt = ---=-I e -(1- "I' + const.,

" Y/

from which it results that

ue().-E)l

is a vanishing function for every value of e greater than Y/, and hence for every
positive value of e.

In what follows, we shall have to consider setst [vectors] composed of several
functions, and we shall then use the expression characteristic number of a set, on
naming thus the least of the characteristic numbers of the functions comprising'the
set.

7. [Characteristic numbers of solutions of linear differential equations]

Let us consider the system of linear differential equations

dx,
dt =PslX, + Ps2 X 2 + ... + PsnXn (s = 1,2, ..., n), (15)

assuming that all the coefficients Ps. are given in a determinate way at least for all
values of t not less than a certain limit to, and that they represent continuous, real
and bounded functions of t.

In speaking of a solution of this system of equations, we understand that it
means a set [vector] of n functions

simultaneously satisfying these equations (and, as a consequence, finite and contin­
uous) for each value of t not less than to' Such sets of functions, as has already been
remarked above, can always be found. Moreover, we can obtain n sets such that a
system of n independent solutions can be deduced from them.

THEOREM I. Every solution of the system of differential equations (15), other than
the obvious solution

has a finite characteristic number.

t [Here and elsewhere the Russian and French words for 'group' have been translated as
'set', to avoid confusion arising from the algebraical meaning of 'group"]
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Stability of motion: general problem 557

Only speaking of solutions where the functions x, are not all identically zero, let
us first consider real solutions, i.e. such that all the x, are real functions of t.

Taking A. as a real constant, let us put

z, = x.e" (s = 1,2, ..., n).

Then equations (15) are transformed into the following:

from which we deduce

(16)

I d n n

2" dt S~I z; = S~I (Pss + A.)z~ + L: (Psa + Pas)zsza'

supposing that the second summation on the right-hand side extends over all
possible combinations of different numbers sand (1 taken from the sequence
1,2, ..., n.

The right-hand side of this equality is a quadratic form in the quantities
ZI, Z2' ... , Zn' in which the coefficients depend on Aand t.

Now, the functions Pas being bounded, it is clear that we can always find values
of A. such that this form is positive-definite for all the considered values of t, while
remaining moreover greater than the form

iN(d+d+ ... +z~) ( 17)

N being a positive number chosen arbitrarily. Similarly, it is obvious that we can
also find values of A. such that, for the above-mentioned values of t, this form is
negative, while remaining always in absolute value greater than form (17).

For each value of A. of the first kind, we shall have the inequality

d"2 "2dt L... z s > N L... Z S'

from which, on designating by C a positive constant, we obtain [by separating the
variables and integrating both sides of the resulting inequality]

for every value of t greater than a certain limit.
For values of Aof the second kind, we shall have

d"2 "2dt L... Z, < - N L... Z S'

whence (if C, as before, represents a positive constant)

also holding for every value of t greater than a certain limit.

Thus, in the first case, the quantity L: z; will increase indefinitely with t; in the

second, it will tend towards zero.
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558 A. M. Lyapuno»

In this manner we see that there will always be values of Asuch that, in the set
of functions (16), some will be found unbounded, and that, on the other hand,
there will be values of Asuch that all these functions are vanishing.

From this we conclude that, in every real solution

( 18)

other than the obvious solution x, = X 2 = ... = x; = 0, we shall always find functions
with finite characteristic numbers, but that we shall never find any with the
characteristic number - OCJ. Hence, the characteristic number of the set of functions
(18) is always finite.

Next, to extend the theorem to the case of complex solutions, it suffices to note
that such a solution

x,=u,+pv" X 2=U2+P V2, ..., xn=un+PVn (19)
of the system of equations (15) will be formed of two real solutions

U1, u2' , UtI'}

VI, Vl' , Un
(20)

of the same system, and that, according to Lemma IV and the Remark made on its
subject, the characteristic number of the set of functions (\ 9) will be equal to the
characteristic number of the set of functions (20).

Remark

We have assumed that all the coefficients P.,. in equations (\ 5) are real. But,
having proved the theorem under this hypothesis, it is obviously easy to extend it
to the case of complex coefficients, provided that these are continuous and bounded
functions of t. This is why the propositions which we shall demonstrate later,
relating to equations (15), will be true also in the case of complex coefficients.

For equations (15) let there be found k solutions

X'I,X21' , xn,,}
XI2, X22, , xn2 ,

X 1k, X 2k, , Xnko

On putting

(21)

x, = Clx" + C 2Xs2 + ... + CkXsk (s = I, 2, ..., n),

where C I , C2 , ... , Ck are constants, of which none is zero, we shall say that the
solution

is a linear combination of solutions (21).
From Lemma IV it results that the characteristic number of a solution repre­

senting a linear combination of several solutions is not less than the characteristic
number of the system of combined solutions (that is to say, not less than the
characteristic number of the set of functions comprising the system of solutions),
and that it is equal to this number when the characteristic numbers of all the
solutions in the combination are different,
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Stability of motionigeneral problem 559

We conclude from this that, if we have several solutions of which the character­
istic numbers are distinct, these solutions will be independent. Thus [bearing in
mind that system (15) has just n linearly independent solutions], we have the
following proposition.

THEOREM II. The system of equations (15) cannot have more than n solutions,
other than the obvious solution

XI = X 2 = ... = X n = 0,

for which the characteristic numbers are all distinct.

In what follows, without saying explicitly that the solution where all the x, are
zero must be excluded, this will always be understood.

8. [Normal systems of solutions]
Suppose that for the system of equations (15) we have found a system of n

independent [vector] solutions. In forming with these solutions all possible linear
combinations, we can deduce from them every other complete system of indepen­
dent solutions.

Let us suppose that every system of n independent solutions found is trans­
formed into another according to the following rule: every time that there can
be formed with solutions of this [first] system a linear combination, of which
the characteristic number is greater than the characteristic number of the set of
[the linear combination's] component] solutions, one of the latter, and specifically
one of those for which the characteristic numbers are equal to the characteristic
number of the set, is replaced, in the [second] system considered, by this linear
combination.

As the number of different characteristic numbers that the solutions of the
system of equations (15) can possess is limited, we shall arrive, on operating in this
way, at a system of n solutions such that every linear combination of the solutions of
which it is composed will have a characteristic number equal to the characteristic
number of the set of [the linear combination's] component solutions.

We shall call such a system of n solutions (which will evidently be independent)
a normal system.

The coefficientsPso in equations (15) being supposed real, we can find for these
equations a system of n independent real solutions. Starting from such a system and
only using, in the formation of linear combinations, real coefficients, we shall be
able to obtain a system of n solutions satisfying the preceding condition for all
linear combinations with real coefficients. But then this system will satisfy this
condition equally for linear combinations with complex coefficients (Lemma IV,
Remark). This system will consequently be a normal system.

By virtue of this remark, we may assume if need arises that all the functions
entering into the composition of a normal system are real.

t [By the components of a linear combination are meant, not the scalarelements of this
vector, but rather the terms which are linearly combined.]
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560 A. M. Lyapunov

From the definition of a normal system it results that. if we can find a system
of n solutions for which the characteristic numbers are all different. this system is
a normal system.

From the same definition there follows the next proposition.

THEOREM l. Suppose found a system of n independent solutions

XII' X 2 1' .• " xn l ,

Consider a new system

on putting

ZII. Z21 . ...,znl.}
Z12' Z22' .. " Zn2'

Zln' Zln, ... , Znn,

(22)

Zsk = X sk + IXktXs.k+1 + Cik1 X s,k + 2 + ... + (X,k,n_kXsn,

and on taking for O(kl. O(k2 • . . . • O(k,n-k constants. such that the characteristic number of
the solution

where

x, = Xsk + PI Xs,k+ I + P2Xs,k + 2 + '" + Pn-kXsn.

P,. P2. "'. Pn-k being arbitrary constants. is not greater than the characteristic
number of the solution

Then the system of solutions (22) is normal,t

To prove this, we note that if system (22) were not a normal system we could
find among its solutions a set of solutions possessing a common characteristic
number A. and such that we could deduce from it linear combinations with
characteristic number greater than A, Now, by the very definition of the quantities
Zsko there obviously do not exist such solutions in system (22),

Let k be the number of all the distinct characteristic numbers which can belong
to solutions of equations (15), and let

AI. A,2. "', Ak

be these numbers,

t [This theorem is to the following effect. In testing a set of solutions for normality. we
may test each solution successively. and in forming a test linear combination we may omit
from its component solutions any previously tested solution.]
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Stability of motion: general problem 561

Let us designate by n, the number of solutions with the characteristic number As
in an arbitrary system of n independent solutions. Some of the numbers ns can be
zero. But they will be in every case such that

Assuming that

A, < A2 < ... < Ak>

let us further designate by N, the exact upper limit of the number of independent
solutions with the characteristic number As. We shall evidently have

N, > N2> ...> Nk,

N, = n, n, + ns +' + ... + Ilk .;;; N, (s = 1,2, ..., k).

With these definitions we have the following propositions.

THEOREM II. For every normal system of solutions

In fact, each solution is a linear combination of certain solutions of the normal
system. Also, according to the property of this system, to deduce from it a solution
possessing a characteristic number As> we have to consider linear combinations of
solutions for which the characteristic numbers are not less than As. Therefore the
number of independent solutions with the characteristic number As cannot be
greater than the quantity

corresponding to a normal system. Then, for the latter,

which yields the theorem.

THEOREM III. The sum

S = II, A, + n2A2 + ... + nkAk

of the characteristic numbers of all the solutions constituting a system of n indepen­
dent solutions attains its upper limit for a normal system.

Thus, on putting

we have [substituting n, = n - N;, n2 = N; - N), ... , in Sj

S = nA, + N;(A2 - A,) + N)(A3 - A2) + ... + N,,(Ak - Ak_ ,).

Now we have just seen that, for a normal system, each of the numbers N:
attains its upper limit Ns • Thus, on noting that in the expression for S the
coefficients of the numbers N;, N), ... , N" are all positive, we conclude that S
attains its maximum for a normal system.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
O
t
t
a
w
a
]
 
A
t
:
 
0
0
:
5
9
 
2
8
 
A
p
r
i
l
 
2
0
1
0



562 A. M. Lyapunov

THEOREM IV. Each system of n independent solutions, for which the sum of the
characteristic numbers of all the solutions which compose it attains its upper limit, is
a normal system.

This theorem results from the very definition of a normal system, for, if it were
possible to form with the solutions of the system considered a linear combination
with characteristic number greater than the characteristic number of the set of
component solutions, we could find a system of n independent solutions for which
the sum of all the characteristic numbers would be greater than that of the system
considered.

THEOREM V. The sum of the characteristic numbers of independent solutions of the
system of equations (15) in no case exceeds the characteristic number of the function

f r. p" dl
e s .. I .

In fact, if L\ is the determinant formed with n independent solutions, we have
[compare the equation before (9)]

fLP.,., dt

e = C L\,

where C is a constant, and, by virtue of Lemmas IV and V, the characteristic
number of L\ is not less thant

COROLLARY. Each system of n independent solutions for which the sum of the
characteristic numbers of all the solutions is equal to the characteristic number of the
function

fLPss dt

e

is a normal system.

[This corollary follows from theorems IV and V.]
It must nevertheless be noted that it is not always possible to obtain a system of

n independent solutions such that this equality holds.
Thus, if we have the system of equations

dXI I .--;j( = X, cos og t + X2 sin log t,

dX2 • I--;j( = x, sm og t + X 2 cos log t,

t [The determinant is a sum of products, in each of which the factors can be split into sets
such that the sth set consists of n, factors with characteristic numbers not less than A,.)
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Stability of motion: general problem

we shall get, on suitably determining the arbitrary constant,

IL P.... dt
e = e1(sin log t +C05 log I),

563

which represents a function for which the characteristic number is -fl. Now, our
equations admit the following system of solutions:

X,

e' sin log ',

etcoslost,

X2
e' sin log t,

_e,coslog "

and it is easy to convince ourselves that this system is normal. However, the sum
of the characteristic numbers which corresponds to it (and which is equal to - 2)
is less than the preceding number.

9. [Regular and irregular systems of equations]

We know (Lemma V, corollary) that the sum of the characteristic numbers of
the functions

ILP.", dt - ILP" dl

e and e

is never greater than zero.
Therefore, if /l is the characteristic number of the second of these functions,

the sum S of the characteristic numbers of the solutions of a normal system cannot
exceed the number - u, Moreover, the equality S = - /l is possible only if the sum
of the characteristic numbers of the two functions under consideration is zero.t

This equality

S+/l=O

for equations with constant or periodic coefficients, does actually hold. But it can
also hold in many other cases.

In general, if we have S + /l = 0, the system of linear differential equations will
be said to be regular. In the contrary case, it will be called irregular.

Thus, for example, the system of equationsj

dXI . b--;Jt ,= X, cos at + X 2 sin t,

dX2 . b--;Jt = XI sm t + X 2 cos at

is regular, whatever the real constants a and b.
At the end of the previous section there was cited an example of an irregular

system of equations.

t [If P is the characteristic number of the first function, we have with use of Theorem V
that S ~ P~ - /l. Hence S = - /l only if P+ /l = 0.]

t [Two solutions of this system are (for a ~ 0, b ~ 0) X, = -X2 = e(,;n atl!a + ('o'htl!h and
XI = X2 = e(sinat)/a-(cosbl)/b.]
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564 A. M. Lyapunov

To give an example of a more general character, let us consider the following
system:

dx,
""dt = PII XI>

dX2
""dt =P2'X, + P22 X2,

(23)

in which the equation for dx,/ dt does not contain the functions Xs' for s' > s.
Concerning systems of equations with this form, we can establish the following

proposition.

THEOREM. For the system of equations (23) to be regular, it is necessary and
sufficient that the sum of the characteristic numbers of the functions

fPS'f dt - fp,u dt

e and e

should be equal to zero for every value of s.

First let us show that this condition is necessary.
We have, for equations (23), the following system of n independent solutions:

_ fPI' dt _ . fP'f'f dt fS - 1 - fp.u dt

(I) x,-e , xs-e LPSixie dt (s=2,3, ...,n),
t -= I

fP22 d1 _ Jp.udtfs-t -JP.u dl

(2) XI = 0, X2 = e ,x, - e L Psixie dt (s = 3, 4, ..., n),
;=2

(n) X,=X2= ... =Xn _ I=0,

Jp""dt
x" =e .

To fix ideas, we shall suppose that all the integrals

fPii dt,

which appear in exponents become zero for t = to. As for the other integrals, we
suppose them to be such that, in the kth solution, the functions

reduce, for t = to, to given constants

Then if
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Stability of motion: general problem 565

is the kth solution of the system considered under the hypothesis that all the IX are
equal to zero, for the kth solution with the ex arbitrary it will become

From this, in view of Theorem I of the previous section, we conclude that for
a suitable choice of the constants ex the considered system of solutions will be
normal.

Assuming these constants to be chosen in this manner, let us designate the
respective characteristic numbers of the considered solutions by

Let us further designate

fpov.• dt }
the characteristic number of the function e' by AS'

_ }" dt (s = I, 2, ... , n),

the characteristic number of the function e by A;,

fLP,., d,
the characteristic number of the function e by S,

-fLP.u d,
the characteristic number of the function e by S'.

We obviously have [because inspection of the sth solution shows that one of its
scalar elements has characteristic number A'sl

Ils ,::; As (s = 1,2, ..., n).

Thus, if we assume that system (23) is regular, which brings in the equality

and if we note that because of Lemma V the sum L As cannot be greater than S, we

must have

Now, under the same assumption, we have

S +S'=O.

Hence, on referring to Lemma VII, we conclude that the characteristic number
of the function

ILPn dt - fPkk dt

e e

is equal to S + Ak. We therefore get (Lemma V)
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566 A. M. Lyapunov

and from this. by virtue of the above-mentioned equality. there results

Ak + AI, ~ O.

Now the sum Ak + AI, cannot be positive [Lemma V. Corollary]. We must
therefore have

which shows the necessity of the condition in the theorem.
To prove that this condition is sufficient. we shall consider another determina­

tion of the integrals. assuming that every integral of the form

f
s -

'
- fp,.,. dt

i~1 psixje dt,

where the characteristic number of the function to be integrated is positive. tends to
zero as t increases indefinitely. Then, in the considered system of solutions, every
integral of this form will possess a characteristic number not less than the
characteristic number of the function to be integrated (Lemma VIII).

Hence. if we assume that

As + A~ = 0 (s = I. 2•...• n).

and if. in considering the kth solution (in which XI> X 2 • •••• X k_ 1 are equal to zero).
we note that the function X k has for a characteristic number the value Ak. we easily
reach the conclusion] that the characteristic numbers of all the other functions
which constitute this solution will be not less than Ak •

It follows from this that Ak is the characteristic number of the kth solution.
Now we have. in any case [using Lemma V and its corollary]

and. as a consequence of what we have assumed,

[Hence the above inequality chain becomes an equality chain.]
We therefore obtain the equality

LAs + S' = o.

and we conclude: (I) that the system of equations (23) is regular, and (2) that the
system of solutions found is normal. [See the corollary to Theorem V.]

t [An inductive proof can be constructed, on applying Lemmas IV. V. VIII and recalling
that the Pi} were assumed bounded in Section 7.]
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Stability of motion: general problem 567

Remark

Because of Lemma VI, the condition expressed in the theorem is equivalent to
the following: each of the functions

I It- Pss dt (s = 1,2, ..., n)
t to

(and if the coefficients Pss are complex quantities, the real parts of these functions)
must tend towards a finite limit when t increases indefinitely.

10. [Reducible systems of equations]

Let A" A2 , ••• , Ak be all the distinct characteristic numbers of the solutions of
equations (15), and let n, be the number of solutions possessing the characteristic
number As in a normal system. We agree to say that the system of these equations
possesses

n l characteristic numbers equal to A"

n2 characteristic numbers equal to A2 ,

nk characteristic numbers equal to Ak •

In this way, to each system of n linear differential equations of the nature under
consideration will correspond a set of n characteristic numbers, among which some
can be equal.

Let us suppose that equations (15) are transformed by means of a linear
substitution

Zs = qslx, + qs2x2 + ... + qsnxn (s = 1,2, ..., n),

possessing the following properties: (I) all the coefficients qsa are continuous and
bounded functions of t; (2) their first derivatives are functions of the same
character; (3) the reciprocal of the determinant formed by means of these co­
efficients is a bounded function of t.

After such a transformation, the coefficients in the transformed equations will
enjoy the same fundamental properties as in the original equations.

It is easy to prove that the set ofcharacteristic numbers of the transformed system
of equations will always be identical with the set of characteristic numbers of the
original system.

In fact, by the nature of the substitution considered, not only its coefficients but
also the coefficients of the inverse substitution are bounded functions of t. Conse­
quently, if, on starting from an arbitrary solution of one system of equations, we
deduce from it a solution of the other, these two solutions will have the same
characteristic number. From this (because of the very notion of a normal system of
solutions) it results that each number which repeats a certain number of times in the
set of characteristic numbers of the one system, will necessarily repeat the same
number of times in the set of characteristic numbers of the other.t

t [For clarification of this proof, and for proofs of further regularity properties men­
tioned in this section, seeJ. G. Malkin, Theorie der Stabi/itiit einer Bewegung, Munich, 1959,
pp. 290-293. For an English version of the Russian original of Malkin's book see United
States Atomic Energy Commission Translation AEC-tr-3352.]
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568 A. M. Lyapunov

In this way, the characteristic numbers of a system of linear differential
equations possess, in relation to the transformations considered, the properties of
invariants. Also, the same properties belong to the characteristic numbers of the
functions

J~P." dt - J~P.u dt

e and e .

It follows that the transformed system of equations will always be of the same
class (i.e. regular or irregular) as the original system.

The system of equations under consideration can be such that, by a suitable
choice of transformations having the character considered, we can transform it into
a system with constant coefficients.

In this case we shall call it a reducible system of equations.
From what we have just noted, it results that only regular systems of equations

can be reducible.
We shall see later (Chapter III [Section 47]) that every system of equations in

which the coefficients are periodic functions of t with the same real period is a
reducible system.

Let us consider an arbitrary system of equations.
Let AI, A2' ..., An be all the characteristic numbers (among which some can be

equal) and let

be a normal system of solutions, in which the jth solution has Aj for a characteristic
number.

On designating by t1 the determinant formed with the functions xij' Jet us
assume that all the functions

xjje'jt U,j = 1,2, ..., n)

are bounded.
We can demonstrate that under this condition the considered system of equa­

tions is reducible.
Thus, on designating the minor of the determinant t1 corresponding to the

element xij by t1jj , we conclude from the preceding conditions that the functions

iiI) -A"' ..
~e' (1,1 = 1,2, ...,n)

are bounded. [To show this, start by expressing the minor as a sum of signed
products of its elements.] It will also be the same for their first derivatives with
respect to t, for we know [see e.g. Malkin lac. cit. p. 295] that the functions

t1lj t12j t1nj

6'6""'6
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Stability of motion: general problem 569

for each value of j, satisfy a system of linear differential equations adjoint with
respect to the considered system.

Consequently, the substitution

Ais ' Az.,-, Ans '
z, =~ e-'·"x, +~ e-'·"x2 + ... +~ er»:»;

(s=I,2, ...,n)

possesses all the properties of the substitutions considered, and on applying it we
shall transform the system under consideration into the system of equations

dz, ,
dt + II.s Zs = 0 (s = 1,2, ..., n)

with constant coefficients. [In the above expression for z, substitute Xi = Xis

(i = 1,2, ..., n). This will give z, = e :':', differentiation of which yields the differen­
tial equations just stated.]

On a general case of the differential equations of disturbed motion
II. [A new type of series ordered according to the powers of the arbitrary constants]

Let us now go back to equations (I).
In only considering, as before, real values of t not less than a certain limit to, we

shall suppose that all the coefficients p~ml' m' ..... m.) are real, continuous and
bounded functions of t. We shall further assume that we can find positive constants
M and A such that the inequalities

are satisfied for all the considered values of t.
Let us assume that the system of linear differential equations corresponding to

the first approximation is regular [as defined in Section 9], and let us designate by

the characteristic numbers of this system.
We are going to show that, on choosing from these numbers any k of them

(24)

we can formally satisfy equations (I) by series containing k arbitrary constants

and having the following form:
k

- L miA;1

x, = L L~ml,m2 •...• mk)o:i'o:i2...cxkke ;=1

(s = 1,2, ..., n), (25)

where L~m,. m'..... mkl are continuous functions of t and are independent of (l;i, for
which the characteristic numbers are positive or zero, and where the summation
extends over all non-negative integer values of the numbers m" m-, ..., m; subject to
the condition
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570 A. M. Lyapunov

In what follows we shall consider exclusively the case where the chosen
characteristic numbers (24) are all positive, and, under this hypothesis, we are going
to show that if the moduli of aI, a2' ••• , ak do not exceed a certain limit the series
(25) will be absolutely convergent and will represent functions which really do
satisfy equations (I), for all values of t greater than to.

Let us turn to the formulae of Section 3.
Let us take it that the system of particular solutions of equations (6) with which

we are concerned is normal, and that the solution

possesses the characteristic number As (s = 1,2, ..., n).
Let us put

X~I) = alxsl + a 2xs2 + ... + akxsk (s = 1,2, ..., n)

and let us integrate next the systems of equations (7) corresponding to m = 2, 3, ...
In Section 3 we assumed that all the functions x~m) for m > I had to become

zero for t = to.
Here we shall no longer maintain this assumption, but will replace it by another

which we are going to indicate immediately.
Let us assume that all the functions x~) for {l < m have been found, and

represent with respect to the constants ai entire and homogeneous functions of the
{lth degree. Then the functions RIm), because of their expressions in terms of the
quantities x~), will present themselves relative to these same constants in the form
of entire and homogeneous functions of the mth degree.

Let

6
-'l R~m) = " T~,!,I' m2 • . . . • mk )N m 1N m 2 /ymkA I L..J I} \AI ""'2 -r-v-k ,

the T being functions of t which are independent of the constants as.

Then, on writing [compare (9)]

n n f6x(m) = L LX. =!1. RIm)dt
of i_I j_1 SJ At'

f6 f=t R~m) dt = L aj'a2'2...ak'k 1)jl.m2..... mk)dt,

we shall assume that those of the integrals

fr,'!'. , · m2..... mk) dt
'J

where the function to be integrated possesses a positive characteristic number are to
be taken between the limits + 00 to t. As for the integrals where the function to be
integrated has a negative or zero characteristic number, we shall only assume that
we have

the C being constants independent of the as.
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Stability of motion: general problem 571

The integrals in question will then have characteristic numbers not less than
those of the functions to be integrated (Lemma VIII).

In proceeding thus, starting from m = 2, we shall have for all the x~m) expres­
sions which are entire and homogeneous with respect to the constants IX" 1X2' •••, IXk'

Let

X s = x~') + X~2) + ... (s = 1,2, ..., n)

be the series obtained under this assumption.
To give them the form (25), we should put

and from this it is easy to conclude that the characteristic numbers of the functions
L~m,.m, •.... mkl will be not less than zero.

In fact, the system of equations (6) being assumed to be regular, the characteristic
number of the function Ill!. will be equal to [in view of the equation preceding (9)]

-(A,+A2+···+ An)'

and, by consequence, the characteristic number of the functions l!.ijIl!. will be not
less than - Aj • [Consider the minor as a sum of signed products of its elements.]

Therefore, if we agree that what was said about the functions L is true when we
have

m l +m2 + ...+mk <m,

[and if we keep in mind that, in equation (9), the expression Rjm) is a homogeneous
polynomial of degree m in the x~) with Jl < m] we shall be able to conclude (Lemmas
IV, V) that the characteristic number of the function nil' m, . .... mk) for which

m, + m 2 + ...+ mk = m,

and by consequence also that of the integral

fT'\m'.m' ..... mk) dt
'J

are not less than

miA, + m 2A2 + ... + mkAk - Aj •

Now it follows from this that the characteristic number of each function L, for which
the sum of indices m, is equal to m, is not less than zero.

Thus, that the property in question belongs to the functions L, which is true in

the case where L m, = I, is true in general.

Remark

To arrive at this result, it is not necessary to integrate between the limits + OC)

to t each of the functions ni" m' ..... mkl with a positive characteristic number. It
suffices to do so only when we have

m. A, + m2A2 + ... + mkAk - Aj > O.
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572 A. M. Lyapunov

12. [Theorem on the convergence of these series]

Passing now to the question of the convergence of series (25), we shall assume
that the characteristic numbers (24), which have been adopted for forming these
series, are all positive.

Under this hypothesis, on agreeing for simplicity that to = 0, we are going to
demonstrate the following proposition.

THEOREM. If, on taking e to be a positive constant and putting

<xse -0.• - ')1 = qs (s = I, 2, ..., k)

we replace the <xs in series (25) by their expressions in terms of the q" the new series

X =" Q(m,. m,. ....mk )qm'qm, qmk (s =I 2 n)s ~ s I 2 ... k , , ... , , (26)

which will be ordered in increasing powers of the q., will enjoy the property that, for
every value of £ however small it may be, we shall be able to find positive constants
Q(m l • m,. ....mk) such that, t being positive, we always have

and such that the series

(27)

is convergent, as long as the moduli of the quantities q, do not exceed a certain limit
q different from zero.

Let us only consider values of £ less than each of the numbers

)." ).2, ... , ).k »

Then we shall be able to find a positive integer I, such that all the expressions

m, ()., - s) + m2().2 - e) + + m.().. - e) - ~ + e

(j = 1,2, , n)

where m" m2 , ... , m; satisfy the condition

m, +m2+ ... +m. ~ I,

will be greater than a positive number H given arbitrarily.
Let '1 be a positive constant less than s.
The functions

(28)

will be vanishing [as defined in Section 6]. We can thus assign to the modulus of
each of these functions a constant upper limit, valid for all positive values of t.

Let us suppose that we have found such limits for all those of these function for
which

m, + m2+ ... + m. < I

and, on assuming that these limits are independent of s, let us designate them by
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Stability of motion: general problem 573

(29)

Among these functions there will be, together with others [other terms], the
following:

Now if we suppose further that tI > e/2, similar upper limits will be obtained
also for the moduli of the functions

~ ..
-!le-Oj + 2'1- t )1
~ .

Let K and K' be constants such that we have

I~ " IIXijle(~-t+")/<K, ; e-(~+2"-£)t<K'

for all values of i and j taken from the sequence I, 2, ..., n, and for every positive
value of t.

To obtain upper limits for the moduli of those of quantities (28) for which the
sum of the indices m l , m2 , ... , m; is not less than I, let us resort to the formulae

n n I' ~ ..(m) _ . --.!l. (m) _
x; - ;~I j~1 X sj co ~ R; dt (s - 1,2, ..., n),

in which, conforming to what we have agreed, all the integrals are taken between
limits from + 00 to t, since for m ;;. I the characteristic numbers of all the functions
to be integrated will be positive.

Let

(m l + m2 + ... + mk = m),

where the R~ml.m2 ..... mk) are quantities independent of the constants CIs' Then, on
putting, for brevity,

we deduce from (29) [and (26)] that

n n f'" ~ ..
Q(m l.m2..... mk ) = _eN' L LX' --!.l.e- N t R~ml.m2 •.. ·.mk)dt

s ;=lj=l 5J I L\ I •

(30)

Let us suppose that on using these formulae we have found upper limits, valid
for all positive values of t, for the moduli of the quantities

Q (J.l I . P2••..• JI./c)
s , (31)

where the sum of the indices Ill' ,u2 , ... , Ilk is less than m, and that these upper limits,
in the case where

III + 112 + ... + Ilk ;;. I,

are again obtained in the form

the Q(P,. P2• ... , Pk) being constants.
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574 A. M. Lyapunov

With the aid of these limits let us form upper limits for the moduli of all the
R~m"m2, .... mk) which appear in formulae (30).

For this we note that by the nature of the expressions R~m) the quantity
R~m,. m2· .... mk) represents an entire function of mth degree of those of quantities (31)
for which the sum of the indices u, is less than m, and that the coefficients of this
entire function are linear forms with positive coefficients in those of the quantities

P~IJ.I' Ill- ...• J.ln), (32)

for which the sum of the indices u, Jl2, ..., u; is not greater than m. Moreover, with
respect to quantities (31), the degrees of the terms of this function are not below the
second.

This agreed, if R(m'.m2 ..... mk ) is the constant which each of the functions

becomes when we replace the quantities (31) by the Q("" "2.. ·.. "kl and the quantities
(32) by certain upper limits (independent of i and t) of their absolute values, we
shall have, for all positive values of t, these inequalities:

and the second members [right-hand sides] will represent the upper limits sought.
Now, in using the upper limits obtained, we extract from formula (30) this

inequality:

IQ~ml.m2 .....mk)1 <nKK'R(ml>m2.···. mk )e N t te-OJ-e+,,)I100

e-(N-J.j+t)t dt,
l » I t

which will be satisfied for every positive value of t. Moreover, on noting that

N - ~ + E = m, C)., - E) + m2(A2 - E) + ... + mk(Ak - E) - Aj + E> H,

and hence that

I'" Ie -(N- Aj +£)t dt < _ er'" -)-j + e)1

H ',
we can replace it by the following:

We conclude from this that we can put

n2KK 'or-»..... mk) = R(m,.m2 •...• m"..)

H

for all the values of m" m2 , ... , m; of which the sum is not less than I.
Now, on choosing for K and K' sufficiently large quantities, or for H a

sufficiently small quantity, we can arrange for the values supplied by this formula
for the Q, in the case where

1 < m, + m2 + ... + m; < I,

to be not less than those which have been obtained by direct means in this case.
Consequently, on designating by G a sufficiently large positive constant, we can

take

(33)
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Stability of motion: general problem 575

whenever the sum m, + m2 + ...+ m; is greater than I; and when this sum is equal
to I, we can put

In doing this, let us designate by x lm) the sum

"Q(ml.m2 ..... mk)qm'qm' qmkL. I 2 ... k ,

extended over all the non-negative values of the integers m" m 2 , ... , mk which satisfy
the condition

m, + m2 + ... + mk = m.

Then, for m > I, equality (33) will give

where R(m) is what R~m) becomes when we replace the x~) by the Xl') and the quantities
(32) by the upper limits adopted above.

This agreed, the series

Xli) + X(2) + x(3) + ..., (34)

ordered in increasing powers of the quantities q" will possess terms of which
the moduli will be greater than those of the corresponding terms of series (26),
for all positive values of t (they will even be greater than these moduli multiplied
bye").

Now series (34) can be considered as ordered in increasing powers of the quantity]

ql +q2+'" +qb

and if, conforming to what has been noted in the preceding section, we take the
following for an upper limit of quantities (32):

M
API +1-'2+ ," +11,,'

our series] will not differ essentially from that which we arrived at in Section 4.
Thus, if we restrict ourselves to this hypothesis, we shall certainly be able to find

a positive number q, such that q" q2' ... , qk satisfying the conditions

Iqs I~ q (s = 1,2, ..., k),

series (34) will be absolutely convergent.
The theorem is consequently proved.

t [Lyapunov's meaning here may be as follows. Taking e.g. k = 2 and with c., as
binomial coefficients, let us write x lm) as

x(m) = amoC'~tOq'il + am_ I,J em _ 1,1 q'j'- lqz + ...+ aomcomq'r.

Then if a is the a,., with the greatest modulus we have

Ixlm'l';;; lal(cn",lq,lm +cm_l.Ilq,lm-llq,1 +...) = lal<lq,[ +Iq,l)m,
i.e. the same inequality as is obtained if we replace x lm, by aiq, + q2)""]

t[Here we have x lm) = osr». and in Section 4 we had x lm) = (I + nK)( I + nK')
(T - lo)Rlm). Hence the series x(l' + x m

oo in the two cases only differ by a multiplicative
constant.]
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576 A. M. Lyapunov

COROLLARY. There exists a positive constant iX such that, iX" iX2 , ••• , iX. satisfying
the conditions

liXsI,;:; ix (s = 1,2, ...• k),

series (25) will be absolutely convergent for all positive values of t, while representing
continuous functions of t satisfying equations (/). These functions, t increasing
indefinitely, tend towards zero.

[Note that from (28)

Remark

If the system of differential equations of the first approximation is not regular.
then. on designating by S the sum of all the characteristic numbers and by J1 the
characteristic number of the function 1/Ii, we shall have

S + J1 = -U,

where U is a positive number.
In this case the characteristic number of the function

is not less than - Aj - a. And on considering this, we may easily show that if in the
case considered we form according to the rule expounded in the preceding section
series similar to those of (25), the characteristic number of the function

will be not less than

-em, +m2+ ... +m. -I)u.

Let us suppose that a is less than each of the numbers A,. A2 • •••, Ak' Then, with a
suitable choice of the numbers E and n, we shall be able to satisfy all the inequalities

E+U
As> E > n > -2- (s = 1,2, ..., k).

And, these last being satisfied, all the conditions of the preceding proof will be
equally satisfied, of which it is easy to convince oneself on taking account of what
was said on the subject of the functions L.

Therefore the theorem will not cease to be true when the system of differential
equations of the first approximation is not regular, provided that each of the
characteristic numbers chosen for the formation of series (25) is greater than a, and
that the condition E > 0 is replaced by E > a,

13. [Ensuing consequences relevant to stability)

We can obtain from what has been proved the following theorems.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
O
t
t
a
w
a
]
 
A
t
:
 
0
0
:
5
9
 
2
8
 
A
p
r
i
l
 
2
0
1
0



Stability of motion: general problem 577

THEOREM I. If the system of differential equations of the first approximation is
regular, and if all the characteristic numbers are positive, the undisturbed motion is
stable.

Under the indicated condition we may take k = n.
Then, on designating the values of the functions x, for t = 0 by a, and on setting

t = 0 in equations (25), we shall have

a, = f,(IX,,1X2, ... , IXn ) (s = 1,2, ..., n),

where the f, are holomorphic functions of the quantities lXi' becoming zero for

(x, = (X2 = ... = (Xn = 0

and moreover such that their functional determinant [Jacobian] with respect to the
quantities (Xi does not vanish when all the (Xi vanish (for it then takes the value of
the determinant !'J. for t = 0).

Consequently the preceding equations are solvable with respect to the quantities
(Xi' and when the quantities a, are sufficiently small in absolute value we can obtain

(35)

where the lfJ, are holomorphic functions of the quantities ai' becoming zero for

a, = a2= ... = an = o.
Let x be a positive and arbitrarily small quantity.
We can find a positive quantity r such that, for all the values of the variables

q" q2, ..., qn satisfying the conditions

Iq,l,,; r (s = I, 2, ..., n),

the series (27) (subject to the hypothesis that e is less than each of the characteristic
numbers) is absolutely convergent, and that the modulus of its sum is less than x.

Next, we can find a positive quantity a such that, for all the values of the
quantities a" a2, ..., an satisfying the conditions

la, I,,; a (s = 1,2, ..., n), (36)

the moduli of the quantities (xs , defined by equations (35), are not greater than the
quantity r.

Thus we can be sure that, if the initial circumstances of the disturbed motion are
chosen in agreement with conditions (36), the inequalities

[x, I < x (s = 1, 2, ..., n),

will be satisfied throughout the duration of the motion which ensues. [The equation
before (26) implies that if Iq, I,,; 0 holds for t = 0 then it also holds for all t > 0.]

And this proves the theorem.

Remark

Under the conditions of the preceding theorem, in every disturbed motion
sufficiently near the undisturbed motion the functions x" with t increasing indefin­
itely, all tend towards zero. We shall express this circumstance by saying that the
disturbed motion (insofar as it is defined by the expressions of the quantities x, as
functions of t) approaches asymptotically the undisturbed motion.
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578 A. M. Lyapunov

(37)

In the same sense, we shall also speak of motions approaching asymptotically an
arbitrary given motion.

THEOREM II. If the system of differential equations of the first approximation is
regular, and if among its characteristic numbers there exist positive members, the
undisturbed motion will always enjoy a certain conditional stability. Thus, if the
number of positive characteristic numbers is k, it will suffice, for it to have stability,
that the initial values a" a2' ..., an of the unknown functions should satisfy a certain
set of n - k equations of the form

Fj(a"a2, ..., an) =0 (j = 1,2, ...,n -k),

where the Fj are holomorphic functions of the quantities as' vanishing for
a, = a2= ... = an = O. These equations are moreover such that we can obtain from
them all the a, as real holomorphic functions of a certain set of k real independent
quantities.

Let us suppose that, to form series (25), we have taken for equations (6) a
normal system of real solutions.

Then the calculations can be arranged in such a way that all the coefficients L
in these series are real functions, and that consequently, the IX, being real, equations
(25) define a real solution of the system of equations (1).

This agreed, and on putting t = 0 in equations (25), we shall have

a, =!,(IX" IX2, ..., IXk) (s = 1,2, ..., n),

the f, being real holomorphic functions of the quantities IXj , vanishing when all the
IXj vanish. These functions will moreover be such that, among the functional
determinants [Jacobians] that can be deduced from them on combining these
functions in sets of k, there will be found at least one which does not vanish when
we put

for these determinants then reduce to values, corresponding to t = 0, of minors of
the determinant A, formed from the elements of the first k rows. [A is not zero-see
the equation preceding (9).]

Thus, the la, I being sufficiently small, we can derive from the preceding
equations the following:

IXj = ({Jj(a" a2, .~' an) ~ = I, 2, ""~)' }
F,(a" a2' ..., an) - 0 (s - 1,2, ..., n k),

where ({Jj' F, are holomorphic functions of the quantities a" a2, ..., an, becoming
zero when these quantities vanish.

To push the proof further, the procedure will be the same as for the preceding
theorem, with the sole difference that we must have in view here n - k equations
(37) relating the a..

II may be noted that, the perturbations being sufficiently small, the disturbed
motions corresponding to equations (37) approach asymptotically the undisturbed
motion.
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Stability of motion: general problem 579

Remark

If the system of differential equations of the first approximation is not regular,
but possesses k characteristic numbers greater than the quantity (1 (Section 12,
Remark), there will be found n - k conditions similar to the preceding, under which
the undisturbed motion will be stable.

Some general propositions

14. [General remarks on the functions defined by the differential equations of the
disturbed motion]

Passing now to the exposition of the principles of the second method, let us at
the outset call attention to some general conclusions which can be drawn from what
has been shown in Sections 3 and 4.

As in the preceding section, we are going to consider equations (I) exclusively
under the hypothesis that for the functions AS' which were mentioned in Sections 2
and 4, t being greater than its initial value to, there can be assigned a non-zero
lower limit A.

Under this hypothesis, on designating by a" a2 , ••• , an constants chosen in
conformity with the inequalities

lasl<A (s=I,2, ...,n),

let us consider the functions x, satisfying equations (I) and taking the values'[ as for
t = to'

On basing our considerations on what precedes, we can affirm that such functions,
at least for values of t sufficiently near to, always exist and are real whenever the as
are real (which we assume here), and that moreover we can assign a limit t" greater
than to, such that in the interval to to t, inclusively these functions are represented­
by series ordered in the positive integer powers of the constants as.

If the functions defined by these series satisfy for t = t, the inequalities

Ixsl<A (s=I,2, ...,n), (38)

they admit analytic continuation beyond the limit t, and are then represented by
series similar to the preceding, ordered in powers of the values of these functions for
t = t,.

These new expressions for the functions x, will only be valid in general for
values of t not exceeding a certain limit t2 • But, if for t = t2 inequalities (38) remain
satisfied, we shall be able to obtain a new analytic continuation, in the form of
series with the same character.

In this manner, starting from the given initial values an we can trace the
continued variation of our functions with t, at least as long as inequalities (38) do
not cease to be satisfied.

t In giving the constants Up the functions x, are completely defined, at least for values of
I sufficiently near to 10 , This results from an easily shown proposition, namely that, except
for the obvious solution

system (I) cannot have another solution where the initialvalues of all the unknown functions
are zero.
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580 A. M. Lyapunov

It can happen that, for a certain choice of the constants a" these inequalities will
be satisfied however far we advance in tracing the functions X s ' Then these
functions will be defined for all values of t greater than to'

In other cases there will exist for t an upper limit I' such that, for t = 1', at least
one of inequalities (38) will change to equality.

The analytic continuation of our functions beyond such a limit t' certainly calls
for a special. investigation. But we do not need to concern ourselves with this,
inasmuch as for our purpose it will suffice to consider each disturbed motion only
as long as the quantities Ixs I remain below given limits as small as we wish.

In all cases, we can choose the constants as sufficiently small in absolute value
for our analytic expressions for the functions x, to be valid for all the values of t
between to and T, however great the given number T may be, and for the values
~,' ~2' ... , ~n of these functions for t = T to be as small as we wish. Moreover, if we
wish to define the functions x, by their values for t = T, we could, however great T
may be, choose the ~s sufficiently small in absolute value for there to correspond a
uniquely determined system of initial values a" and for these last to be all as small
as we wish.

From this last remark it follows that, for the resolution of questions of stability,
it will suffice to consider only values of t greater than a limit T, as large as we wish,
on replacing the initial values of the functions x, by their values corresponding to
t = T.

In what follows we shall only consider the functions x, as long as inequalities
(38) do not cease to be satisfied, and, in speaking of limits for the quantities Ixs I,
we shall always suppose these limits to be less than A.

15. [Some definitions]

We are going to consider here real functions of the real variables

subject to conditions of the form

(39)

t ?i: T, [x, 1,-;; H (s = 1,2, ..., n), (40)

where T and H are real constants, of which the first can be supposed as large as we
wish, and the second as small as we wish (but not zero).

Furthermore we shall speak only of functions which, under conditions (40),
remain continuous and single-valued, and which vanish for

x, = X 2 = ... = X n = O.

These properties will be common to all the functions which we are going to
consider (even when it will not be stated expressly). But our functions will still be
able to possess certain more special properties, and when we have to place them in
evidence, we shall make use of certain abbreviated expressions, the meanings of
which we shall now define.

Suppose that V, the function considered, is such that, under conditions (40), T
being sufficiently large and H sufficiently small, it can only take values of one sign.

We shall say then that it is a function offixed sign; and if we have to indicate
its sign, we shall say that it is a positive function or a negative function.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
O
t
t
a
w
a
]
 
A
t
:
 
0
0
:
5
9
 
2
8
 
A
p
r
i
l
 
2
0
1
0



Stability of motion: general problem 581

If, further, the function V does not depend on t, and if the constant H can be
chosen so small that, under conditions (40), the equality V = 0 can only hold if we
have

XI = X2 = ... = Xn = 0,

we shall call the function V, as is done for a quadratic form, a definite function, or
indeed, when we wish to call attention to its sign, a positive-definite function or a
negative-definite function.

As far as functions depending on t are concerned, we shall still make use of
these terms. But then we shall call the function V definite only under the condition
that we can find a function W independent of t, which is positive-definite and
moreover such that one of the two expressions

V -- W or - V - W

is a positive function.
In this way, each of the two functions

xi+ x~ - 2x lxzcos t, t(xi + x~) - 2XIX2 cos t

will be of fixed sign. But the first is only of fixed sign, while the second, if n = 2, is
at the same time definite [recall (40)].

We shall call limited every function V for which the constant H can be chosen
sufficiently small that, under conditions (40), there exists an upper limit for IVI.

By virtue of the properties possessed by all functions which we consider here,
this will evidently be so for every function independent of t.

A limited function can be such that, s being a positive number chosen arbitrar­
ily, we can assign another positive number h sufficiently small that, the variables
satisfying the conditions

t ~ T, Ixs I",:; h (s = I, 2, ... , n),
we have

iVl",:; e.

Such will be, for example, every function independent of t. But functions
dependent on t, although limited, can fail to satisfy the enunciated condition. This
is what occurs, for example, with the function

sin [(XI + X2+ ... + xn)t].

When for a function V the preceding condition is satisfied, we shall say that it
admits an infinitely small upper limit.

Such is, for example, the function

(XI + X2+ ... + x n ) sin t.

Let V be a function admitting an infinitely small upper limit. Then, if we know
that the variables satisfy the conditions

t ~ T, iVl ~ I,

where I is a positive number, we can conclude that there exists another positive
number A, which the greatest of the quantities

Ixd, \x21, ..., Ixnl
cannot be below.
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582 A. M. Lyapunov

At the same time as the function V we shall often have to consider the expression

av av av av
V' = -a x, + -a X2 + ... + -a Xn + -a '

x, X2 x; t

representing its total derivative with respect to t, taken under the hypothesis that
X" X 2, ... , x; are functions of t satisfying the differential equations of the disturbed
motion.

In this case we shall always assume the function V such that V', as a function
of the variables (39), is continuous and single-valued under conditions (40).

In speaking in what follows of the derivative of a function V, we shall
understand that we are referring to the total derivative in question.

16. [Fundamental propositions]

We all know the theorem of Lagrange [Mecanique Analytique, Paris, 1811, vol.
I, part I, section 3, arts. 21-27, part 2, section 6, arts. 1-10] on the stability of
equilibrium in the case where there exists a force-function [potential energy
function multiplied by ( - I)], as well as the elegant demonstration which has been
proposed for it by Lejeune-Dirichlet [J. reine angew. Math. 32 (1846) 85 and J.
Math. pures appl. 12 (1847) 474]. This last rests on considerations which can serve
for the proof of many other analogous theorems.

Guiding ourselves by these considerations, we are going to establish here the
following propositions:

THEOREM 1. If the differential equations of the disturbed motion are such that it is
possible to find a definite function V, of which the derioatioe V' is a function offixed
sign which is opposite to that of V, or reduces identically 10 zero, the undisturbed
motion is stable.

Let us agree, to fix ideas, that the function found, V, is positive-definite, and
that its derivative V' represents a negative function or is identically zero.

Then we shall be able to find constants T and H such that, for all values of the
variables X" X2' ... , X n , I which satisfy the conditions I ;;, T and

Ix,I':;;H (s=I,2, ...,n), (41)

we have the following inequalities:

V'':;; 0, V;;, w, (42)

where W is a certain positive function of the variables x" independent of I, and
only becoming zero under conditions (41) for x, = x2 = ... = x; = O.

In considering the quantities x, as functions of I satisfying the differential equations
of the disturbed motion, let us suppose that the values ~s of these functions for I = T
satisfy conditions (41) with inequality signs. Then, by virtue of the continuity of these
functions, conditions (41) will be satisfied for all values of I sufficiently near T.

This agreed, let us only consider values of t not less than T.
Then, on designating the value of the function V for I = T by Vo and taking

account of the equality

V - Vo =1V'dt (43)
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Stability of motion: general problem 583

we shall be able to conclude that, if in the interval from T to t conditions (42) are
constantly fulfilled, the functions xs , in the same interval, will certainly satisfy the
condition

(44)

of which we can make the right-hand side as small as we wish, on making all the
~s sufficiently small in absolute value.

Let us designate by x the greatest of the quantities lx, I, Ixzl, ..., IXn I and by e a
positive number as small as we wish (and moreover smaller than H), and let us
consider all the possible systems of values of the quantities x, satisfying the condition

x =e. (45)

Let I be the precise lower limit of the function W (as a function of the independent
variables x" xz, ..., xn ) under this condition.

The value of I will be necessarily different from zero and positive, for, by the
very nature of the function W, this function can become under condition (45)
neither negative nor zero, and since I, by virtue of the continuity of this function,
is necessarily one of the values that it can take under the said condition.

Consequently we shall always be able to make Va less than I, and moreover we
shall be able to find a positive number ..l such that the inequality Va < I is satisfied
whenever the ~s satisfy the conditions

I~s I~..l (s = 1,2, ..., n). (46)

This settled, let us agree that the quantities ~s are to be actually chosen in
accordance with conditions (46).

As the number ..l is necessarily less than s, the functions x, will then satisfy the
inequalities

Ixsl <E (s = 1,2, ...,n) (47)

for all values of t sufficiently near T.
Now these functions, which vary continuously with t, can only cease to satisfy

inequalities (47) after having reached values satisfying condition (45). And this,
seeing that Va < I, is incompatible with condition (44).

We must thus conclude that, whatever the ~s satisfying conditions (46), the
functions X s will satisfy inequalities (47) for all values of t greater than T.

In this manner, we can regard our theorem as proved.
We see that the theorem of Lagrange is only a particular case. [Take for V the

total energy, which is positive-definite, and note that V' is zero by conservation of
energy.]

Remark I
If, for the differential equations of the disturbed motion, we know a certain

number of integrals V" Vz, ..., Vm (vanishing, like all the functions considered here,
for x, = X z = ... = x; = 0), and if the function found, V, only satisfies conditions
(42) (with the previous meaning of the symbol W) for values of the variables
subject to the conditions

V, =0, V2 = 0, Vm =0,
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584 A. M. Lyapunov

we shall be able to conclude that the undisturbed motion is stable at least for
perturbations which satisfy these last conditions.

The case where the function V itself is one of the integrals, and where the
functions V, V" V2 , ••• , Vm do not depend explicitly on t, constitutes a proposition
indicated by Routh]. [Recall also the remark on conservative perturbations at the
end of Section I.]

Remark II
If the function V, while satisfying the conditions of the theorem, admits an

infinitely small upper limit, and if its derivative represents a definite function, we
can show that every disturbed motion, sufficiently near the undisturbed motion,
approaches it asymptotically.

For this purpose, let us consider an arbitrary disturbed motion, where the
quantities ~, are sufficiently small in absolute value for conditions (41) to be
constantly satisfied starting from the instant t = T.

We easily convince ourselves, on taking account of the properties admitted for
the function V (which we assume, as before, positive-definite), that if the constant
H is small enough, it is impossible to find a positive number 1which is less than all
the values which the function V takes in this motion for t > T.

In fact, if such a number existed we could find, seeing that the function V admits
an infinitely small upper limit, another positive number A. such that we would have
x > A. (x representing as before the greatest of the quantities Ix, i) for all values of
t greater than T. And then, for the function - V' there would exist, under the same
conditions, a non-zero lower limit l',

In fact, the function - V', conforming to what we have assumed, is positive­
definite. We can thus always suppose the constants T and H to be such that, for
t ;;. T and x ,,; H, we have - V';;' W', where W' is a certain positive function of the
variables x", independent of t and becoming zero under the condition x ,,; H only
in the case where x = O. Now this last case will be excluded if we subject the x, to
verifying the condition

Thus, under this condition, the function W' will admit a certain non-zero lower
limit 1'.

Now, if for t > T we have constantly - V' > l', equation (43) will give

V < Vo -1'(1 - T)

for all values of t which exceed T. And this is impossible, for the first member of
the inequality is a positive function of t and the second becomes negative as soon
as t is large enough.

Thus, however small the number 1 may be, an instant will always arrive when
the function V becomes less than I. And as this is a decreasing function of t, it will
subsequently remain constantly less than I.

t The advanced part of A Treatise on the Dynamics of a System of Rigid Bodies, fourth
edition, 1884, pp. 52-53.
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Stability of motion: general problem 585

Consequently, however small the positive number e may be, there will always
arrive an instant when the function V becomes and subsequently remains less than
the exact lower limit of the function W under the condition

e <;; x <;; H.

And, at least starting from this instant, the functions x, always remain Jess in
absolute value than e.

We conclude from this that, the (, being sufficiently small in absolute value, the
functions x, tend towards zero as t approaches infinity.

THEOREM II. Let V be a function of the variables x" t possessing the following
properties.

( I) It admits an infinitely small upper limit.

(2) Its derivative V' is a definite function.

(3) For every value of t greater than a certain limit the function V is capable of
taking the sign of V', however small in absolute value the x, may be.

If such a function V can be formed with the aid of the differential equations of the
disturbed motion, the undisturbed motion is unstable.

Let us assume that we have found a function V satisfying these conditions, and
that its derivative V' is positive-definite.

We shall then be able to assign constants T and H such that, for all values of
the variables satisfying the conditions t ;;, T and

we have

Ix,1 <;; H,

V' ;;, W, IVI < L,

(48)

(49)

where L is a positive constant and W is a function of the variables x, independent
of t, positive and only becoming zero if all the x, are zero.

This settled, let us suppose that the values ~s of the functions x, for t = T satisfy
conditions (48) with the signs of inequality. Then, on designating the value of the
function V for the same value of t as Vo and on resorting to the equation

V - Vo = 1V'dt (50)

we deduce from it that

(51)

for all values of t exceeding T and such that, in the interval from T to t, conditions
(48) do not cease to be fulfilled.

We note now that, in view of the third property of the function V, we can
suppose the constant T sufficiently large that, for a suitable choice of the quantities
~s subject to the inequalities

I~s I< e (s = I, 2, ..., n),

where e is a positive number as small as we wish, we can make the constant Vo
positive.
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586 A. M. Lyapunoo

Now, if Vo is a positive quantity we shall be able to find, because of the first
property of the function V, a positive number). which is less than all the values
which x, the greatest of the values Ixs I, can take under condition (51), I being
greater than T. And then, if we designate by I an arbitrary positive number which
is less than all the possible values of the function W under the condition

). ~x ~ H,

we shall have, in view of (50) and (49),

V> Vo + 1(1 - T), (52)

and this inequality will hold for I > T, provided that, in the interval from T to I,

conditions (48) are constantly fulfilled.
Now, under the same conditions, the function V remains in absolute value

below a number L, and this can occur simultaneously with inequality (52) only for
values of I less than the number

L- Vo
r=T+-

I-·

We must thus admit that, in the interval from T to r, there exists a value
of I starting from which at least one of conditions (48) ceases to be constantly
fulfilled.

In this way we arrive at the conclusion that, however small may be the number
e which has not to exceed the absolute values of the quantities (" these quantities
can always be chosen in such a manner that, during the motion that ensues, at least
one of the quantities Ix., I reaches a fixed limit H. Thus is manifested the instability
of the undisturbed motion.

Example I

Suppose that the given system of differential equations of the disturbed motion
has the following form:

dx, iJV dX2 iJV
dt iJx,' dt iJx2'

dx; iJV
-=-
dl iJxn '

where V is a holomorphic function of the variables x" X2' ..., xn , not depending
explicitly on I and not containing in its development terms below the second degree.

By virtue of these equations we have [see the last equation of Section 15]

dV = (iJV)2 + (iJV)2 + ... +(iJV)2
dt ox, iJX2 ox;

We can thus conclude that, if V is a negative-definite function, the undisturbed
motion will be stable. On the other hand, this motion will be unstable whenever V
is not such a function, at least if we are not dealing with the case where the system
of equations

iJV _ 0
iJx, - ,

iJV
--0
oX

2
- ,

can be satisfied by real values (not simultaneously equal to zero but as small as we
wish) of the variables X,.
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Stability of motion: general problem 587

This last case will be uncertain and will require a special investigation. Besides,
it will only occur if the Hessian of the function V becomes zero when we put

XI = x2 = ... = xn = O.

Example II

Let us consider the following system of differential equations of order 2k:

where

!!- aF _ aF = 0
dt ax~ ax, '

dxs ,dt = x, (s = I, 2, ..., k),

I k I k k

F = 2i~1 x? + 2i~1 j~1 vijx;xj + V,

Vij = vji and V being holomorphic functions of the variables XI' x 2 , ... , xi; indepen­
dent of t and vanishing when all these variables become zero. [These correspond to
Lagrange's equations of motion.] Moreover, the function V is supposed such that
its development does not contain terms below the second degree.

This system obviously reduces to the type of system of differential equations of
disturbed motion which we consider here.

Let

V = Vm + Vm + 1+ ...,

where Vi designates, in a general manner, an entire and homogeneous function of
the quantities XI' X 2, ••• , X k of degree i. Then, on putting

aF aF aF
V=x l -

a
7+ X 2 -

a
,+",+xk -

a
r

x I X 2 x ;

we shall have, by virtue of our equations,

dV k aF k aF
-= L x -+ L x'-
d! s=1 s ax... .~=I s ox',

+mVm +(m + l)Um+1 + ...

Suppose that Vm is a positive-definite function of the variables x" X 2, ... , X k

(which implies that m is an even number).
Then this expression dVI dt will be a positive-definite function of the variables

XI' X 2, ..• , xi; X'I' x;, ... ,Xk [recall (40)], and all the conditions of Theorem II will be
satisfied. We therefore conclude that the undisturbed motion is unstable.

The case considered here can arise, for example, in the question of the stability
of equilibrium (in the ordinary sense), when there exists a force-function (the
function U).

Whenever, at a position of equilibrium, the force-function becomes a minimum,
and this minimum is manifested by the terms of least degree that can be found in
the development of the increase of this function in powers of increases of the
coordinates, we conclude that the equilibrium is unstable.
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588 A. M. Lyapunov

THEOREM III. Let V be a function of the variables Xs> t, possessing the following
properties.

(\) It is a limited function.

(2) Its derivative is of the form

V'=).V+W, (53)

). being a positive constant and Wafunction offixed sign (which function may
reduce identically to zero).

(3) For every value of t greater than a certain limit the function V is capable of
taking the sign of W (assuming that W is not identically zero), however small
the x" in absolute value.

If the differential equations of the disturbed motion allow the formation of such a
function V, the undisturbed motion is unstable.

Let us suppose that the function found, V, satisfying these conditions, is such
that W is a positive function.

Then we shall be able to choose the numbers T and H in such a way that, for
values of the variables satisfying the conditions t ~ T,

Ix,I~H (s=I,2, ...,n),

we have [see property (I) in the theorem]

IVI <L, W~O,

(54)

where L is a positive constant. We shall moreover be able to take the number T so
large that, for a suitable choice of the values ~s which the functions x, have to take
for t = T, and on making all the I~sl as small as we wish, we can make positive the
corresponding value Vo of the function V [see property (3)].

Only considering values of t not less than T, and on paying attention to
equation (53), we conclude that if we consider V, by virtue of the differential
equations of the motion, as a function of t, this function will verify the inequality

dV
--)'V~O
dt

for all values of t for which conditions (54) remain fulfilled.
Therefore, if from T to t these conditions do not cease to be satisfied, we shall

have [on separating the variables in the above inequality and integrating both sides]

and, by consequence [from the inequality after (54)]

Now, Vo being positive, this last inequality can only hold for values of t less than
the quantity

I L
r = T + ~ log V

o
.

Thus, in the interval from T to r, conditions (54) cannot be constantly fulfilled.
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Stability of motion: general problem 589

From this, as in the proof of the preceding theorem, we conclude that the
undisturbed motion is unstable.

By varying the conditions which the sought functions must satisfy, we could
certainly propose many other theorems similar to the preceding ones. But, for the
applications which we have in mind, the theorems which we have given are fully
sufficient. That is why we can restrict ourselves to the latter.

Remark
Up to the present, we have assumed that for the variables x, all sufficiently small

real values are possible. But cases can be encountered where, because of the very
meaning of these variables, for some among them there will only be allowed values
with a predetermined sign (we shall not consider conditions of greater complexity).

In order that this should occur the differential equations (1) must be such that
these conditions, which will be of the form

(55)

are satisfied throughout the duration of the motion, as soon as we suppose them
satisfied at the initial instant.

In such a case, in applying Theorems II and III care must be taken that the
function V does not lose the third property, when we take account of the conditions
(55). Further, we shall be able to imply these conditions in all the definitions and
all the preceding propositions, just as was done as far as conditions (40) were
concerned.
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CHAPTER II. Study of steady motion

Linear differential equations with constant coefficients
17. [Determinantal equation. Types of solution corresponding to its simple and

multiple roots. Sets of solutions]
Let us consider the system of linear differential equations

(I)

with constant coefficients Psu'

The integration of this system depends on the resolution of the algebraic
equation

p" - X
P21

P12
P22 - X

Pn2

PIn
P2n

... Pnn - X

=0

of the nth degree relative to the unknown X.
We shall call this the determinantal equation, and the determinant constituting

its left-hand side will be called the fundamental determinant. In considering the
latter as a function of X, we shall designate it by D(X).

To each root of the determinantal equation corresponds a solution of system (1)
of the form

(2)

where the K, are constants, among which at least one is different from zero;
and, when the determinantal equation does not have multiple roots, we shall
have, on considering all its roots, n solutions of the form (2), which will be
independent.

In the case of multiple roots, system (I) will admit, in general, solutions of the
following type:

XI =It (t)e X' , X 2=f2(t)e X' , ... , x; =fn(t)e X' ,

where the !set) are entire functions [polynomials] of t, of which the degrees do not
exceed the number obtained on diminishing by unity the degree of multiplicity of
the root X.

If we consider solutions of type (2) as being included in this last type, to
each root X of multiplicity Jl there will correspond Jl independent solutions of such
form.

Further, if among these solutions there is found one such that the degrees of at
least one of the functions !set) attains its upper limit Jl - I, we shall be able, on
starting from this solution, to obtain all the Jl independent solutions which
correspond to root X. For this purpose we shall have only to replace the functions
!set) by their derivatives I;)(t) with respect to t, of various orders. In this manner
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592 A. M. Lyapunov

we shall arrive at the following Jl independent solutions:

I, (t)e X' , f,(t)e X' ,

f'J (t)e X1, f~(t)e",

fn(t)e X1,

f~(t)eX,

rt: J)(t)e X1, f<r- J)(t)eX1, ••• , f~- J)(t)eXI•

We shall say that, in this case, there corresponds to the root X a single set of
solutions.

This case will arise whenever the root considered, X, does not make zero at least
one of the first minors of the fundamental determinant.

It can happen that the root X, of multiplicity u, makes zero all the minors of this
determinant up to order k - I inclusively, without making zero at least one of the
minors of order k.

Then to this root there will correspond k sets of independent solutions, formed
similarly to the above set.

The number k has for upper limit the number /1. This limit can be attained, and
then all the solutions corresponding to the root will be of type (2).

We can regard all these theorems as so well known by all that it would be
superfluous to give proofs, which anyway do not present the least difficulty. [For
related expositions see E. Goursat, E. R. Hedrick and O. Dunkel, Differential
Equations, Boston, 1917, pp. 152-161, and N. G. Chetayev, The Stability of
Motion, Oxford, 1961, pp. 51-58.]

Let us note that X,, X2, ..., Xn being all the roots of the detenninantal equation,
the real parts of the numbers

-XI, -Xl' ..., -Xn

will represent for equations (I) what we have called the characteristic numbers of the
system of linear differential equations.

18. [Linear transformation of differential equations into the simplest form]

For system of equations (I) we can find n independent integrals of the form

y, XJ+Y2X2 + ... +YnXn,

where the y, are functions of t.
These functions will satisfy the system of equations

dys"""dt +PJsYJ +P2sY2 + ... +PnsYn = 0 (s = 1,2, ..., n),

adjoint with respect to (1), and, if

YII'Y21' ···,Ynl'

(3)

is an arbitrary system of n independent solutions of the adjoint system, the n
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Stability of motion: general problem 593

will be independent integrals of system (I). [For discussion of adjoint equations see
Goursat, Hedrick and Dunkel, loco cit., pp. 156-157.]

The fundamental determinant of the system of equations (3) is obtained on
replacing, in the fundamental determinant of system (I), Xby - Xand on multiply­
ing by ( _I)n. It results from this that the determinantal equation of system (3) will
only differ in the signs of roots from the determinantal equation of system (I).

Let

be all the roots of the determinantal equation of system (3), under the hypothesis
that each multiple root is repeated as many times as there correspond to it sets of
solutions.

Then, to each of the numbers - X, we shall be able to make correspond a set of
solutions, such that all the solutions considered will be independent.

Let n, be the number of solutions in the set corresponding to the root - X" such
that we have

nl + n2 + ... + nk = n.

On taking for the quantities y,. the functions entering into the composition of
these sets we shall have, for each root - X" the following n, integrals of system of
equations (I):

(
z t' ) !.:.- + Zl' ) tm-I + +z(.')t +zl') )e-x.'f

1 m ! 2 (m-I)! m m+1

(m = 0, 1,2, , n, - I), ( 4)

where the zy) are linear forms relative to the quantities XI' X 2, ••• , x; with constant
coefficients and m! represents, as usual, the product, I' 2 . 3 ..... m when m is
non-zero, and 1 when m = O.

The n integrals which we shall obtain here on giving s all the integer values from
) to k inclusively will be, under our hypothesis, independent.

It results from this that the n forms zy) will be necessarily also independent, and
we shall be able, by consequence, to take them as new unknown functions in place
of XI' X2' ... , Xn0

On doing this, we obtain the following equations:

dzt' )
_I_- X -I')dt - sJ:.) ,

(5)

(j = 2,3, ..., n,; s = 1,2, ..., k),
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594 A. M. Lyapunov

which evidently the quantities zy) must satisfy, expressions (4) representing the
integrals of equations (I). [Equations (5) can be obtained by equating to zero the
coefficients of t'", t'" - 1 , ••• in the derivative of (4). Lyapunov seems here to be
using the theory of Weierstrass's elementary divisors. See Chetayev, loco cit., pp.
58-70, and Goursat, Hedrick and Dunkel, loco cit., pp. 161-162.]

We conclude from this that, by a linear substitution with constant coefficients,
system (I) can be reduced to the form (5).

Let us suppose that all the coefficients Ps. in equations (I) are real numbers,
and that, in the transformations of these equations, we only wish to consider
substitutions with coefficients also real. Then the preceding transformation will
only be possible if all the roots of the determinantal equation of system (I) are
real numbers. And for the case where there exist complex roots, the most simple
form to which these equations can be reduced will be a little different.

To show such a transformation, we note that, under the hypothesis admit­
ted, to each complex root will correspond a conjugate root of the same multi­
plicity, and that, if we have found all the linear forms zy) which COrrjOnd to
an arbitrary complex root, we shall have, on replacing in them - I by
-R, new forms which we may take for the quantities z in the case of the
conjugate root.

Let us suppose then that, for the two conjugate roots

we have these values of z:

(j = 1,2, ..., v).

Then, for new unknown functions, we shall be able to take in place of zj'), z?) the
quantities uj ' vj ' which will be linear forms in the quantities .r, with coefficients
constant and real.

The differential equations which these functions must satisfy reduce easily from
(5) [on separating real and imaginary parts] and have the following form:

(j = 2, 3, ..., v).

We shall obtain such sets of equations for each pair of conjugate complex roots,
and for real roots we shall have sets with the form (5).

Remark

While on the subject of the indicated transformation, let us note that, on using
this, we can demonstrate a proposition which is connected with the theory of linear
differential equations of which the elements have been expounded in the preceding
chapter. In fact (on returning to the hypotheses of Section 10), it is easy to establish
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Stability of motion: general problem 595

that] for each reducible system of equations, where all coefficients are real functions
of t, the transformation into a system with constant coefficients can be effected by
means of a substitution (of the character defined in Section 10) in which all the
coefficients are also real functions of t.

19. [Derived determinants and equations obtained on equating them to zero]
Let us consider the following problem.

Suppose given a partial differential equation

n av
L (Psi XI +Ps2X2+ ... +Psnxn)"-- = XV,

of = I uXs
(6)

t We may prove it in the following manner.
Let us assume that system (1) (in which the coefficientsnsa are assumed real functions of I)

is reducible. By virtue of what we have shown, we can then assume that, by a substitution
satisfying the conditions in Section 10, it is reduced to form (5). We can moreover obviously
suppose that all the Xs are real.

This settled, let

z(s} = u(~) + v(s) C]~1 } ;y-I

the uy', vy' being linear forms in the quantities x., of which the coefficients are real functions of
I. On considering the following k pairs offunctions:

U\I), 11\1>; U\2>. V\2>• . . . ; U\k), vt)
and on taking from each pair only one function, let us form all possible combinations, each
containing k functions. Since, by the property of the substitutions considered (Section 10), the
functional determinant [Jacobian] formed with the partial derivatives of the zy' with respect to
the x, willnot be a vanishing function of I, we shall therefore encounter at least one combination
such that we cannot form, with the functions which compose it, any linear expression with
constant coefficients(not simultaneously equal to zero) which is identically zero, or in which all
the coefficients by which the variables x, are affected are vanishing functions of I. For
definiteness let us suppose that this condition is fulfilled for the following combination:

u\Jl, U\2)• . . . , U\k).

We now note that, under our hypotheses, every integral (4) of system (I) gives a new integral
of the same system, when all the zy' are replaced by the quantities uy) And, under the
supposition that we have just admitted, all these integrals will be independent. In fact, if it were
not so, we could form with these integrals a linear expression with constant coefficients (not
simultaneously equal to zero) which would be identically zero. Now this expression will appear
in the form ofa sum of products of the quantities tre >' multiplied by linear expressions formed
with the uy); and, if we designate by Xthe least of the numbers Xs corresponding to those of the
integrals considered which actually appear in the linear expression in question, and by m the
greatest of the exponents of the powers of I that are found in those of these last integrals for
which X, = X, we must conclude that, for our expression to be identically zero, it must be that the
expression which is there multiplied by I"e r ts t either is also identically zero, or represents a form
in the quantities x, in which all the coefficients are vanishing functions of I. But neither the one
nor the other is possible, for the said expression will be necessarily a linear combination with
constant coefficients of the forms u\". Thus our integrals will be independent, and, by
consequence, the functional determinant of the quantities uy' with respect to the quantities x;
will not be identically zero. But then this determinant will be necessarily such that the quantity
which is inverse to it will represent a bounded function of I, for the said determinant can only
differ by a constant factor from the functional determinant of the quantities zy'.

In this way the substitution which replaces the variables x, by the variables uy' satisfies all
the conditions of the substitutions of Section 10. It moreover possesses real coefficients, and the
system of equations (I) is transformed, by this substitution, into a system with constant
coefficients.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
O
t
t
a
w
a
]
 
A
t
:
 
0
1
:
0
0
 
2
8
 
A
p
r
i
l
 
2
0
1
0



596 A. M. Lyapunov

in which X designates a constant. We ask to find all the values of X for which we can
satisfy this equation on taking for V an entire and homogeneous function of the
variables XI. X 2 • •••• x, of a given degree m.

It is easy to form the algebraic equation which must be satisfied by the sought
values of X.

Let N be the number of coefficients in the function V. so that

N = n(n + I )...(n + m - I) = (m + I )(m + 2) (m + n - I)
1 . 2 . 3 .....mI, 2 . 3 (n - l)

[see e.g. C. V. Durell. Advanced Algebra, London, 1932, Vol. I. pp. 99-100].
Such will also be the number of equations, linear and homogeneous with respect

to these coefficients, that we shall obtain on equating the coefficients of the same
products

on the two sides of equation (6).
On eliminating between these equations the coefficients of the function V we

shall obtain the algebraic equation sought. which will be of the following form:

all- X a\2 alN
a 21 a22 - X a2N =0

aNI am aNN -X

where the aij represent certain linear forms in the coefficients Pw
This equation will thus be of degree N.
Let us designate by Dm(X) the determinant which appears on the left-hand side.

On giving to m successively the values I, 2. 3, ..., we shall have an indefinite
sequence of determinants

where the first term will not differ from the determinant which we have designated
as D(X), and which we have called fundamental. All the other terms will be called
derived determinants. such that Dm(X) will be the (m - I)th derived determinant.

Knowing all the roots of the determinantal equation, it is easy to find all the
roots of the equation Dm(X) = 0, for we can demonstrate the following proposition.

THEOREM. If

are the roots of the determinantal equation. all the roots of the equation

will be obtained from the formula

X =m,x, +m2X2 + ... +mnXn, (7)

on giving the numbers mI. mh .... m; all the non-negative integer values which satisfy
the relation

m, +m2+ ... +mn =m,
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Stability of motion: general problem 597

and on taking care that one and the same system of values does not occur more than
once.

To prove this, let us first suppose that the coefficients Ps. are such that there
does not exist any relation of the form

III XI + 1l2X2 + ... + IlnXn = 0

where Ill' 1l2, ... , Iln are integers satisfying the conditions

1'., + /12 + ... + Iln = 0,

Ills I ,,:;m (s = 1,2, ...,n),

and not being simultaneously all zero.
Then the values of X defined by formula (7) will all be distinct. We shall assume

further that none of them is zero.
This agreed, and on understanding by X a number different from zero, let us

designate by VI' V2, ... , Vn the independent integrals of the system of linear differen­
tial equations that may be deduced from (I) on putting

1
t =-Iog v.

X

[Note that (I) and (6) imply dV[dt = XV, which is satisfied by the above relation.)
Then, <I> being an arbitrary function, the equation

<I>(V» V2, ... , vn ) = I, (8)

since it is soluble with respect to V, will furnish a solution of equation (6). [See
Goursat, Hedrick and Dunkel, loco cit., pp. 214-216.)

Let us suppose that all the integrals Vs are linear with respect to the variables
X t,X2' ... , x l1 "

As, under the agreed hypotheses, all the Xs will be distinct, these integrals will all
be of the form

where the (Xsj are constants.
Consequently, if we make

on understanding by the ms non-negative integers, of which the sum is equal to m,
and if we put further

equation (8) will lead to the solution
n

V = n (OCsIXI + (Xs2X2 + ... + (Xsnxn)m."
s "" I

representing an entire and homogeneous function [polynomial) of the quantities x,
of degree m.
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598 A. M. Lyapunou

It results from this that all the values of X of the form considered satisfy the
equation

Now, according to what we have assumed, the number of distinct values of this
form is equal to the degree N of the above equation. [When the m, vary, the number
of different expressions

mlXI + m2X2 + ... + mnXn

is the same as the number of different expressions

Thus no other value of X will be able to satisfy this equation.
Next, to prove the theorem in all its generality, it suffices to note that the cases

we have omitted can be considered as limiting cases of that which we have just
examined. They will thus not present any exceptions; but in these cases, the
equation Dm(X) = 0 will be able to have multiple roots or roots equal to zero.

Remark

Let us draw attention to the following property of the derived determinants.
When the determinantal equation does not have multiple roots and also when,

in the case of such roots, each of them makes zero all the minors of the
fundamental determinant up to the highest possible order for the multiplicity of the
root, each multiple root of the equation Dm(X) = 0 will possess the same properties
with respect to the minors of the determinant Dm(X).

This property may be demonstrated on noting that, under the indicated condi­
tion, to each root of the equation Dm(x) = 0, of multiplicity /1, there will correspond
/1 linearly independent solutions of equation (6), in the form of entire and
homogeneous functions of degree m.

20. [Entire and homogeneous functions satisfying certain linear partial
differential equations]

We can now demonstrate the following propositions.

THEOREM I. When the roots XI' X2, ... , Xn of the determinantal equation are such
that, under the condition m l + m2+ ... + m; = m, m being a given positive integer, we
cannot have any relation of the form

mlXI +m2X2 + ... +mnXn =0,

with non-negative integer values of the m., we shall always be able to find, and that
in a unique manner, a form V ofdegree m in the variables XI' X2, ..., x, satisfying the
equation

n av
L (Psi XI + Ps2 X2 + ... +p,.xn ) -;- = U

5 = I uXs

U being any given form of the same degree m.

(9)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
O
t
t
a
w
a
]
 
A
t
:
 
0
1
:
0
0
 
2
8
 
A
p
r
i
l
 
2
0
1
0



Stability of motion: general problem 599

In fact, to determine the coefficients of the sought form V, we shall have a
system of linear equations of which the number will be equal to that of the
coefficients. Moreover, the determinant of this system, which is Dm(O), will not be
zero under the conditions of the theorem. [Dm(O) is the product of roots of
Dm(X) = 0; and, because of the theorem of Section 19, none of these roots is zero.)

Remark

The condition of the theorem will be fulfilled for example, and indeed for each
value of m, when the real parts of the numbers Xs are different from zero and have
the same signs.

In the two following theorems we shall assume the quantities x, to be real,
whether we consider them as independent variables or as functions of t satisfying
equations (I). This is possible by consequence of the assumed reality of the
coefficients Psa-

THEOREM II. When the real parts of all the roots Xs are negative, and when, in
equation (9), the function U is a definite form of even degree, the form V of the same
degree satisfying this equation will also be definite, and its sign will moreover be
opposite to that of U.

To prove this, we note that, the quantities x, being considered as functions of t
satisfying equations (I), we can present equation (9) in the following form:

dV
di= U.

From this we conclude that for each solution of system of equations (\)
different from X, = X 2 = ... = x, = 0, the form V becomes a function of t, varying
constantly, when t increases, in one direction: it increases if U is positive, and
decreases if U is negative. Now, under the assumed hypothesis relative to the
quantities X" the functions X s satisfying equations ( I) will necessarily be such that,
t increasing indefinitely, they will tend towards zero. The same thing will then take
place for the function V under consideration. And that, by virtue of what we have
noted above [see Theorem II of section 16), is only possible provided that, for every
solution different from X, = X 2 = ... = x, = 0, the function V becomes a function of
t, such that for any value of t it cannot take the sign of the function U or become
zero. Now the latter condition is obviously equivalent to this, that for any choice
of the quantities X" the function V cannot take a value of the same sign as U or
become zero, unless we have XI = X 2 = ... = x; = O.

THEOREM III. If among the roots Xs there are found any of which the real parts
are positive and if, m being a given even number, these roots satisfy the condition of
Theorem I, then, U being a definite form of degree m, the form V of the same degree
satisfying equation (9) will certainly not be offixed sign opposite to that of u.

In fact, on considering the quantities x, as functions of t satisfying equations
(I), and on presenting equation (9) in the form

dV
di=U,
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600 A. M. Lyapunov

we can conclude that, if by suitable choice of quantities x" not simultaneously
equal to zero, we can make the function V zero, we shall also be able to give it a
value of the same sign as U. Consequently, if the function V could not receive the
same sign as U, it would be necessarily definite. And then we would find ourselves
in the conditions of Theorem I of Section 16, and we would be able to conclude
that, in every solution of equations (I), the functions x, would be bounded (only
considering, as before, values of t greater than its initial value).

Now this conclusion would be in disagreement with the hypothesis that among
the quantities Xs there are some with real parts positive, for, under this hypothesis,
there will always exist solutions of system (I) in which at least some of the functions
x, will not be bounded.

Thus the function V will necessarily be such that, by a suitable choice of the
quantities x,. we shall always be able to give it the sign of the function U.

Remark
In order that the condition of Theorem I may be fulfilled for any value of m, the

determinantal equation must not have zero roots. Moreover, for this condition to
be fulfilled for an even value of m, it must be that, among the roots of the
determinantal equation, there are no two roots of which the sum is zero.

21. [Canonical systems of linear differential equations]
Let us consider a canonical system [Hamiltonian system] of linear differential

equations

dx, iJH dy, iJH
dt iJys' dt iJx

s
(s = 1,2, ..., k),

where H is a quadratic form in the variables

( 10)

with constant coefficients.
If we put in general

iJ 2H iJ 2H iJ 2H

-- = Au, -- = B'l' -- = C;j,
iJx, iJxj iJy, iJYl iJx, iJYl

the fundamental determinant corresponding to this system will only differ by the
factor ( - I)k from the determinant

CII + X C21 Ck l BII B21 Bk l

C, 2 C22 + X Ck 2 B' 2 B22 Bk 2

s., B2k

CII - X ..---e, 2

C21 C22 - X

A ' k A2k Akk

Now, by virtue of the relations
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Stability of motion: general problem 601

this last determinant will not change in value on changing Xinto - X. To see this it
suffices, after the indicated replacement, to put rows in place of columns and to use
subsequently suitable substitutions [interchanges] for rows as well as columns.

As a consequence, the determinantal equation of system (10) contains only even
powers of X, and therefore to each of its roots Xwill correspond the root - X.

In this way, for the canonical system of equations, we find ourselves in the
singular case where the condition of Theorem I (preceding section) is not fulfilled for
any even value of m.

We may note that, H being a definite form of the variables XS' YS' all the roots of
the determinantal equation of system (10) will be purely imaginary. Moreover each
multiple root with multiplicity p. will make zero all the minors of the fundamental
determinant up to order p. - I inclusively.

Routh demonstrated this theorem algebraically. t But it is an immediate conse­
quence of the circumstance that H is one of the integrals of system (10). [Lyapunov
presumably has in mind that the constancy of H is incompatible with instability of
system (10), if H is definite.]

In the case when H is the sum of two quadratic forms, X, of the variables XS' and
Y, of the variables YS' and when at least one of the forms X or Y is definite, equations
(10) have all the properties of the linear differential equations by which are defined, in
a first approximation, the small oscillations of a material system in the neighbour­
hood of a position of equilibrium, when there exists a force-function. [See Routh, loco
cit., Chapter II.] In view of this, and basing ourselves on the known theorems of the
theory of small oscillations, we can affirm that in this case the determinantal equation
will have only roots of which the squares are real, and that these roots can be all
purely imaginary only under the condition that the form H is definite.

When H does not present itself in the form X + Y, with the preceding signification
of the symbols X and Y, all the roots can be purely imaginary without H being a
definite form.

Let us suppose that, from a general point of view, the function H is real and such
that the determinantal equation of system (10) has only purely imaginary roots. Let

A,R,A2R, ..·,AkR,
-A,P', -A2R, ...,-AkR,

be these roots, the As designating real numbers different from zero.
Let us assume that all these roots are distinct. Then we shall have for system (10)

2k independent integrals of the form

(us + ivs)e-il,I, (us - ivs)eil,l (s = 1,2, ..., k), (II)

t This proposition was presented by Routh in a different form, since in place of the
canonical system of equations he considered the following:

d iJL iJL dx, ,
-d;;--;=-;-' -d =X s (s=I,2, ... ,k),

t UX s UXs t

where L is a quadratic form in the variables x" x;. The role of the function H is then played
by the function

iJL ,
L-liJx'x,.,

See the advanced part of A Treatise on the Dynamics of a System of Rigid Bodies, fourth
edition, 1884, p. 68,
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602 A. M. Lyapunov

dy, aF kdi = ax
s

(s = 1,2, ..., )

where i = p. and Up D, are linear forms in the variables xj' Yj with real constant
coefficients.

Let us designate for two arbitrary functions ((I and l/J of the variables xj' Yj (these
functions can also contain t) by the symbol «((I. l/J) the quantity

f (a((l al/J _ a((l al/J) .
i» I aXj aYj aYjaXj

[This is a Poisson bracket-expression-see E. T. Whittaker. A Treatise on the
Analytical Dynamics of Particles and Rigid Bodies, Cambridge. 1937, fourth edition,
p. 299; and J. Bertrand. Note VII in J. L. Lagrange. Mecanique Analytique,
reprinted Paris. 1965. Vol. I. pp. 422-428.] Then. if ((I and l/J are integrals of system
( 10). «((I. l/J) will be. as is known. either an integral of this system. or a determinate
constant. [See Whittaker. loc. cit.• p. 320.] But, if the functions ((I and l/J are taken
from the series of integrals (II). the last case is evidently the only possible one.

For this reason, and on noting that. because of the assumption made, none of
the numbers As ± A•• sand a being different. will be zero. we must conclude that all
the quantities

for which sand o are different will be zero. As for the quantities

(us + iv" Us - ivs) (s = 1,2, .... k),

they will certainly all be non-zero. for in the contrary case the integrals (II) would
not be independent.

We conclude from this that all the brackets (n,; u.), (v" v.). and also. for sand
a different, all the (u" v.), will be zero. while all the (u" vs ) will be real constants
different from zero. We may moreover suppose these constants equal to I. for we
can always assume that each of the functions Us and Vs includes as a factor the same
arbitrary real constant, which we can choose in such a way that (u" vs ) becomes
equal to I in absolute value; and by a suitable choice of the sign of the number As
(which up to now has remained undetermined), we shall be able to make the
quantity (u" vs ) positive.

In this way, on giving a suitable sign to each of the numbers A" we can always
suppose the integrals (11) to be such that we have the equations

(u" u.) = 0, (v" v.) = D,

(u" vs ) = I, (u" v.) = 0 (u ~ s), (s, a = I. 2, ..., k).

Now these are well known equalities, from which we may conclude that, if we
form the partial derivatives of functions u" Vs with respect to variables xj, Yj, and
if next, considering the latter as functions of the former, we form the partial
derivatives of functions xj, Yj with respect to variables u" v" we shall have the
following relations. due to Jacobi:

aus aYj aus aXj avs aXj avs aYj .
-a =-a • -a = --a ' -a =-a ' -a = --a (s,] = 1,2, ...,k).

xj Vs Yj Vs Yj Us xj Us

It results from this that every canonical system of equations

dx, er
dt = - ays'
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Stability of motion: general problem 603

(where F is an arbitrary function of the variables x,, Ys), when we introduce in place
of the variables XS' Ys the variables u" u,; appears again in canonical form:

du, aF do, er
-d = --a ' -d =-a (s = 1,2, ...,k).

t Vs t Us

Now system (10) reduces in this way to the form

(s=I,2, ...,k).

[These equations can be obtained by equating the derivative of the first term in ( II)
to zero, and then separating real and imaginary parts.] As a consequence, the
function H, expressed in terms of the variables US' v" will be

A) 2 2 A2 2 2 Ak 2 2
H =2"(u , +v l ) +2"(u2+ V2) + ...+2"(uk + Vk)'

The preceding analysis, with slight modifications, applies also to the case where
the determinantal equation of system (10) has multiple roots, provided that each
multiple root makes zero all the minors of the fundamental determinant up to the
highest order possible.

To prove this, let us consider two roots, Aj=! and -Aj=! each of
multiplicity m.

Under the indicated condition, there will correspond to these roots 2m indepen­
dent integrals of system (10) with the following form:

( 12)

where i, as before, represents "C!, all the U, and Vs being linear forms in the
variables xj , Yj with constant coefficients. We may further suppose that, for each
pair of forms V" V" the coefficients of one are deduced from the coefficients of the
other on changing j=! into - j=!.

On forming such a system of integrals for each pair of conjugate roots, we shall
have a complete system of 2k independent integrals of equations (10).

This settled, and on considering all the possible brackets formed with the
functions VS' V" we shall evidently obtain

(VS' V.) = 0, (V" V.) = 0 (s, (1 = 1,2, ..., m).

We shall also find that all the brackets will be zero which we can form on
combining each of the functions U, or Vs with each of the analogous functions
which correspond to other roots.

It results from this that, for each number s taken from the sequence I, 2, ..., m,
there will be found, in the same sequence, a number (1 such that the bracket (V" V.)
represents a non-zero constant. In fact, if all the brackets

tu; V,), (V" V2 ) , ••• , (V" Vm )

were zero, it would be the same for all the 2k - I brackets which could be formed
on combining the integral U,« -ill with all the other linear integrals of the complete
system of independent integrals. And this, obviously, is impossible.

It can happen that, among the brackets of the form (V" Vs ) , there are some
which are not zero.

Let us assume for example that (V" V,) is not zero. Then we can transform
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604 A. M. Lyapunov

system (12) into an equivalent system of integrals and with the same character,

Uie :" V1e iJ/
, U'ie"!", V~ei..tt (0' = 2, 3, ..., m)

for which all the brackets

(V~,V,), (V"V~) (u=2,3, ...,m)

will be zero. For this, we have only to put

V~ = U, + CtaV" V~ = Va + Pa V, ,

on attributing to the constants Cta, Pa the following values:

(Va, V,) P = _ (V" Va)
Ct

a = (V" V,)' a (V" V,)

and then the function V~ will be deduced from the function V~ by change of J=!
into -J=!.

Let us now assume that all the brackets of the form (Vn V,) are zero.
As among the brackets (V" Va) there will certainly be some which are different

from zero, let (V" V2 ) be non-zero. Then on putting

V; = VI +i(V" V2)V2 ' V; = V, +i(V2 , VI )V2 ,

and taking account of the equalities (V" V,) = 0, (V2 , V2 ) = 0, we shall have

(V'" V;) =2i(V" V2)(V2 , V,),

and this quantity will certainly not be zero, because (V2 , V,) is a quantity conjugate
with - (VI' V2 ) , which is not zero.

By consequence, if we replace the integrals in the first column of array (12) by
the integrals

which leads to a new system of 2m independent integrals of the same character (for
the function V, is deduced from the function V', on changing i into - i), we shall
find ourselves again with the case we have just examined.

Thus we can suppose that, for system of integrals (12), the bracket (V" V,)
represents a constant different from zero, and that all the brackets (V" Va) and
(Va' V,) where a > I are zero. And then we shall be able to apply the preceding
reasoning to the system of 2(m - I) integrals which we shall have on deleting the
first column of array (12).

We see by this that the system of integrals (12) can always be supposed such
that all the brackets (VS' Va), for which sand a are different, are zero, and that
none of the quantities (Vn V,) is zero.

After having formed such systems of integrals for each pair of conjugate roots,
we can then reason just as in the case of simple roots.

In this way we arrive at the conclusion that, if the determinantal equation of
system (10) has only purely imaginary roots, of which the squares are

-Af, -A~, ..., -AZ,

and if, moreover, in the case of multiple roots, each of the latter makes zero all the
minors of the fundamental determinant up to the highest order possible, then, with
the aid of a linear substitution with real constant coefficients, every canonical
system of equations of the form

dx, o(H + F) dy, o(H + F)
dt = oy, dt = ox, (s = 1,2, ..., k)
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Stability of motion: general problem

will be able to be transformed into a canonical system of the following form:

605

du, aF
--;j( = - AsVs - avs '

do, aF
-d = AsUs + -a (s = 1,2, ..., k),

t Us

provided that we understand by each As a number with suitable sign.
We may remark that a transformation similar to the preceding one is also

possible in: the case where the determinantal equation has, besides purely imaginary
roots, a zero root, provided that the condition indicated above is fulfilled for each
of the multiple roots, among which the zero root will always belong.

Study of the differential equations of the disturbed motion
22. [Integration by means of series ordered according to powers of the

arbitrary constants]

Let

dx, )--;j( = PsIX , +Ps2X2 + ... +PsnXn + X s (s = 1,2, ..., n (13)

be the proposed differential equations of the disturbed motion.
All the Xs designate here given holomorphic functions of the variables

X,, X 2, ••• , X., for which the expansions

X =" p(ml.m2 •...• m n )X mlxm2 x m• ( I 2 n)s L, s I 2'" n S = , , ...,

do not include terms of degree below the second, and the coefficients Psa,
p~ml' mz . . ..• m.) are real constants.

As far as the independent variable t is concerned, inasmuch as there will be no
need to attribute complex values to it, we shall take it to be real, as before.

If we omit in equations (13) terms of degree higher than the first, we shall have
a system of linear differential equations corresponding to the first approximation.
In forming for this system the determinantal equation, we shall say that it is the
determinantal equation of system (13).

Let XI' X2, ..., Xn be all the roots of this equation.
On integrating system (13) by the procedure expounded in Section 3 we shall

obtain, for the functions X" the series

X~') + X~2) + X~3) +... (s = 1,2, ..., n),

of which the mth terms will be of the following form:

(14)

Here the summation extends over all non-negative integers m" m2 , ... , mn satisfying
the condition

o< m , + m2 + ... + m; ~ m,

and the coefficients T (entire and homogeneous of degree m with respect to the
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606 A. M. Lyapuno»

arbitrary constants) are either constant quantities, or-entire functions of t, of which
the degrees do not exceed a certain limit] dependent on m.

We shall call the coefficients which are of this second kind secular; and we shall
make use of the same expression to designate the terms where they occur, when the
numbers

which correspond to them, are zero or represent purely imaginary quantities.
If we drop the condition introduced in Section 3 that all the functions x~m), for

which m > I, should be zero for one and the same given value of t, we shall be able
to arrange calculations so that expressions (14) become homogeneous of degree m
with respect to the exponential functions

( 15)

At the same time, we shall be able to give the coefficients T the form

0(1,0(2' ••• , O(n being arbitrary constants, on which the coefficients K do not depend,
which coefficients represent either constant quantities or entire functions of t.

Then on making some of the constants O(s zero, we shall obtain series where
there will enter only some of the function (15).

However, if we wish the series obtained to be convergent, at least within certain
limits of the variable t and for sufficiently small values of 100s I, we should, in general,
only carry out the calculations in this manner up to a certain limit m = N (but quite
arbitrary), and for m > N we should return to the hypothesis of Section 3. From
then on, in the expressions of the functions x~m) will appear anew all the functions
(15) and, relative to the latter, the expressions for x~m) will no longer be homoge­
neous.

The cases where we cannot assign the limit N present a particular interest. Some
of them, the most important for our problem, will be indicated in the next section.

It should be noted that the condition for the functions x~m) to be homogeneous
with respect to quantities (15) does not always suffice to determine completely the
constants which are introduced by the integration of the equations on which these
functions depend. In such cases there will still remain a certain number of constants
which we shall be able to dispose of as we choose.

Let us consider the series where there appear the exponential functions relative
to the k roots

XI, X2, ..., Xk (16)

of the determinantal equation.
It is easy to assure ourselves that, if secular coefficients do not enter into any of

the first m - I approximations

X~I) + X~2) + ... + x~) (Jl = 1,2, ..., m - I; s = 1,2, ..., n)

t It is easy to convince ourselves that these degrees do not exceed the number
(211 + I)m - II - I, where II is the highest of these degrees in the case of m = L
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Stability of motion: general problem 607

and if. by choice of the non-negative integers m" m2• ...• mi , satisfying the condi­
tion

m, + m2+ ... + mk = m,

we cannot satisfy any relation of the form

m,x, +m2X2 + ... +mkXk = Xs (s = 1.2, ...,n),

such coefficients will also not enter into the mth approximation.
For this reason. if the roots (16) have all their real parts with the same sign, the

absence or presence of secular coefficients in the series considered will always be
able to be revealed with the aid of a limited number of elementary algebraic
operations.t

In what follows we shall often consider. in place of equations (13) themselves.
different transformations of them obtained by means of linear substitutions with
constant coefficients.t on guiding our choice of these substitutions by the consider­
ation that, in the transformed equations. the ensembles of terms of first degree
should take a special form as simple as possible. Such are the substitutions
envisaged in Section 18.

We shall meet with questions where the condition of reality of the coefficients in
the differential equations will not play any role. In such a case. by means of the
indicated substitutions. we shall be able to reduce equations (13) to the form
[compare (5)]

m, }di=X,z,+Z,.
( 17)

dz,
di = XsZ., + (1s_,Zs_, + Z, (s = 2, 3•...• n).

where the Z, are holomorphic functions of the variables Z,. Z2 • ...• z; for which the
expansions in powers of the latter begin with terms of degree not less than the
second, and have constant coefficients; X" X2, ..., Xn are the roots of the determinan­
tal equation corresponding to system (13), and (1" (12, •..• (1n_' are constants, which
we shall be able to assume zero if all the Xj are distinct.

23. [Theorem on the convergence of these series, obtained from the theorem of
Section 12]

Let us suppose that we have formed series satisfying formally equations (13),
ordered according to increasing powers of k arbitrary constants (J(" (J(2' ••• , (J(k' and
containing the exponential functions relating to the k roots of the determinantal
equation

( 18)

t Every system of differential equations on which the functions x~m) depend. for which
m > I. will be integrable with the aid of undetermined coefficients. Then the whole question
will reduce each time to the resolution of certain systems of algebraic equations of the first
degree.

t It is understood that we shall only consider substitutions which allow the new variables
to be freely expressed in terms of the old as well as the old in terms of the new.
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Suppose that these series are

A. M. Lyapunov

(s = I, 2, ..., n), ( 19)

the coefficients K not depending on the rtj and representing constant quantities or
entire functions of t. As for the summation, it extends over all non-negative integer
values m" m2, ..., mk with sum not less than 1.

This will be a particular case of the series (25) considered in Section II.
This settled, and on referring to the theorem of Section 12, we can deduce from

it the following proposition.

THEOREM. On going to the case where the real parts

of the roots (18) are all non -zero and with the same sign, let us desigate by r a real
number, chosen arbitrarily, and let us only consider values of t satisfying the condition

±(t-r)~O, (20)

the upper sign corresponding to the case where AjU = I, 2, ..., k) are positive numbers,
and the lower sign corresponding to where these are negative numbers. Then, if, on
understanding by 8 a real number of the same sign as the ~ {which number, if all the
coefficients K in series (19) are constants, can be supposed zero}, we put

rtje(Xi H)I = qj U = 1,2, ..., k),

and if we then substitute the values of the rtj which result into series (19), the new
series

X =" Q(m'.m2 , ...• mk)qm'qm2 qmk (s =I 2 n)s ~ s I 2 ... k , , ... , , (21)

ordered according to powers of the qj, will enjoy the property that, the numbers rand
8 being fixed, we shall be able to assign a positive number q such that, the moduli of
the qj not exceeding q, series (21) will be convergent, and indeed uniformly so for all
values of t satisfying condition (20).

Let us assume first that all the ~ are positive.
Then, if r = 0, this proposition will be an immediate consequence of the theorem

of Section 12, for the quantities qj which we are now considering only differ from
those which we were concerned with in that section by factors of which the moduli
are equal to I.

As for the case where r is not zero, we may prove the proposition under
consideration on applying the theorem of Section 12 to, instead of series (19), those
which are deduced from them on replacing

by t + r,

rtj by rtje -(Xi H),

{and which consequently also formally satisfy equations (I3)}. In fact, in the series
(21) corresponding to these new series, the coefficients Q will be obtained from the
old ones on replacing t by t + r,
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Stability of motion: general problem 609

If all the Aj are negative, we may reduce this case to the preceding one. For this
it will suffice, in series (19) and in equations (13), merely to replace t by -r t,

As far as the possibility of the hypothesis E = 0 is concerned, when all the
coefficients K are constants, this is obvious, without any need for clarification.

From the theorem under consideration, on applying reasoning analogous to that
in Section 4 we can conclude that, if the roots (18) taken for forming series (19)
have their real parts with the same sign, there is defined by these series a solution
of system of equations ( 13), whether for every value of t greater than a certain limit
if the real parts of roots (18) are all negative, or for every value of t less than a
certain limit if these real parts are all positive. As for these limits, they depend on
the constants Q(" in such a way that on making the IQ(, I sufficiently small, we shall be
able to choose them at will.

These solutions will contain k arbitrary constants, and the number of the
latter will not be able to be reduced if, to form series (19), we take k independent
solutions

K\l,o.....O)eXI1, K~J·o.....O)ex't, •• " K~).o.....O)eXlf,

K\o. I,.", O)eX2', K~o. I, .. ,O)eX2', ••• , K~o. I, ...• O)eX2',

of the system of differential equations of the first approximation.
In speaking of solutions of this kind, we shall always assume this condition.
In the case where the real parts of all the roots of the determinantal equation are

different from zero and have the same sign, we can put k = n, and then series ( 19)
will define a general integral of system of equations (13).

Remark

If we are dealing with this last case, we can, on forming series (19) under the
hypothesis that k = n, deduce from them n independent integrals of system (13) of
the form

e - Ys 1 " L(.,ml,m2 •...• nln)Xnl"Xm22 ••• X m
n"

(s - I 2 n)L. - , , ... , , (22)

where the summation extends over all values of the non-negative integers
m l , m2 , ••• , m; with sum not less than I, and where the coefficients L are constant
quantities or entire functions of t, of which the degrees do not exceed a certain limit
dependent on the number m l + m2 + ...+ m.:

The series (22) will be absolutely convergent for every given value of t, as long
as the moduli of the quantities X,. do not exceed a certain limit, which will in general
depend on t (and will be able to tend to zero when It I increases indefinitely).

The case where all the coefficients L are constant quantities presents a particular
interest. For it to occur, it is necessary and sufficient that all the coefficients K in
series (19) should also be constant.

As has already been remarked in the preceding section, it is always easy, under
the conditions considered, to recognize whether we have to do with this case.

For this to be possible, every multiple root of the determinantal equation must
make zero all the minors of the fundamental determinant up to the highest order
possible.
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610 A. M. Lyapunov

Let us assume that this condition is satisfied and that, moreover, m" m-, ..., m;
being non-negative integers with sum greater than 1, there does not exist any
relation of the form

m, X, + m2X2+ ...+ mnXn = Xj (j = 1,2, ... , n), (23)

(24)

Then we can be certain that all the coefficients K and L will be constants.
In general, whenever the coefficients L are constants, we shall have, for the

system of differential equations obtained from (13) on eliminating dt, the following
system of equations of integrals

(:;)"XI = (::)"X2 = ... = (:Jlxn,
where cP" CP2, ... , CPn are holomorphic functions of the variables X,, X 2, ... , X.,

defined by the series which are deduced from (22) on dividing by e v-'.
On associating with them anyone of equations of the form

and on supposing that we only give to t values greater or less than a certain limit
(dependent on the constants a), according as the real parts of all the Xjare negative
or positive, we shall obtain a complete system of equations of integrals for system
( 13).

The result we have just indicated represents a theorem given by Mr Poincare in
his Thesis: Sur les Proprietes des Fonctions Definies par les Equations aux Differences
Partielles (Paris, Gauthier-Villars, 1879, p. 70)t. On making certain hypothesesj
{including among others, that the roots Xs do not satisfy any relation of the form
(23)}, Mr Poincare proves the existence of the equations of integrals of the form
(24) without going via equations (19). And specifically, he obtains them by
considering the partial differential equations

and by showing that, under certain conditions, these equations admit solutions
holomorphic in XI' X2, ... , X n •

24. [Theorems on the conditions for stability and for instability supplied by the
first approximation]

From the theorem of the preceding section, or immediately from the theorems
of Section 13, we may obtain the following.

t On the subject of this theorem, Mr Poincare remarks that it was communicated to him
by Mr Darboux.

t In place of our hypothesis that the real parts of all the roots X, are of the same sign, Mr
Poincare makes a more general one, namely that the points of the complex plane represent­
ing these roots are all situated on the same side of a straight line passing through the origin
of coordinates. But if we consider, not the quantities X., themselves, but only their mutual
ratios, {and that is precisely what is required for equations (24)}, the latter hypothesis will
not differ essentially from the former.
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Stability of motion: general problem 611

THEOREM I. When the determinantal equation corresponding to the system of
differential equations of the disturbed motion has only roots with negative real parts,
the undisturbed motion is stable, and moreover in such a way that every disturbed
motion for which the perturbations are sufficiently small will approach asymptotically
the undisturbed motion.

THEOREM II. When the determinantal equation admits roots with negative real
parts, then, whatever the other roots, there will be a certain conditional stability. And
specifically, if the number of these roots is k, the undisturbed motion will be stable
provided that the initial values as of the functions x, satisfy a certain set of n - k
equations of the form

Fj(a" a2 , ... , an) = 0 (j = 1,2, ..., n - k),

where the left-hand sides are holomorphic functions of the as> becoming zero when all
the a, are zero, and moreover such that all the as will be able to be expressed as
holomorphic functions of a certain set of k arbitrary parameters.

To these theorems we may now add the following.

THEOREM III. When among the roots of the determinantal equation there are
some for which the real parts are positive, the undisturbed motion is unstable.

Let us first assume that among the roots there are some which are real and
positive.

If there exist several of these, let Xbe the greatest of them. Then mx, for m > I,
will certainly not be a root of the determinantal equation. [Hence the equation
preceding (17) will not be satisfied.] And, by consequence, if we form series (19)
under the supposition k = I, on taking for the first approximation a solution of
system (I) of the form

where all the K, are constant quantities, all the coefficients K in series (19) will also
be constants.

We shall assume, as is permissible, that these coefficients are real and indepen­
dent of the arbitrary constant a.

Let

x; = fn(ae")

be the solution of system (13) thus obtained.
All the f, here are holomorphic functions of the argument «e", becoming zero

when the latter becomes zero and only taking real values when this argument
remains real.

To this solution, a being real, there will correspond a certain motion, and so this
motion will be defined as long as the absolute value of ae" remains small enough
for the series representing the functions f, to be convergent and for the absolute
values of their sums not to exceed a certain limit.
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612 A. M. Lyapunov

Let us assume that this takes place as long as

laex'i '" I,

I being a positive number independent of a.
Then our motion will be defined for all values of t which do not exceed the

following limit:

1 I
r =X log~.

In this manner, if la I is small enough for this limit to be greater than the initial
value of t, we shall obtain a disturbed motion which we shall be able to trace from
the initial instant up to the instant when t = r.

This motion is such that the corresponding initial values of the functions Xs> on
making la I sufficiently small, all become as small in absolute value as we wish, while
their values for t = r

among which there will certainly be some which are different from zero, t do not
depend on the absolute value of a.

We must conclude that the undisturbed motion is unstable. [Recall the defini­
tion of stability in Section I.]

Let us now assume that the determinantal equation does not have positive roots,
but does have complex roots with positive real parts.

Let us choose from them two conjugate roots

XI = ). + JlF, Xz = ). - JlF

having the greatest possible real part A.
As expressions of the form

mlXI +mzXz = (m l +mz»)' +(m l -mz)JlF

m l and m2 satisfying the condition m l + m2 > I, will certainly not be roots of the
determinantal equation [so that the equation preceding (17) will not be satisfied],
we shall have for system (13) a solution in the form of series (19), with two
arbitrary constants al and a2, where all the coefficients K will be constants.

Let this solution be

x, = /,(a l e XI ', aze X2' ) (s = I. 2, ... , n),

the j, being holomorphic functions of the arguments ale'" and azexz', becoming
zero when these arguments become zero.

We can suppose the functions Is to be such that each of the functions

j,(~ + IJF, ~ -IJJ=!) (s = 1,2, ...• n).

~ and IJ being real. is real.

t If the values of the functions x, corresponding to a certain value of I are all zero. these
functions will be necessarily zero for every value of I (see the footnote to Section 14). And
we may safelyassume that. among the functionsIn there exist some which are not identically
zero.
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Stability of motion: general problem 613

Then, to every pair of complex conjugate values of <x, and <Xz, there will
correspond a certain motion, which will be defined at least for values of t satisfying
inequalities of the form

I<X I e"'1 ,;:;I, l<Xze"'I,;:; I,

where I designates a positive constant number independent of <x, and <Xz.
Let <X be the modulus of <x, and <Xz such that, i designating j=1, we have

Only attributing to <X non-zero values, let us put

J1 I
{3 = -;: log~.

Then, <X being sufficiently small, our solution will define a disturbed motion
corresponding to perturbations as small as we wish, and, however, such that at the
instant

I I
t =-Iog-

.Ie <x'

the functions x, will take values

x, =!,(l, I) (s = 1,2, ..., n),

independent of <x.

Thus, as in the preceding case, we must conclude that the undisturbed motion
is unstable.

In this manner we can consider the theorem as proved.t

25. [Condition for instability of equilibrium in the case where there exists a
force-function)

From what has been proved there follows a complement to the theorem of
Lagrange on stability of equilibrium in the case where there is a force-function [i.e.
where there is a potential energy function).

This theorem gives, as we know, a sufficient condition for stability which
consists in this, that the force-function must attain, at the position of equilibrium,
a maximum.

But, in establishing that this condition is sufficient, the theorem in question does
not allow any conclusion about the necessity of the same condition.

That is why the question arises: will the position of equilibrium be unstable if
the force-function is not maximum?

Posed in its general form, this question has not been resolved up to the present.
But, with certain assumptions of a rather general character, we can answer it in a

t This theorem was demonstrated in the same way in my memoir Sur les mouvements
helicoidaux permanents d'un corps solide dans un Iiquide (Communications de la Societe
mathematique de Kharkow, second series, Vol. I, 1888). In this memoir, in pointing out that,
under certain conditions, the differential equations of the disturbed motion admit solutions
of the form (19), I did not make mention of the work cited above of Mr Poincare (see
Section 23), because this work was not known to me at that time.
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614 A. M. Lyapunov

precise manner; for the last theorem of the preceding section leads to a proposition
which can be considered under certain conditions as the converse of the theorem of
Lagrange. These conditions are, moreover, those which we have to deal with most
often in applications.

Let

be the independent variables defining the position of the material system under
consideration.

We shall suppose them chosen in such a way that, for the position of equi­
librium being examined, they all become zero.

The force-function U can depend on all these variables or on only some of them.
Let us agree that it depends only on the m following ones:

q" q2, ..., qm, (25)

and let us assume further that it is a holomorphic function of them.
The vis viva [i.e, double the kinetic energy] of our system, which will be a

quadratic form of the derivatives

of the variables qj with respect to t, with coefficients dependent on the qj' will also
be assumed holomorphic with respect to the qj'

Under our assumption concerning the force-function, the position of equi­
librium considered will be one of a series of positions of equilibrium, infinite in
number, which will be obtained on giving to the variables

arbitrary constant values and on making variables (25) zero.
If U, as a function of the m independent variables (25), becomes a maximum for

q, = q, = ... = qm = 0

each of these positions of equilibrium, according to the theorem of Lagrange, will
be, with respect to quantities (25), stable.

Let us suppose now that, the m variables in question being all zero, the force­
function does not become maximum.

We are going to show that if this circumstance is manifested by the property that
the ensemble oj terms oj second degree in the expansion oj U in powers oj the
quantities qj can take positive values, the position oj equilibrium under consideration,
as well as the other positions oj equilibrium indicated above, provided they are
sufficiently near, will be unstable, and that the instability will even hold with respect
to quantities (25).

In fact, by the theory of small oscillations, we know that under the. stated
condition the determinantal equation always has at least one positive root. Conse­
quently, according to previous material, instability will certainly take place with
respect to some of the 2k following quantities:

Thus it only remains to show that it takes place with respect to the first m of
these quantities.
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Stability of motion: general problem 615

For this, on designating by X the greatest of the positive roots of the determi­
nan tal equation, let us take the corresponding solution

of the differential equations of motion. This is a solution of the type considered in
the proof of Theorem III.

Our proposition will evidently be demonstrated if we can show that, among the
functions

f, ,12' ···,fm

there are some which are not identically zero (we assume, it is understood, that the
k functions f, ,12, ...,fk are not all identically zero).

Now, this circumstance manifests itself at once, for in every motion (if such
motion were possible) where quantities (25) would be identically zero, the equation
of vis viva [i.e. the equation indicating constancy of total energy] would obviously
give for the latter a non-zero constant value, while for the solution of the type
considered, the vis viva must tend towards zero when ( - t) increases indefinitely.

As far as the case is concerned where the absence of a maximum of the force­
function is only recognized on examining terms of higher degree than second,
Theorem III cannot serve to prove instability.

One case of this sort has been pointed out in Section 16 (Example II), where
instability was demonstrated on applying a general theorem of quite another kind.

26. [New demonstration of the propositions of Section 24. General theorem
on instability]

We have arrived at the theorems of Section 24 on considering certain series
satisfying the differential equations of the disturbed motion. But Theorems I and III
are easily demonstrated without having recourse to these series, and we are now
going to show how we can achieve this on starting from the general propositions of
Section 16.

Let us assume that the detenninantal equation of system (13) has only roots
with negative real parts.

We know that under this condition there always exists a quadratic form V of the
variables XI' X 2, .•. , x, satisfying the equation

(26)

[see Theorem I of Section 20] and, by consequence, such that its total derivative
with respect to t,

dV 2 2 2 ~ OV
-d =X I+X 2+···+Xn+ L. X,-,----,

t s= 1 uXs

formed in accordance with equations (13), represents a positive-definite function
[recall that the lx, Iare assumed small-see (40) of Section 15]. We also know that
this form (V] will be negative-definite (Section 20, Theorems I and II).

We can thus find a function V satisfying all the conditions of Theorem I
(Section 16).

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
O
t
t
a
w
a
]
 
A
t
:
 
0
1
:
0
0
 
2
8
 
A
p
r
i
l
 
2
0
1
0



616 A.M. Lyapunov

(27)

Our form, which represents such a function, will moreover satisfy the conditions
of the proposition which is established in the Remark II relating to this theorem.

We must, therefore, conclude that the undisturbed motion is stable and that
each disturbed motion for which the perturbations are sufficiently small will tend
asymptotically towards the undisturbed motion.

Let us now assume that, among the roots of the determinantal equation, there
are some for which the real parts are positive.

If then the determinant D2(0) (Section 19) is not zero, we shall find, as before,
a quadratic form V satisfying equation (26); but this form, under the present
hypothesis, will be such that, by means of a suitable choice of real values for the
quantities X.n we shall always be able to make it positive (Section 20, Theorem III).
Thus, as it possesses a positive-definite derivative, it will satisfy all the conditions of
Theorem II of Section 16.

We must therefore conclude that the undisturbed motion is unstable.
If D2(0) = 0, we take instead of equation (26) the following:

;;, av 2 2 2
L. (P."x, +Ps2X2 + ... +Ps"x,,) a- =.leV +.'1', +.'1'2 + ... +.'1'",

s- I Xs

on understanding by .Ie a positive constant.
Assuming that this constant is not a root of the equation D2(X,) = 0, we shall

always find a quadratic form V satisfying equation (27). Now, in satisfying the
latter, this form will necessarily satisfy the following:

;;, { (),) }aV 2 2 2
s:-' P."x, + P.,2 X2 + ... + P.,.. -"2 Xs + ... +Ps"x" ax.. = x, + .'1'2 + ... + x".

And this equation is obtained from (26) on replacing the quantities P" by the
quantities Pss - .Ie/2; also all the theorems of Section 20 can be applied to it,
provided that, in place of the roots of the determinantal equation of system (13), we
consider the roots of the equation

D G+x)=o.
Consequently, if we assume that the constant .Ie is so small that we can satisfy

this equation by a value of X with real part positive, we can be certain that the form
V will be capable of taking positive values.

But then the form V, of which the total derivative with respect to t reduces to
the form

dV 2 2 2;;' aV
-d =.leV+x,+x2+ ..·+x,,+ L. X'-a '

t s=1 X s

will satisfy all the conditions of Theorem III of section 16.
We therefore conclude that the undisturbed motion is unstable.

Remark.

The preceding demonstrations evidently apply not only to the case of steady
motion, but also to much more general cases, for the assumption that the co­
efficients P~"" m2· .... m") entering into the expansions of the functions Xs are constant
quantities has not played any role in these proofs. These coefficients will be able to

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
O
t
t
a
w
a
]
 
A
t
:
 
0
1
:
0
0
 
2
8
 
A
p
r
i
l
 
2
0
1
0



Stability of motion: general problem 617

be functions of t, and, for the preceding analysis to be applicable, these functions
only have to satisfy the general conditions set up at the beginning of Section II.

For this reason we can obtain from our analysis a general theorem on instability,
which will complete in certain respects the propositions of Section 13.

This theorem appears initially as if it were subject to the restriction that the
coefficients Psn are constant quantities. But it extends immediately to the condition
that the system of differential equations of the first approximation belongs to the
class of systems which we have called reducible (see Section 10 and the remark in
Section 18). Thus it can be enunciated as follows.

If the system ofdifferential equations of the first approximation is reducible and if,
in the set of its characteristic numbers, some are negative, the undisturbed motion is
unstable.

On bringing together this result and Theorem I (Section 13), we arrive at the
conclusion that, for reducible systems, the question of stability is resolved by the sign
of the least of the characteristic numbers. Thus doubt only remains in the case where
this number is zero. Then the question cannot be resolved unless, in the differential
equations, we have taken account of terms of higher degree than the first.t

27. [Singular cases where consideration of the first approximation alone is insufficient.
Definition of those which will be the subject of subsequent investigations]

From the preceding analysis it results that, in most cases, the question of stability
is resolved by the examination of the first approximation, and this examination fails
to answer the question only in the case where the determinantal equation, without
having roots with positive real parts, possesses roots of which the real parts are zero.

These singular cases are nevertheless of very great interest, as much as a result
of the difficulty of their analysis as because, for many problems, it is only in these
cases that absolute stability is possible [Lyapunov has in mind astronomical
problems].

Thus, for example, if the system of equations under examination is canonical
[Hamiltonian],

dx, en dv, oH
dt

--, -d =-;- (s = 1,2, ..., k)oy, . tux,

(H being a holomorphic function of the variables x" x 2 , ... , Xk> y" Y2' ... , Yk> not
containing terms of degree below the second), absolute stability is only possible if
all the roots of the determinantal equation have their real parts zero.

We arrive at this conclusion on taking into account that this equation contains
only even powers of the unknown X (Section 21).

If, among its roots, there were some which had real parts different from zero,
there would only exist a certain conditional stability (Section 24, Theorem II) of such
a character that, for certain perturbations, the disturbed motions would approach
asymptotically the undisturbed motion.

In the case where the real parts of all the roots are zero, it can happen that H
is a definite function. Then stability will actually occur [because of Theorem I of
Section 16]. But, if H is not such a function, the question becomes in general very
difficult and we are unable to indicate methods for resolving it.

t See the note added at the end of this memoir.
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618 A. M. Lyapunov

It would be natural to have recourse, for this purpose, to the integration of our
equations with the aid of series. But the series which give, in the cases which interest
us, known methods of integration are not of a nature capable of leading to general
conclusions on stability.

Series ordered according to powers of arbitrary constants, which are obtained
by the usual method of successive approximations, already present the inconvc­
nience that we encounter, in general, secular terms, which ordinarily enter even in
the case when stability actually occurs. And the presence of these terms makes the
study of the question very difficult.

It would thus be desirable to have methods of integration which furnish series
deprived of secular terms.

We know that, in celestial mechanics, the seeking of such methods constitutes
the aim of several modern researches. Among these researches, those of Gylden and
of Lindstedt merit special attention.

The methods proposed by Gylden rest, as is known, on consideration of elliptic
functions.

The simplest method of Lindstedt, in the case where it leads to the desired end,
supplies series of sines and cosines of multiples of I, depending not only on the
roots of the determinantal equation (which are supposed all purely imaginary), but
also on the arbitrary constants introduced by the integration. It is the latter
circumstance which allows us to make the secular terms disappear. t

But, although we have thus been able to indicate methods sometimes allowing
us to get rid of secular terms, the difficulty is far from being eliminated by this, for
it still remains to resolve an essential question, that of the convergence of the series
obtained. Now this question, for systems of differential equations of higher order
than second, is not easy to resolve, and up to the present nobody has done anything
on this subject from which we could profit here.]

We have in view problems where the said methods are applied to the seeking of
the general integral. As for those where we limit ourselves to seeking particular
solutions, we could, under certain conditions, obtain for example periodic series
similar to those of Lindstedt, for which the convergence would be indubitable.

We shall occupy ourselves with such series at the end of this chapter.
As appears from what we have just said, questions of stability, in the singular

cases which interest us, are very difficult. The difficulties moreover become the more
serious the greater the number of roots with real parts zero.

Thus, if we wish to arrive at some general methods for these questions, it is
necessary to begin with cases where the number of the aforesaid roots is the
smallest possible.

We shall limit ourselves here to the examination of the two simplest cases of the
following kind: (I) where the determinantal equation has a zero root, all the other

t Lindstedt, Beitrag zur Integration der Differentialgleichungen der Storungstheorie
(Memoires de F'Academie des Sciences de Saint-Petersbourg, seventh series, Vol. XXXI, No.
4, [1883]).

t Recently there has appeared a remarkable memoir on the above point by Mr Poincare:
Sur Ie probleme des trois corps et les equations de la dynamique (Acta Mothematica. Vol.
XIII, [1890]). In this memoir, among other questions, there is considered that of the
convergence of the series of Lindstedt for a canonical system of fourth order, and concerning
this convergence the author arrives at a negative conclusion.
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Stability of motion: general problem 619

(28)

roots having their real parts negative; and (2) where the equation has two purely
imaginary roots, the other roots, being of the same nature as before.t

Our analysis will represent an application of what we have called the second
method in Section 5.

First case. Determinantal equation with one root equal to zero
28. [Reduction of differential equations to a suitable form]

Let us consider a system of differential equations of order n + I for the
disturbed motion and let us suppose that the determinantal equation which
corresponds to it has one zero root, the n other roots having their real parts
negative.

The system of differential equations of the first approximation will admit, in this
case, a linear integral with constant coefficients (Section 18). On taking such an
integral (in which the coefficients may be supposed real) for one of the unknown
functions, we shall reduce the system considered to the form

dx=X
dt '

dx,
--;]I =PsIX, +P.,2X2+ ... -».», +p,x + X,

(s = 1,2, ...,n),

where X, XI' X2 , ••• , Xn are holomorphic functions of the variables x, XI' X 2, ••• , X n ,

for which the expansions begin with terms of degree not less than second and
possess constant real coefficients, and P.,., Ps are real constants. The constants P,.
are moreover such that if we designate as before by D(X) the fundamental
determinant of system (I), the equation

D(X) = 0

will only have roots with negative real parts.
Let us consider in equations (28) the terms not depending on the variables

XI' X 2, ••• , x.: We shall designate the ensembles of these terms in the expansions of
the functions X, XI' X2 , ••• , X" by X(O), X\O), X~O), , X~O) respectively.

It can happen that all the coefficients P" P2' , P« are zero. Then if, X(O) not
being identically zero, the expansions of the functions X\O), X~O), ..., X~O) in powers
of X do not contain terms of degree less than the least power of X entering into the
expansion of X(O), or if XIO), X\O), X~o>, ..., X~O) are all identically zero, the question
of stability will be resolved, as we shall see, by direct examination of equations (28).
In the contrary case, a preliminary transformation will be necessary, and we shall
show straightaway that we shall always be able to transform system of equations
(28) into a system of the same form for which the conditions which we have just
indicated will be fulfilled.

t The case of purely imaginary roots for systems of second order has been considered by
Mr Poincare in his memoir: Sur les courbes definies par les equations differentielles (Journal
de Mathematiques, fourth series, Vol. I, p. 172, [1885]). The term stability is given there a
meaning somewhat different from ours.
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620 A. M. Lyapunov

To this end. let us consider the following system of equations:

Psi X, +Ps2X2+'" +Ps"X" +p,x + X, =0 (s = 1,2, .... n). (29)

The left-hand sides of these equations become zero for

X, = X2= ... = X" = X = o.
but their functional determinant [Jacobian) with respect to X" X2' .... X" reduces
under this hypothesis to D(O). which is a non-zero number [since it equals the
product of the non-zero roots). Therefore. by virtue of a known theorem [see e.g.
E. Goursat, Cours d' Analyse Mathematique, Paris, 1917, Vol. I, pp. 479-480), these
equations are solvable with respect to the quantities X" X2, ..., X", and admit a
well-defined solution of the form

U
"

u2 , .... u; being holomorphic functions of the variable x, becoming zero for X = O.
The coefficients in the expansions of the functions u, are obtained successively,

starting with the smallest power of X; and this will be the least power of X which
equations (29) contain in the terms independent of the quantities x..

If then all the coefficients P., are zero and none of the functions X, includes in
its expansion any terms independent of the quantities x,; all the u, will be identically
zero.

Returning now to the system of differential equations (28). let us transform it by
means of the substitution

where ZI. Z2' ..., z; are new variables which replace the old XI. X2, .... X".
The transformed system of equations will be of the following form:

dx =z
dt '

dz;
-d =P"Z, +P,2ZZ + ... +PmZ" + Z,t .

(s = 1,2, ...,11),

where Z, Z" Z2' ..., Z" are holomorphic functions of the variables x, Z" Z2' ..., Z".
for which the expansions begin with terms of degree not less than second; and it is
easy to see that, if Z,o" Z\O), Z~O), ..., Z~O) represent what these functions become
when we put z, = Z2 = ... = Z" = 0, we shall have

Z'O) = _ du , Z,O) Z'O) = _ dU2 Z'O) Z'O) = _ dUn Z'O)
, dx • 2 dx , ..., " dx

Whence it is clear that in the expansions of the Z\O) in powers of X there will not
be terms with degrees less than the least power of X in the expansion of Z,OI, and
that, if Z'O) is identically zero, it will be the same for each of the functions Z\OI.

Thus the transformed system will have all the required properties.
The function Z'O) is obtained as a result of the substitution

in the function X.
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Stability of motion: general problem 621

If the result of this substitution turned out to be identically zero, the system of
equations (28) would admit a particular solution with constant values for x,
XI, X2, ... , x., dependent on an arbitrary constant.

Supposing that

Us = a~l)x + a~2)x2 + a~3)x3 + ... (s = 1,2, ..., n)

are the series defining the functions Us> we shall be able to represent this solution by
the following equations:

x=c,

X s = a~l)c + a~2)c2 + a~3)c3 + ... (s = 1,2, ... , n),

where c is an arbitrary constant of which the modulus, if the senes are to be
convergent, must not exceed a certain limit.

To each sufficiently small real value of the constant c, there will correspond in
this case a steady motion.] On making this constant vary in a continuous manner,
we shall obtain a continuous series of such motions, containing the motion under
consideration for which the stability is being investigated.

Remark

The substitution by which the preceding transformation was effected is such that
the problem of stability with respect to the old variables x, XI, X2, ... , x, is entirely
equivalent to the problem of stability with respect to the new ones x, 2 1, 22, ... , 2n ;

such that, on resolving the one problem in an affirmative or negative sense, we shall
resolve the other in the same sense.

Most of the transformations which we shall encounter in the sequel will enjoy
this property.

For the rest, it will sometimes happen that we have to do with transformations
of a different sort. In such cases, on passing from the original system of equations
to the transformed system, we shall be obliged to introduce into the problem certain
modifications.

29. [Study of the general case]

In view of what has been shown above, we may start our investigation from the
supposition that the differential equations of the disturbed motion have the
following form:

dx=X
dt '

dx,
--;[( = Ps!X' + Ps2 X2 + +PsnXn + X s

(s = I, 2, , n),

(30)

t If the number !(n + I) is less than that of the degrees of freedom of the material system
under consideration, to the given expressions for the quantities x, x" X2, ... , x; as functions
of t, there can correspond not one, but an infinity of motions. But we shall agree to consider
the entire ensemble of these motions as a single motion, and we shall also do this in
analogous cases later.
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622 A. M. Lyapuno»

where the functions X, Xs are such that their expansions satisfy the conditions
referred to in the preceding section.

To begin with we shall consider the case where the quantity XIO) is not
identically zero, and we shall designate by m the exponent of the lowest degree of
x encountered in its expansion.

Then, conforming to our hypothesis, none of the quantities X~O) will contain in
its expansion terms of degree less than m.

The number m will not be less than 2.
Let us begin with the simplest case, that where m = 2.
Let

X = gx2+ Px + Q + R,

where g is a non-zero constant, P is a linear form in the variables x I' x2, ..., x"' Q
is a quadratic form in the same variables, and R is a holomorphic function of
variables x, XI' X2, ..., x"' for which the expansion does not contain terms of
dimension less than three.

This settled, we note that, for the conditions under consideration, we shall
always be able to find forms in the variables XS' a linear one U and a quadratic one
W, which satisfy the equations:

" auI (P." XI +Ps2 X2 + ... +PmX,,) a + P = 0,
.~_I X.f

~ . aw 2 2 2
L. (PsIX, +Ps2 X2 + ... +Ps"X,,) -a + Q =g(x, + X2+ ... + X,,).

.f_1 X s

[See Theorem I of Section 20.] These forms being obtained, let us put

V=x + Ux + W.

Then, in view of our differential equations (30), we shall have

dV 2 2 2 2
di=g(x +X'+X2+ ..·+ x,,)+5,

where

n au n oW
5 =XS~I X, OX..+ S~, X, axs + UX + R

will only contain terms of degree higher than second.
In this manner the derivative of the function V with respect to t will represent

a definite function of the variables x, x, [recall that the latter are assumed small in
modulus]. But the function V itself can obviously take positive as well as negative
values, however small the absolute values of these variables.

Consequently, on referring to Theorem II of Section 16, we must conclude that
the undisturbed motion is unstable.

We shall arrive at the same conclusion in the case where m is any even number
[as follows].

By way of generalization, let

X = gx'" + P(lIX + P(2)X 2+ ... + p1m-llx",-1 + Q + R,

where g is a non-zero constant, the P'!' represent linear forms in the quantities XS'
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Stability of motion: general problem 623

Q is a quadratic form in the latter, and R is a holomorphic function of the variables
x, x" for which the expansion does not have terms of degree less than the third and
is moreover such that the variable x occurs, in terms linear with respect to the
quantities x,; only in powers not less than the mth, and, in terms independent of the
x,; only in powers not less than the (m + I)th.

Further, on designating by k an arbitrary positive integer, let us put

X, = p~IIX + P\2)X 2+ '" + P\k)Xk + X\k) = s.s: + X~.

Here the P\J) are linear forms in the quantities x,; X\k), X~k>, ..., X~k) are holomor­
phic functions of the variables x, x" for which the expansions, in terms linear with
respect to the quantities x" contain x only in powers higher than the kth; the g, are
constants and the X: are holomorphic functions for which the expansions, in the
terms independent of the x" contain x only in powers greater than mth.

Finally let us agree to understand by U(I), U(2), ..., U'" - I) linear forms and by
Wa quadratic form in the variables x., forms which we shall have at our disposal.

This being so, and on assuming that m is an even number, let us put

V = x + U(I)x + U(2)X 2+ ... + u<m- »x m-' + W.

Then by virtue of differential equations (30), we shall get

dVdt =gxm+ P(I)x + p(2)X 2+ ... + p<m-I)xm-' + Q + R

m-2 n

+ L x" L [p"x, +P,2 X2 + ... +P,nXn + p\I)X
k= I s= 1

au(k)
+ +p<m- k- ' ) m-k-,+x(m-k-')] __

••• s X s "ox,

~ aw m~' (k) k-I+,-:-, t», x, +P,2 X2 + ... +P,nXn + X,) ax, + X k-:-' kU x .

On considering here the ensemble of terms linear with respect to quantities x" let
us settle the choice of the linear forms U(J) in such a way that x does not occur in
powers less than the mth. For this we must make

n aU(I)
L (p"x l +P,2 X2 + ... +P,nxn)-"- + P<') = 0,

s= 1 uXs

n (aU<k-') auo»)+p(k) + L P\') + ... +P\k-') __ =0
s _ I ax, ax,

(k = 2,3, ..., m - I).

Under the agreed hypotheses, these equations will always be possible [because
of Theorem I of Section 20], and we shall extract from them successively
U(I), U(2), ..., U'" - I).
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624 A. M. Lyapunov

(31)

If next we choose the quadratic form W to conform with the equation

~ aw 2 2 2
L. (PslXl +Ps2 X2 + ... +PsnXn) a + Q =g(X I + X2 + ... + Xn),

.tel I x s

we shall have

where

n {m-2 autk) aUtm-ll}
S = L L XkXtm-k-II __ +Xm-lX --,--

5=1 k",,1 S OXs s OXs

n aw m-l
+ L X,- +X L kUlklXk-1 + R .

.,~I aXs k~l

And this expression for S, account being taken of the meanings of X, R, X" X~kl,

can always be presented in the form
n n

S = vxm + L L VSUXSXIl"
s= 1 ()'= I

where v, v," are holomorphic functions of the variables x, x,; becoming zero for

x = Xl = X 2 = ... = X n = O.

From this we see that, the forms UI}), W being chosen in the indicated manner,
the derivative d V[dt will be a definite function of the variables x, x, [the latter being
small in modulus].

Now, if this is so, the function V will satisfy all the conditions of Theorem II of
Section 16. We must thus conclude that the undisturbed motion is unstable.

Let us now consider the case of m odd.
On putting

v = W + ~X2 + Utl)X 2 + U(2)X' + ... + utm-Ilx m,

we shall have, by virtue of equations (30),

dV'di = gx m+ '+ ptl)x 2 + P(2)X' + ... + ptm-I)xm+ (Q + R)x

m- J n

+ L x" L [Psi Xl +Ps2 X2 + .. ,+PsnXn
k",,2 ,f= I

BUlk-I)
+p~l)x + ... + p~m-k)xm-k + x~m-k)l--,-"-­

ox,
n aUlm-l)

+xm L (Psi XI +Ps2X2 + ... +P.<nxn + Xs) -a-=--
s"" 1 X s

n aw m

+ L (PsIX I +P.,2 X2 + ... +r;», +s.x" + X~);;- + X L uu«: I)X k-
I.

s-I uXs k=2

Let us choose the quadratic form W to conform with the equation

~ aw 2 2 2
L. (PsIXI +Ps2 X2 + ... +P,nXn)a =g(X I + X 2 + ... + Xn)·

s= I X s
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Stability of motion: general problem 625

Next, let us dispose of the linear forms U'!' in such a way that, in this
expression for dV/dt, there are no terms linear with respect to quantities x, in which
x occurs in powers less than the (m + I) tho For this, let us choose these forms to
agree with the equations

n aUII)
I (P,IX, +P,2Xl+ ... +P,nXn) -~- + pili = 0,

s = 1 uXs

n aUlk)
S~I (p"X I +Ps2 X2 + ... +P,nXn) ax, + plk)

n ( 8U(k- ') aUII»)+ I P~I) + ... +p~k-I) __ =0
,~I ax, axs

(k = 2, 3, ..., m - 2).

n aw eir--» au'\))_ (I) (m-2) _+ I ts, ~ + P, a + ... + P, ~ - o.
s= I UXs X s ox,

Accordingly we shall have

dV _ m+1 2 2 2
di-g(x +x,+x2+ ..·+xn)+S,

where

n {m-I aU(k-') au(m-I»)
S = I I x" Xlm - k) + x mX -----::--- ~

5=1 k=2 s ox, s aXs J
n alv m

+ I x:--+x I kUlk-I)Xk-I+(Q+R)x.
,~I ax, k~2

Now this expression for S can be presented in the form
n n

S = Vxrn
+ 1 + L L VsaXsX(P

s= 111"= I

on understanding, as before, by v, v,. holomorphic functions, becoming zero when
all the x, x, become zero.

The derivative dVldt will thus be a definite function of the variables x, x,; and
its sign, for small enough values of lxi, lx, I, will be the same as that of the constant
g.

This settled, and on referring to Theorem II of Section 20, we observe that the
form W satisfying equation (31) will be definite, and furthermore of sign opposite
to that of g. And from the expression for the form V it is clear that, if W is a
positive-definite form, V will be a positive-definite function of the variables x, x,;

Therefore, for g < 0, the function V will be positive-definite, and its derivative
negative-definite; thus we find ourselves in the conditions of Theorem I of Section
16, and even in those of the theorem established in Remark II [of that section]. If,
on the other hand, g > 0, we shall always be able to make the function Va quantity
with arbitrary sign, however small the limit which has not to be exceeded by the
quantities 14 lx, I; we shall then be in the conditions of Theorem II (Section 16).
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626 A. M. Lyapunov

Consequently, we arrive at the conclusion that, m being odd, there will be
stability or instability according as g is negative or positive, and that, g being
negative, every disturbed motion, sufficiently near the undisturbed motion, ap­
proaches it asymptotically.

[The results in this section have immediate plausibility, since when
Ix.l, Ix21, ..., IXn I are small (30) yields approximately

dx
dt =gx

m
•

For m even, this equation shows that if x(to) has the sign of g then Ix(t)I grows
continually, indicating instability. For m odd and g > 0, again Ix(t)1 grows, indicat­
ing instability. But for m odd and g < 0, the equation shows that Ix(t)1 continually
decreases, yielding stability.]

30. [Auxiliary proposition]
It still remains for us to consider the case where, in equations (30), none of the

functions X, Xs includes, in its expansion, terms independent of the quantities
x" X2' ..., xn , and where, as a consequence, these equations admit a particular
solution of the form

x = C, XI = X2 = ... = X n = 0

c being an arbitrary constant.
We are going to show that in this case equations (30) will have a complete

integral.t with equation, depending on an arbitrary constant c, of the following
form:

x = C +f(x" X2' ...,Xn, c),

where f is a holomorphic function of the quantities x" x 2 , ••• , x n , c becoming zero
for

x, = X2 = ..' = Xn = O.

This proposiuon can certainly be demonstrated directly; but we prefer to
associate it with another one, more general, which may be of use to us in other
cases. Here is what we are going to prove.

THEOREM. Let there be given a system of partial differential equations

n &
L (P." x, +Ps2 X2 + ... +Pmxn + Xs)~

s=) Xs

=qj'Z, + qJ2Z2 + ... + qjkZk + Zj (j = 1,2, ..., k), (32)

where X" X2, ..., Xn, Z" Z2' ..., Z; are holomorphic functions of the variables
x" x 2, ..., xn, Z" Z2' ..., Zk> becoming zero when all these variables become zero. We
assume: that the functions X, do not contain in their expansions terms of the first

t We call complete every integral with equation which can be satisfied, on choosing
suitably the arbitrary constants which enter into it, by any solution of the differential
equations.
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Stability of motion: general problem 627

(33)

degree; that the terms offirst degree appearing in the functions Z, do not depend on
the quantities z" Zz, ... , Zk; that the Psa, qjl are constants, such that, x" Xz, ... , L« being
the roots of the equation

P" - X P,z P'n
Pz, Piz - X Pm

=0

Pnl PnZ Pnn - X

and AI' AZ' ... , Ak those of the equation

q" - A q,z qlk
qZI qn - A q2k

=0

qkl qkZ qkk - A

the real parts of all the Xs are different from zero and have the same sign, and that,
moreover, the numbers Xs and J..i are not related by any equation of the form

m l XI + mzxz + ... + mnXn =), (j = 1,2, ..., k),

where all the m, are non-negative integers satisfying the condition

Lms >0.

This agreed, we shall always be able to find a system of holomorphic functions
z" Zz, ... , Zk of the variables x" Xz, ... , x,; satisfying equations (32) and becoming zero
for

Xl = Xz = ... = Xn = O.

Moreover there will be only one such system offunctions.

To prove this, let us take the following system of ordinary differential equations:

dx,
--;j( =PsI XI +PsZXZ + ... + PsnXn + Xs (s = 1,2, ..., n),

dz,
d: = qjl Z, + q;2 zz + ... + qjkZk + Z, (j = 1,2, ..., k).

In view of what was shown in Section 23, we may assert that these equations,
under the given assumptions, admit a solution of the following form:

(s = I, 2, ..., n),

(j = 1,2, ..., k),

(34)

(35)

where all the K and L are constants or entire and rational functions [polynomials]
of t independent of the arbitrary constants lXI' IXz, ..., IXn , and where the summations
are extended over all values of the non-negative integers m, satisfying the condition
Lms >0.

We can moreover assume, and we shall do so, that the ensembles of terms of
first degree in the series (34) give a general integral of the system of linear
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628 A. M. Lyapunov

differential equations extracted from (33) on dropping the terms of degree higher
than the first. From this condition, the functional determinant [Jacobian] of the
quantities x, with respect to the quantities

(36)

will become, when the latter are zero, a constant different from zero.
This settled, we shall be able to resolve equations (34) with respect to quantities

(36) and to obtain from them the following:t

where the right-hand sides are holomorphic functions of the variables XI' X 2, ... , X n ,

becoming zero for XI = X2 = ... = X n = 0, and having for coefficients either constants
or entire and rational functions of t.

On substituting these expressions for quantities (36) in equations (35), we shall
have

Zj = 1pj(x" X 2, ... , x.; t) (j = 1,2, ..., k), (37)

the 1pj being functions of the same character as the Is; and these functions, because
of the way in which they were obtained, will satisfy the following system of partial
differential equations:

n az. az.
1: (P.dXI +P,2X2 + ... +r,»; + X,) -aJ + -aJ

s-I X s t

[See (33).]
Let us seek to satisfy this system in the most general manner, by supposing that

the Zj are holomorphic functions of the variables X" becoming zero when the latter
are zero, and having, in their expansions, coefficients which are either constants or
entire and rational with respect to t.

To simplify the analysis, let us suppose that in equations (38) all the coefficients
qjl are zero, with the exception of the following:

This supposition is always legitimate for, in other cases, on taking for new
unknown functions certain linear forms in the quantities Zj with constant co­
efficients, we shall be able to transform equations (38) in such a way that, in
the new equations, the coefficients q satisfy the above condition {such is the
reduction of equations ( 13) to form (17), indicated in Section 22}. [See also (5) of
Section 18.]

Let

Zj =z)') +zj2) +zj') + ... (j = 1,2, ..., k),

t [See the reference to Goursat in Section 28.]
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Stability of motion: general problem 629

where, generally, z\m>, Z}m), ... , zl;") designate forms of the mth degree with respect to
quantities X,. Equations (38) will give

" fu~ fu~
I (P.sl x, +P,2X2 + ... +p,,,x,,)+ ++ = A, z\m) + Wlm),

s= I ox, ot
n az5m) az5m)
I i», x, +P,2X2 + ... +p,"x") .,..-:- +--,
.~= I uXs ot

= ,lAm) + !j_ ,Z5'~)1 + Wjm) (j = 2, 3, ... , k),

where w\m), w}m l , ... , Wl.:") are forms of the mth degree in the variables x., deduced
in a certain way from the forms z5") for which J1. < m. If the latter have all their
coefficients constant, it will be the same for the coefficients of all the forms W5m

).

For m = I these coefficients will always be constants, for the forms Wj') represent
the ensembles of terms of first degree in the expansions of the functions Zj'

From the equations which we have just written, we shall find successively

(') (I) (I) (2) (2) (2)
ZI ,Z2 "",Zk ,Z. ,Z2 "",Zk , ... (39)

Let v be anyone of these forms, and let us assume that all the preceding ones
have constant coefficients. Then, in the equation on which the evaluation' of v
depends, the known term will represent a form also with constant coefficients.

Therefore, if we designate by I the exponent of the highest power of t in the
coefficients of the form v, and if, on understanding by Vo, v" ..., v, forms with
constant coefficients, we make

v= Vo+ VI t + ... + Viti

(which represents the most general assumption that we can make concerning v), the
form o, will satisfy the equation

" av,I (P,I x, +Ps2X2 + ... +p,"x,,) ;;- = ,lv"
s=1 UXs

where A is one of the quantities A" ,12' ... , Ak . Now, by assumption, none of these
quantities appears in the form I m,x".

Thus (Section 19), whatever the degree of the form v" it is impossible to satisfy
the equation under consideration other than by putting o, = O.

The only valid hypothesis will be, by consequence, I = 0, and the equation

" iJvI (p,'X I +P,2 X2 + ... +p,"x") a = AV + 11',
s= 1 X s

which has then to be verified by form v, will give for the latter a well-determined
expression, whatever the form 11', which is supposed known.

Thus, if in sequence (39), for all the forms which precede v the coefficients are
constant quantities, it will also be the same for form v. Moreover the coefficients of
v will be completely defined by the coefficients of the forms which precede it.

Now the form zIt) will necessarily be with constant coefficients, for such is each
of the forms wy). Hence all the subsequent forms in series 39 will also possess
constant coefficients.

We conclude from this that the functions (37) do not depend on t and that, as
a consequence, they satisfy system (32) [this being a special case of system (38»). We
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630 A. M. Lyapunoo

see moreover that it is impossible to obtain further functions of the same character
which would satisfy this system.

The theorem is thus proved. t
Let us note that the expansions of the functions Zj will begin with terms of the

same degree as the functions to which the Z, reduce for ZI = Z2 = ... = Zk = O. If
none of the functions Z, contains in its expansion terms independent of the
quantities Zj' the functions Zj concerned in the theorem will all be identically zero.

Remark

We have assumed that the expansions of the functions Xs begin with terms of
degree not less than second. But we could equally well prove the theorem in the case
where these expansions contain terms of the first degree, provided that these terms
do not depend on the quantities x" X 2, ... , x., and that the expansions of the
functions Z, begin with terms of degree not less than second. However, it is then
necessary to impose on the sought functions Zj the condition that they do not
contain terms below the second degree. For the validity of the theorem so modified,
it will suffice that the relations of the form L msXs = ),j do not exist for values of the
m, with sum greater than I.

31. [Study of an exceptional case]

Let us return to equations (30) under the hypothesis that all the functions X, Xs

become zero for x, = X 2 = ... = X n = O.
Let us put

x =c +z,

on understanding by c an arbitrary constant, with modulus not exceeding a certain
limit.

On substituting this value of x in the functions X" we shall have

where the c,o are constants which represent hoIomorphic functions of the constant
c, becoming zero for c = 0, and the X; are holomorphic functions of the variables
z, XI' X2' ... , X n , for which the expansions begin with terms of degree not less than
second and possess coefficients holomorphic with respect to c.

An analogous expression will also hold for the function X.
This settled, let us consider the partial differential equation [which is a version

of the first of equations (30)]

" OZL {(PSI + CsI)x, + (P,2 + Cs2)X2+ ... + t»; + csn)xn + X;} a = X, (40)
S'" I X s

on supposing that X is expressed in terms of the variables z, X S '

By virtue of our assumption that all the roots of the equation D(X) = 0 have
negative real parts, all the conditions of the preceding theorem will be fulfilled for

t This theorem was proved in a special form by Mr Poincare in his memoir 'Sur les
courbes definies par les equations differentielles', Journal de Mathematiques, fourth series,
Vol. II, p. 155. In the recently published memoir 'Sur Ie problerne des trois corps', Acta
Mathematica, Vol. XIII, p. 36, Mr Poincare proved it anew in a generalized form.
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Stability of motion: general problem 631

equation (40), lei being sufficiently small. This equation will thus admit, as long as
Icl is small enough, a solution of the form

wherefdesignates a holom orphic function of variables XI> X2, ... , x., becoming zero
for XI = X 2 = ... = X n = O.

The coefficients in the expansion of this function will depend in some way on the
constant e, of which they will evidently be holomorphic functions; moreover they
will be such that we may take lei so small that all the coefficients will be absolutely
convergent. To convince ourselves of this, it suffices to glance at the equations
which serve for the calculation of these coefficients.

What we have just said is valid not only for real values of e (which are the only
ones suitable for our problem), but also for complex values of this constant.]
Because of this we can conclude that if, instead of expanding function f in powers
of the x,; we expand it in powers of the x, and e, the series obtained will still be
absolutely convergent, provided that the moduli of the x, and e are below certain
sufficiently small limits. In other words, we can conclude that the function f will be
holomorphic as a function of n + I arguments X" X 2, •••, x.; e.t

This settled, and on returning to the variable x, we shall have

X = c + f(XI, X2, .•. , Xn, c). (41)

This equation will define a solution of the partial differential equation [again
expressing the first of equations (30)]

n ax
L (PsIX' +Ps2 X2 + ... +PsnXn + Xs ) -a = X.

s= 1 X s

Consequently, as it contains an arbitrary constant e, it [(41)] will represent the
equation of a complete integral of system (30). We may therefore replace by
equation (41) one of the differential equations of this system.

Let us do this for the first of these equations and then eliminate X from the other
equations. The latter will then reduce to the form

dxs ,
--;Jt = (PsI + Cst )x l + (Ps2 + eSZ)x 2 + ... + i»; + csn)xn + X s

(s = 1,2, ..., n), (42)

where the X~ will be hoIom orphic functions of the quantities XI' X 2, .•. , Xn, e, not
containing in their expansions terms of degree less than second with respect to
quantities XI, X2, ... , X n·

We now note that our problem of stability with respect to the quantities

is entirely equivalent to the problem of stability with respect to the quantities

(43)

t The analysis in the preceding section only assumed that the theorem of Section 23 was
applicable. Now this theorem obviously does not depend at all on the supposition that the
coefficients in equations (13) are real. We can therefore attribute to c complex values.

t These lines replace a rather long passage in the original Russian, where I wanted to
consider only real values of c.
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632 A. M. Lyapunov

In fact, for this to be so, it suffices that, the quantities of one of the two systems
having any sufficiently small real values, the quantities of the other should be in the
same condition. And that is actually the case, as is seen from equation (41) and
from the following,

e = x + F(x" x2 , ••• , xn , x),

which is deduced from it on assuming that quantities (43) are sufficiently small in
absolute value, and in which F is a holomorphic function of the variables
x" x 2 , ••• , x.; x, independent of e and becoming zero for

x, = X 2 = ... = X n = O.

As for the question of stability with respect to the quantities (43), of which the
last is a constant, it reduces to the examination of equations (42).

These equations, lei being sufficiently small, possess all the properties of
equations (13), and we can apply the propositions of Section 24. By consequence,
since the detenninantal equation which corresponds to them only has roots with
negative real parts, we can be sure that, e being fixed, we shall be able to find, for
every positive number 8, another positive number a such that, the initial values of
the x, satisfying the inequalities

Ix,l<a, Ix21<a,

we shall have throughout the duration of the ensuing motion

and that the functions x" with t increasing indefinitely, tend to zero.
However, we still do not have the right to conclude from this that the

undisturbed motion is stable. For such a conclusion to be legitimate, it is necessary
that, lei not exceeding a certain limit, the number a corresponding to a given value
of 8 can be supposed independent of e.

Now, in the case under consideration, this condition will be fulfilled, of which
it is easy to assure ourselves with the aid of the method of Section 26.

In fact, the right-hand sides of equations (42) being holomorphic functions not
only with respect to quantities X so but also with respect to quantities Xso e, it is easy
to find functions V and W, independent of e and entire with respect to the Xso for
which the first is negative-definite and the second positive-definite, and which, for
all sufficiently small values of the quantities (43), satisfy the inequality

dV
dt~ W,

the left-hand side representing the total derivative of the function V with respect to
t, formed in accordance with equations (42).t And from this the possibility of
choosing for the number a a value independent of e becomes evident (see the proof
of Theorem I of Section 16).

t Thus, for example, on taking for Va quadratic form satisfying equation (26), we can
take for W the function

W = O(x? + x~ + .. + x~),

obeing any fixed positive proper fraction.
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Stability of motion: general problem 633

In this way we arrive at the conclusion that, in the case where, in equations (30),
the functions X, X, all become zero for XI = X2 = ... = x; = 0, the undisturbed motion
is stable.

In this case, each disturbed motion, sufficiently near the undisturbed motion, will
approach asymptotically a certain steady motion

x = C, XI = X 2 = ... = X n = 0,

which, in general, will be different from the undisturbed motion, but which may be
made as close to it as we wish.

It may be noted further that each of these steady motions will be stable, as long as
the quantity IcIwhich corresponds to it is sufficiently small.

32. [Exposition of the method. Examples]

The conclusions we have arrived at can be summarized III the following
proposition.

THEOREM. Suppose that the determinantal equation has one root equal to zero, all
the other roots possessing negative real parts. After having reduced the system of
differential equations of the disturbed motion to form (28), let us form equations (29)
and extract from them XI' X2' ..., x; as holomorphic functions of the variable x,
becoming zero for X = 0 (which is always possible and gives for the x, well-determined
values). Next, let us substitute the expressions found for the x, in the function X and, if
the result of this substitution is not identically zero, expand it in increasing powers ofx.

Then, if the least power of x, in the expansion so obtained, is found to be even, the
undisturbed motion will be unstable; if, on the other hand, it is found to be odd,
everything will depend on the sign of the corresponding coefficient, and in such a way
that the undisturbed motion will be unstable when this coefficient is positive, and stable
when it is negative. In the last Cllse, every disturbed motion, the perturbations being
sufficiently small, will approach asymptotically the undisturbed motion.

Finally, if the result of the substitution in question is found to be identically zero,
there will exist a continuous series of steady motions, to which the undisturbed motion
under consideration will belong, and all the motions of this series sufficiently near the
undisturbed motion, including the latter, will be stable. In this case, the perturbations
being sufficiently small, every disturbed motion will approach asymptotically one of the
steady motions of the series.

Let us apply the rule contained in this theorem to some examples.

Example I

Suppose the following system of differential equations is given:

dx
dt = (3m - l)x 2- (m _1)y2 - (n - l)z2 + (3n - l)yz - 2mzx - 2nxy,

dy
dt = - Y + x + (x - y + 2z)(y + z - x),

dz
dt = - z + x - (x + 2y - z)(y + z - x),

where m and n designate constants.
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634 A. M. Lyapunov

For this system, the roots of the determinantal equation are: 0, - I, -I.
On designating the right-hand sides of the above equations by X, Y, Z respec­

tively, let us put

y=o, Z =0. (44)

From this we get [by means of successive approximation)

y = x + 2x 2 - 6x 3
- 30x 4 + ,

Z = x - 2x 2 - 6x 3 + 30x4 + .

and, on substituting these expressions for y and z in function X, we obtain

X = 4(5m -7n)x4 + 24(m - n)x 5 + ...

From this expression we see that, if 5m - 7n is not zero, the undisturbed motion
is unstable. In the contrary case (5m = 7m), it is unstable if m and n are positive,
and stable if m and n are negative.

If m = n = 0, we obtain the following identity:

2X = (z - 2y - x) Y + (y - 2z - x)Z,

which shows that by virtue of equations (44) we shall then always have X = O.
Thus, in the last case there will exist a continuous series of steady motions, and

not only the undisturbed motion under consideration, but also all the motions of
this series which are sufficiently near, will be stable.

Example II
Let us examine all the possible cases that can be presented by the second-order

system

dx dy
dl = ax,2 + bxy + cy2, dl = - Y + kx + Ix2+ mxy + ny?

under different assumptions about the constants a, b, c, k, I, m, n.
From the equation [obtained by equating to zero the right-hand side of the

second differential equation)

y = kx + Ix 2+ mxy + ny?

we extract [by means of successive approximation)

y = kx + B2x
2 + B3x

3 + ...,
where

B2= I + mk + nk", B3 = (m + 2nk)B2, ...

and, by virtue of this expression for y we have [for the right-hand side of the first
differential equation)

ax 2+ bxy + cy2 = A2x Z + A3x
3 + A4x

4 + ...,
where

Az =a +bk +cP, A3 =(b +2ck)B2,

A4 = (b + 2ck)B3 + cB~,
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Stability of motion: general problem 635

From this we see that stability will only be possible in the case where

a + bk + ck? = o.
If then B2 = 0 (which requires all the other B's to be also zero), all the

coefficients A will be zero, and by consequence stability will certainly hold.
Let us suppose that B2 is not zero.
Then, if b + 2ck is not zero, the question will depend on the sign of A 3 • If, on

the contrary, we have

b + 2ck =0,

A 3 will be zero, but A4 will not be zero as long as c is not zero; stability will thus
be possible only in the case c ,= O. As for this case, for which by virtue of the
equations admitted [the previous two displayed equations) we shall also have a = 0
and b = 0, stability will actually hold [the right-hand side of the first differential
equation then being identically zero).

In this way all the possible cases reduce to the six following:

I. a + bk + ck? ~ 0,

II {a + bk + ck? = 0,
. (I + mk + nP)(b + 2ck) > 0,

{
a + bk + ck? = 0,

III. 2
(I + mk + nk )(b + 2ck) < 0,

unstable undisturbed motion;

unstable undisturbed motion;

stable undisturbed motion;

{
a = ck", b = -2ck,

IV. 2
I +mk +nk ~O,

{
a + bk + ck? = 0,

V. 2
I +mk +nk =0,

VI. a = b = c = 0,

c ~O,
unstable undisturbed motion;

stable undisturbed motion;

stable undisturbed motion;

In the last two cases the undisturbed motion belongs to certain continuous series
of steady motions.

Second case. Determinantal equation with two purely imaginary roots

33. [General form to which the differential equations reduce)

Suppose that the proposed system of differential equations of the disturbed
motion is of order n + 2, and that the determinantal equation which corresponds to
it has two purely imaginary roots and n roots with negative real parts.

Since the coefficients in the differential equations are assumed real, the purely
imaginary roots will be necessarily conjugate:

where A. is a non-zero real constant, which we shall suppose, for definiteness, to be
positive.

For the system of differential equations of the first approximation, to these roots
will correspond two integrals of the form

(x + iy)e- o." (x - iy)e+ il' ,
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636 A. M. Lyapunov

where i = j=t, and x and yare linear forms, with constant real coefficients, in the
variables playing the role 'of unknown functions in the differential equations
(Section 18).

On introducing in place of two of these unknown functions the variables x and
y, we shall reduce the proposed system to the following form:

dx dy
dt = -Ay + X, dt = Ax+ Y,

(45)

(s = 1,2, ...,n).

X, Y, X, are here holomorphic functions of the variables x, y, x\, x 2 , ••• , X n , for
which the expansions begin with terms of degree not less than second and possess
constant real coefficients, and Pm IX" Ps are real constants, among which the Psa are
such that the equation

D(X) =0

(with the old notation) only has roots with negative real parts.
We may assume that the functions X and Y become zero when x and y become

zero, for, in the opposite case, on replacing variables x and y by certain new
variables, we shall always be able to transform system (45) into another of the same
kind, but where the functions playing the role of X and Y become zero when the
two new variables become simultaneously zero.

In fact, according to the theorem of Section 30 (Remark), we can find
holomorphic functions x and y of variables x., X2, ... , x; satisfying the equations

and only containing in their expansions terms of degree not less than the second. t
[See also the paragraph preceding the remark in Section 30. Note that x, y, X, Y
correspond to z\, Z2' 2" 2 2 in (32).]

Let

X = u, y = v

be such solutions of these equations.
Then, on making

X = u +~, y = v + '1,

and on introducing into equations (45), in place of variables X and y, the variables

t The condition expressed in this theorem, relating to the roots Xs> Aj , is obviously
satisfied in the case under consideration.
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Stability of motion: general problem

~ and '1, we shall reduce these equations to the form

(s = 1,2, ..., n),

637

where 3, Y, X: represent holomorphic functions of the variables ~, '1, x, for which
the expansions begin with terms of degree not less than the second, and among
which the first two, which are defined by the formulae

n W
Y = Y + AU - '~l {P,IX1 + P,2 X2 + .., + PmXn + IX,(U +~) + P,(v + '1) + X,} dx

s

(on supposing that in the functions X, Y, Xs the quantities x and yare replaced
by U + ~ and v + '1), become zero for ~ = '1 = O. '

The transformation under consideration is moreover such that the new vari­
ables can play the same role in our problem as the old ones.

We may suppose that, to fonn equations (45), we have already effected (if that
was necessary) the transformation indicated, and that, by consequence, the func­
tions X and Y become zero for x = y = O.

This being so, let us put

x = r cos 9, y = r sin 9

and let us introduce into our equations, in place of variables x and y, the
variables rand 9.

We shall have [with use of (45)]

~ . ~, .
dt = X cos 9 + Y Sin 9, r dt = sr + Y cos 9 - X Sin 9.

Now, because of what we have assumed, the right-hand sides of these equa­
tions, being expressed in terms of rand 9, become zero for r = O. Thus the second
of these equations reduces to the form

d9
-=A+0
dt '

(46)

where 0 is a holomorphic function of the variables r, Xl' x2 , ... , xn , becoming zero
when these variables become simultaneously zero, and having, for the coefficients
in its expansion, entire and rational functions of cos 9 and sin 9.

From this equation we see that, as long as the quantities Irl, Ixs I do not exceed
certain limits, 9 will be a continuous and increasing function of t [since A is a
positive constant], and that, if the quantities Irl, Ixs I remain sufficiently small
throughout the duration of the motion, the function 9 will increase indefinitely
with t.
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638 A. M. Lyapunov

Our problem can be considered as that of stability with respect to the
quantities]

and in this problem the variable 8 will be able to play the same role as t.
Let us take this then for the independent variable instead of t.
We shall then have, for the determination of r, x, as functions of 8, the

following equations:

dr
d8 =rR,

~ ~ b . 8d8 = q.,IX, + q.,2 X2 + ... + qsnxn + (as cos" + s Sin )r + Qs (47)

(s = I, 2, ..., n),

where R, Q., will represent functions of the same character as 0, moreover the
functions Qs will not contain in their expansions terms of degree less than the
second with respect to quantities r, X,. As for the coefficients qs", as' b., they will be.
given by the formulae

b =Ps
sA'

and the q,. will be, by consequence, such that all the roots of the equation

=0 (48)

will have negative real parts.
The first of equations (47) shows that, if the initial value of r is zero, r will be

zero for each value of 8, and that, in the contrary case, r will conserve the sign of
its initial value, at least as long as the quantities r, x, remain sufficiently small in
absolute value. In any case, according to the very definition of r, we see that
without loss of generality we may limit ourselves to the consideration of values of
r of only one sign.

Because of this, we shall suppose that r can take only positive values (or zero).

Remark

The functions 0, R, Qs for every value of 8 are hoiomorphic with respect to
quantities r, x I' X 2, ... , x.: Moreover, because of their very origin, they are such that
there will always be positive constants A, AI' A2 , ••• , An satisfying the condition that,
for

Ir/=A, IXsl=As (s=I,2, ...,n)

the expansions of these functions are uniformly convergent for all real values of 8.

t [Since r = (x 2+ y2) 1/2, stability with respect to x and y holds if and only if stability with
respect to r holds. Thus the stability or instability of the .'I-coordinate is irrelevant.]
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Stability of motion: general problem 639

As it will often happen in what follows that we shall have to deal with similar
functions, we shall use to designate them a special term.

In general, let F be a function of variables x, y, and of parameters IX, fl, ..., this
function being holomorphic with respect to x, y, for all values of the parameters
IX, fl, .. , which satisfy certain conditions (A). Then, if it is possible to find non-zero
numbers a, b, ... independent of the parameters in question and such that for

x =a, y =b,

the expansion of this function in positive integer powers of x, y, ... converges
uniformly for all the values of 0(, fl, ... satisfying conditions (A), we shall say that the
function F is uniformly holomorphic (with respect to the variables x, y, ...) for all the
values under considerations of IX, fl, ...

Our functions e, R, Q., will thus be, with respect to variables r, X,, X 2, ... , X n ,

uniformly holomorphic for all real values of (I.t

34. [Certain characteristic series which satisfy the differential equations
formally. General case where these series are not periodic]

In order to be able to apply to equations (47) the propositions of Section 16, it
will be necessary, in general, to submit these equations to certain preliminary
transformations.

There will only be no need for such a transformation in the case where all the
constants as> b, are zero, and where the functions RIO), Q~O) to which R, Q., reduce
for Xl = X 2 = ... = x; = 0 satisfy a certain condition. This condition consists in this,
that if the function RIO) is not identically zero, the lowest power in its expansion in
powers of r must have a constant coefficient and must moreover be less than the
lowest power of r found in the expansions of the Q~O), and that, in the case where
RIO) is identically zero, all the Q~O) must be the same.

The aim of the transformation referred to will actually be to reduce the
differential equations to a form such that the said condition is fulfilled.

This transformation turns out to be related to the question of the possibility of
a periodic solution for system (47).

Let us seek to satisfy this system by series of the following form,

r = c + U
(2)C 2 + u(3)c 3 + ..., }

x, = U~I)C ~ U~2)C2 + U~3)C3 + ... (49)

(s - 1,2, ..., n),

where c is an arbitrary constant, and u'", U~/) are periodic functions of 3, having 2rr
for their common period, and being independent of c.

t If we wish to consider complex values of 9, we shall obviously be able to assert that
these functions, with respect to the variables r, X" are uniformly holomorphic for all values
of 9 of the form

9 = IX + {JR,

where !1. is an arbitrary real number, and {J a real number subject to the condition that its
absolute value does not exceed an arbitrarily given limit. [This will ensure that sin 9 and
cos 9 are limited.]
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640 A. M. Lyapunov

Such a procedure will not always be possible; but when it is the functions u will
be obtained in the form of finite sequences of sines and cosines of integer multiples
of 8.

However, with respect to the nature of the functions u we can impose a more
general condition; namely, we may suppose them to be entire rational functions
[polynomials] of 8, with coefficients representing finite series of sines and cosines of
integer multiples of 8. Then the problem of finding these functions so that series
(49) satisfies equations (47) at least formally will always become possible to solve.

Let us see how to find such functions.
On making the substitution (49) in equations (47) and then equating coefficients

of the same powers of c, we obtain the following systems of equations

dU~') _ (I) (I) II) 8 b ' 8
d8 -q"u, +qs2 U2 + ..·+qsnun +ascos + ssm

(s = I, 2, ..., n),

+(a, cos 8 + b, sin 8)u(l) + U~/)

(s = I, 2, ... , n),

(50)

where I is one of the numbers 2, 3, ...
The U(I), U\I) here are certain rational and entire functions of the quantities u'",

U~i) for i < I, with coefficients representing rational and entire functions of sin 8 and
cos 8.

When all the u(i), u~1) for i < I are already found, the first of equations (50) will
give the function u''', after which the n equations which remain will serve to
determine the functions u~l).

Under our hypothesis concerning the nature of the functions u, the known terms
in these n equations will occur in the form of finite series of sines and cosines of
integer multiples of 8, where the coefficients will be constants or entire and rational
functions of 8. On seeking the functions u~) in the form of series of the same kind,
we shall obtain, under our supposition with regard to the roots of equation (48),
well-determined expressions. These expressions will moreover be periodic, whenever
this is so for the known terms in the equations under consideration,

The functions u~') will always be periodic and of the following form,

U~') = As cos 8 + B, sin 8,

where An B, are constants. We can convince ourselves that the functions u(2), U~2)

are also periodic. But the further functions may contain 8 outside the signs 'sin' and
'cos'.

Let us assume that all the functions u"), u~) for which I is less than an integer
m are found and represent periodic functions of 8. Then we shall be able to present
the function U?" in the form of a finite series of sines and cosines of integer
multiples of ,9, and, if in this series there is no constant term, the function u(m) and,
by consequence, all the functions u~m) will be periodic. In the contrary case, these
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Stability of motion: general problem 641

functions will contain secular terms, and, among others, the function u 1m) will be of
the form

u1m)=g8 +v, (51)

where g is a non-zero constant and v is a finite series of sines and cosines of integer
multiples of 8.

Let us take up this last case.
On supposing that the calculations are carried out in such a way that all the

functions u'", U~IJ, v are real for real 8, let us transform our differential equations
(47) by means of the substitution

(s = 1,2, ..., n),

where z, Z" Z2, ..., z; are new variables which we introduce in place of the old ones
r, XI' X2, ... , x.;

Let

dz
d8 =zZ,

dz;
d8 = qsJ Z, + qs2 Z2 + ... + qs"z" + Zs

(s=I,2, ... ,n)

(52)

be the transformed equations.
From (51) and the equations satisfied by functions u'", u'[', we shall have

rR - U(2)Z2 _ U(3lZ3 _ ... _ Ulm-Ilzm-I _ (u,m) _ g)zm
zZ = -:-----:-,,;;----:--;;-;---;;----,-----:-:--;:c:---,-,---,::-'-.---=,---;-

I + 2U (2)Z + 3U (3)Z 2 + ... + (m _ l)u1m I}zm 2 + mvzm I'

Z, = Q., - U~2lz2 - U~3lz3 - ... - u~m - Ilzm-I + (as cos 8 + b, sin 8)vz m

where the functions rR, Qs are supposed expressed in terms of the variables z, Zs'
We see from this that the functions Z, Z, will be, with respect to variables

z, Z,' Z2, ... , z", uniformly holomorphic for all real values of 8, on which will depend
the coefficients in their expansions (these coefficients will present themselves in the
form of finite sequences of sines and cosines of integer multiples of 8). These
functions will become zero when all the z, z, are zero. Moreover the functions Z,
will not contain, in their expansions, terms of first degree. Finally, if ZIO), Z~O) are
what Z, Z, become for

the expansion of the function 2 (0
) in increasing powers of z will begin with the

(m - I)th power, which will have the constant coefficient g, and the expansions of
the functions Z~Ol will contain z in powers not less than the mth; for, by the very
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642 A. M. Lyapunov

definition of the quantities V(I), V~I) the expansions of the functions

rR - V(2)Z2 _ V(3)Z3 _ ... _ v(m)zm,

in the terms independent of quantities z" will only be able to contain z in powers
exceeding m.

In this manner equations (52) possess all the required properties [stated at the
beginning of this section].

Moreover the substitution by means of which they have been obtained is such
that, for the resolution of our problem, the new variables z, Z" Z2, ... , z; can play
absolutely the same role as the old ones r, x" X2, ... , x.:

Let us note that, Izi being sufficiently small, the signs of rand zwill be the same.
Thus, as r has been assumed positive, we must assume that z is also positive.

Remark I

The general expressions for the functions u'", u'[', corresponding to a given
value of l, will contain t - I arbitrary constants, which will be introduced by the
quadratures with the aid of which we determine the functions u(2), U

(3),
... , u'", But

it is easy to see that neither the number m nor the constant g depends on the choice
of the values that we may wish to attribute to these arbitrary constants.

In fact, if h2 , h3 , ... are the values taken by the functions U
(2),

U(3), ... for 0 = 0,
and if o''', v~1) represent the functions u'", u~) obtained under the hypothesis that
all the h, are zero, the general expressions for the functions ull), u~1) will be obtained
on seeking the coefficients of c' in the expansions of the expressions [these are
expressions for r and x, and equate to those in (49)]

y + V(2)y2 + V(3)y3 + ,
V~I)y + V~2)y2 + V~3)y3 + ,

where [we find on equating the expressions for r at 0 = 0]

y = c + h2 c2 + h3 c3 + ...
As a consequence, if vim) is the first non-periodic function in the series

u lm) will be the first non-periodic function in the following one,

whatever the constants hj • Moreover the difference u lm) - vIm) will necessarily be a
periodic function.

Remark II
On taking account of the way in which the functions R, Qs have been

introduced, we arrive at the conclusion that, if the coefficients in the expansions of
these functions in powers of r, x, are developed in sines and cosines of multiples of
0, the terms with even powers of r will only bring in even multiples of 0, and those
with odd powers of r will only bring in odd multiples of O.
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Stability oj motion: general problem 643

From this, in view of the expressions for the functions U~I), it results that, if we
expand the function U(2) in sines and cosines of multiples of 8, the series obtained
will only contain odd multiples of 8, and that, by consequence, there will not be any
constant term. The function U(2) will therefore be always periodic, so that the
number m which figures in preceding transformation will never be less than 3.

A deeper examination of equations (50) shows that this number will always be
odd.

But actually this property of the number m will be put in evidence by discussion
of equations (52) (Section 37, Remark).

35. [Exceptional case where the series are periodic. Convergence oj these
periodic series]

When the functions u"), ull), starting from a certain value of I, become
non-periodic, we can always discover this, having integrated a sufficient number of
systems of equations (50). But, when all these functions are periodic, however great
the number I, we shall never be able to recognize the fact by making use of this
procedure.

Whatever it may be, let us suppose that, in such and such a case, we have
succeeded in showing that the functions u(l), U~/) are periodic for all values of I.

We are going to show that if the arbitrary constants entering into these
functions are determined in a suitable manner, series (49), Icl being sufficiently
small, will be absolutely convergent, and uniformly so for all real values of 9. These
series will then define a periodic solution of differential equations (47), with one
arbitrary constant, subject only to the condition that its modulus does not exceed
a certain limit.

We shall keep to the assumption that all the functions u(l) become zero for
9 = O. This hypothesis will allow the determination of all the arbitrary constants
contained by the functions u"', fly'.

We have noticed in Section 22 that by means of a linear substitution with
constant coefficients the system of equations (13) can always be reduced to the form
(17). Let us make use of a similar substitution to transform equations (47).

Let XI' X2, ..., Xn be the roots of equation (48). We can then suppose the
substitution in question to be such that the coefficients q:,., which play in the
transformed equations the role of the coefficients q,., are all zero with the exception
of the following:

ql'=X" q22=X2,

q2! = O'b q32 = (J2, q~,n-I = (In_I'

Let us provisionally assume that system (47) already has the transformed form.
System (50) will then be of the following form:

du"!
--= U(I)
d9 '

du(l)
-'- = X u(1)+ (a cos 9 + b sin 9)u(l) + U(I)d,9 "I I I ,

du'['-'- = X u(1) + (T u(l) + (a cos 9 + b sin 9)u(l) + U(I)d9 of of s - I s - 1 S S of

(s = 2, 3, ... , n).
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644 A. M. Lyapunov

(53)

On supposing that all the functions u'", u~i) for i < I are already found, and
taking into account that the real parts of all the Xs are negative, we extract
successively from these equations

u'" =rV(I) d9,

U\/) = e"s foo e-"s [(a, cos 9 + b, sin 9)u(l) + V\I)] d9,

1
9

u(l) = e"'" e-,,9 [(J U(/) +(a cos 9 +b sin 9)u(l) + V(/)] d9s s-J s-I s s s
-00

(s = 2, 3, ..., n).

We now note that V(I), V~I) are entire functions of the quantities u li ), U~i) already
obtained, and that the coefficients in these functions represent linear forms, with
positive numerical coefficients, in the coefficients of the expansions of the functions
R, Qs' Consequently, if in general we designate.by Vli), v~i) upper bounds of the
moduli of functions uli ), u'[', with 9 being contained in the interval (0, 2n) (i.c. for
all real values of 9), and by V(I), V~) the results of replacing in functions V(I), V~I)

quantities u'", u~) by quantities vli), v~) and the coefficients in the expansions of R,
Qs by upper bounds for their moduli; if finally we designate by

(54)
A, vII) = {la,1 + Ib,l}v(l) + Vf),

A,v;1) = l(Js_,lv~/~ I + {las 1+ Ib, I}V(/) + V~I)

(s = 2, 3, ..., n).

the real parts of the roots X" X2, ..., Xn, then by virtue of (53) we shall be able to put

v(l) = 2n V(I),

On further making

A, vI') = la,l +Ib,l, A,V~') = l(Js- Ilv~'2, + las 1+ IbsI
(s = 2, 3, ..., n)

and on defining by formulae (54) the quantities v'!', v~1) for I> I, we shall thus
obtain for the moduli of functions u''), u~1) upper bounds applicable for all real
values of 9.

Now, by the nature of the functions R, Q", for the moduli of the coefficients in
their expansions, 0 being real, we can always assign constant upper bounds such
that the series to which these expansions reduce, after having replaced in them the
coefficients by the upper bounds in question, are convergent, as long as the moduli
of the variables r, x, are small enough. These series will thus then define certain
holomorphic functions of the variables r, x,; which we shall designate respectively
by

These will become zero for r = x, = X 2 = ... = x; = 0, and moreover the func­
tions F, will not contain in their expansions terms of first degree.
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Stability of motion: general problem 645

Now, if we choose in this manner the upper bounds in question, the quantities
o"', v~l), defined by the preceding formulae, will represent the coefficients in the
expansions

r = c + v(Z)C
Z + V(3)C

3 + ..., } (55)

X s = V~')C + V~ZICZ + V~3)C3 + ... (s = I, 2, ..., n)

in positive integer powers of c for the quantities r, x, satisfying the equations

r = c + 27[rF(r, X" Xz, ..., x n ) ,

A, X, = {Ia,l + Ib,l}r + F,(r, x,, X z, ..., x n ) ,

AjXj = {Iajl + Ibj!}r + IUj_,IXj_ 1 +fj(r, X" X z, ..., x n )

(j = 2, 3, ..., n)

and becoming zero for c =o.
Then, lei being sufficiently small, the series (55) will be absolutely convergent,

and thus the series

lei + lu(Z)cZI + lu(3)C 31 + ...,
lu~l)cl + lu~Z)cZI + IU~3)C31 + ... (s = 1,2, ..., n)

will converge uniformly for all real values of e.
This settled, let us return to our original equations and to equations (50) which

correspond to them.
Since in these equations all the coefficients are real functions of e, it will be the

same for the functions u"', u~), obtained under the hypothesis that for e= 0 all the
u'" become zero. Then, c being real, the series (49) will define, under this
hypothesis, a real solution of equations (47).

Let us profit from this in transforming our equations.
Let us make

r = Z + U<Z)Z2 + U(J)Z3 + .

Xs = Zs + u~')z + u~Z)ZZ + (s = 1,2, ..., n)

and, in place of variables r, X" X z, ..., X n , let us introduce the variables
Z, ZI' Z2' ... , Zno

The transformed equations will be of the form (52), and the functions Z, Z,
which appear in them will be of the same character as in the case considered in the
preceding section, with the sole difference that now, for ZI = Zz = ... = z; = 0, all
these functions become zero.

It is to be noted that the substitution considered is such that the new variables
will be able to play, in our problem, the same role as the old ones.

36. [Periodic solutions]

Let us examine more closely the case where all the functions u'", u~1) are
periodic.

On supposing that the arbitrary constants in these functions are determined in
conformity with the condition considered above, we shall define by series (49), lei
being sufficiently small, a certain periodic solution of system (47).
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646 A. M. Lyapunov

For system (45), to this solution there will also correspond a periodic solution,
which we shall obtain on replacing in the equations

x = [c + U(2)C 2 + ...] cos 9, y = [c + U(2)C 2 + ...] sin 9,}
(56)

x , = u~1)c + U~2)C2 +... (s = 1,2, ... , n)

the variable 9 by its expression as a function of t.
Let us see how this function will be obtained, and what will be the form of the

solution in question for system (45).
Let us return to equation (46).
Let us make the substitution (49) in the function 0 and then expand the

function

in increasing powers of c.
As the latter function becomes equal to I for c = 0, we shall then have

..l
..l + 0 = I + 0, c + 0 2 c2 + 0 3 c3 + ...,

where all the 0 j are periodic functions of 9, independent of c, and which we shall
be able to present in the form of finite series of sines and cosines of integer multiples
of ,9.

On designating now by to an arbitrary constant, we obtain from equation (46)
[on separating the variables and integrating]

9 + cr0, d.9 + c 2rO2 d9 + ... = ..l(t - to)·

The left-hand side of this equation contains, apart from periodic terms, further
terms proportional to 9.

If we put in general

2
1
7[ rn

e, d9 = hm ,

we may present the ensemble of all these terms in the form]

(I + h2 c2 + h3 c 3 + ...)9.

Accordingly we shall be able to give our equation the following form:

(I + h2 c 2 + h3 c 3 + ...)[9 + c<l>, (9) + C
2<1>2(.9) + ...] = ),(1 - to),

where the <1>/9) represent finite series of sines and cosines of integer multiples of 9,
independent of c.

All the preceding operations have been effected under the assumption that 9 can
only take real values and that Ic I does not exceed a certain limit.

t We easily assure ourselves that h, will always be equal to O.
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Stability of motion: general problem

Under this assumption the series

are absolutely convergent. Moreover the series

647

(57)

r, 3 - r = cpo

will converge uniformly for all real values of 9.
Now, for what is to follow, the consideration of real values of 9 will no longer

be sufficient, and we shall have to attribute to it complex values of the form

(1 and f3 being real numbers, of which the first is arbitrary, while the second is
subject to the condition that its absolute value does not exceed a certain limit.

If, in treating the question of convergence of series (49), we had considered such
values of 9, we would have arrived, as we easily convince ourselves, at the same
conclusion as in the case of real values of 3.

We can thus be sure that we can always choose lei small enough for series (57)
to be uniformly convergent for all complex values of 9 of the form indicated above.

After having noted that, let us put

2; (1 -I-h2e
2+h,e' -I- ...) = T,

27':(t - to)

T

Our equation will then take the form

cp -I- e!l>,(cp -I- r) -I-e2!l>2(cp -I- r) -I- ... = o. (58)

This settled, let us consider r as a parameter independent of c, and to which may
be attributed all values of the form

r =p -I-uj=!,

p and a being real numbers, of which the last does not exceed in absolute value a
certain given limit.

Then, if we make an analogous assumption with regard to tp, we shall be able
to obtain from equation (58) the conclusion that, lei being sufficiently small, the
modulus of the variable cp will become as small as we wish.

Our problem will thus reduce to finding in accordance with equation (58) a
function cp, of which the modulus can be made, on making lei sufficiently small, as
small as we wish.

We now note that each of the functions !l>j(CP -I- r) can be presented in the form
of a series, ordered in positive integer powers of cp, and absolutely convergent for
all the values of cp and r. By consequence, the left-hand side of equation (58) will
be a holomorphic function of the quantities cp and e (and uniformly so for all values
of r of the above form).

This function, for cp = e = 0, becomes zero, and its partial derivative with
respect to cp then becomes equal to unity.
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648 A. M. Lyapunoo

Therefore, in view of a known theorern.t the sought function cP will be
holomorphic with respect to c, and so will present itself, Icl being sufficiently small,
in the form of the series

(59)

the CPj designating functions of r independent of c.
The functions CPj can be calculated successively [from (58)], with the aid of the

functions 0 j and their derivatives 05'):

cP, = -<1>, [r), CP2 = <1>, (r)<1>',(r) - <1>2 (r), ...

We see that all these functions will appear in the form of finite sequences of
sines and cosines of integer multiples of r.

In this way we shall have for 9 the following expression:

9 = r + cP, c + CP2C2 + CP3C3 + ...
On substituting this expression in equations (56) and on then expanding the

right-hand sides in increasing powers of c, we shall present the functions x, y, x, in
the form of series of the same kind as (59).

All these series, for values of c with sufficiently small modulus, will converge
uniformly for all the values considered of r.

On putting in them

2n(t - to)
r=

T
(60)

we shall thus obtain the sought solution of system (45).
With respect to t the functions x, y, X s will be, in this solution, periodic with

period

12. d9 2n
T= 0 A+0=T(I+h2c

2+h
3c

3+ ...).

We can, if we wish, give another form for the solution found. Namely, we may
represent the functions x, y, x, in the form of Fourier series, ordered in sines and
cosines of integer multiples of r. This results from the property that the functions
concerned, fel being sufficiently small, will be synectict for all complex values of r
of the form indicated above.

The new series obtained from this point of view will be of the same character as
those considered by Lindstedt (Section 27).

Our periodic solution contains two arbitrary constants c and to, and there will
correspond to it, for real values of the latter, a periodic motion.

The constant to is not, however, of importance, and the character of this motion
depends principally on the constant c.

On making this constant vary in a continuous manner we shall obtain a
continuous series of periodic motions, and the undisturbed motion under consider­
ation will playa part in this, being that for c = o.

t [See a reference to Goursat in Section 28.]
t [This term (introduced by Cauchy) is used as a synonym for 'regular' by A. R. Forsyth,

Theory of Differential Equations, Cambridge, 1902, Vol. IV, p. 4.]
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Stability of motion: general problem 649

Remark

For the practical calculation of the terms in the series considered, it is not
absolutely necessary to resort to the procedure indicated above. For this it will be
in general preferable to treat equations (45) directly.

On designating by c an arbitrary constant, and by T the series
2n 2 3T (I + h2c + h3c + ...)

with undetermined coefficients h. let us introduce into these equations, in place of
t, a new independent variable r by means of substitution (60). Next let us seek to
dispose of the constants h in such a way that the transformed equations are satisfied
by the series

(61)

x = X(I)C + x(2)c 2 + X(3)C 3 + ,
Y = y(1'c + y(2)C2 + y(3)C 3 + ,

X s = X~I)C + X~2)C2 + X~3)C3 + ,
(s = I, 2, ..., n),

in which all the x(m), ylm), x~m) are periodic functions of r having 2n for their
common period.

For the calculation of these functions (which are supposed independent of c), we
obtain systems of differential equations which allow us, when our problem is
possible to solve, to obtain successively all the x(ml, ylm" x~m) in order of increasing
m, in the form of finite sequences of sines and cosines of integer multiples of r,
provided that we choose suitably the constants h. We shall then obtain, for each
value of m first x(m) and y(m), then the ;r~"} The values that must be attributed to
the constants hm will also be calculated successively in order of increasing m, and in
such a way that for every value of m the constant hm _ I will be obtained
simultaneously with the functions x 1m), ylm).

With regard to the equations on which X(I) and y(l) depend, we shall always be
able to satisfy them on putting

x(I)=cosr, yll)=sinr.

Next we shall be able to carry out the calculations so that the x 1m), ylm) for
m > I become zero for r = O. Then all the functions sought, as well as the constants
h, will become completely determined, and the series (61) will be identical with
those considered above.

Keeping with this procedure, let us see how we may obtain the constants h.
Suppose that we have already calculated all the functions xl"), yl"), x~") for

Jl < m, and all the constants hj for j < m - I. Then, to determine the functions x(m)

and y(m), we shall have a system of equations of the form

dx'?"-- = __ y(m) _ h sin r + x(m)
dt "I-I ,

dy1m)
-- = x(m) + h cos r + y(m)dt m-I ,

[in these and ensuing equations, h m- l should be replaced by -hm-tl where x(m),

y(m) will be known functions, which will be entire and rational with respect to the
Xl"), y("', x<;') previously found.
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650 A. M. Lyapuno»

(62)

The functions x,m), y,m) will appear in the form of finite series of sines and
cosines of integer multiples of r.

Let us seek the functions x,m), y<m) in the form of series of the same kind.
On seeking the coefficients in these series, we only meet with difficulty for the

terms dependent on sin r and cos t. Let us therefore restrict attention to these
terms.

On designating the other terms by dots, suppose that we have

x,m, = A I cos r + A 2 sin r + ,

y<m) = B I cos r + B2 sin r + ,

where A" A2 , B" 8 2 are known constants.
On putting in an analogous manner

x,m)= U, cos r + u, sin r + ,
y,m)= b, cos r + b, sin r + ,

we shall have, to determine the constants u l , u2 , b, b2 , hm _ t , the following
equations:

u,+b, =A" -u, +b2+hm _ 1 =A"

-u,-b,=B2 , -u,+b2-hm_,=B,.

These equations will only be solvable under the condition [obtained by adding
the first equation to the third]

£4 1 + B2 = 0,

and when this condition is fulfilled they will give

A2-B, A, +B,
hm_,= 2 ,u,=A,-b l , bs> 2 +u,.

Since the condition that x,m), y,m) becomes zero for t = 0 allows the determina­
tion of the constants u, and b, these formulae will give all the constants sought.

\

The method of calculation which we have just indicated presents only an
insignificant modification of that of Lindstedt, such as it would have been in the
case which interests us (Section 27).

Let us note that for the application of this method it is not necessary for the
functions X and Y to become zero for x = y = O. Thus it does not require the
preliminary transformation of equations (45) which we mentioned in Section 33.

If the existence of the periodic solution is not known a priori, and if, on
applying the preceding method and carrying out the calculation up to a certain
value of m, we find that condition (62) is not fulfilled, that will serve to indicate that
the solution sought is impossible.

We easily assure ourselves that, in this case (whether or not the functions X and
y become zero for x = y = 0), the number m and the constant

A, +B,
g=

2

will be the same as those which we have considered in Section 34. [Equation (51)
indicates the case where r has a non-periodic term g8c m

. Correspondingly x and y
have terms g8c m cos 8 and g8c m sin 8 respectively; and the above expressions for
x,m) and y,m) generalize to
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Stability of motion: general problem 651

x(m) = al cos, + a2 sin, + g: cos, + ..

y(m) = b, cos, + b2sin, + g, sin, + .

Substituting these expressions in the differential equations for x(m) and y(m), and
equating coefficients, we find

a2+bl +g =A
"

-al +b2- hm_ 1 =A2

-a2-b, +g=B2, -(1, +b2+hm_ , =BI

which yield Lyapunov's above expression for g.
Note also that m and g here must indeed agree with those of Section 34, since

otherwise x 2+ y2 and r2 would have differing expansions in powers of c, contra­
dicting the identity ,2 = x2+ y2.]

37. [Study of the general case]
Let us now return to our problem.
We are going to show how, on starting from equations (52), we may achieve

resolution of the question of stability.
Let us first consider the case where, for z I = Z2 = ... = z; = 0, the function Z

does not become identically zero.
Let

zZ =gzm + p(I)z + p(2)Z2 + ...+ p(m-11zm-1 + R,

where g is a non-zero constant, the P'!! are linear forms in the quantities z, with
coefficientst periodic with respect to 9, and R represents a holomorphic function of
the variables z, z" for which the expansion, possessing coefficients of the same kind,
does not contain terms of degree less than third. The function R is moreover such
that, in the terms which are linear with respect to the quantities z" it contains z in
powers not less than the mth, and, in the terms independent of these quantities, it
contains z in powers not less than the (m + I)th.

By the property of equations (52) we must then admit that the expansions of the
functions Z" in the terms independent of the z" do not contain z in powers less
than the mth.

Let, k being any positive integer,

Z, = P~I)Z + P~2)Z2 + ... + p~klZk + Z~kl,

where the p~j) are linear forms in the quantities z, with periodic coefficients, and
Z\k), Z~kl, ..., Z~k) are holomorphic functions of the variables z, z, for which the
expansions, in the terms linear with respect to the z" can only contain z in powers
exceeding the kth.

Proceeding as in Section 29, let us put

V = z + W + U(I)Z + U(2)Z2 + ...+ u(m-11zm-l,

the UUJ being linear forms and W a quadratic form in the quantities z" with
undetermined coefficients. But now these coefficients will be supposed constant only
for the form W, and, for the forms UU), we shall suppose them periodic functions
of 9.

t In general, all the periodic functions with which we are concerned here will be finite
series of sines and cosines of integer multiples of ,9.
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652 A. M. Lyapunov

After having formed, in accordance with equations (52), the derivative dV/d8,
let us seek to assign the coefficients in the forms UlJ) in such a way that this
derivative, in the terms linear with respect to the quantities Zp can only contain Z

in powers not less than the mth. For this we must make

n etr» aU(1)
L (qsl Z, + qszzz + ... + qsnzn) -a- +-ao + pO) = 0,

s-1 ~ ~

n aU(k) eo» "( aU(k -I)

L (q" z, + qszzz + '" + qs"zn)-a- +-ao + p(k) + L P~') -a--
.f",,1 Zs 11 5=1 Zs

aUO»)(k-I) - k-+ ...+ P, ih; - 0 ( - 2, 3, ..., m - I).

(Compare corresponding equations in Section 29.]
From these equations we shall obtain successively

(63)

Moreover the hypothesis that the coefficients in the forms UlJ) are periodic
functions of 8, namely finite series of sines and cosines of integer multiples of 8, will
always be realizable and will completely define these coefficients.

In fact, if U is the first of forms (63), or indeed anyone of those following,
under the hypothesis that all those which precede it are already found in the form
indicated, we shall obtain to determine it the equation

in which all the A will be finite series of sines and cosines of integer multiples of 8.
This equation will give for the coefficients a in the form

the following system of equations [obtained by equating coefficients of z" then
those of zz, and so on]:

da,
d8 + ql.,a , + q2.,a2 + ... + q.,a" = As (s = 1,2, ..., n).

And the latter, the determinantal equation corresponding to it not having purely
imaginary roots (all these roots have positive real parts [recall that (48) only has
roots with negative real parts]), will always admit a solution, and only one, where
all the a are finite series of sines and cosines of integer multiples of .9.

After having determined in the way just stated the forms UlJ), let us choose the
form W in accordance with the equation

~ _ _ aw _ 2 Z 2
L. (q"z, + q,Z"Z + ... + qsn",,)a -g(zl + Z2 + ... + z,,) .

s .. 1 Zs
(64)

Then the expression for the total derivative of the function V with respect to 8
will take the following form:

dV _ ( m + 2 2 + + _2) Sd8 - g z Z I + z2 ••• " n + ,
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Stability of motion: general problem 653

[Compare similar equations in Section 29.]
Now we can always present this quantity S in the form

" "
S = uz" + L L VS I1ZSZ(1'

s= 10'= I

where v, vs• are functions of z, z,; 8, becoming zero for

Z = Zt = Z2 = ... = Zn = 0,

and being periodic with respect to 8 and holomorphic with respect to z, z,; and
moreover uniformly so for all real values of 8.

It is thus clear that if we introduce the condition

z ~O, (65)

the expression found for dV/d8, considered as a function of the variables z, z,; '8,
of which the last plays the role of t, will represent a definite function (see remark
at the end of Section 16), which, for sufficiently small values of z and the [z, I, will
retain the sign of the constant g.

Under the same condition (65), the function V will also be definite and
moreover positive, if the form W, as a function of the variables Zs> is positive-defin­
ite.

The latter circumstance will effectively hold when g < 0, since the form W,
which has to satisfy equation (64), will always retain a sign opposite to that of g
(Section 20, Theorem II).

On the other hand, if g > 0, the function V will be capable of taking any sign,
however small the Izs I and z.

Consequently, if we keep in view condition (65) {and the latter, as has already
been mentioned in Section 34, is a consequence of the hypothesis r ;;.0, which is
always possible and does not at all restrict our problem (Section 33)}, we may
assert that the function V, for g > 0, will satisfy the conditions of Theorem II of
Section 16, and, for g < 0, the conditions of Theorem I (and even the conditions of
the theorem established in Remark II [of that section]).

We must therefore conclude that in the case of positive g the undisturbed
motion is unstable, and that in the case of negative g it is stable.

In this last case, the disturbed motions corresponding to sufficiently small
perturbations will tend asymptotically to the undisturbed motion.

Remark

We have considered rand z as variables for which negative values are not
possible. But we would have been able, with equal right, to have considered them
as variables for which positive values are not possible.

In order to examine the question under the latter hypothesis, it would have only
required us to modify the preceding analysis a little, on replacing, in equation (64),
g by (-Wg.
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654 A. M. Lyapunov

Then the new expression for the derivative dV/d8 would represent a function
defined subject to the condition z <;;; O. and its sign would be the same as that of
(-IY'g. The function V. under the same condition. would be negative-definite. if
( - IY'g represented a positive number. '

We should. by consequence. be led to the conclusion that. under the condition
( _l)rng > O. the undisturbed motion is stable, and. under the condition
(_I)rng < O. unstable.

These new conditions coincide with the preceding ones only in the case where m
is an odd number. And as they must necessarily coincide. the result found proves
that the number m will always be odd (Section 34. Remark II).

Note that if m were an even number. which could only occur if equations (52).
without being the transforms of equations (45). were proposed in themselves. our
analysis would lead to the conclusion that. for perturbations subject to one of the
two conditions

z ;. 0 or z <;;; O.

the undisturbed motion would be stable, and for perturbations subject to the other
condition it would be unstable.

38. [Study of the exceptional case. Existence ofa holomorphic integral independent
of t]
Let us now consider the case where in equations (52) all the functions Z. Z"

become zero for z, = Z2 = ... = z; = 0, and where, as a consequence, these equations
admit the solution

with arbitrary constant c.
We are going to show that in this case we can find for system (52) a complete

integral with an arbitrary constant c. with equation presenting itself in the form

z = c +f(z,. Z2 • .. . . z",c. 8), (66)

wheref designates a holomorphic function of the quantities z" Z2, ... , z", c. becom­
ing zero for c = 0 as well as for z, = Z2 = ... = z; = 0, and having for coefficients in
its expansion in powers of these quantities finite series of sines and cosines of
integer multiples of 8.

For this purpose we have to show that the partial differential equation [which
expresses the first of equations (52)]

" oz oz "oz
s~, (q" z, + q.,2 Z2 + ... + q,,"z") oz.. + 08 = zZ - "~I Z s oz" (67)

has a solution in the form of (66).
Let us put

ro ro

f= L L P:;')c',
m= 1/= I

(68)

on understanding by P~~) a form of degree m in the variables z, and independent
of c.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
O
t
t
a
w
a
]
 
A
t
:
 
0
1
:
0
0
 
2
8
 
A
p
r
i
l
 
2
0
1
0



Stability of motion: general problem 655

If we replace, in the right-hand side of equation (67), Z by its expression (66),
on then ordering the result in powers of the quantities z" c we shall obtain a series
in which, under our hypothesis concerning the functions Z, Z" there will not be any
terms independent of the quantities Z,.

The result of this substitution will consequently appear in the form
00 00

- L L Q<';,lc',
m= 1/= 1

where Q<,;,l designates a form of degree m in the quantities z" which is deduced in
a certain manner from the forms P<';;'> for which

m'+I'<m+1

(in the case m + I = I this form will be the ensemble of terms of the first dimension
in the function -Z).

We shall thus have to satisfy a sequence of equations of the form
n cPU) cPU)
L (q'JZJ+q'2Z2+ ... +q,"zn)~+ ,;;' =-Q~:,l, (69)

s=1 u~ U~

which will serve for the successive calculation of all the P~) in any order for which
the number m + I does not decrease.

In these calculations we shall always be able to suppose that the coefficients in
the forms P~) are periodic with respect to 9 (finite series of sines and cosines of
integer multiples of 9), and such a hypothesis will make our problem completely
determinate.

In fact, if all the forms P~:) for m' + I' < m + I are already found and possess
periodic coefficients, the right-hand side of equation (69) will represent a form in the
quantities i, with coefficients of the same kind. Hence, such will also be the known
terms in the system of non-homogeneous linear diffierential equations which this
equation will give for the calculation of the coefficients of the form P~). Now the
determinantal equation of this system will only have roots with positive real parts,
for this equation is obtained by equating to zero the (m - I)th derived determinant
(Section 19) of the determinant which appears on the left-hand side of equation (48),
and by replacing Xby - X. Thus, the above system will always admit one (and only
one) periodic solution.

In this way we see that series (68) will not include anything unknown. t
To examine the convergence of this series, let us consider a certain transformation

of it. Specifically, let us consider the series relating to the system which is deduced
from that of (52) by means of a linear substitution similar to that which we used
in Section 35 for transforming equations (47).

Our question will then reduce to the examination of the convergence of series
(68), obtained under hypothesis that, in equation (67), all the coefficients q,. are zero
with the exception of the following:

qnn = x"'

among which the first n have negative real parts.

t It goes without saying that, the coefficients in system (52) being real, it will be the same
for this series, if it is considered as ordered in powers of the quantities z" c (we assume the
variable 9 to be real).
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656 A. M. Lyapuno»

Under this hypothesis, equation (69) will give for the coefficients of form P~)

equations such that, being arranged in a suitable order, they will allow the
calculation, in a certain order of succession, one after another all the coefficients
sought.

Let A be the coefficient of the term containing

and suppose that all the coefficients which precede it in the order of succession
considered are already found. Then we shall have for the determination of A the
equation

dA
d9 + (m,x, + m2X2+ ... + mnXn)A = -B,

in which B will be a known periodic function.
From this there will appear

We now note that the function B, in its original form, represents an entire and
rational function, with positive coefficients, of the previously found coefficients in
the form P~i as well as in those which precede it, of the quantities US' and of the
coefficients in the expansions of the functions - Z, Zs.

By consequence, it results from the expression obtained for the coefficient A that
we shall obtain upper bounds for the moduli of coefficients such as A, if we find the
coefficientsof the corresponding terms of the series, similar to (68), but independent
of 9, which is formed under the hypothesis that in equation (67) all the Xs are
replaced by their real parts, all the Us by their moduli, and all the coefficients in the
expansions of the functions -Z, Z, by constant upper bounds for their moduli,
valid for all real values of 9. Moreover, by the nature of the functions Z, Z" these
last upper bounds will always be able to be chosen in such a way that, Izl, Izs Ibeing
sufficiently small, the series defining these functions remain convergent after the
indicated replacement.

Now the series independent of 9 which we shall obtain in this manner is a
special case of the series considered in Section 31.

We can therefore assert that series (68) defines a function of the quantities z" C

which is uniformly holomorphic for all real values of 9; and, as a consequence, the
existence of the integral with equation (66) can be regarded as proved.

Let us go back to our problem.
Supposing the constant c to be real, let us replace the first of equations (52) by

equation (66) for the integral, and let us next substitute in the others, in place of z,
its expression (66). These equations will then take the form

dz, ( r
d9 = (qs' + Cs1)z, -I:- qs2 + Cs2)Z2 + ... + (qsn + csn)zn + Zs

(s = 1,2, ..., n). (70)

The c.; here are holomorphic functions of the constant c, becoming zero for
C = 0, and having for coefficients in their expansions in powers of C real periodic
functions of 9; and the Z~ are holomorphic functions of the quantities z" c, for
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Stability of motion: general problem 657

which the expansions, possessing coefficients of the same kind, begin with terms of
degree not less than second with respect to the variables Zs. All the functions
considered are moreover uniformly holomorphic for all real values of 9.

Similarly to what we have seen in Section 31, our problem now reduces to the
examination of the stability of the motion

with respect to the variables z" satisfying equations (70).
These equations contain the parameter c which is only subject to the condition

that its absolute value must not exceed a certain limit, and if we prove that the
motion in question is stable independently of the value of this parameter (in the
sense defined in Section 31), it will by this also be proved that the steady motion
which we had to examine is stable with respect to the variables z, z;

Now, having regard to the nature of the functions representing the right-hand
sides of equations (70), we prove this easily by the same procedure as that indicated
at the end of Section 31.

We can thus be sure that in the case considered the undisturbed motion will
always be stable, and that every disturbed motion for which the perturbations are
sufficiently small will approach asymptotically one of the periodic motions defined
by the equations

z = e, z, = Z2 = ... = z" = o.

Remark I

On resolving equation (66) with respect to the constant e (under the assumption
that all the quantities Iz, I, lei are small enough), we shall obtain from it the
following:

(71)

where 'P will be a holomorphic function of the quantities z, z,; becoming zero for
z = 0 as well as for z, = Z2 = ... = z; = 0, and having for coefficients finite sequences
of sines and cosines of integer multiples of 9.

The right-hand side of equation (71) will represent one of the integrals of system
(52).

On introducing into this integral, in place of the variables z, z" the variables r,
x" we shall obtain an integral for system (47).

Let us consider the square of the latter. It will be of the following form:

(72)

where «1> designates a holomorphic function of the quantities r, x., for which the
expansion begins with tenns of degree not less than the third and has for
coefficients finite sequences of sines and cosines of integer multiples 9.

On introducing into function (72), in place of variables rand 9, variables x and
y, we shall deduce from it an integral for system (45).

This integral will appear in the form of the following series:

(73)
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658 A. M. Lyapunov

Here the U~·), V~·) represent rational and homogeneous functions of the
variables x and y, of the mth and (m - I)th degree respectively. These functions are
moreover such that, if they are not entire with respect to x and y, they become so
after being multiplied by certain integer powersof the quantity x 2 + y2. As for the
summation, it extends over all non-negative values of the integers m, m" mi. ..., m.,
subject to the conditions

m>l, m+m,+m2+ ... +m.>2.

The mode of convergence of series (73) is indicated by the very extraction of this
series from function (72), which is hoiomorphic with respect to r, x" and uniformly
so for all real values of 9.

The same property, in so far as convergence is concerned, will also belong to the
series that may be deduced from (73) on replacing (x 2+ y2) '{2 by - (x 2+ y2) '{2, for
this series will represent the transform into x, y variables of the function obtained
by replacing in (72) r by -r and 9 by 9 + 71:. Moreover, this new series will
evidently also be an integral for system (45).

We conclude from this that the series

(which will certainly be convergent, as long as the two preceding ones are) will
represent an integral of system (45), for which the transform into variables rand 9,
similarly to the preceding ones, .,viII be a function of the variables r, x, which is
uniformly holomorphic for all real values of 9.

Let us show that this integral will be a holomorphic function of the variables
x, y, X(1 X2, .. " Xn-

For this, we note at the outset that the coefficients U will necessarily be entire
functions of x and y.

We may convince ourselves of this on considering the equation which will be
verified by F, namely:

• of (OF OF)L (Ps' x, + Ps2 X2 + ... + P"Xn + iXsX + f3sY) -;- +). x.., - y..,
.~_I UXs uy uX

n of of of
= - L Xs - - X - - Y - - 2(xX + y Y) .

., _ , oXs ox oy

[This equation is obtained by carrying out the differentiation in

d
- (x 2 + y2 + F) = 0
dt

and then bringing in equations (45).]
On substituting in it the expression for F in the form of a series we shall deduce

from it, for the determination of the functions U~I' .... m n >, systems of equations'
such that we shall be able to calculate all the functions which correspond to given
values of the numbers

m, m, +m2+ ... +m., (74)

after we have calculated all those for which the sum of numbers (74) has a smaller
value, as well as all those for which, this sum having the same value, the number
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Stability of motion: general problem 659

m is smaller.t Now, on examining these systems more closely, we may easily perceive
that the functions U cannot be rational without being entire.

Having thus established that all the U will be entire functions of the variables x
and y, Jet us introduce, in place of the latter, the variables ~ and '1 given by means of
the equations

~ =X +yj=!, '1 =X - yj=!.

Let
m

U~I.m2, ...• m,,) = L Ck~'_il'····m,,)~k'lm-k,

k_O
(75)

where the C represent constants.
In accordance with what was noted above, the function F, on putting in it

~ = re", '1 = re:" (i = j=!)
becomes a holomorphic function relative to the quantities r, x" and uniformly so for
all real values of 9.

As a consequence, if, by virtue of the above expressions for ~ and '1, we have

U~I.m:! •...• m,,) =rme~l.m2.....mfl),

we shall always be able to find positive constants A, AI> A2 , ••• , An' M, such that for
all real values of 9 we have inequalities of the form [compare (2) of Section 2)

M10::' 'm,.. mn )I< ---:-:::-=---,------,-c­
Am A7" A 2" ... A;:'n

Now, because of (75),

C\,m,1,._,l' .... mn)=~ r" 0::,.m,.... mn)eilm-2k)Sd9.
• 1[ Jo

Thus the inequality just written gives

From this we see that the function F, being expressed in terms of the variables
~,'1, XI' X2, ..., Xn , becomes a holomorphic function. It will thus equally be holomor­
phic with respect to variables x, y, XI' X2, ... , Xn •

Hence, in the case where system (45) admits a periodic solution, it will also admit
a holomorphic integral independent of t,

X2+ y2 + F(XI, X2, ... , Xn , X, y), (76)

where the ensemble of terms of lowest degree will be x 2+ y2.
We moreover easily assure ourselves that if we have found any integral of the

form (76), every other holomorphic integral independent of t will be a function of it.
We can also prove that if system (45) admits such an integral, it will also admit a

periodic solution, defined by series of form (61).

t In the case where m, = m2 = ... = m; = 0, for m even, we shall encounter an indetermi­
nacy, due to the circumstance that we shall then be able to add to the sought function U the
expression C(x 2+ y2)m/', dependent on an arbitrary constant C.
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660 A. M. Lyapunov

We may convince ourselves of this on considering the system deduced from (47)
by eliminating the variable r with the aid of the equation furnished by this integral.
[Alternatively see Section 44.]

We have assumed that, for x = y = 0, the functions X and Y become zero. But,
for the validity of what we have just said such a hypothesis is not necessary, and in
future, in speaking of system (45), we shall no longer retain this assumption.

Remark lIt
The conclusion enunciated above on the subject of the stability of the steady

motion, in the case where this motion is part of a continuous series of periodic
motions defined by the equations

z = c, z, = Z2 = ... = 0,

cannot, in general, be extended to the latter motions.
For the steady motion (which corresponds to c = 0), the problem of stability

with respect to the variables x, y, Xs> which alone interests us here, does not
basically differ from the problem of stability with respect to the variables z, Zs' But,
for the periodic motions with which we are concerned, these will in general be two
different problems.

With respect to the variables z, z, these motions will still be stable, but, with
respect to x, y, x, they will only enjoy, in general, a certain conditional stability:
namely, they will be stable for perturbations which do not change the constant
value of the integral (76). With regard to non-conditional stability, it will only hold
in the case where the period T (Section 36) does not depend on the constant c, i.e.
where the numbers h, are zero [see the set of equations preceding (58»).

To demonstrate this, let us consider one of the periodic motions, which is
defined by the equations

where

z = c; ZI = Z2 = ... = Zn = 0;

2n(t - to)
r = -'------'''-

T

(I)

(II)

and tp" tp2, ... are certain periodic functions of r [recall (59»).
On turning to the relations between the variables x, y, x, and z, 9, z, (Section

35), we readily conclude from them that, if c is not zero, the problem of stability of
motion with respect to the first variables is equivalent to the problem of stability
with respect to the second. Consequently, for the motion under consideration,
which is already stable with respect to z, Zs> to be the same with respect to x, y, Xs>

it is necessary and sufficient that it should be stable with respect to 9.

t This remark does not appear in the original. It is based on the note 'Contribution a la
question de la stabilite', inserted in Communications de fa Societe Mathematique de Kharkow
for 1893.
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Stability of motion: general problem 661

This agreed, let us designate the right-hand side of equation (II) by the letter 1/1
and, on putting

let us form the differential equation which will be satisfied by (, under the
assumption that, for all the disturbed motions with which is compared the periodic
motion under consideration, the constant value of the integral (76) is the same as
for the periodic motion.

For all these motions, the constant c in equation (66) will then have the same
value as in equations (I) and (II).

Therefore, on eliminating Z with the aid of equation (66), we shall have, to
determine" an equation of the form

(III)

for which the right-hand side will become zero for z, = Z2 = ... = z; = O.
Here 2 will be a holomorphic function of the quantities z" Z2, ••. , zo' (, for

which the expansion will possess coefficients periodic with respect to 1/1, and this
function will be uniformly holomorphic for all real values of 1/1. '

We now note that the constant c can always be supposed small enough in
absolute value for the characteristic numbers of the functions z, {as functions of the
variable 8 satisfying equations (70)} to be all positive, whatever the initial values of
these functions.

This accepted, let us designate by X any positive number less than all of these
characteristic numbers.

Next, taking to for the initial value of t, let us designate by Zo the initial value
of the function

Then, on replacing in the function 2 the quantities z, by their expressions as
functions of 8 = 1/1 + (, we shall deduce from it a function of T, ( and of the initial
values of the quantities z" such that, M being sufficiently large, we shall have

121 < Mzoe- x'

for all values of t greater than to, as long as 1(1 is below a certain limit I and the
initial values of all the [z,1are small enough.

By consequence, on designating by (0 the initial value of the function ( and on
supposing 1(01 and Zo sufficiently small that the inequality

MT
1(01 + -2 Zo< I

1!X

is fulfilled, we shall be able to deduce from equation (III), t being greater than to,
the following inequality:

MT1(1 < 1(01 + -2 zo(l - e -X'),
1!X

and from this we infer the stability of our motion with respect to " or, what
amounts to the same, with respect to 8.
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662 A. M. Lyapunov

This conclusion is obtained on assuming that the perturbations do not change
the value of the integral (76).

Let us now consider arbitrary perturbations.
Let C1 be the constant which will then figure in equation (66) in place of c.
Next let 1/11 be what 1/1 will become when we replace in it c by cl.
In view of what we have just established, we arrive at the following conclusion.
For the motion under consideration, Icl being sufficientlysmall, to be stable with

respect to 9, it is necessary and sufficient that, s being any positive number, we can
assign another positive number a such that, C1 verifying the inequality

Icl-cl<a,
we have

for all values of t greater than to.
Now it is obvious that this is possible only in the case where T does not depend

on c. [This follows on writing 1/1 as

2n(t - to) 2
1/1= T +({JIC+({J2 C +".]

39. [Particular cases where one can demonstrate existence of a periodic solution
or a holomorphic integral]

We see from the preceding that, in the case which interests us concerning two
purely imaginary roots, the question of stability depends in an essential manner on
that of the possibility of a periodic solution for system (45), or, if we wish, on the
question, very intimately linked with it, of the possibility of a holomorphic integral
independent of t for this system.t Unfortunately, all the procedures which we can
propose, in general, for the resolution of this last question are such that they only
succeed in the case where the answer is negative. However, if it is not possible to
indicate any general method which leads to the desired end in all cases, it is
appropriate to indicate at least certain special cases where the solution of our
question simplifies.

Let us first assume that the functions X and Y do not contain the variables
XI, x2 , ... , x".

The problem is then completely resolved by the examination of the second-order
system [see (45)]

dx }-=-A.y+X
dt '

dy
-=A.x+Ydt .

(77)

One of the simplest cases where there exists for this system a holomorphic

t [Refer to the material at the end of Remark I of Section 38, beginning with the sentence
containing (76).]
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Stability of motion: general problem 663

integral independent of t is that where the functions X and Y satisfy the relation

ax ay
ax + ay =0,

i.e. where system (77) is canonical [Hamiltonian).
In this case the functions x and y which satisfy it will be periodic for all

sufficiently small initial values.
Mr Poincare has indicated a case of another kind where the functions x and y,

defined by equations (77), are always periodic. This is the caset where the equations
under consideration do not change on replacing simultaneously t by - t and y
by -yo

Mr Poincare has shown how the periodicity of the functions x and y can then
be established a priori.

Now, under the indicated conditions, it is no less easy to establish directly the
existence of a holomorphic integral.

In fact, for the case which we have just indicated to hold, the functions X and
Y must be of the form

X = yf(x, y2),

Y = tpix, y2),

where f and q> designate holomorphic functions of their arguments, becoming zero
when the latter are simultaneously equal to zero.

Now if this is so we shall have, on eliminating dt,

dy2 = -2 Ax + q>(x, y2)
dx A - f(x, y2) ,

and the right-hand side will be a holomorphic function of the quantities x and y2.
Consequently, on considering y2 as a function of x and on designating by c the
value of this function corresponding to x = 0, we shall have, by virtue of a known
theorem [compare Goursat, Hedrick and Dunkel, lac. cit., p. 45),

y2 = C + !/J(x, c), (78)

where !/J will be a holomorphic function of x and c, becoming zero for x = 0.
Equation (78) makes apparent that there will indeed be an integral of the

required character. This integral will be a holomorphic function of the quantities x
and y2.

In general, for system (77) to admit an integral independent of t, representing a
holomorphic function of x and y2 (or, if we wish, of x and x 2+ y2), it is necessary
and sufficient that the functions X and Y can be presented in the form

X = yf(x, y2) + [- A+ f(x, y2))y2H(x, y2),

Y = q>(x, y2) + [AX + tpt», y2))yH(x, y2),

where f, q> and H designate holomorphic functions of x and y2. [These expressions
for X and Y make dy2/dx equal to a holomorphic function of x and y2 rather than

t'Sur les courbes definies par les equations differentielles', Journal de Mathematiques,
fourth series, Vol. I, p. 193.
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664 A. M. Lyapunov

of x and y. The resulting differential equation then has a solution for y2 in terms
of x, giving the required integral of (77).)

We may pose the question in a slightly more general manner. Namely, we may
seek the conditions under which system (77) admits an integral independent of t,
representing a holomorphic function of the quantities

ax + by and x 2+ y2,

where a and b are arbitrary constants. But we shall not stop to treat this case, which
reduces to the previous one by a very simple transformation. [If we put

u = ax + by, v = -bx + ay,

U = aX + b Y, V = -bX + a Y,

system (77) becomes

du
-= -AV+U
dt '

dv
dt = AU + v.)

There exist cases where, X and Y containing the variables XI, X2, ••• , X n, the
question nevertheless reduces to the examination of a system of second order.

Such, for example, is the case where we have

-Ay + X = (-Ay + X')(1 + Z),

Ax + Y = (Ax + Y')( 1+ Z),

X' and Y' being holomorphic functions of the two variables x and y only, and Z
being any holomorphic function of x, y, XI, X 2, ••. , X n, becoming zero when these
variables become simultaneously zero. [In this case dyldx becomes a function of X

and y only.)
Then everything depends on the study of equations of the form

dx A X'
dt' = - Y + ,

i;=Ax + Y'.

Such will also be the case where, X and Y being arbitrary, all the functions X s

in system (45) become zero when we put X I = X 2 = ... = x; = 0, and where all the
constants IXS' fJs are zero.

Then, if X(O) and yeo) are the functions of x and y to which X and Y reduce
when the x, are simultaneously zero, the question will depend on the discussion of
the equations

dx dy- = -Ay + XIO) - = Ax + Y(O).
dt ' dt

The case which we have just indicated is contained in another one, more general,
which we can obtain by considering the system of partial differential equations

oXs , bx,
(-Ax + X) ox + (AX + Y) oy

=PsIXI + Ps2 X2 + ...+ PsnXn + IXsX + fJsY + X s

(s = I, 2, ..., n), (79)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
O
t
t
a
w
a
]
 
A
t
:
 
0
1
:
0
0
 
2
8
 
A
p
r
i
l
 
2
0
1
0



Stability of motion: general problem 665

defining the quantities XI' X2, ... , x; as functions of the variables X and y. [These
equations interpret dx.ldt; see (45).]

Whenever we can satisfy this system by holomorphic functions of variables X

and y:

X, =f. (x, y), X 2=f2(x, y), ... , x; = fn(x, y) (80)

becoming zero for x = y = 0, the question will reduce to the study of the equations

dx dy
dt = -Ay + (X), dt = Ax + (Y),

in which (X) and (Y) designate the results of the substitution of (80) in the
functions X and Y.

On considering more closely equations (79) we may easily convince ourselves
that, if we seek the functions x, in the form of series ordered in positive integer
powers of x and y, and not containing constant terms, the equations obtained
between coefficients will always be compatible and determinate, while allowing the
calculation of these coefficients for the terms of each degree in accordance with
those previously found for the terms of lower degree.

In this way we shall always be able to find series in the indicated form which
formally satisfy system (79), and these series will be unique.

However, it would be a mistake to believe that they always define a solution of
system (79), for cases are possible where these series will not be convergent, no
matter how small the moduli of the variables x and y.

Thus, for example, if the equation

[ -Ay - !x(x2+ y2)] ~~ + [Ax _ !y(x2+ y2)] ~~ = -XI + x2 + y2,

is proposed, the series

x 2+ y2 + (x2 + y2)2 + I . 2(x2+ y2)3 + I .2. 3(x2 + y2)4 + ...
which satisfies it formally will be divergent whenever x 2+ y2 is non-zero, and even,
if we consider it as a double series, whenever x and yare not simultaneously zero.

Hence, the indicated reduction will not always be possible, and to recognize
whether it is possible, it will in general be necessary to examine the convergence of
the series in question.

However, we may encounter cases where these series will be finite, as well as
those where we know a priori that they must be convergent.

Let us mention the following as one of the cases of the first kind:

X=xU, Y=yU, Xs=xsU (s=I,2, ... ,n),

U being any holomorphic function of the variables x, y, x" becoming zero when we
put x = Y = x, = ... = x; = O. In this case, we can obviously satisfy system (79) by
linear functions] of the variables x and y.

Let us note that, if U is an entire and homogeneous function of odd degree,
system (45) will admit in this case a holomorphic integral independent of t.

t [With the above X, Y, X" on substituting x, =kslx +ks2Y in (79) and equating
separately to zero the resulting coefficients of x and Y, we get 2n linear equations for the 2n
unknowns ky .]
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666 A. M. Lyapunov

Let us further mention one of the cases of the second kind.
Let us assume that all the constants CXS' f3s are zero, and that the functions

X, Y, X, satisfy the following relations:

ex, ex,
(-Jey+X) ax +(Jex+Y)ay=O (s=I;2, ...,n), (81)

where the partial derivatives are taken on considering the n + 2 variables
x, y, x I' x2, ..., x, as independent.

Then, on considering the equations

Ps'x, +Ps2X2+'" +Psnxn + Xs =0 (s = I, 2, ...,n) (82)

and on defining by them the quantities x, as holomorphic functions of the variables
x and y, becoming zero for x = y = 0 (which problem, by the nature of the
coefficients Ps., will always be solvable and completely determinate), we shall find
that these functions will satisfy equations (79).

In fact, equations (82), because of'(81), yield the following:

~ (OXs)[ ax. ax.].-:-, r-:». (-Jey+X)OX+(Ax+Y)oy =0 (s=I,2, ...,n).

[To obtain these equations, multiply the derivative of (82) with respect to x by
( - Jey + X), multiply that with respect to y by (Zx + Y), add the results, and then
bring in (81).] f

And from the latter, since the determinant

'\' ( OX,)( OX2) ( OXn)
L... ± PII + ax, P22 + oX

2
... Pnn + oX

n

cannot be zero for sufficiently small values of lxi, lYl, IXs I, there results

ax. ax.
(-Jey-;t-X) ax +(Jex+Y) oy =0 (u=I,2, ...,n).

In this case, provided that the holomorphic functions in question are not all
identically zero, system (45) will always admit a holomorphic integral independent
of t; and, in the periodic solution which it will possess, all the functions x, will be
constants [since the last equations imply that all the dx.ldt are zero].

We may note that, if conditions (81) must be satisfied not identically but only
by virtue of equations (82), the case that we have just indicated will be the most
general one where system (45) admits a periodic solution with constant values for
the functions X s '

In the latter case, the convergence of the series defined by equations (79)
coincides with the existence of a periodic solution for system (45).

We easily assure ourselves that, in general, as soon as such a solution is possible
for this system, the series we are concerned with will always be convergent, as long
as Ix I and lY I are sufficiently small.

In fact, under the indicated condition system (47) will admit a periodic solution,
defined by equations (49). Now, if we eliminate between these equations the
constant c, we shall be able to deduce from them the expressions for the quantities
x, in the form of series ordered in positive integer powers of r, not containing any
zero power, and possessing periodic coefficients, which will be finite series of sines
and cosines of integer multiples of S. By these series there will be defined functions
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Stability of motion: general problem 667

of the variables rand 9, holomorphic with respect to r uniformly for all real values
of 9, and these functions will satisfy the system of equations representing the
transform of system (79) into variables rand 9. However, it is easy to convince
ourselves that it is not possible to satisfy this system by series in the indicated form
if these series do not reduce to ones ordered in positive integer powers of the
quantities r cos 9, r sin 9, and having constant coefficients. Thus the series consid­
ered must necessarily reduce to these. And if this is so, we shall be able to prove,
as in the case considered in the preceding section (Remark I), that they will define
holomorphic functions of the quantities r cos 9 and r sin 9. But then, being
expressed in terms of variables x and y, these series will represent holomorphic
functions of the latter; for if we have to do with the case where the functions X and
Y become xero for x = y = 0, the variables x and yare respectively equal to r cos 9
and r sin 9, and if we are concerned with the general case, we may pass from one
set of variables to the other with the aid of the equations

x = r cos 9 + u,

y = r sin 9 + v,

where u and v are the holomorphic functions of the quantities x, considered in
Section 33. As these functions do not include terms of degree less than second, it
results from these equations that, if all the x, are holomorphic functions of the
quantities r cos 9 and r sin 9, becoming zero when the latter are zero, the quantities
r cos 9 and r sin 9, their moduli being sufficiently small, will be holomorphic
functions of x and y, becoming zero for x = y = O.

In this manner, we obtain under our hypothesis holomorphic functions x, of the
variables x and y, becoming zero for x = y = 0, and satisfying equation (79).

40. [Some complements. Exposition of the method]

In the case where system (45) does not admit a periodic solution of the kind
considered, the question of stability is resolved, as we have seen [in Section 37), by
the sign of a certain constant g.

For the calculation of this constant there have been proposed in what precedes,
two methods, both of which reduce to operations which we would have to carry out
in seeking the periodic solution (Section 34 and Section 36, Remark). Let us now
show how we may attain the same end on making use of the calculations which
arise in seeking a holomorphic integral independent of t.

Let us consider the following expression:

U = x 2+ y2 + fix«, X2, ..., x,; x, y),

where f represents an entire rational function of the variables xs , x, y, not contain­
ing terms of degree less than third.

If we form in accordance with equations (45) the derivative dU/dt, on expanding
it in powers of the quantities x, y, xs ' the series obtained will not have terms of
degree less than third, and by a suitable choice of the function f, we shall be able
to arrange that it does not contain terms up to a still higher degree.

It can happen that, however great the integer k, we shall be able to dispose of
the function f in such a way that, in the expansion of dU/dt there do not appear
terms of degree less than kth. In this case we shall obtain a series, ordered in
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668 A. M. Lyapunov

positive integer powers of x, y, Xs> satisfying formally the condition of being an
integral of system (45) [since U will satisfy formally dU /dt = 0), and, as we shall see
later, this system will then actually admit a holomorphic integral independent of t.

But it can also happen (and this will be a general case) that, whatever the
function f, we can only make disappear in the expansion of dU/dt all the terms
below a definite degree.

Let us suppose that we have to do with this case, and that the function / is
chosen so that, in the expansion of the derivative under consideration, there do not
appear terms up to the highest degree possible.

Then the ensemble of terms of lowest degree in the expansion of dU/dt will
necessarily represent a form of even degree, for if this form, which we shall
designate by V, were of odd degree 2N + I, we should be able to find, in accordance
with Theorem I of Section 20, a form v of the same degree, satisfying the equation

(
av av) n av

J. x"-y,, + L (P,IXI+P,2X2+···+P,nXn+(J(,X+P,y),=-V;
uy ox s= I u~s

and on adding the latter to the function f, we would form a new function U for
which, in the expansion of dU/dt, all the terms would disappear up to the degree
2N + I inclusively.

[Note that if V is of even degree 2N we can no longer use this last argument,
since Theorem I of Section 20 is no longer applicable. The reason is that the
determinantal equation now has n + 2 roots PI, P2' ..., Pn+2' two of which, say PI
and P2, are equal and opposite, being J.i and - J.i. Consequently the disqualifying
condition in the theorem, viz.

with

m l +m2+ ...+mn+ 2=2N,

can be satisfied by non-negative integers mj on choosing

m l =m2= N, m3 =m4 = ... =mn+ 2=0.)

Let us agree then that the degree of the form V is equal to an even number 2N.
We can then suppose the degree of the function/to be not greater than 2N-1.

But, if we wish to introduce into this function also terms or"degree 2N, we shall
always be able to reduce the form V to the following:

(83)

where G is a constant, which will have a fully determinate value.
In fact, if v designates the ensemble of terms of degree 2N in the functionf, and

Vo the ensemble of terms of the same degree in the expansion of the expression'[

dU dv
di - dt'

t [Lyapunov is economizing with symbols here. He has earlier added a first v to a first U
to make a second U which satisfies dU [dt = Vo + .... He is now adding a second v to the
second U to make a third U which will satisfy dUjdt =G(x 2+y2)N +....J
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Stability of motion: general problem 669

we should, to effect the said reduction, determine the form v and the constant G to
conform with the equation

(
ov ov) n ov

A x" - y" + L (PsIX1+ ... +PsnXn + IXsX + f3sY),.-
uy uX s= I ox,

=G(x2 + y 2
) N - Vo. (84)

And the latter furnishes for the calculation of the coefficients of form v a system of
linear equations in number equal to the number of these coefficients, for which the
determinant will be the (2N - I)th derived determinant of the fundamental determi­
nant of system (45), under the hypothesis X = 0 (see Section 19). This determinant
will be, as a consequence, zero [note that the equation D 2N(X) = 0 has one root equal
to zero, in view of the theorem in Section 19]; but, among its first minors, there will
appear at least one which will be different from zero. Therefore the coefficients of
form v will always be able to be eliminated between these equations, and this will
give only a single relation between the coefficients in the right-hand side of equation
(84). It is this relation, necessary and sufficient for the form v to exist, which will
supply, as we shall see straightaway, the sought value of the constant G.

To obtain the relation in question, we can start directly from equation (84). For
this, let us replace the variables x, in it by linear functions of the variables x and
y, satisfying the system of equations

(
oXs OXs)

A x oy - y ax =PsIX1 +Ps2 X2 + ... +PsnXn + IXsX + f3sY

(s = 1,2, ..., n)

(there will always exist such functions and they will be unique), next let us put
x = r cos 8, y = r sin 8 and, after having multiplied both sides of the equation by
r -2N ds, let us integrate with respect to variable 8 between limits from zero to n.
For the left-hand side we shall evidently obtain zero. [With the previous substitu­
tions v becomes a function of 8, say v(8), and the left-hand side of (84) turns out
to reduce to A(dv/d8). The integration of the latter gives A{v(n) - v(O)}, and this is
zero because v(8) is a form of even degree in cos 8 and sin 8.] Hence, the equality
obtained (which will be the sought relation) will give the following value for the
constant G:

1 I'G =- r- 2N Vod9.
n 0

We are thus assured that the function f will always be able to be chosen in such
a way that the ensemble of terms of lowest degree in the expansion of dllldt will be
of form (83).

Let us show that the constant G will be related very simply to the constant g.
For this, if we are dealing with the general case of system (45), let us first

make use of the transformation in Section 33, in order to get to the case where the
functions X and Y become zero for x = y = O. On then seeking an entire function
f satisfying the preceding condition, we shall evidently be led to the same values of
Nand G.

On considering such a function f, let us put x = r cos 8, y = r sin 8 in the
expression for U, and with the aid of equations (47) let us form the derivative
dU/dB.
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We shall have

A. M. Lyapunov

dU- = AGr 2N + R
d8 '

(85)

where R represents a holomorphic function of the variables x,, r for which the
expansion in powers of x,; r does not contain terms of degree less than 2N + I and
possesses coefficients periodic with respect to 8. [We actually have

dU dU dt 2N I
d8 = dt x d8 = Gr x 1+ ...

with use of (46). Thus it appears that in Lyapunov's (85) and his next equations,
A should be replaced by I/L]

This settled, let us turn to series (49).
If we had wanted to extend this series to infinity, while retammg for the

functions u the same form as in Section 34, we would not have been able to arrange
for these series, if they were not periodic, to be convergent. But let us only retain
this form up to order m, starting from which the functions u cease to be periodic,
and let us introduce the condition that, for II. > m, not only the functions u(p) but
also the ut;') become zero for 8 = o. Then, lei being small enough, the series in
question will be convergent and will represent a solution of system (47), at least for
values of 8 not exceeding a certain limit. We shall moreover be able to take lei
sufficiently small that this limit may be as great as we wish.

We shall suppose that we can make use of these series for all values of 8
between 0 and 2n.

This agreed, let us substitute series (49) in equation (85). Next, on multiplying
both sides by d8, let us integrate them from 0 to 2n and expand the results in
increasing powers of e.

Only writing terms of least degree, we. shall then evidently have

4ngem + I + ... = 2nAGe2N + ....

[Integration of the left-hand side of (85) gives U(2n) - U(O), where

U(8) =r 2 +1
Substitution for r from (49) and use of (51) yields

U(8) = e2 + ... + 2gem + '8 + ...

in which the first set of dots represents periodic terms. Hence

U(2n) - U(O) = 4nge m + 1 + ...

which is the expression used above by Lyapunov.]
Hence we must conclude that

2g
m=2N-I, G=;:.

We thus obtain the desired relation between the constants g and G. At the same
time, we achieve a new proof of the proposition according to which the number m
will always be odd (Section 34, Remark II).

From the analysis we have just presented it also results that, if we have to do
with the case where the function f can be chosen so that in the expansion of dU [dt
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Stability of motion: general problem 671

all the tenus disappear up to any desired degree, system (45) will admit a
holomorphic integral independent of t; for it emerges from our analysis that in this
case system (47) will certainly have a periodic solution (Section 38, Remark).']

In view of what we have proved, we can now enunciate the following proposition.

THEOREM. The determinantal equation having two purely imaginary roots and n
roots with negative real parts, let us reduce the differential equations of the disturbed
motion to the form (45). Next, on designating by f an entire and rational function of
the variables x, y, x" x 2 , ... , xn , not containing terms of degree below third, let us
consider the expression

af af
2xX + 2y Y + ( -.ley + X) ax + (Ax + Y) ay

n ij
+ L (p" x, +P,2 X2 + ... +P,nXn + CX,X + p,y + Xs) a'

5=1 Xs

which will present itself in the form of a series, ordered in positive integer powers of
the quantities x, y, x,. We shall then find ourselves with one of two cases: either, by
the choice of the function f, we shall be able to make disappear, in this expression, all
the terms up to a degree as high as we wish, or we shall only be able to do this for
terms where the sum of the exponents is less than a certain even number 2N.

In the first case, system (45) will admit a holomorphic integral independent of t.
II will moreover admit a periodic solution containing an arbitrary constant (apart from
the one which we can add to t) and, on making this constant vary, we shall have a
continuous series ofperiodic motions including the undisturbed motion we are concerned
with. The latter motion will then be stable, and every disturbed motion sufficiently near
the undisturbed motion will tend asymptotically to one of the periodic motions.

In the second case, there will not exist an integral of the character indicated. But
we shall be able to choose the function f in such a way that the ensemble of terms of
lowest degree in the above expression reduces to

Then, if the constant G is found to be positive, the undisturbed motion will be
unstable. If on the other hand, it is negative, this motion will be stable, and every
disturbed motion sufficiently near the undisturbed motion will approach it asymptoti­
cally·t

Let us show finally that we can get to the evaluation of the constant g on making
use of the series referred to at the end of the preceding section, and that it is not
even necessary that these series should be convergent.

t From what has been expounded there also results a theorem already mentioned in
Section 38, and to which we shall again return in what follows (see Section 44), a theorem
consisting in this, that if system (45) has a hoiomorphic integral independent of t, it will also
have a periodic solution. In fact, we easily prove that if there exists a holomorphic integral
independent of t, there will always be found one such in which the ensemble of terms of
lowest degree will reduce to the form x 2 + y2.

~ Let us note that we could propose an entirely analogous theorem for the case examined
further back, where the determinantal equation has one zero root.
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672 A. M. Lyapunov

(86)

To this effect, we note that the constant g only depends on a certain number of
initial terms in the expansions of the right-hand sides of equations (45); such that,
if k represents a sufficiently large integer, this constant will be able to be found by
considering any system of equations of the form

dx dy
dt = - Ay + X, dt = AX + Y,

d~ P ,--;j{ = PsI XI + Ps2 X2 + ... + PsnXn + ClsX + sY + X s

(s = 1,2, ...,n),

where the X~ are holomorphic functions, only differing from the functions Xs in the
terms of degree higher than the kth. [Compare the discussion of (79) in Section 39.]
Now we can always choose the latter terms in such a way that we can satisfy the
system of partial differential equations

1 axs axs
( - Ay + X) ax + (h + Y) ay

(s = 1,2, ..., n)

by entire and rational functions

XI = ({JI (x, y), X2= ({J2(X, y), ... , x; = ({J.(x, y), (87)

which become zero for X = Y = 0 and do not contain terms of degree higher than
the kth. Then, in view of what we have noted in the preceding section, the question
will reduce to the examination of the equations

dx dy
dt = -Ay + (X), dt = AX+ (Y),

which are obtained by replacing in equations (86) the quantities x, by the functions
(87), and these functions will represent ensembles' of terms of degree not greater
than the kth in the series defined by equations (79).

In this manner, to determine the constant g, we shall be able to treat the
equations to which the first two equations of system (45) reduce after we have
replaced in them the quantities x, by the said series, formed up to terms of a
sufficiently high degree.

According to this we shall be able, for the question under consideration, to be
guided by the following rule.

After having reduced the differential equations of the disturbed motion to form
(45), we consider the system of partial differential equations (79), defining the
quantities x" as functions of independent variables X and y. We next introduce new
independent variables rand 9, on puttingt

x = r cos 9,} (88)
y = r sin 9,

t Of course thesevariables will be, in general, different from those which wererepresented
by the samesymbols in the preceding sections. [r and 9 previously satisfied the last equations
of Section 39.J
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Stability of motion: general problem 673

and we seek to satisfy this system by series, ordered in increasing positive integer
powers of r, not containing zero powers, and having for coefficients periodic functions
of 9 with common period 2rr (such series will always exist and will be unique).

At the same time, on turning to the equation

dr r(X cos 9 + Y sin 9)
d9 = Ar + Y cos 9 - X sin 9 '

which results because of (88) from the first two equations of system (45) [or from the
pair of equations preceding (46)), we represent its right-hand side in the form

I 9 . 9) { X sin 9 - Y cos 9 (X sin 9 - Y cos 9)2 }
~ (X cos + Y Sin 1+ ..1.r + ..1.r + ... ,

on replacing the functions X and Y by their expansions in increasing powers of r, X s '

We next replace the x, by their expressions as the series referred to above, and
proceeding as if these series were absolutely convergent, we present the result in the
form of the series

R2 ,. 2 + R3r
3 + R.r' + ...,

ordered in increasing powers of r (all the coefficients R will be periodic functions of
9 with common period 2rr).

Finally, on designating by c an arbitrary constant, weform a sequence offunctions

(89)

independent of c, defined by the condition that, k being any positive integer, the
expression

dr 2 3 k- - R2r - R3r - - Rkrd9 ...

when we put

does not include c in powers less than the (k + I )th. We form these functions, one
after another, until we arrive at a non-periodic function, at which we stop. Let um be
this function (the number m always has to be odd for this). It will always be of the
form

um =g9 + v,

where g represents a constant and v a periodic function of 9. Then, if A is a positive
number, the undisturbed motion will be stable or unstable according as g is a negative
or positive number.

Remark

It can happen that in series (89), however far we extend it, all the functions will
be periodic. The preceding rule will then no longer lead to a conclusion. But, if it
is proved in any manner that we are dealing with such a case, we shall be able to
conclude that the undisturbed motion is stable. [The periodic case was treated in
Section 38.)
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674 A. M. Lyapunov

[The theorem in the present section implies that, in the non-periodic case, we
can find U = r2 +f such that

dU 2NdI =Gr + ...

i.e. such that

d 2 2 N
dt (r ) = G(r) + ...

This equation suggests that if G is negative r 2 will continually decrease, indicating
stability; and if G is positive r 2 will increase, indicating instability. Thus the stability
criterion in the theorem has immediate plausibility. Moreover, this plausible
argument will apply whether Ais positive or negative, whereas the derivation given
above for the theorem is subject to the assumption (made in Section 33) that A> 0.)

41. [Examples)

Let us examine a few examples.

Example I

The differential equations of the disturbed motion reduce to an equation of the
following form: f

d
2x

_ (dx)2n+ I [(dX)2J
dt? + X - a dt + F x, dt '

where a is any constant, n is a positive integer, and F is a holomorphic function of
its arguments, not containing terms of degree below the second with respect to the
quantities x and dx ldt, It is required to examine the stability of the undisturbed
motion (x = 0) with respect to these two quantities.

Let us suppose that on putting

. 0 dx
x = r SIn 07, dt = r cos 9,

we extract from our equation the following:

dr _ 2 3
d9 - R 2 r + R 3 r + ...,

where all the R represent functions of 9 only.
Then, of the functions

(90)

evidently none will depend on the constant a (under the hypothesis that F does not
depend on it). [The system can be written as

dx dy
-=y+X -=-x+Y
dt 'dt

where

x = 0, Y = ay2n+ I + F[x, y2).
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Stability of motion: general problem

Using the expansion in the preceding rule we thus have

dr rY sin 9
d9 = r + Y cos 9

=Y sin 9 {I - ~ cos 9 + ...}

=(ar2n + I cos2n+ '9 + F) sin .9{l- ...}.

675

Since a enters only in the form of a product ar?"+ I, the coefficient R, of r' in the
expansion of the right-hand side will be independent of a for i < 2n + I. The
coefficient of r2n+ I will, however, include the term a cos2n+ I 9 sin 9. This means
that in Lyapunov's above expression R2n+ I - a cos" +2 9, the term cos?"+2 .9
should be replaced by cos2n+

I 9 sin 9. The same replacement should be made in the
integrands appearing in (91) and the subsequent equation.]

Consequently, if for equation (90) we seek a solution in the form of a series

ordered in increasing powers of arbitrary constant c, all the functions

U2, U3, ..• , U2n, U2n+,-a 1" cos2n+ 2 9 d9 (91)

will be able to be supposed independent of a. [The uj are found successively by
integration; see the first equations of (53) in Section 35.]

Now, if a were zero the proposed equation would admit a holomorphic integral
independent of t (see Section 39).

We can thus assert that the functions (91) will all be periodic, and that by
consequence, if a is not zero the constant g will be given by a formula

2a 1"/2g = - COS 2n + 2 .9 ds.
1t 0

[The corrected integrand cos?" + I 9 sin 9 is positive between the limits of integra­
tion, and hence

sgn g = sgn a.]

We conclude from this that for a > 0 the undisturbed motion is unstable, and
that for a ~ 0 it is stable.

Example II
Let the proposed differential equations of the disturbed motion be the following:

dx dy dz
dt +Y = nxz, dt -- x = nyz, dt + z = x 2 + y2 - 2xyz,

where n is a constant.
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676 A. M. Lyapunov

On putting x = r cos 9, y = r sin 9 and on taking 9 for the independent variable,

we deduce from them these equations [WhiCh can be obtained by using the

equations preceding (46) to evaluate dr[dt and d9/dt, and substituting the results in

dr = dr/d9 and dz = dZ/d9J
d9 dt dt d9 dt dt

dr nrz cos 29 _ 2 2 9.
d9

. 29 - nrz cos 29 + n rz cos 2 Sin 29 + ...,
I -nz Sin

dz -z + r 2 - r2z sin 29
d.9 = I - nz sin 29

= -z + r2- nz? sin 29 + (n - l)r 2z sin 29 - n2z3 sin? 29 + ...,

where, in the expansions, there are written all the terms of degree not higher than
the third.

Let us next operate as in Section 34.
Since the above equations do not change when we replace r by -r, we do not

have to introduce in the series of type (49) which correspond to them, for r the even
powers of the constant c, and for z the odd powers.

Let us put, then,

where all the u and v are functions of 9 independent of c.
To calculate them, we shall have the following equations [obtained by substitut­

ing these expressions in the preceding differential equations and equating co­
efficients of powers of c]

dV2 dU3
d9 + V2= I, d9 = nU2cos 29,

~; + V4 = 2u, + (n - I)V2 sin 29 - nv~ sin 29,

~; = n(v4 + v2u,) cos 29 + n2v~ cos 29 sin 29,

of which the first three will be satisfied on making

V2 = I, u, = ~ sin 29, V4 = n ~ I (sin 29 - 2 cos 29).

The fourth equation [ which becomes

du 3. n(n - I) . Jd9 = 4n2
Sin 49 + 5 g Sin 49 - cos 49 - I}

will then give Us, and this function, apart from periodic terms, will further contain
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Stability oj motion: general problem

the following:

n(n - I) 9
5 .

Thus, if n(n - I) is not zero we shall have

n(n - I)
g=-

5

677

As for the case where n(n - I) = 0, the proposed differential equations will
admit a periodic solution.

In fact, for n = 0 this is obvious; and for n = I we deduce it on noting that the
right-hand sides of our equations, which we shall designate by X, Y, Z respectively,
then satisfy the relation

iJZ iJZ
( - y + X) iJx + (x + Y) iJy = O.

so that we then find ourselves with a case indicated in Section 39 [see (81)].
To sum up, we thus arrive at the conclusion that for n(n - I) ~ 0 the undis­

turbed motion is stable, and for n(n - I) < 0 unstable.

Example III

Suppose given the equations

dx dy dz
dt +Y = ctyz, dt - x = {Jxz, dt + kz = yxy,

where k designates a positive constant, and ct, {J, yare any real constants.
Operating as has been indicated in Section 36 (Remark), let us put

t = to + (I + h2c 2 + ...)r.

Next, on noting that the proposed equations do not change when we replace x
by -x and y by -y, let us seek to satisfy them by putting

x = c cos r + X 3C
3 + xsc

s + ,

Y = c sin r + Y3C3 + Ysc
s + ,

z = Z2('2 + Z.C' + ...,

on understanding by x" Y." z, functions of r independent of c.
Of these functions, Z2, X3 and Y3 will be given by the following equations:

dZ2 y .
dr +kzz="2sm2r,

dX3 h . .---;h + YJ = - 2 sm r + ctZ2 sm r,

dYJd; -x3 = h2 cos r + {JZ2COS r.

[In these equations h2 should be replaced by - h2 .J
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678 A. M. Lyapunov

For the first, we find the periodic solution

Z2 = 2(k;+ 4) (k sin 2r + 2 cos 2r),

which we substitute in the right-hand sides of the other two equations. Next, on
designating by P and Q the latter sides of the second and third equations, let us
form the expression

I 12
< • (IX + fJ)yk

2rr 0 (P cos t + Q sin r) dt = 8(P + 4) .

[Lyapunov is here evaluating g = ¥A I + 8 2 ) where Al is the coefficient of cos r in
the Fourier expansion of P and 8 2 is the coefficient of sin r in that of Q-see the
expression for g in the remark at the end of Section 36.]

This expression, if it is not zero, will represent the constant g.
Consequently, on noting that of the two cases y = 0 and IX + fJ = 0 where it does

become zero, in the first the proposed system of equations admits the periodic
solution

x = C cos (I - (0), y = c sin (I - (0), z = 0,

and in the second it admits the integral

x2 + y2,

[again giving a periodic solution], we conclude that for (IX + fJ)y > 0 the undisturbed
motion is unstable, and for (IX + fJ)y .:;; 0 stable.

Example IV
Let there be given the equations

dx dy
dl=-AY+(X+Y)z, dl=Ax+(y-X)z,

dz
dl = -z + x + Y - 2(6x - 3y + z)z,

where A represents any non-zero real constant. [In what follows this system will be
treated by the technique described in the first part of Section 40.]

On designating by f a form of third degree in the variables x, y, z, let us
determine it by the condition that the derivative with respect to 1 of the function

U = x 2+ y2 +f,

formed in accordance with our differential equations, does not contain terms of
third degree.

The equation which has to be verified by form f, namely

(
of Of) of 2 2A y - - x - + (z - x - y) - = 2(x + y )z
ox oy oz

will give
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Stability of motion: general problem 679

[This expression can be found by writing f as a third degree form with undeter­
mined coefficients, substituting this form in the above partial differential equation,
and choosing the coefficients to make the resulting equation an identity.]

At the same time it will turn out that

dU 4( 1 - 3A) 2 2
dt = ), (x + y )(2x - y)z.

Let us replace z here by the linear solution

(92)

(I - ).)x + (I + A)Y
z=

I +A 2

of the equation [corresponding to the equation after (84)]

A(x oz _yoz) = _ z +x+ y;
oy ax

next let us put x = r cos 9, Y = r sin 9 and, on designating by 0 the function of the
variable 9 to which the result of this substitution reduces after having divided it by
r", let us consider the expression [compare the equation before (85)]

~ r" 0 d9 = 2(1 - 3A)2
TC Jo A( I + A2)

If this expression is not zero, it will represent the constant G (Section 40). Now
it can only become zero in the case where A = 1/3. And then, as we see from (92),
the function U will be an integral of the proposed equations.

Therefore the expression obtained allows us to conclude that for Anegative and
for A= 1/3 the undisturbed motion is stable, and for positive Adifferent from 1/3
it is unstable.

[The conclusion regarding negative A is established only plausibly, in view of the
comment inserted at the end of Section 40. To prove it, let us put

U = y, v = x, /l = -).

Then the system becomes

du dv
dt = -/lV + (u - v)z, dt = /lU + (u + v)z,

dz
dt = - z + U + v - 2( 6v - 3u + z)z.

For /l > 0 this system may be investigated by the technique used above for the
original system, and we then find that we have stability. Hence the original system
indeed yields stability for A < 0.]

Example V

The differential equations of the disturbed motion are given in the form

d2x dz
dt2+x=az", dt+kz=x,

where n is an integer greater than I, k is a positive constant and a is any real
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680 A. M. Lyapunov

constant. It is required to investigate the stability of the undisturbed motion
(x = z =0) with respect to the quantities x, dxldt and z.

[The system can be considered as a feedback loop containing a second-order
resonant element followed by a first-order lag followed by a non-linear element az".]

Let us proceed according to the rule expounded at the end of the preceding
section.

Putting dxldt = x', let us consider the partial differential equation [correspond­
ing to the equation after (86)]

oz oz oz
x'-o -x-o,+kz =x -az"-o 'x x x'

which, by means of the substitution x' = r cos 9, x = r sin 9, [and with use of the

consequent relations

oz = sin 9 oz + cos 9 oz
ox or r 09

~ = cos 9 oz _ sin 9 oz ]
ox' or r 09

reduces to the form

oz . (oz sin 9 oz)
09 + kz = r Sill 9 - az" cos 9 or - -r- 09 .

We shall be able to satisfy this equation, at least formally, by substituting for z
the series

(93)

ordered in powers of r increasing in steps of n - I, with coefficients 0 0,0" ...,
periodic with respect to 9, which may be calculated successively with the aid of
differential equations which are easy to form [by equating coefficients of powers of
r). Thus the coefficients 0 0 and 0, will be obtained from the equations

d00 k0 . 0
d9 + "0 = sm o,

ae, ( . d00 )d9 +k0,=-a0~ cos900-sm9 d9 '

and will consequently be

O
_ k sin 9 - cos ,9 ae -s» f"

- 0 =-- ek"0 " d9
0- k2 + I I k 2+ I -00 o·

Let us now turn to the first of the proposed differential equations. Making use
of the substitution employed above [and of the equation after (88)), we deduce from
it the following:

dr
d9

az" cos 9

z"
I -a- sin [)

r
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Stability of motion: general problem 681

Let us represent the right-hand side of this equation in the form of the series

Z2n
az" cos 11 + a2

- sin 9 cos9 + ...,
r

and, on replacing z in it by series (93), let us order the result in increasing powers
of r.

We shall thus obtain the series

where the exponents of r increase by n - I, and where the coefficients R are certain
periodic functions of 9:

R; = a00cos 9, R2n_ I = a20~n sin 0 cos 9 + na00- 101cos 9, ...

Considering now the expression

dr n 2n-l
d9 - Rnr - R2n- I r

and on designating by c an arbitrary constant, and by Un, U2n _ I functions of 9
independent of c, let us put in it

and in the result let us equate to zero the coefficients of the nth and (2n - l)th
powers of c.

We obtain from this approach the equations

du; dU2n_ 1
d9 = Rn, --;j9 = nu.R; + R2n_ 1> (94)

of which the first gives

U" = a f0 0cos 9 d9 + const.

Now if we introduce the angle E defined by the equations

. k I
SIll E = (P+ 1)1/2' COSE = (k2 + 1)1/2'

we shall have

COS(9+E)
0 0 = - (k? + I) 1/2 .

[Note also that the further term cos 9 in the above integrand can be written as

cos 9 = cos (9 + E) cos E+ sin (9 + E) sin E.]

Thus the expression for the function u; will reduce to

u" = (k 2~-/)~:~ 1)/2 {fCOSn
+ 1(9 + E) d9 - n : I COSn

+ 1(9 + E) } + const.

We see from this that if n is an odd number the function Un will contain a secular
term [because the integrand cos" + I (9 + E) will then have a non-zero mean value, M
say, and the integral of this will give a secular term M9], and the constant g will be
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682 A. M. Lyapunov

given by the formula [found by evaluating the mean M over the interval from -€

to 41r - €]

2a (,/2
g = 1r(p+ 1)("+ 11/2 Jo cos"+' I) dl).

This constant will thus be of sign opposite to that of a.
If on the other hand the number n is even, the function u" will be periodic. Then,

as we see from (94), the constant g will be defined by the equation

g = 2~ f' R2" - , dl),

at least if the integral which enters here is not zero. [Note that, with the use of the
first equation of (94), the term nu.R; in the second equation of (94) can be
expressed as

and so has zero mean value; hence it contributes nothing to the secular term.]
Let us show that, a not being zero, this integral will never become zero and that

moreover it will be negative.
For this, let us suitably reduce its expression

(2. (2, r; (2.
Jo R2,, _ , dl) =a 2 Jo 0~"sinl)cosl)dl)+na Jo 03-'0,cosl)dl).

Making use of the angle € and noting that in the case of even n

we obtain

l~ f" f"0,,-10 cos8dl)= -a e-k"cos"l)dl) .ek~cOS"mdq>
o 0 I (k 2 + 1)"+1 -00 -00 -r

ka (2. e-k9 cos"-, I) sin I) dl) (" ek~ cos" q> dip,
(k 2 + 1)"+ I Jo 100

[In Lyapunov's double integrals, the second integral is to be interpreted as included
in the integrand of the first integral.] Now on putting for brevity

(2' e -k" cos" I) dl) f" ek~ cos" q> dip = J,
Jo -if.;

we find, on integrating by parts,

n (2. e -k" cos"-, I) sin I) dl) f" ek~ cos" rp drp = (2. cos?" I) dl) - kJ.
Jo -00 Jo

[The integration by parts is here applied to the product uv where

u = e-kl, v = cos" I) f~oo ek~ cos" rp drp.J
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Stability of motion: general problem

By consequence, on noting that

r2

• 0 2n sin 9 cos 9 d9 = k {r2

• cos" 9 d9 - 21
2•

COS2n + 2 9 d9}Jo 0 (P + 1)"+ I Jo 0 '

[which may be obtained with the help of the identities

sin 9 = sin (9 +e) cos s -cos (9 +e) sine

cos9=cos(9 +e) COSE + sin (9 +e) sine]

683

we ultimately arrive at the equation

r2
• 4nka 2 {(k 2 -n) 1·3·5 (2n + I)}

Jo R2n- , d9 = (k 2+ I)n+' 4nk J- 2 . 4 · 6 (2n+2)·

From this equation follows the validity of what we have said above; for the
quantity in the curly brackets on the right-hand side is less than

kJ 1·3·5 (2n + I)

4n 2 . 4 . 6 (2n + 2)

(since J is positive); and as kJ is obviously less than the integral

12. n 9 dO _ I ·3·5 ... (n - I) 2
cos o - 2 . 4 . 6 rt,o ... n

[as is seen on replacing the second integrand ek~ cos" <p in J by the upper bound ek~]

this quantity is less than the following:

I . 3' 5 ... (n - I) {~_ (n + I)(n + 3) (2n + I)} ,

2' 4' 6 ... n 2 (n + 2)(n + 4) (2n + 2)

which is certainly negative. [In fact, on changing the order of numerator factors we

can write

(n + I)(n + 3) (2n + I) (n + 3)(n + 5) (2n + I)(n + I)

(n + 2)(n + 4) (2n + 2) (n + 2)(n + 4) (2n)(2n + 2)

= n + 3 . n + 5 •...• 2n + I • ~ > ~ .J
n+2 n+4 2n 2 2

Thus, for n even, the constant g will always be negative.
Consequently we arrive at the conclusion that in the case of odd n the

undisturbed motion is stable for positive a and unstable for negative a, and that in
the case of even n it is always stable.

Example VI
It is required to investigate the stability in the case of the differential equations

d 2x dz dx
dt2 + X = az", dt + kz = dt .

the symbols having the same significance as before. [This system corresponds to the
same feedback loop as in the previous example, but with a differentiator inserted as
an additional element.]
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684 A. M. Lyapunov

Operating in entirely the same way as in the preceding example, we shall have:
in the case of odd n,

2ka r</2

g = n(P+ 1)(n+I)/2 Jo sin" + 1 9d9,

and in the case of even n,

2ka 2 {I . 3 . 5 (2n + I) n + I kJ}
g=(p+l)n+1 2'4'6 (2n+2)--2-·2n'

(95)

J representing the same thing as above.
In the first case, the constant g will consequently have the sign of the constant

a [recall that k was assumed positive when it was introduced in Example V]. In the
second case, its sign will not depend on that of a. Let us show that it will then be
negative.

For this purpose let us first of all show that kJ is an increasing function of k.
This may easily be proved with the aid of the reduction formula which relates

the values of J for two values of n differing from one another by two. If J as a
function of n is designated by I n , this formula, which is easily obtained by
integrating by parts, will be the following:

(96)

[This relation can be obtained by manipulations involving four integrations by
parts. If uv represents the integrand in a general integration by parts, for the first
and second of the four integrations we can take u = ek~, and for the third and
fourth, u = e -k9.]

Since it reduces easily to the form [obtained with the help of the relations

12< 2n - I 12
<

cos?" .9 d8 =-- cos?" - 2 8 d8
o 2n 0

12< 2n - 312
< ]

COS2n- 2 .9 d9 = -- COS2n- 4 9 d9
o 2n-2 o

12< n 12
<kJ = cos 2n 9 d9 - COS2n- 2 9 d9

n 0 2(k 2 + n 2
) 0

(97)

we conclude from it that if, for m = n - 2, we have

r2
<

ta; < Jo cos!" 9 d9,

the same inequality will also hold for m = n.
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Stability of motion: general problem 685

Now we immediately see from (97) that this inequality is valid in the case of

m = 2. [It is not quite clear that (97) can be applied with n = 2. As an alternative,

direct evaluation of Jz shows that

3k
z + 8 1t 31t f" ]

kJz = F + 4 4 < 4 = Jo cos" dB.

Therefore it will be the same for every even value of m greater than 2.
Taking into account the above inequality, we conclude from formula (97) that,

if kJn_ z is an increasing function of k, it will be the same for kJn. Consequently, on
noting that the function

u, = 1t (~ - _1_)
4 F+4

increases when k increases, we can conclude that kl; enjoys this property for all
even values of n.

Having proved that kJn , or following our original notation kJ, is an increasing
function of k, we shall have a lower limit for it on setting k = O. This limit may

easily be obtained from formula (96) [WhiCh then simplifies to

(n_l)z ]
ki; = nZ kJn _ z

and will be the following:

(
I . 3·5 ... (n _I))Z 21t.

2·4·6 ... n

Returning now to formula (95), let us replace in it kJ by the lower limit which
we have just obtained. Then the expression in curly brackets will reduce to the
following:

I . 3 . 5 ... (n - I) {en + I )(n + 3) (2n + I) _ n + I I . 3 . 5 ... (n - I)} .

2·4·6 ... n (n + 2)(n + 4) (2n + 2) 2 2' 4' 6 ... n

And the latter, which reduces to

~ I . 3 . 5 ... (n - I) {en + 3)(11 + 5) ... (211 + I) _ 3 . 5 . 7 ... (n + I)} ,
2 2 . 4 . 6 ... n (n + 2)(n + 4) ... 2n 2 . 4 . 6 ... n

is evidently negative. [To see this, consider the two terms in the curly brackets. The
first has a factor which is

11+3 3 I + (11{3) 3
--=- <-
n + 2 2 I + (n{2) 2

i.e. this factor is less than the corresponding factor in the second term. A similar
argument applies to all such factors.]

Then the constant g defined by formula (95) will certainly be negative.
To sum up, we thus arrive at the conclusion that in the case of odd n the

undisturbed motion will be stable for negative a and unstable for positive a; as for
the case of even n, it will always be stable.
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686 A. M. Lyapunov

Periodic solutions of the differential equations of disturbed motion

42. [Demonstration of the convergence of certain periodic series satisfying
formally the differential equations]

We have seen that whenever it is possible to find certain periodic series formally
satisfying system (45). the latter actually admits a periodic solution represented by
such series. [See Sections 35 and 36.]

The proof of this proposition was based on the assumption that all the roots of
the determinantal equation of system (45), with the exception of two. had negative
real parts. Now there is nothing essential in this assumption, and the said proposi­
tion extends easily to an arbitrary system of differential equations, provided that the
determinantal equation which corresponds to it has at least one pair of purely
imaginary roots.

Let us show how this can be done, on limiting ourselves however to the case
where among the purely imaginary roots there is a pair of simple conjugate roots

(98)

the integer multiples of which are not roots, and where the determinantal equation
does not have zero roots.

Agreeing that the proposed system of differential equations satisfies these
assumptions, and on making use of a suitably chosen linear substitution with
constant coefficients, let us reduce it to form (45). Moreover. the roots (98) being
simple, we can suppose this substitution to be such that all the ex." P.• are zero. and
we shall do this to simplify our analysis. [For this purpose the substitutions
discussed in Section 18 could be used.]

In this way the transformed system will be of the form

dx dy
- = -Ay + X - = AX + Y
dt ' dt '

(99)

(s = 1, 2, ..., n)

in which the functions designated by X, Y, ~. have the same character as before.
But the coefficients p sa will now be of a more general character, for we suppose here
only that the equation

does not have roots of the form mAp, m being a real integer.
Let us put in equations (99)

x=rcos8, y=rsin8, xl=rzl, x2=rz2 , .... xn=rzn

and let us extract from them the equations defining r, ZI, Z2, ... , z; as functions of
the variable 8.

On putting

PS(Js-r : (s,a=I,2, .... n)
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Stability of motion: general problem 687

and on designating by CPI, CP2' ... , CPn certain quadratic forms in the quantities sin 9
and cos 9, we shall be able to present these equations in the form

dr
d9 =R,

(s = I, 2, ..., n), (100)

where R, Z, are functions of variables ZI' Z2, ... , Z.. r, 9, easily deduced from the
functions X, Y, X,. Being expanded in powers of the quantities r, zs' the functions
R, Z, will not contain terms of degree below the second and will possess coefficients
periodic with respect to 9. Moreover Irl, Izs I being below certain fixed numbers,
their expansions will be uniformly convergent for all real values of 9.

This settled, let us treat equations (100) as we treated equations (47) in Sections
34 and 35.

In seeking for system (100) a solution in the form of the series

r = c + U(2)C
2 + U(3)C

3 + ..., }
z, = U;I)C + ~;2)C2 + U;3 lc3+ ... (101)

Is - 1,2, ..., n),

ordered in increasing powers of the arbitrary constant c, with coefficients U periodic
with respect to 9, we shall obtain to determine these coefficients systems of
differential equations of the same character as in the case considered in the sections
mentioned [see (50)]; and when our problem is solvable, these systems will give the
sought coefficients in the form of finite sequences of sines and cosines of integer
multiples of 9, in the same order of succession as in the case we have just indicated.
For each value of I, the determination of the coefficients u'[', u~), ..., u~), after
having found all those which precede them, will, as before, present no difficulty
[compare (53)]; for the determinantal equation

qll- X ..· qln

=0 ( 102)

of the linear differential equations on which these coefficients depend will have,
under the agreed assumptions, neither zero roots nor roots representing integer
multiples of p. The possibility of solution of our problem will then only
depend, as before, on the condition that each of the functions u'", which will be
given by quadratures, should be periodic.

Let us assume that this condition is actually satisfied and, on supposing as
before that the calculations are carried out so that all the u(l) become zero for 9 = 0,
let us investigate the convergence of the series (101).

For this purpose, let us assume that these series are transformed with the aid of
a linear substitution similar to that considered for series (49) in Section 35.

The question will thus reduce to the examination of series (10 I) formed under
the hypothesis that all the coefficients other than the following

are zero.
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688 A. M. Lyapunov

In considering these series, let us suppose that all the u lO, u~o for i < I are
already known. Then to determine the coefficients u'", u~1) we shall have the
equations

du"'-- = U(I)
d8 '

du(l)
__I = v u(l) + m u'" + U(I)d8 '-I I '1'"1 I ,

du(1)
-)- = v.u\') + (T. u\') + ai.u'" + U\')d8 '-)) )-1 )-1 '1'") )

(j = 2, 3, ... , n),

where the known terms U(I), U~I) will be the functions of the same character as in
the analogous system of equations [those preceding (53)] considered in Section 35.

The first of these equations will give

["
U(/) = UII) d8.

• 0

But, to obtain the periodic solutions of the other equations, it will no longer be
permissible to make use of formulae such as (53), for these formulae are only valid
in the case where the real parts of all the X" are negative.

To obtain formulae which are appropriate for the case under consideration, let
us make the general observation that the periodic solution of the equation

du
d8 = Xu +f(8),

where X is a non-zero constant and f( 8) is a periodic function of 8 having period
W, is obtained by the formula

e
x9 i'+wu = e -',/(8) d8

e-xw - 1 9 '

provided that XW does not represent an integer multiple of 21tj=!.
For w = 21t and X = X" this condition is fulfilled, for the quantities X" are the

roots of equation (102).
Therefore [applying this formula to the differential equations in hand], for the

calculation of the coefficients u~) we shall be able to utilize the formulae

(j = 2, 3, ... , n).

This settled, let

X" = A" + /1"j=!,
A

p = " (I - 2e 2• A., cos 21t/1 + e'·A.,) 1/2
s e2n)..~ _ ] S'

A... /1" being real numbers, and the root in the expression for p" being taken as
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Stability of motion: general problem

positive. In the case of As = 0 we shall understand by Ps the limit

Isin nils I
n

689

towards which its expression tends when As tends to zero.
In the conditions in which we find ourselves, all the p, will be different from

zero.
Let us next designate by VIi), v~;) upper bounds for the moduli of functions u'",

u~i) and by as those for the moduli of the functions lfJS' in the domain of real values
of 9.

Then, if we understand by v:n the constants obtained by treating the functions
U~) as was indicated in Section 35, we shall be able to take, in conformity with our
formulae,

v(/) = 2n V(/),

e AI 9 18+21Z
VII) = e -"'(a VII) + V(/») d9

1 Ie -2nXI - 11 s I I'

e),j9 19+2Jr
vjl) = I 2., II e-.l;'(ICTj _ 1Ivj'2 , + ajv(1) + Vj'») d9 (j = 2, 3, ... , n).

e :J - 9

In this way [after exact evaluation of the preceding integrals] we shall obtain the
equations

v(/) = 2n V(/), P, vII) = a , v(/) + VII>,

P·V ( / ) = I~· Ivll) + a.o'" + VV) (J' 2 3 n)J J VJ-I J-I J J =" ..., ,

in which V(/), ~/) will only depend on V U), v~) for i < I. We shall be able to make
use of these equations for every value of I greater than I. At the same time we shall
be able to take

P, vI') = ai'

(j = 2, 3, ... , n),

and then the constants v will be completely defined.
The subsequent line of reasoning will be the same as in Section 35.
In this manner we may demonstrate that, under the agreed hypotheses, [c] being

sufficiently small, the series (10 I) will be absolutely convergent, and that the series
of moduli of their terms will converge uniformly for all real values of 8.

The preceding analysis, with insignificant modifications, extends e~ to com­
plex values of 8 for which the absolute value of the coefficient of .J- I does not
exceed a given limit.

In view of this, we shall be able to make use of the reasoning of Section 36 to
extract from the periodic solution of system (100), defined by the series we have just
considered, a periodic solution for system (99).

The latter will be represented by series of the form (61) and will include two
arbitrary constants: c, which we have considered above, and to, which will enter
together with t in the combination t - to' The first of these constants will also enter
into the expression [compare the expression for T in the equations preceding (58)]

2n 2 3
T=-y(1 +h2 c +h3 c + ...)
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690 A. M. Lyapunov

(104)

for the period (corresponding to the variable t), which will be a holomorphic
function of c.

For the rest we shall be able to form directly the series expressing this periodic
solution by making use of the method expounded in the Remark in Section 36.

Let us pause to consider some circumstances arising in the derivation of this
solution.

43. [Definition of the periodic solutions by the initial values of the unknown functions]
Let us consider the system of partial differential equations

ax, oXs
(-Ay + X) ax + (AX + Y) oy =Ps'X' + P,2 X2 + ... + PsnXn + Xs (s = 1,2, ..., n),

( 103)

similar to that which we dealt with in Section 39 [see (79)].
We easily assure ourselves [a] that under the present assumptions concerning the

p,,", we shall always be able, as in the case considered in the section mentioned, to
satisfy formally this system by series ordered in positive integer powers of the
quantities x and y, without constant terms.] and [b] thatsuch series will be unique.

Now if we consider the hypothesis that there exists for system (99) a periodic
solution of the form indicated above, we may demonstrate, just as in [the last part
of] Section 39, that these series, Ixl and lYl being sufficiently small, will be absolutely
convergent, that the holomorphic functions of the variables x and y defined by
these series will actually satisfy s{stem (103), and that on equating the x, to these
functions we shall obtain the result of elimination of the constants c and to between
the equations expressing the periodic solution.

As a consequence this solution is characterized by the fact that the quantities x,
are well-determined holomorphic functions of the variables x and y.

As far as these variables [x and y] are concerned, they will be functions of t
which we shall obtain on seeking the general integral of the equations

dx dy
dt = -Ay+(X), dt =AX+(y),

to which the first two equations of system (99) will reduce when the x, are replaced
by the said holomorphic functions.

In view of this, if we introduce the initial values of the functions
x, y, X" X2, ..., X n, designating them respectively by a, b, a" a2, ..., an' we may char­
acterize our periodic solution by the condition that all the as are holomorphic
functions of the quantities a and b, becoming zero for a = b = 0, and satisfying the
system of partial differential equations obtained on replacing in that of (103)
quantities x, y, x" x2, ..., Xn by quantities a, b, a" a2, ..., an'

Let us see to what form the series representing this solution will reduce, if
instead of the constants c and to we introduce the constants a and b.

Let us show straightaway that the period T will be a holomorphic function of
a and b. For this, we shall make use of the proposition already known to us [refer

t In the case under consideration there will evidently no longer be terms of first degree in
these series. [IX" and P,. were taken as zero in Section 42, so the differential equation for x, in
(99) does not have a forcing term component which is linear in x and y.]

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
O
t
t
a
w
a
]
 
A
t
:
 
0
1
:
0
0
 
2
8
 
A
p
r
i
l
 
2
0
1
0



Stability of motion: general problem 691

to the sentence containing (76)], by virtue of which, under the conditions considered
here, system (104) will admit a holomorphic integral independent of t.

As the latter will always be able to be chosen so that the ensemble of terms of
lowest degree reduces to x 2 + y>, we shall have, on considering such an integral and
on designating by C an arbitrary constant, an equation of the form

x 2+ y2 + F(x, y) = C2,

where F is a holomorphic function of x and y, not containing terms of degree less
than the third.

On putting in this equation x = r cos 9, y = r sin 9, we obtain from it the
following:

r? + F(r cos 9, r sin 3) = C 2
• ( 105)

And the latter, if we consider r as an unknown and 9 as a given quantity, will have
only two solutions satisfying the condition that, for a sufficiently small choice of
lei, we can make the modulus of r as small as we wish, and these solutions,
holomorphic with respect to C, will be represented by the following common
formula:

r = ± C + U(2)C2 ± U(3)C3 •••

Here the coefficients u will be periodic functions of 9 such that, 9 being replaced
by 9 + n, all the u(m) corresponding to even m will take again their original values
with opposite signs, and none of the u(m) corresponding to odd m will change at all.
We convince ourselves of this on noting that equation (105) does not change on
replacing r by -r and 9 by 9 + n.

Consequently, on replacing in each of the two solutions considered C by - C
and 9 by 9 + n, the original value with opposite sign will be obtained for r.

It results from this that if in making use of one of the two values of r we express
as a function of 9 the right-hand side of the equation

dt r
-=
d9 AI" + (Y) cos 9 - (X) sin 9

the result will not change by the substitution indicated. [This equation is similar to
that preceding (46). Note that x( = r cos 9) and y( = r sin ,9) are not changed by the
substitution; hence neither are (X) and (Y).]

Thus the integral

e' rd9
Jo Ar+(Y)cos9-(X)sin9'

representing the period T, will not change on replacing C by - C, and by
consequence the period T, which will be a holomorphic function of C, will be given
by the series [compare the equation preceding (103)]

21l h 2 h 4T=;:(I+ 2C + 4C + ...),

containing only even powers of C.
Now the square of C, by virtue of the very meaning of this constant [see the

equation preceding (105)], represents a holomorphic function of a and b. It will thus
be the same for the period T.
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692 A. M. Lyapunov

This agreed, we note that T(a, b) being the notation for the period T considered
as a function of a and.b, T(x, y) will necessarily be an integral of system (104).
According to this, if on putting

de
dt = T(x, y) 2n

we take t for the independent variable, the functions x and y satisfying system (104)
will be periodic with respect to r and will have period 2n, whatever their initial
values, provided that their moduli are small enough.

Moreover these functions will satisfy the equations

~~ = {-Ay + (X)} T(;~Y), : = {Ax + (Y)} T(;~Y), (106)

of which the right-hand sides are holomorphic with respect to x and y.
Therefore, if the moduli of their initial values a and b are sufficientlysmall, these

functions will be represented by series ordered in positive integer powers of a and
b for all values of r between limits arbitrarily chosen in advance. And as the series
in question, for all values of a and b with sufficiently small moduli, must give
periodic functions of r with period independent of a and b, their coefficients must
themselves be necessarily periodic. Now, for this, by the nature of equations (106)
these coefficients must be finite series of sines and cosines of integer multiples of r.

In this way we have succeeded in establishing, quite independently of the
original expressions of the functions x and y in terms of the constants c and to, that
if we express our periodic solution by means of the constants a and b, it will be
represented by series ordered in positive integer powers of a and b, where the
coefficients will be sums of a limited number of periodic terms representing products
of constants by sines and cosines of integer multiples of

2nt
t=---

T(a, b)'

and that these series will define, if we consider r as a parameter independent of a
and b, functions of a and b uniformly holomorphic for all real values of r.

Remark

If we do not limit ourselves to the consideration of real periodic solutions, and
if we consider complex values of a and b as valid, we shall be able to extract from
our periodic solution two others, each depending on a single constant and remark­
able in that they will have for the period a fixed number, which will be equal to
2n/A. We may obtain these solutions by establishing between the constants a and b
the relation

C2=a2+b 2+F(a,b) =0,

which allows each of these constants to be expressed as a holomorphic function of
the other, and this in two different ways.

Moreover these solutions can be defined independently of ours. Further, even
the existence of the latter is not necessary for them to exist: it suffices for this that
equation (99) satisfy the hypotheses enunciated at the beginning of the preceding
section.
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Stability of motion: general problem 693

In speaking in what follows of periodic solutions we shall understand that we
have to do with solutions of the type considered above, with two arbitrary constants.

44. [Case of existence of a holomorphic integral]

Let us take up again system (99) under the same assumptions concerning the
coefficients Ps. as before.

Let us assume that we have found for this system a holomorphic integral
independent of t and that the ensemble of terms of second degree in it depend on
x and y.

We easily assure ourselves that this ensemble will be able to contain x and y only
in the form of the combination x 2 + y2.

We must thus admit that our integral, being multiplied by a constant, reduces
to the following form:

x 2 +y'+F(x
"

X2' ••• , x n , x,y),

where F is a holomorphic function of the variables x,; x, y for which the expansion
does not contain terms of degree below the second and, in the terms of second degree,
if any, neither x nor yare included.r

We are going to show that under these conditions system (99) will always admit
a periodic solution.

For this purpose let us introduce into our integral, instead of the variables
x, y, x" the variables r, 9, z,, with the aid of the substitution which we have already
made use of before. [See equations located between (99) and (100).]

Then, on extracting the square root of our integral, we shall be able to deduce
from it the following:

r + np(zl' Z2' ... , Zn, r, 8), (107)

where cp represents a holomorphic function of the quantities z" r, becoming zero
when these are simultaneously zero, and possessing in its expansion coefficients
which are periodic with respect to 9.

This agreed, let us provisionally assume that there does not exist a periodic
solution, and that, in series (101), this is made apparent for the first time by the
terms of mth degree. In other words, let us assume that the coefficients

u(2), U(3), ... , u(m-I),

u~1), U~2), ... , u~m - I) (s = 1,2, ..., n)

represent periodic functions, while the coefficient u(m) is of the form

u(m)=g9 + v,

where g is a non-zero constant and v is a periodic function of 9.

With this assumption, let us put in expression (107)

r = c + U(2)C 2 + ... + u(m-I)cm- I + u(m)cm,

z, = U~I)C + U~2)C2 + ... + u~m-I)cm-I (s = I, 2, ..., n),

and let us order the result in increasing powers of c.

t Under our assumptions, this integral will not be able to contain terms of first degree.
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694 A. M. Lyapunov

As this expression is an integral of system (100), the very manner in which the
functions u are defined ensures that the terms containing c in powers less than the
(m + I)th must reduce to constants.

Now this is obviously not possible for the term in c'", because for the function
rlf! this term will be necessarily periodic [since the coefficient of c'" in rlf! depends on
the u(j) and u~j) only for values of j satisfying j < m] and will not be able, by
consequence, to give a constant sum when added to the term (g9 + v)cm in the
function r.

We must thus conclude that our assumption is impossible, and that conse­
quently, however far we extend series (!OI), we shall be able to determine their
terms so that they are periodic. And with this condition the existence of a periodic
solution, as we have seen [in Section 42], is assured.

Remark

We have assumed that the determinantal equation does not have zero roots.
But, in the case of such roots, no further difficulty would arise if our system of
differential equations would admit a sufficient number of holomorphic integrals
independent of t, where there would be terms of first degree of which the ensembles
would be independent of one another.

We have in view the case where the number of these integrals attains its upper
limit, which is always equal to the multiplicity m of the zero root.

In fact, if we find ourselves with this case we shall have, on equating the said
integrals to arbitrary constants c" C2, ... , Cm, m equations of integrals, which we
shall be able to use to lower the order of our system of differential equations by m
units. Then, if these calculations have been carried out in a suitable manner, we
shall finally obtain a system of differential equations for which the determinantal
equation will not have zero roots, as long as the Icl are sufficiently small.

45. [Periodic solutions of canonical equations]

The preceding conclusions can find application in many problems of mechanics.
Let us mention for example the question of the motion of a heavy solid body

having a fixed point, or supported by its surface touching a smooth horizontal
plane. In either case there will exist certain periodic motions in which the compo­
nents of angular velocity relative to axes fixed in the body, as well as the cosines of
the angles which these axes make with the vertical, vary periodically during the
course of time.

To indicate applications with a more general character, let us suppose that our
system of differential equations has the canonical [Hamiltonian] form

dys aH
-d =-a (s=I,2, ...,k).

t x,

We assume here that H is a holomorphic function of the quantities
X" X 2, ... , Xb y" Y2' ... , Yk in which the terms of lowest degree reduce to a quadratic
form H 2 .

Whenever this system satisfies the assumptions made at the beginning of
Section 42, it will admit a periodic solution with two arbitrary constants. [See
Section 42.]
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Stability of motion: general problem 695

In fact, this system always admits a holomorphic integral independent of t,
for the function H is an integral. Therefore, to establish what we have just said,
it suffices (in view of what was remarked in the previous section) to show that
the function H 2 , transformed with the aid of the linear substitution which reduces
our system to the form (99), will contain variables which will play the role of x
and y.

Now, under the conditions considered, the determinantal equation not having
zero roots, this is already clearly seen by the fact that the Hessian of the function
H2 will not be zero.

If the determinantal equation has only purely imaginary roots

±A,J-='i, ±A2j=!, ..., Hkj=!,

the numbers A" A2 , ... , Ak being such that among their mutual ratios there are no
integers, we shall have for our canonical system k periodic solutions, each contain­
ing two arbitrary constants.

Taking up this case, let us assume that the ensemble of terms of second degree
in the function H is of the form

We know (Section 21) that if we understand by each As a number with an
appropriate sign, this ensemble will always be able to be reduced to this [form] by
a certain linear transformation of our canonical system.

Under these assumptions, on considering the quantities

as functions of the variables x} and y}, let us form the following system of partial
differential equations [which corresponds to system (\03) for the Hamiltonian
equations in hand, with x and y taken as x} and y}]

aH ax, aH bx,
-----
ax} ay} ay} ax}

en ays en ays en
ax} ay} - ay} ax} = axs

(s = 1,2, ....i - I,j + I, ..., k)

and let us seek from them a solution where all the x,; Ys are holomorphic with
respect to x} and y} and become zero for x} = y} = O. Such a solution, as we know
[from Section 43], will always exist and will be unique.

In considering it, let us form. the expression'[

I + L (axs ays _ axs ays) = [x},yJ
Sax} ay} ay} ax}

(assuming that in the summation we exclude the value s = j) and let us designate by
H/x}, y}) the function which H will reduce to when the quantities x,; Ys are replaced
in it by their expressions as found.

t [This is a Lagrange bracket-expression-see Whittaker, lac. cit., p. 298.)
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696 A. M. Lyapunov

Next let us integrate the equations

dx, eu. [ ]dy, oHj
[xj• Yj] di = - oy;· xj• Yj di = oXj

on taking for arbitrary constants the initial values aj• b, of the functions xj and Yj'
[These equations, which correspond to (104). follow on evaluating oHj/oYj and
oHj/oxj and then substituting for oH/oys and oH/oxs from the original Hamiltonian
equations.]

Then. if we express all the x, Y as functions of t, we shall have one of the
periodic solutions of our canonical system, and indeed whatever aj and b, may be.
provided that their absolute values are sufficiently small.

In this solution. which we can name as that corresponding to the number Aj , the
period T, relative to the variable t will be defined for sufficiently small values of laj I
and Ibj 1 by a formula of the form

- 2n {h(l) b h(2) b]2 }r, -,t. I + j Hj(aj, ) + j [~(aj' j) + ....
1

in which the h designate numbers independent of the arbitrary constants. [Compare
the expression for T given in Section 43. and note that C2 is now replaced by the
integral ~.]

Operating as has just been indicated for all the values of j, we shall obtain all
the k periodic solutions.

Each of these solutions will be able to be defined by certain conditions relative
to the initial values of the unknown functions. and these conditions may be
obtained immediately, in view of what precedes.

In this way, in the case of a canonical system satisfying the assumptions which
we have just considered, if we cannot completely resolve the question of stability.
we can at least indicate for the perturbations a series of conditions under which the
undisturbed motion will certainly be stable.

[Lyapunov intends us to solve the above system of partial differential equations
for x" and Ys in terms of xj and Yj' by substituting a power series for x, and one for
y .. with undetermined coefficients. then determining the coefficients to make the
equations satisfied identically.

The resulting series will be convergent for small enough IXj 1and lYj I. and will
define a region of possible values for x, and Ys (s = 1.2, .... k). If the initial
perturbations an bs are in this region, the ensuing motion will be a small periodic
oscillation, indicating conditional stability. The period T, of this oscillation will be
close to 2n /Aj •

A similar region of conditional stability will be found corresponding to each of
the k values Aj .

However, no conclusions are drawn regarding unconditional stability, i.e.
stability when the perturbations are not restricted to these regions.]

Remark

When for the proposed canonical system the numbers ..1.), ..1.2 , .... Ak satisfy the
condition we have just considered, to obtain all the periodic solutions which
correspond to them in conformity with the proposed rule. we must initially effect a
certain linear transformation of our system. Namely. we must take as new unknown
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Stability of motion: general problem 697

functions Us> Vs linear forms in the old ones x,; Ys> such that the ensemble of terms
of second degree in the function H reduces to the form

AI 2 2 ,1.2 2 2 Ak 2 2
2(UI + VI) +2(U2 + V2) + ... +2(Uk + Vk),

and such that the differential equations retain the canonical form.
Let us now show how we can avoid this transformation.
For this let us note that in the periodic solution corresponding to the number Aj ,

the Us> Vs for which s is not equal to j are holomorphic functions of u j and vj' in
which there do not appear terms of degree less than the second [compare the
footnote in Section 43]. Thus, if we consider any two linear forms

p = 0(, U, + PI VI + O(zUz + P Zv2 + + O(kUk + PkVk>

q = YI U, + "I VI + Y2 U2 + "Z V2 + + YkUk + "kVk

in the quantities Us> Vs> they will reduce for this same periodic solution to holomor­
phic functions of uj and vj in which the ensembles of terms of first degree will be

O(jUj + PjVj,

It results from this that if

O(j "j - Pj Yj (108)

is not zero, all the unknown functions in this solution will be holomorphic with
respect to p and q.

Let us assume that the condition we have just indicated is fulfilled for all values
of j from I to k inclusively. Then all the x,; Ys will be holomorphic functions of p
and q for each of the k periodic solutions.

The question will thus reduce to the search for these holomorphic functions and
to the integration of the equations

dp
-=p
dt '

dq
dt = Q, (109)

which we shall then obtain for the determination of p and q.
In seeking the holomorphic functions in question we must first of all satisfy a

certain system of nonlinear algebraic equations, on which will depend the co­
efficients in their terms of first degree. This system will admit more than k solutions.
But, in order to tackle the choice of those of them which correspond to our
problem, it will suffice to take account of the condition that, for each of the periodic
solutions sought, the quantities P and Q, as functions of p and q, must be such that
the expression

oP + oQ
op oq

becomes zero for p = q = O. This condition, which expresses that the sum of the
roots of the determinantal equation of system (109) is zero, will only be satisfied for
k solutions. On taking up anyone of them and then passing on to the determina­
tion of the coefficients in the terms of higher degree, for this determination we shall
have systems of linear equations, of which the resolution will not offer any more
difficulty.
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698 A. M. Lyapunov

In this way we shall obtain k systems of holomorphic functions, each of which
will lead to one of the periodic solutions sought.

It remains to indicate a rule enabling us to choose the linear forms p and q as
functions of the variables XS' Ys without recourse to the formation of the forms US' Vs'

For this purpose let us consider at the same time as p and q a further 2k - 2 linear
forms

representing the ensembles of terms of first degree In the expressions for the
derivatives

d4p

dt 4 '

d4q

dt" '

formed with the aid of our differential equations.
Expressing these forms as functions of the variables US' Vs we shall have, by the

property of the latter [see the equations at the end of Section 211,

( -I)mpm = Afn(Cl I U, + P, v,) + Af"(ClzU2 + P2V2) + + A~m(ClkUk + Pkvd,

( -I)mqm= ATm(y I u, + b, v,) + Af"(Y2U2 + bZv2) + + A~m(YkUk + bkvd.

We conclude from this, on taking into account that the numbers AT. A~, ..., A~ in
accordance with our assumptions are all distinct, that, if any of quantities (108) is
not zero, the forms r

P,P"P2' ...,Pk-I'} (110)
q, q 1, Q2, .. ", qk - 1

will be mutually independent, and conversely, if this last condition is satisfied, some
one among the quantities (108) will assuredly not be zero.

Consequently the only condition we have to satisfy in choosing the forms p and
q reduces to this, that the 2k forms (110) must represent functions of the variables
x" Ys which are mutually independent.

Example
Let there be proposed the fourth-order system

d
2x

_ 2 dy = au d
2y + 2 dx = au

dt? dt ax' dt? dt ay ,

in which U represents a given holomorphic function of the variables x and y, not
containing terms of degree below the second.

We can, if we wish, transform this system into the canonical one

dx on d~ en
dt -af' dt = ax '

dy aH a,., aH
dt -~' dt ay '

on putting

dx dy
~ = dt - y, ,., = dt + x,

H = U - 4(x2+ y2) + xn - y~ - 4W + ,.,2).
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Stability of motion: general problem 699

Let us assume that the determinantal equation which corresponds to it has only
purely imaginary roots

which are such that neither of the two ratios

AI A2
A2' AI

represents a whole number.
The proposed system of equations will then admit two periodic solutions, and to

determine them according to the method which we have just indicated, we shall be
able to take for the forms P and q the variables x and y themselves.

In fact, if the ensemble of terms of second degree in the function U is
represented by the expression

!(Ax2 + 2Bxy + Cy 2),

we shall have, on putting P = x, q = y,

dy
P, = Ax + By + 2 dt = (A - 2)x + By + 2f1,

dx
q, = Bx + Cy - 2 dt = Bx + (C - 2)y - 2~,

and the forms P, q, PI' q, will as a consequence be independent, whatever the
constants A, B, C. [p, q, PI' ql are linear combinations of x, y, n, ~, and the determi­
nant formed from their coefficients turns out to evaluate as -4.]

The periodic solutions under consideration will then be obtained on integrating
the differential equations

dx
dt =f(x,y),

dy
dt = cp(x, y),

of which the right-hand sides are holomorphic functions of the variables x and y,
defined by the system of equations [which interpret the two equations at the
beginning of this example]

of of eo
f- + cp- -2cp =-,

ox oy ox
lcp + cp ocp + 2f = oU

ox oy oy

with the following two conditions: that these functions become zero for x = y = 0,
and that in the terms of first degree in their expansions

f=ax +by + ... , cp = exx + Py + ...
we have for the coefficients a and p the relation a + P= O. [This relation corresponds
to the requirement that the expression displayed after (109) must equal zero.]

Now, if we proceed to the calculation of the coefficients a, b, ex, P[on substituting
from the last equations in those which precede them and then evaluating coefficients
of linear terms] we shall obtain the following system of equations:

a 2 + ba - 2ex = A,

bo: + p2 + 2b = C,

ab + bP - 2P = B,

aex + exp + 2a = B,
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700 Stability of motion: general problem

which will have two solutions satisfying the condition a + fJ = 0, and we shall get
these solutions as the formulae

.F+A
Of = ---­

2 '

,F+C
b=--2-'

B
fJ = -2'

on replacing A. 2 successively by each of the roots of the equation

Z2 - (4 - A - C)z + A C - B 2 = 0,

which are A. i and n
To each of these solutions will correspond a pair of functions f and cp and, by

consequence, a periodic solution of the proposed system of differential equations.
[f we consider the variables x and y as the coordinates of a point moving in a

plane, we shall thus have two periodic motions. The trajectory for each of them will
be defined by the equation]

2U -T' - cp2 = const.

[This equation may be verified by differentiating the left-hand side with respect to
t, and showing that the result is zero by substituting from the above partial
differential equations satisfied by f and cp.]

t The question of periodic solutions of nonlinear differential equations is also considered,
although from another point of view, in the latest memoir of Mr Poincare: 'Sur Ie probleme
des trois corps et les equations de la dynamique', Acta Mathematica, Vol. XIII.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
O
t
t
a
w
a
]
 
A
t
:
 
0
1
:
0
0
 
2
8
 
A
p
r
i
l
 
2
0
1
0



701

CHAPTER III. Study of periodic motion

Linear differential equations with periodic coefficients
46. [Characteristic equation. Types of solution corresponding to its simple

and multiple roots. Sets of solutions]
Let us consider the system of linear differential equations

dx,
-d = PslXJ + P,2 X2 + ... + PsnXn (s = 1,2, ..., n)t . (I)

under the assumption that all the coefficients Ps. are periodic functions of t with the
same real period co, and that these functions remain determinate and continuous for
all real values of t.

Only considering such values of t, let us suppose that we have found for our
system n independent solutions

X", X21, ,xnl}
Xl2, X22, , X n2

............
X ln, X 2n , ••• , X nn

(2)

the first subscript of X referring, as always, to the unknown function, and the
second to the solution.

When we wish to indicate the value attributed to the independent variable we
shall write XSj(t) instead of x sj.

This agreed, the set of functions

XIj(t + w), x2j(t + w), ..., xnit + w)

corresponding to any value of j taken from the sequence I, 2, ..., n will represent, by
the nature of the system of equations under consideration, again a solution.

Consequently on designating by aij certain constants we shall have

xsit + w) = aljxsi (t) + a2jxs2(t) + ...+ anjxsn(t)

(j=1,2, ...,n) (3)

for each value of s.
With the aid of the constants aij defined in this manner, let us form the following

algebraic equation:

=0,

which will be of degree n with respect to the unknown p.
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702 A. M. Lyapunov

This equation, playing a very important role in the theory of the differential
.equations under consideration, we shall call the characteristic equation correspond­
ing to the period] w. Similarly the determinant representing the left-hand side will
be called the characteristic determinant.

If, in the place of (2), we had considered any other system of n independent
solutions, we would have obtained in general other values for the constants aij. But
the coefficients As in front of the different powers of p in the characteristic equation
reduced to the form

pn+A,pn-' + ...+An_,p +An =0,

would remain the same.
This is one of the fundamental properties of these coefficients, by virtue of

which we can call them invariants.
For the coefficient An this property can already be seen by the expression that

we can find for it on making use of the known formula giving the value of the
determinant formed from n independent solutions of system (I).

To obtain this expression let us designate the determinant formed from func­
tions (2) by 6.(t). Then the said formula [see the equation preceding (9) of Section
3] will give the following equality:

rt»: dt

6.(t + w) = 6.(t)e 0

And as, because of relations (3), the determinant 6.(t + w) will be equal to the
product of the determinant 6.(t) by the determinant of the quantities aij , the
equation which we have just written will reduce to the form

(-I)nA n =
fro L.Pn dt

= e-b . (4)

From this equality there follows, among other results, that the characteristic
equation cannot have zero roots [since An cannot be zero].

Let us note that if all the coefficients PSG in equations (I) are real functions, all
the coefficients As in the characteristic equation will be necessarily also real. In fact,
in this case we can always choose system (2) so that all the functions in it are real;
and then all the constants aij will equally be real.

Formula (4), which defines the product of the roots of the characteristic
equation, shows that in this case this product will always be positive and that, as a
consequence, if the characteristic equation has negative roots the number of these
roots will always be even.

t We can consider a characteristic equation corresponding to the period mea, where m is
an arbitrary whole number, positive or negative.

In speaking of a characteristic equation corresponding to the period w, weshall often not
make mention of the period, for brevity.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
O
t
t
a
w
a
]
 
A
t
:
 
0
1
:
0
1
 
2
8
 
A
p
r
i
l
 
2
0
1
0



Stability of motion: general problem 703

It is known that to each root p of the characteristic equation corresponds a
solution of system (\) of the form]

XI = f,(t)p'/W, X2 = f2(t)p'/W, x; = fn(t)p'/w, (5)

where all the j, are periodic functions of t having for period w (among which at
least one is not identically zero). Therefore, if the characteristic equation does not
have multiple roots, on considering all its roots we shall obtain n solutions of this
form, and these solutions will be independent.

In the case of multiple roots, system (I) can admit solutions of a more general
form. Namely, to a multiple root p there can correspond solutions for which the
functions fs in equations (5) will be of the form

fs(t) = CPsQ(t) + tcp" (t) + t 2CP'2(t) + ... + tmCP.m,(t),

where all the CPsj are periodic functionst of t.
If we include zero in the set of values of m, we shall have for each multiple root

for which u is the multiplicity Jl independent solutions of this form.
In any of these solutions the number m will not exceed Jl - I (we assume that

among the functions CP,m at least one is not identically zero), but it will be able to
attain this limit and. if the root under consideration makes non-zero at least one of
the first minors of the characteristic determinant, there will always correspond to it
a solution where we shall have m = JI. - I.

Starting from this solution, we can then obtain all the other solutions which
correspond to the same root by a very simple procedure.

In fact, if in any solution of form (5) we replace all the functions j, (t) by their
finite differences of any order, these differences corresponding to an increase w in
the independent variable t, we shall obviously obtain a new solution of system (I).
If then. starting from the solution where m = JI. - I, we form for the functions fs(t)
all the differences from the first up to that of order JI. - I inclusive, we may deduce
from them by the indicated approach a further JI. - I solutions. and these solutions
together with the original one will constitute a system of JI. solutions which will
evidently be independent.

Furthermore, instead of the procedure we have just indicated we can propose
another one. Namely, instead of replacing the functions j,(t) by finite differences,
we can for the same purpose replace them by expressions arising from their
derivatives with respect to t when the quantities CPsj are considered as constants. In
fact, by the known relations between finite differences and derivatives§. we see
immediately that we shall obtain in this way further solutions.

On applying this procedure to the case considered above and on taking for the
starting point the solution where m = JI. - I, we shall obtain all the JI. independent
solutions which correspond to the root under consideration.

t We understand by p I/o> the function e"/o» log P corresponding to any fixed determination
of the logarithm log p.

t In speaking of periodic functions without indicating the period. we shall understand
that we are concerned with functions with period ill.

§ [See for example E. Whittaker and G. Robinson The Calculus of Observations. London.
fourth edition, 1944, p. 62. This shows that a derivative of a polynomial can be expressed as
a linear combination of finite differences of the polynomial. Lyapunov is applying this result
to each of the polynomials tj (j = 0, I. ....m) which appear in the above expression forI,(t).]
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704 A. M. Lyapunov

We shall say that, in this case, to the root P corresponds a single set of solutions.
If a multiple root makes zero all the minors of the characteristic determinant up

to order k - I inclusive, there will correspond to it k sets of independent solutions,
which we shall be able to form by one or other of the two procedures indicated,
starting from certain k solutions.

The number k, while never exceeding the multiplicity J1 of the root under
consideration, can however attain it, and then in each solution corresponding to
this root all the functions Is will be periodic.

The theorems enunciated, which result from the fundamental propositions of
the theory of substitutions, can be considered as well known]. Anyway their proofs
do not present the slightest difficulty. Thus we may dispense with exposition of
these proofs.

Remark-,

Let

PI, P2, ..., Pn

be the roots of the characteristic equation corresponding to the period w.
Fixing on any determination of the logarithms, let us put

I
X, =-logpl,

W

I
X2=-logp2,

W

I
Xn =-Iog p.;

co

Then the real parts of the quantities

will represent the characteristic numbers of the system of equations (I) [see (5)].
On designating by N a certain real integer, we extract from (4) the equality

I 1'" 2nj=!LX,=- LP"dt+N ,
wow

which shows that the real part of the quantity L x, is equal to the characteristic
number of the function

-J"i>'U d1

e

[In fact, if T = Kw where K is a large positive integer, we have because of the

periodicity of p"

Therefore, in conformity with what has been noted in Section 9, we conclude
that system of equations (I) is regular.

t See for example Floquet, 'Sur les equations differentielles lineaires a coefficients
periodiques', Annales Scientifiques de {'Ecole Normale Superieure, Vol. XII, 1883.
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Stability of motion: general problem

47. [Transformation of equations with periodic coefficients into equations with
constant coefficients]

Let us consider the system of equations

dys
--;j( +P"Y, +P2,Y2 + ... +PnsYn = 0 (s = 1,2, ..., n),

adjoint with respect to (I), and let us suppose that the set of functions

YII,YZI' ···,Ynl'
Y1Z, Y22, ... , Yn2'

Yin, Y2n' .. " Ynn

is a system of n independent solutions of it. Then the set of functions

YII X, +Y2,X2 + +Yn'Xn'

Y12 X, +Y22 X2 + +Yn2 Xn,

705

(6)

Y'n X, + Y2n X2 + ...+ YnnXn

will represent a system of n independent integrals of system ( I). [See Section 18 for
discussion of adjoints.]

Let

P, ' P2
(7)

be all the roots of the characteristic equation of system (6), assuming that each
multiple root appears in the series of numbers (7) as many times as there
correspond to it sets of solutions. [Recall that no root is zero.] Then to each of the
numbers P, we shall be able to make correspond a set of solutions, and in such a
way that all these solutions are independent.

Let n, be the number of solutions in the set corresponding under this assump­
tion to the number Ps. The numbers n" n2 , ••• , nk will certainly satisfy the condition

n, + n2+ ...+ nk = n.

On taking for the Y,. the functions constituting these sets, and on choosing in
order to form them the second of the two procedures indicated above, for the
number Ps we shall have n, independent integrals of system (I) of the form

(
tm tr :' )

z(s) - + z(·') + + z(·')t + z(s) p -tim
1 m ! 2 (m _ I)! m m + , s

(m = 0, I, , n, - I), (8)

where the z, designate linear forms in the quantities x, with periodic coefficients.
On considering the ensemble of all the k sets we shall obtain for system (I) n

independent integrals of this form.
The variables x, enter into these integrals only via the linear forms zy), the

number of which is equal to the number of all the integrals. As a consequence, if
the latter are independent the zy) will equally be so. We shall thus be able to take
these forms as new unknown functions in place of X" X 2, ... , X..
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706 A. M. Lyapunov

(9)

I" I'£ LP,,<.f dt-« LPu dr
e 0 0

With this approach, on putting

I
X =-Iogp p-t!w=e-x.,t

s w .0 S ,

we arrive at the following system of equations:
dz(s>
_1_ =x z(s>
dt s I

dz(S}
_J_ = X z\s> _ z\S}
dt s J J - 1

(j = 2,3, ..., n,; S = 1,2, ..., k),

which the quantities z),,> must evidently satisfy in view of the very manner in which
they enter into integrals (8). [See the comment after (5) of Section 18.]

System (I) is thus found to be transformed into a system with constant
coefficients. Moreover the transformation is accomplished by means of a substitu­
tion satisfying all the conditions [at the beginning] of Section 10.

In fact, to establish this in the case under consideration, it obviously suffices to
show that the quantity inverse to the functional determinant [Jacobian], formed
from the partial derivatives of the functions z),,> with respect to the variables x,; is
a' bounded function of t. And we assure ourselves of this on noting that this
determinant, which is equal to the product of the function

e(IJIXI + "21.2 + ...+ 1Jk Xk)t

and the functional determinant of the integrals (8)t, can only differ from the
function

[in which the exponent is bounded-see the comment at the end of Section 46] by
a factor of the form

2m1f it

Ce OJ

(where i =p, m is a real integer and C is a constant). [Use has been made here
of the expression for Ix., appearing towards the end of Section 46.]

We therefore arrive at the conclusion that system (I) is reducible [as defined in
Section 10].

At the same time, on considering its transform (9) we conclude that the
quantities P., are the roots of the characteristic equation of this systemj. We thus

t [The Jacobian of (8) can be recognized as being the product of two determinants. One
of these is the Jacobian of the zY>. The other evaluates as the product of elements on a
diagonal, which has n, elements p ,"/W), n2 elements p,"!W), etc. With use of the equation
preceding (9) the latter product is thus

t This conclusion rests on the proposition that if system(I) admits a solution of the form
(5), the functions j, having the character defined above, p is a root of the characteristic
equation, and that if we have found /l independent solutions of this form, the multiplicity of
the root p is not less than u.
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Stability of motion: general problem 707

obtain the theorem that the roots of the characteristic equation of the adjoint system
are the inverses of the roots of the characteristic equation of the given system. [Recall
(7).]

Let us suppose that the coefficients P.s in system (1) are real functions of t.
We know (Section 18, Remark) that with this condition we shall be able to

transform it into a system with constant coefficients, only making use of substitu­
tions with real coefficients. But the question arises of knowing whether we can
subject such substitutions to the condition that the coefficients in them are periodic,
as occurred in the transformation which we have just indicated.

We easily assure ourselves that if we want the coefficients to have for period the
number co, as occurred in the preceding transformation, this will only be generally
possible in the case where the characteristic equation does not have negative roots].
As for the case where there exist such roots, certain conditions have to be satisfied,
including one that all the negative roots must be multiple.

On the other hand the substitutions we are concerned with will always be
possible if we limit ourselves to assuming that their coefficients have for period the
numberf 2w.

Some propositions relating to the characteristic equation

48. [General theorem on the development of invariants in series of powers of
certain parameters]

In each question of stability of periodic motion, the first problem we shall have
to concern ourselves with will consist of the finding and examination of the
characteristic equation corresponding to the system of linear differential equations
which define the first approximation. This is why we believe it necessary to take up
here some considerations which we shall be able to make use of in this kind of
investigation.

To begin with let us call attention to a general proposition which will serve as
a basis for certain methods of calculating the coefficients of the characteristic
equation.

This proposition consists of the following.

t Under our assumption the coefficients of the forms zy) corresponding to positive roots
p, can be supposed real functions of t. As for complex roots p", they will split into conjugate
pairs and, starting from the forms zy) corresponding to such a root, we J!!.!!Y deduce from
them the forms corresponding to the conjugate root by replacing y' - I by -,;=I.
Consequently, if the characteristic equation does not have negative roots, we shall obtain, on
operating as was shown in Section 18, a real substitution in which the coefficients will be
periodic functions of t with period 0).

t To convince ourselves of this it suffices to note that, for each negative root P." we can
suppose real the coefficients in the forms

zyl e i ll r!U) (i = ,;=I).
[Here Lyapunov is perhaps referring obliquely to the following argument. The characteristic
equation corresponding to period 2w has roots p, which are the squares of the roots of the
characteristic equation corresponding to period w. As a consequence the number of P., with
a given negative value will be even, so that they can be considered as forming conjugate
pairs. The technique mentioned in the previous footnote for dealing with conjugate pairs can
thus be applied.]
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708 A. M. Lyapunov

THEOREM. Suppose that the coefficients Psn in equations (I) depend on certain
parameters 8 1, 82, ... , while conserving their assumed properties as long as the moduli
of 8 1, 82, ... , are sufficiently small, and suppose that the period w does not depend on
these parameters. Then, if the coefficients Ps. can be represented by series ordered in
positive integer powers of the parameters 81,82, ••• , uniformly convergent for all real
values of t as long as the moduli of 81,82, ... do not exceed certain non-zero limits
£1, £2' ..., the coefficients As in the characteristic equation

pn + A,pn-I + ... + An_1P + An = 0

will be holomorphic functions of the parameters under consideration. Moreover, if the
constants £1' £2, ... are chosen so that in the case where

( 10)

the series obtained by replacing in the expansions of the Ps. all terms by their moduli
converge uniformly for all real values of t, the series by which the invariants As will
be represented will certainly converge in the case of equalities (J 0).

This theorem will be established immediately] if we show that the functions
X,.X2' ... ,Xn , satisfying equations (I) and for I =0 taking arbitrary given values
ai' a2 • . . •, an, independent of the parameters 8 1,82, ... , can be represented by series
which are ordered in positive integer powers of these parameters, and are absolutely
convergent for every real value of t as long as the moduli of 8 1, 82, '" do not exceed
the limits £" £2' ... chosen in conformity with the condition indicated.

As for the latter proposition, we may prove it easily by considering, in place of
system (I), the following,

dx,
--;{l = 8(P.d XI +P.,2 X2 + ... +Psnxn) (s = I, 2, ... , n),

in which 8 represents a new parameter, and by seeking the functions x, in the form
of series ordered in the powers of 8, 8,,82, ... In fact, a glance over the equations
arising in such an investigation [see e.g. equations between (13) and (14) below] will
suffice for us to conclude that the moduli of the coefficients of the series sought will
not exceed the corresponding coefficients in the expansion in powers of these same
parameters of the following function]:

,
±nt r pdt

ae ·0 ,

where a represents the greatest of the quantities las Iand p a series, ordered in powers
of 81,82' ... , in which each coefficient, for any given value of t, is equal to the greatest
of the moduli of the corresponding coefficients in the expansions of the P.,.'

On returning to system (I), let us suppose that the set of functions

represents a solution of this system defined by the condition

xss(O) = I, xjs(O) = 0 (j <j s).

t[ By means of an argument which will be given towards the end of this section.]
t The upper sign here corresponds to the case of I > 0; the lower sign, to that of I < O.
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Stability of motion: general problem 709

Then, on considering n similar solutions corresponding to s = 1,2, ..., n, we may
extract from equations (3)

asj = xs/w) (s,j = 1,2, ..., n).

It results from this, by virtue of the proposition which has just been mentioned,
that the constants asj corresponding to our system of particular solutions can be
expanded, under conditions (10), in absolutely convergent series in the powers of

£" £2' '"
As a consequence the coefficients As in the characteristic equation, which are

entire polynomials in the asj, will be in the same condition.
Let us suppose that we know how to integrate system (I) under the assumption

that

0, = 02 = ... = O.

Then, if we seek the functions x, in the form of series ordered in powers of the
parameters 0" 02' ... , we shall have, for calculating the coefficients in these series,
systems of differential equations which we shall be able to integrate successively,
equations which will only require quadratures [see e.g. quadratures shown after
(13) below). We shall then obtain the invariants As in the form of power series
where the coefficients will be expressed by means of certain multiple integrals.

It can happen that the proposed equations do not contain any parameters such
that we can expand the constants Aj in their powers. Then we shall be able to
replace these equations by others which include such parameters, and which for
certain values of the latter reduce to the proposed equations (as has been done for
example in the proof of the theorem).

Thus the methods of calculating the invariants A, based on expansions in
powers of parameters can be considered as fully general].

49. [Application to a differential equation of second order)

On making use of the series discussed in the preceding section we can treat
several general questions on the subject of the characteristic equation.

Let us show this in connection with the following differential equation:

d2x
dt 2 +px =0, (II)

where we understand by p a periodic function of t with real period w, this function
being determinate and continuous for all real values of t.

This equation being replaced by the system

dx , dx'
dt =X, -;j/ = -px,

t Some applications of these methods have been indicated in my memoir 'Sur la stabilite
du mouvement dans un cas particulier du probleme des trois corps', Communications de /0
Societe mathematique de Kharkow, second series, Vol. II, 1889. [This paper treats the stability
of Lagrange's three particles, i.e. three mutuallyattracting particles with initial velocities such
that they always remain at the vertices of an equilateral triangle. The stability of the
configuration had been previously investigated by Routh: Proc. London Math. Soc., Vol. VI,
1875, pp. 86-97.)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
O
t
t
a
w
a
]
 
A
t
:
 
0
1
:
0
1
 
2
8
 
A
p
r
i
l
 
2
0
1
0



710 A. M. Lyapunov

we immediately conclude, on turning to formula (4) [which gives An = I since
P'I = P22 = 0], that the corresponding characteristic equation will be of the form

(12)

(13)

The problem thus reduces to finding the single constant A.
Only considering as before real values of t, we shall assume that the function P

always remains real. Then the constant A will also be real.
This settled, two cases can arise: ( I) A 2 ,;:;; I, when the roots of equation ( 12) will

have their moduli equal to I, and (2) A 2> I, when these roots will be real, one
being in absolute value greater than I, the other less. [From (12) the product of the
two roots is I; and in case (I) the roots form a conjugate pair, while in case (2) they
are real and unequal.]

The problem of knowing which of these two cases holds is the first which has to
be resolved in questions of stability. It is thus appropriate to indicate some criteria
which we shall be able to make use of to distinguish one from the other.

We can arrive at certain criteria of this kind by starting from an expression for
A in the form of a series.

To form this series let us provisionally consider, instead of equation (II), the
following:

d2x
dt 2 = epx,

and let us seek the constant A which corresponds to it in the form of a series
ordered in positive integer powers of the parameter e.

In view of the theorem of the preceding section, this series will be absolutely
convergent for every value of t, such that A will be not only a holomorphic function
of e, but also an entire function of this parameter.

Let f(t) and ep(t) be particular solutions of equation (13), defined by the
conditions

f(O) = I, f'(O) = 0; ep(O) = 0, ep'(O) = 1.

On expanding the functions f and ep in powers of s, we shall find

f(t) = I + efl(t) + eY2(t) + ,

ep(t) = t + eep, (t) + e2ep2(t) + ,

on designating in general by fn(t), epn(t) functions of t which are calculated
successively by the formulae

rs» =Ldt Lpfn - I (t) dt, epn(t) =Ldt Lpepn- I (t) dt

under the hypothesis that

fo(t) = I, epo(t) = t.

To obtain now the expansion of the constant A, we note that the characteristic
equation can be presented in the form [with use of the penultimate equations of
Section 48]

I
f (W) - P f'(w) 1=0

ep(w) ep'(w) - P
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Stability of motion: general problem

and that as a consequence

2A = few) + q>'(w).

The expansion sought will thus be

00

A = I +! L [f,,(w) + <p~(W)]6".
n=1

711

( 14)

By making use of the formulae obtained we shall be able to resolve for equation
(13) the question posed above, when the parameter 6 is small enough in absolute
value.

Since

fl(w) + <P'I(W) =W [W pdt,
.0

[which may be verified by applying an integration by parts to f. (t)] this question will
depend immediately on the examination of the integral

rP dt

and whenever this is non-zero, the question will be resolved as soon as we know the
sign of this integral.

The same formulae lead to the following proposition.

THEOREM I. If the function p can only take negative or zero values (without being
identically zero), the roots of the characteristic equation corresponding to equation ( II)
will always be real, and one of them will be greater than I, and the other less than 1.

[From the preceding double integrals we can find by induction that
( - I)"/,,(t) > 0 and (-1 )"<p,,(t) > 0 for t > O. Then differentiation of the double
integral for <p,,(t) shows that (-I)"<p~(t) > 0 for t > O. Thus (14) with 6 = -1 implies
that A > I, and the theorem follows.]

Let us now consider the case where the function p can only take positive or zero
values, assuming that it is not identically zero.

The functions fn(t), <p~(t) will then have the same property. Moreover, we shall
be able to prove that for n > I they will satisfy the inequality

(/"-1 + <p~- dt l' pdt - 2n(fn + <p~) > 0 (15)

for every real value of t different from zero.
This may be demonstrated in the following way:
Putting

S" = (/,,-1 + <p~- dt l' pdt - 2n(/" + <p~),

we note that we can write
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712 A. M. Lyapunov

on designating by F; and <l>n the following functions:

r, = tf~ - I fP dt + (.r. -,+ qJ ~ -,) fP dt - 2n/~

<l>n = tqJn - 2 f pdt + Un -, + qJ~ _ ,)t - 2nqJn -,.

[These equations can be verified by differentiating the first expression for S; and
using the relation qJ~ =PqJn-" which follows from the above double-integral
expression for qJn.]

Our inequality will thus be proved if we show that for positive values of t we
have the inequalities

r, > 0, e, > 0,

and for negative values the inequalities

r, < 0, e, < O.

( 16)

(17)

Let us note for this purpose that the preceding expressions for the functions F;
and <Iln easily reduce to the form [as may be checked by similar manipulations to
those used above for Sn]

r; =f (2/~_, LPdt +pun)dt,

<II" = L (2ptqJn - 2 + vn) dt,

where Un and Vn represent the expressions

u; = (qJ"-2 + tfn-2) J: pdt + qJ~-, + t/~_, - (2n - 1)ln_"

Vn= (qJn-2 + tqJ~_2) J: pdt +In-' + tf~-I - (2n - l)qJ~_"

which we can write thus [as may be verified by the same technique as before]:

Un = L (2P(qJn_2 + «:» + F,,_ ddt,

v" = L (2/~-, + 2qJ~_2 fa' pdt + p<l>,,-,) dt.

We conclude from this that if for all positive values of t there hold the
inequalities

F,,_,>O, <II,,_, >0,

for the same values of t inequalities ( 16) will hold, and that if for all negative values
of t we have

Fn_,<O, <II,,_, <0,

for the same values of t inequalities (17) will be satisfied. [Note that for t > 0 we
have In(t) > 0, qJ,,(t) > 0, I~(t) > 0, qJ~(t) > O. This follows by induction from the
above double-integral expressions for I,,(t) and qJ,,(t).]
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Stability of motion: general problem 713

From this it results that the validity of inequalities (16) for t > 0 and of
inequalities (17) for t < 0 will be assured for every value of n greater than 1, if these
inequalities hold for n = 2.

Now, in this last case we see the result immediately from the following
expressions which we extract from our formulae [with use of an integration by
parts]

F, = f: {(fPdt)' + 2Prp"} dt, 11>2 = 2 f: (pt? + 2f,) dt.

We may therefore consider inequality (15) as proved.
Let us now go back to our problem.
Formula (14), for equation (II), takes the form

00

A = I +! L: (-I)"[fn(w) + rp~(w)].
12=1

Consequently, on noting that because of (15)

fn(W) + rp~(w) < [fn- I (w) + rp~-, (w)] ~rpdt,

we arrive at these inequalities:

A<I-! f (1- 4w r
W

p dt ) [f 2n_ ,(W) + rp in_ ,(W)]
tl= I n Jo

A > I - ~2 rw

pdt +! f (I - ~2 rw

Pdt) [f2n(W) + rpin(w)],Jo n~ I 4n + Jo
[These inequalities may be obtained by treating separately the positive and negative
parts of A, and by using the equation appearing after (14).]

We conclude immediately from this that if

Wrpdt <;;4,

we shall necessarily have

-I<A<I,

and in this way we reach the following proposition [on recalling the discussion
following (12)]:

THEOREM II. If the function p can only take positive or zero values (without being
identically zero), and if further it satisfies the condition

Wrpdt <;;4,

the roots of the characteristic equation corresponding to equation (II) will always be
complex, their moduli being equal to I.

The conditions expressed in this theorem are sufficient, but of course not
necessary.
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714 A. M. Lyapunov

In the particular case where the function p reduces to a constant (we can then
take for period wan arbitrary number), the condition p > 0 already suffices by itself
for the roots of the characteristic equation, corresponding to any real period, to
have their moduli equal to I.

Thus the question naturally arises whether it will be the same in the general
case.

The answer is however negative, for we can cite examples where the function p
will always remain positive and the characteristic equation will nevertheless have
real roots of which one will be, in absolute value, greater than I, and the other
smaller than I.

To give an example of this sort, let us consider the Lame equation:

d2x- = (h + 2k 2 srr' t)x
dt?

in one of its most simple cases.
We understand here by h an arbitrary constant and by k a positive fraction

representing the modulus of the elliptic function sn t.
Thanks to the investigations of Hermite we know that if in place of h we

introduce a new constant .ie, by putting

h = - I - P err' .ie,

one of the particular solutions of the equation under consideration will be given by
the expression

where Hand El are the known functions of Jacobi [see Cayley, A., An Elementary
Treatise on Elliptic Functions, London, 1895, pp. 1-17]. For another independent
solution, we may deduce it, in general, on replacing t by - t or .ie by -.ie in this
onet· '

For the period w we shall be able to take in the case under consideration the
number 2K, on understanding by K, as usual, the integral

rn
/
2 d<p

Jo JI-Psin2 <p '

and we see from the above expression that the roots of the characteristic equation
corresponding to this period are the followingj:

2K a'(' )
-e a(,) and -e

-2K~~
au)

( 18)

t See Hermite, Sur quelques applications des fonctions elliptiques (Paris, Gauthier-Vil­
lars, 1885, p. 14). [Also published in Oeuvres de Charles Hermite, Paris, 1912, Vol. 3, pp.
266-418; and in 26 instalments in Comples rendus Acad. Sci. Paris, vols. 85-94, (1877­
1882).]

t [Compare (5). That the term corresponding to fl (I) has period 2K can be seen from
the following properties:

H(t + 2K) = -H(I), eel + 2K) = e(I), (_I),,+2K)/12K) = -( _1)'/12K)]
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Stability of motion: general problem 715

Suppose that the number A is real and between zero and 2K, without however
attaining these limits. Suppose moreover that it is small enough for us to have

I - k? - k 2 sn? A> O.

Then [with use of the relation srr' A+ err' A= I] the function

p = I + k 2 err' A- 2F sn2 t

will be positive for all real values of t, and yet the numbers (18) will be real, one
being greater and the other smaller than I in absolute value.

[Thus we have a case of a linear second-order system (II) which becomes
unstable when a coefficient p varies periodically over a range of positive values,
despite being stable when p is fixed at any positive value.]

50. [Conclusions on the form of the characteristic equation which follow from
certain functional properties of the coefficients of the differential equations]

Sometimes, by using the functional properties of the coefficients in the differen­
tial equations, we can draw some immediate conclusions relating to the characteris­
tic equation.

Thus, for example, if in the system

d2x, dX1 dX2 dx;
dt 2 = q,1 --;j(+ qs2 --;j(+ ... + qsn --;j( +PstXt +P,2 X2 + ... +P,nXn

(s = I, 2, ..., n)

with periodic coefficients q,a' Ps", all the qsa are odd functions of t and all the Psa are
even functions, we may assert that in the characteristic equation which corresponds
to it

p2n+A,p2n-I+ ... +A2n_tp+A2n=0

the coefficients As will satisfy the relations

A2n = I, A2n- s = A, (s = 1,2, ..., n),

so that this equation will belong to the type of equation called reciprocal.
We may convince ourselves of this by noting that the system under consider­

ation does not change when we replace t by - t. [Thus if

X s =f,(t)p'/'"

represents a solution, so does

x, =fs( - t)p -1/,"

i.e. both p and p -I are characteristic roots.]
The case just mentioned is contained in a more general case where, in the

proposed system of equations of form (I), all those of the coefficients Psa for which
the subscripts sand (J do not exceed a certain number k, as well as all those for
which the two subscripts are greater than k, , represent odd functions of I, and all
the others represent even functions.

Such a system will not change if we replace t by - t and at the same time
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716 A. M. Lyapunov

(\9)

And based on this it is easy to show that there will exist between the coefficients of
the corresponding characteristic equation

pn+A,pn-1 + ...+An_,p +An =0

the following relations:

An=(-I)n, An_,=(-I)nA" An_2=(-I)nA2 ,

[Since Ps., is an odd function of t its integral over a period is zero, and then (4)
shows that An = (_I)n.]

We may consider conditions of a still more general character, namely conditions
such that equations (I) do not change following the replacement of t by - t, when
at the same time the X s are replaced by certain linear forms in these variables with
constant coefficients.

On designating the coefficients Ps. by Ps.(t) when we have to place in evidence
the variable t, let us suppose that they satisfy the following relations:

n

L [IXsjPj.(t) + IXj.Ps/- t)] = 0 (s, IT = 1,2, ... , n),
1'=1

where the IX.,. are constants, for which the determinant

!XII 1X12 IXl n

!X21 Cl22 •.. IXZn

(20)

(21)

(22)

will be assumed different from zero.
Then the system of equations

dy,dt = - P.d ( - t)YI - Ps2( - t)Y2 - ... - Psn( - t)Yn

(s = I, 2, ..., n)

will represent the transform of system (I) by means of the substitution

Y., = IXs'X, + IXs2 X2 + ... + IXsnXn (s = 1,2, ..., n). (23)

[To verify this result by matrix algebra, let us write (I) and (23) as

dx
- = P(t)x Y = Ax. (I)
dt '

These yield

or, with use of (20) written as

we get

which is equivalent to (22).]

dy = AP(t)A -Iy
dt

AP(t) + P( -t)A = 0,

dy
- = -P(-t)v
dt .

(II)

(III)

(IV)
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Stability of motion: general problem 717

Based on this it is easy to prove that the invariants As will satisfy relations (19).
Thus let p be a root of the characteristic equation of system (I), and let us

suppose that the equations

XI =f,(t)pl/W, }
(24)

X2 =[,(t)pl/W, ..., x; =fn(t)p'/w

give for this system one of the solutions corresponding to the root p, such that the
!set) are periodic functions of t or sums of a finite number of terms representing
products of periodic functions by integer powers of t.

Turning to formulae (23) we deduce from them the following solution of system
(22):

Yt = CfJt (t)pl/W, Y2 = CfJ2(t)pl/W, ..., Yn = CfJn(t)pl/W,

where the functions

CfJs(t) = IXstf, (t) + IXsz/2(t) + ... + IXsnfn(t)

will be of the same character as the functions !set). Moreover, if the functions !set)
are not all identically zero (as we shall assume) it will be the same for the functions
CfJs(t), by virtue of our assumption concerning determinant (21).

Now from each solution of system (22) we deduce, on replacing t by -I,' a
solution of system (I). We shall thus obtain for the latter the solution

(
I )I/W

X t = CfJt ( - t) p ,

(
I )I/W

X2=CfJ2(-t) P ,
(25)

the existence of which shows that 1/p is one of the roots of the characteristic
equation of system (1).

If p were a multiple root with multiplicity m we would have for system (I) m
independent solutions of form (24), and from this, by the approach we have just
indicated, we would deduce m solutions of form (25) which would again be
independent, the determinant (21) not being zero. We could thus conclude that lip
is a multiple root and that its multiplicity is not less than m. And since the root p
was taken arbitrarily, it would equally follow that the multiplicity of the root I/p
cannot be greater than m.

In this way we can affirm that if the characteristic equation of system (I) has a
root p of multiplicity m, it will also have the root lip of the same multiplicity m,
and that therefore the coefficients in this equation must satisfy the relations

An=±I, An_t=AnA" An_ 2=AnA2, ...

Thus, to prove equations (19) it only remains to demonstrate the first of themt.
For this purpose, on designating by A the determinant (21) and by A su its minor

corresponding to the element IXsa, we note that equations (20) give the following:
n n n

L L Am L [lXsjPja(t) + IXjaPsj( - t)] = 0,
s=IO'=l j=1

t If the coefficients P." are real functions of I, this equality does not need any proof, since
by virtue of (4) the quantity (-I)nA n is then always positive.
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718 A. M. Lyapunov

which, being divided by A, reduces to

n

L [PsAt) +Pss( - t)] = 0
s=1

[with use of the property that an expansion of a determinant in terms of alien
cofactors gives zero (see Aitken, A. C, Determinants and Matrices, Edinburgh,
1958, p. 51)] and thus makes apparent that L Pss is an odd function of t.

Therefore we obtain

L"LPssdt =0;

and we conclude from this, in view of (4), that An = (-I )n.
We may note that in the case of odd n the characteristic equation of system (I),

satisfying the condition which we have just considered, will have at least one root
equal to J, and that consequently this system will then admit a periodic solution
(other than the obvious one x I = X2 = ... = x; = 0).

Remark

Let us note that if relations (20) hold with values of the constants IX" such that
the equation

IXI\ - A IX12 1X 'n
IX21 IX22 - A IX2n =0 (26)

IXn l IXn2 ann - A.

has neither multiple roots nor roots which differ only in sign from one another, the
integration of system (I) reduces to quadratures.

In fact, we easily assure ourselves that if the roots AI' A2' ... , An of equation (26)
are all different, there will always be a linear substitution with constant coefficients
such that system (I) is transformed into a system of the form

dz,
dt = qsl(t)ZI + qdt)Z2 + ... + q.m(t)zn

(s = I, 2, ... , n),

where the coefficients q". satisfy the relations

A,qm(t) + A.q,.( - t) = 0, (s, (J = I, 2, ..., n).

[To verify this result by matrix algebra, suppose that D is a diagonal matrix
with diagonal elements A" A2' ... , An and that the symbol A now again represents the
matrix in (I). Then it is known that A has a diagonalizing matrix B such that

BAB- I =D

i.e.

Substituting (VI) in (III) we get

B-IDBP(t) + P(t)B-1DB = O.

(V)

(VI)

(VII)
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Stability of motion: general problem

Pre-multiply by B and post-multiply by B- 1
; this will give

DQ(I) + Q( -I)D = 0

where

Q(I) = BP(I)B- I
•

Result (VIII) is equivalent to Lyapunov's last equations.
Also, if we put

Z = Bx

comparison with (I) and (II) shows that

dz
dl = Q(I)Z

719

(VIII)

(IX)

(X)

(XI)

which corresponds to Lyapunov's penultimate equations.
Note further that Lyapunov's last equations, with - I written for I, appear as

A,q,.( - I) + A.q,.(I) = 0, (s, (J = I, 2, ..., n)

and elimination of q,.( - I) from the two versions leads to

(A; - A;)q,.(I) = 0, (s, (J = I, 2, ..., n).

(XII)

(XIII)

(27)

Lyapunov has equations (XIII) in mind in his ensuing discussion.]
Now, the squares of all the A, being by assumption distinct, these relations will

not be possible unless the q,. with differing subscripts sand (J are all zero. And if
we have q,. = 0 for (J not equal to s, the integration of the transformed system
reduces to finding n quadratures

fqll dt, fq22 dt, ..., fqnn dt,

As far as the roots of the characteristic equation are concerned, subject to the
assumptions under consideration, let us note that determinant (21) not being zero
all these roots will be equal to I [from Lyapunov's last equations the above
integrals will all have odd periodic integrands, and will consequently be periodic
also]; and if this determinant is zero, one root will be able to be arbitrary, while all
the others will be equal to I [if the determinant is zero one of the A'S will be zero,
say Aj, and then qjj(t) will no longer necessarily be an odd function of I].

51. [On the characteristic equation of the canonical syslem]

Sometimes the relations between invariants mentioned in the preceding section
[see (19)] can result from the very form of the differential equations, whatever may
be the functional properties of their coefficients.

Let us indicate one of the most important cases of this kind.
Suppose that the proposed system is canonical [Hamiltonian]:

dx, oH dy, oH
dt = - oy,' dt = ox, (s = I, 2, ..., k),

H representing a quadratic form in the variables XI> X2' ... , Xb y" Y2, ... , Yk with
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720 A. M. Lyapunov

periodic and continuous coefficients.
Let

XII' X 21' , XkJ,YII,Y211 "',Yk',}
X 12, X 22 1 , Xk2, Y12' Y22' .. " Yk2

(28)

be any two solutions of this system.
Designating by H, and H2what Hbecomes on replacing in it the x,; Ys by the

x,,' Ysl and Xs2, Ys2' respectively, we find

d ~ ~ (aH2 en, aH2 aHI)
dl L. (Xj IY;2 - X;2Yjl) =.L. xj l,,- - X;2 ,,- + Yjl ,,- - Y;2,,- .

j ~ I r _ I UX;2 uXj l UY;2 uYjl

Now the right-hand side of this equality is identically zero, for its partial
derivatives with respect to quantities (28), considered as independent variables, are
identically zero. [Note that the right-hand side is quadratic in the variables and
hence cannot reduce to a non-zero constant.] Thus, for example, its partial
derivative with respect to X s I is equal to

aH2 k (a2H a2H ),,-- L X;2~+Y2j~ =0.
uXs2 j _ I uXj ox, uYj oxs

Our equality therefore leads to the following relation:
k

L (X}IY;2 - X;2Yj,) = const.,
j=J

by which will thus be related any two solutions of system (27).
This settled, let us consider 2k independent solutions of this system

By virtue of what we have just shown, there will exist between them k(2k - I)
relations of the form

k

L (xjsYj. - xj.Yjs) = Co:"
)=1

(29)

in which the constants Cos = - Csa (s, (1 = 1,2, ..., 2k) [these relations follow from
an interchange of subscripts in (29)], because of the independence of the solutions
under consideration, will be such that among the constants

whatever the given number s, there will exist at least one of them which will not be
zero.

On now designating by P" P2' ... , P2k the roots of the characteristic equation of
system (27) and on starting with the case where these roots are all distinct, let us
suppose that our solutions have been chosen so that the functions xjs> Yjs are of the
form

- I" (I) ,/w - (I) tk»Xjs - ljs Ps, Yjs - ({ljs Ps'

fjs , ({Jj., designating periodic functions of I.

Then from equation (29), which will take the form
k

(P.,P.)'/w L [fjs(t)({Jj.(t) - fj.(t)({Jjs(t)] = c.;
)=1
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Stability of motion: general problem 721

we may conclude that if Csq is not zero we shall necessarily have

PsPn = 1.

Now, in view of what was noted above, for every given number s there will
correspond a number (J such that the constant Csn is not zero, and this number (J

will obviously be different from s. Therefore, for each root Ps of the characteristic
equation there will correspond a root equal to lips'

According to this we can conclude that if the characteristic equation

p2k+A,p2k-'+ ... +A2k_IP+A2k=0

of system (27) does not have multiple roots, its coefficients will satisfy the
relations

A2k=I, A2k_s=As (s=I,2, ...,k-I). (30)

Now, these relations holding in the case of simple roots, they will necessarily
be fulfilled in all cases.

To prove this we may reason in the following way.
In the function H, which will have an expression of the form

k k

H = L L (Psnxsxn + qsnYsYn + 'snxsYn),
s= 1(1= 1

let us replace the coefficients Psn, q,n, 'ss and ',n (for sand (J different) by

respectively, on understanding by e an arbitrary parameter and by Xl' X2, ..., Xk
any constants such that the numbers

(31)

are all different, and let us consider the canonical system corresponding to the
function H so modified.

This system, for s = 0, will reduce to a system with constant coefficients, for
which the numbers

will be the roots of the determinantal equation and, as a consequence, the
numbers (31) will be the roots of the characteristic equation corresponding to the
period w.

Therefore, on noting that for our new canonical system the invariants As will
be continuous with respect to s, for because of the theorem of Section 48 they will
be certain entire (transcendental) functions of s, and on taking into account that
by assumption the numbers (31) are all different, we can assert that the character­
istic equation will not have multiple roots, either for e = 0 or for non-zero values
of e for which the moduli are sufficiently small. Thus, for such values of e,
relations (30) will be satisfied. But then these relations, holding as they do
between entire functions of e, will necessarily be satisfied for all values of e. They
will therefore be satisfied in particular for e = I, when our new canonical system
reduces to the original one.

In this way we obtain the following theorem.
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722 A. M. Lyapunov

THEOREM. If the proposed system of linear differential equations with periodic
coefficients has the canonical form, the characteristic equation which corresponds to it
is always reciprocals,

Our proof rests on the existence of a certain relation between two arbitrary
solutions of system (27).

Now we can indicate other systems admitting such relations. from which we
shall be able to draw similar conclusions about the characteristic equation.

Such is, for example, the case where the coefficients P,. in system (I) are related
to one another by the equalities

n

L (aj,pj. - aj.pj,) = 0 (s, (J = 1.2•...• n).
j=1

in which a,. are constants such that we have a,. + a., =0 for all values of sand (J

taken from the sequence 1.2, ...• n.
It can happen that the proposed system. without being canonical, reduces to this

with the aid of a linear substitution with constant or periodic coefficients. Whenever
this is so and the substitution satisfies the conditions [at the beginning] of Section
10, we shall be able to assert that the characteristic equation for this system is
reciprocal.

Thus. for example. let there be proposed the system

dd2t~' = t [a,. + r' (p,. - P.,) dtJ dd
X

• + t P,.X.
0_1 Jo t C1=1

(s = I, 2, ... , k).

in which the coefficients P,. satisfy the conditionsr(p,. - P.,) dt = 0 (s, (J = 1.2•...• k).

and a.,. are any co.nstants verifying the relations

a,. + a., = 0 (s, (J = 1,2•... , k).

On making

dx k [1' Jy, = -d' -! La,. + (p,. - P.,) dt x;
t (1= I 0

(s = I, 2, ...,k)

and putting

t This theorem is also indicated by Mr Poincare in his memoir 'Sur Ie problerne des trois
corps et les equations de la dynamique' (Acta Mathematica, Vol. 13 [1890], pp. 99-100).
where the author also bases it on the relations of the form (29). But 1 knew it before the
publication of his memoir. and in February 1900 I communicated it in the above form to the
Mathematical Society of Kharkov, with other propositions relating to the characteristic
equation (Communications de fa Societe Mathematique de Kharkow, second series, Vol. II;
extract from the verbal proceedings of the sessions).
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Stability of motion: general problem 723

s.: = (Xso + f t»; - Pos) dt,

we shall reduce this system to the form (27). We can therefore state that the
corresponding characteristic equation will be reciprocal.

52. [Some particular procedures for the study of the characteristic equation]
If in equations (I) the coefficients Pso are real functions of t (as we shall assume

here), we shall be able to arrive at some conclusions on the characteristic equation
by making use of similar procedures to those which we have proposed for the study
of stability, under the name of the second method.

These procedures always allow us to obtain for the moduli of the roots of the
characteristic equation bounds, upper and lower, and more or less precise. To get
to them we can, for example, operate as was done in Section 7 for proving Theorem
I.

But the same method can sometimes also serve to put in evidence some other
properties of the characteristic equation.

Let us take for example the following system:

d 2x
dt 2S= PsI XI +Ps2 X2 + ... + PsnXn

(s = I, 2, ... , n), (32)

where the coefficients Pso, representing real periodic functions of t, are assumed such
that the equation

2(p" - k)

P21 +P12

Pnl +Pln

PI2 +P21
2(P22 - k)

Pn2 +P2n

PIn +Pnl

P2n +Pn2

2(Pnn - k)

=0

in the unknown k does not have negative roots for any value of t (we shall only
consider, as previously, real values of t).

Let P be smallest of its roots (which are, as is known, all real [a result
established by Cauchy in 1829]).

The coefficients in our differential equations being continuous for all the values
of t under consideration, it will be the same for the function p. Moreover this
function will be periodic and its period w will be the same as that of the coefficients
Psrr o

We shall assume that the function P is not identically zero (however, it can
possibly become zero for certain values of t).

Then we shall be able to show that the characteristic equation of system (32) has
n roots with moduli greater than I and n roots with moduli less than I.

For this purpose, on putting

dXI dX2 dx;
XI dt + X 2 dt + ... + x; dt = x.
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724

we note that our equations give

A. M. Lyapunov

(33)

dX n n n (dX)2
di = s~' a~1 PsaXs

X• + s~' d/

From this, in view of a known property of quadratic forms, the x, being
supposed real, we deduce

dX ~ 2 ~ (dXs)2
->-p L... x + L... -
dt r s m l S S ~ l dt

[To verify by matrix algebra the first term on the right-hand side of (33), suppose
that P is the matrix of coefficients in (32), P' being its transpose, and that Q is
defined by

Q = !(P + P') = Q'. (XIV)

It is known that there is an orthogonal matrix which diagonalizes the symmetric
matrix Q, i.e. there is a matrix R such that

RR' = I, RQR' = K, Q = R'KR

where K is diagonal. Hence

x'Qx =x'R'KRx =y'Ky

where

Y =Rx.

(XV)

(XVI)

(XVII)

If the diagonal elements of K are k , k 2 , ••• , k; with p the smallest of these, we have
from (XIV) and (XVI)

n

x'Px = x'Qx = L ksy;
5=1

n

~p L y; =py'y =px'R'Rx
s=t

or with use of (XV)

n

x'Px ~px'x =p LX;.
s=1

Now the right-hand side of this inequality [(33)] is greater than

r: (dX, dX2 dXn )
2v p x'd/+x2d/+ ... +xnd/ '

[with use of inequalities having the general form

a 2+ b 2 = (a - b)2 + 2ab ~ 2ab].

We thus have

dX
di~2JPX.

(XVIII)

(XIX)

(XX)]

This settled, let us designate by Xo the value of the function X for t = 0, and let
us only consider positive values of t. Then the above inequality will give [on
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Stability of motion: general problem

separating the variables and integrating both sides]

2f "/pdt
X;;. Xoe 0 •

On putting

I lW- )Pdt = J.,
w 0

[from which there follows

725

we conclude from this that if Xo is a positive quantity we shall be able to make the
function

as large as we wish, however small the positive number 8, by choosing t sufficiently
large.

Let us suppose that we have found for system (32) 2n independent real
solutions, and let

(34)

be the functions to which the expression X reduces for these solutions.
Whatever our solutions, none of these functions will be identically zero, since

the equality X = 0, because of (33), would only be possible for the solution

x, = X2 = ... = x, = 0,

which does not enter into those which we consider.
We may further always assume that our solutions are chosen so that we have

X, = dt/wF, (t), X2= d,/wF2(t ), ..., X2n = r~~wF2n(t),

where r" r2' ... , r2n are the moduli of the roots of the characteristic equation
corresponding to the period w, and the Fs(t) designate certain real functions of t
such that each of the functions

F, (t), F2,(t), , F2n(t),

F,( -t), F2( -t), , F2n ( -t)

has zero for its characteristic number.
We now note that there will always be values of t for which none of the

functions (34) will be zero [otherwise each of these functions would be identically
zero, and from (33) this would require all the X s to be identically zero].

For definiteness, let us assume that the value t = 0 satisfies this condition. Let us
further assume that for t = 0 the functions

become positive and all the others become negative.
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726 A. M. Lyapunov

By virtue of what has been proved we can then state that, however small the
positive number 8, the functions

1 being sufficiently large, will all become as large as we wish. And that is only
possible under our hypothesis concerning the form of the functions X, if

(we suppose the number w to be positive).
Let us now consider, in place of (32), the system deduced from it on replacing

1 by -I.

This new system will obviously satisfy all the hypotheses made relative to the
original one. We can therefore apply to it the preceding reasoning on replacing the
functions (34) by the following:

X'I = _r,21/wF,( -I), X; = -ri21/wF2( -I),

Now among the latter the functions

in conformity with what was assumed above, become positive for 1 = O. We can
thus conclude, similarly as in the preceding argument, that we shall have

So we arrive at the conclusion (on taking into account that A is a positrve
number) that, under our assumptions, the characteristic equation of system (32) will
have m roots with moduli

greater than 1, and 2n - m roots with moduli

less than I.
Let us make apparent that we shall necessarily have m = n.
For this we first note that if the coefficients p; in our differential equations

satisfy the condition P,a = Pas for all sand (J taken from the sequence 1,2, ..., n, the
equality m = n will be a consequence of what was shown in the previous section. In
fact, according to what we have seen there the characteristic equation of system
(32) will in this case be reciprocal. [Equations (32) become a special case of the
second set of equations after the theorem in Section 5l.]

This agreed, and on returning to the general case, let us replace in system (32)
the coefficients Pa, by the following expressions:

, 8
q,a = 2(P,a +Pas) +"2 (P,a - Pa,) (S, (J = 1,2, ... , n),

8 being an arbitrary real parameter.
Whatever the number 8 we shall have

q,a + qa., = P,a +Pa,
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Stability of motion: general problem 727

whence we see that our new system, for every value of E, will satisfy the assumptions
made relative to system (32).

Therefore, on applying to it what we have just established, we can assert that the
characteristic equation of this new system will not have roots with moduli equal to
I for any value of E.

But then, on taking into account that the coefficients A, in this equation,

p2n+A,p2n-'+ ... +A2n_,p+A2n = 0

will be continuous functions of E for all values of the latter (Section 48), we must
conclude that the number of roots of this equation for which the moduli are greater
than I (or less than I) will always be the same, whatever E may be. To determine
this number it suffices, by consequence, to consider the hypothesis that E = O. Now
under this hypothesis we have qso = q., for all values of sand (T. Therefore, by virtue
of what was noted above, the number sought must be equal to n.

We may thus consider our theorem as proved, for on putting E = I we arrive at
system (32).

Having proved that the characteristic equation of this system has n roots with
moduli greater than I, and the same number of roots with moduli smaller than I,
we have at the same time found a lower bound e AW for the moduli of the roots of
the first set, and an upper bound e -AW for the moduli of the roots of the second set.

It may be noted that Theorem I of Section 49 is only a special case of what we
have just proved.

To give a further example, let us assume that for the system (I) we have
managed to find an integral representing a quadratic form in the variables x, with
constant or periodic coefficients. Let us further assume that this integral is a definite
function (Section 15) such that, I, x" x 2 , ••• , x, being real, it cannot become less in
absolute value than the function

N(Xf + x~ + '" + x~),

where N represents a positive constant.
Once such an integral exists, we shall be able to conclude that in each real

solution of system (I) all the functions x, will always remain less in absolute value
than a certain limit, whatever I may be, positive or negative. And this is only
possible under the condition that all the roots of the characteristic equation possess
moduli equal to I, and that further, in solutions of type (5) corresponding to
multiple roots, all the functions f,(t) are periodic.

We find ourselves with such a case, for example, when the coefficients PSG in
system (I) satisfy the condition

P,. +P.s =0

for all sand (T taken from the sequence I, 2, ..., n. This system will then admit the
integral

xf + x~ + ... + x~.

[This result can be confirmed by matrix algebra as follows:

d, dx' dx
- (x x) = - x + x' -
dt dt dt

=x'P'x + x'Px = x'(P' + P)x.

(XXI)

(XXII)
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728 A. M. Lyapunov

Now Lyapunov's penultimate relation is equivalent to

P'+p=o

and we obtain from (XXII) and (XXIII)

d 2 2 2
dt (XI +X2 + ... +X,,) =0.

(XXIII)

(XXIV)]

53. [Application of the theory offunctions of a complex variable. A case where
the logarithms of the roots of the characteristic equation are obtained
algebraically with the aid of certain definite integrals]

Up to now we have only considered real values of the variable t, But if we also
consider complex values (representing them as usual by points on a plane), and if
we make suitable assumptions concerning the coefficients PSG> we shall be able to
profit from the general principles of the theory of the singular points of linear
differential equations, in obtaining the solution to various questions concerning the
system (I) and in particular to the problem of the determination of the invariants
As·

Suppose we draw in the plane of the complex variable t two straight lines
parallel to the real axis, on either side of this axis and at distances equal to h, and
assume that the coefficients Psa (supposed as before to be periodic with real period
w) are given for the region of the plane between these straight lines as functions of
the complex variable t, not having any singular points there.j

Under this condition, if we trace a circle of radius h with centre the point t = 0,
for an points situated in the interior of or on the circle itself we shall be able to
represent the coefficients Psa as well as the functions x, satisfying equations (I) by
series ordered in positive integer powers of t.

As a consequence, if w ,,:; h (we assume w positive) we shall be able, by making
use of these series, to determine the values of the functions x, for t = w in terms of
the values that we give them for t = O. And the series by which these values will be
expressed will at the same time furnish series for the calculation of the invariants
As. [See (3) and the two equations following it.]

When w > h the use of these series, to be sure, will not always be legitimate. But
we shall then be able to obtain for the calculation of the invariants series of another
kind, by making use for example of the procedures indicated by Hamburger and
Poincare.j

We shan not stop to examine these series, nor all the other series which we could
propose for the calculation of the invariants, and we shall limit ourselves here to
indicating a case where the invariants can be calculated without making use of
series.

t We shall not consider points reaching infinity.
t HAMBURGER, 'Ober ein Princip zur Darstellung des Verhaltens mehrdeutiger Func­

tionen, etc.' J. fur Mathematik, Vol. LXXXIII.
POINCARE, 'Sur les groupes des equations differentielles lineaires'. Acta Mathematica,

Vol. IV.
See also the recent memoir of Mittag-Leffler, 'Sur la representation analytique des

integrals et des invariants d'une equation differentielle lineaire et homogene', Acta Mathe­
matica, Vol. XV.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
O
t
t
a
w
a
]
 
A
t
:
 
0
1
:
0
1
 
2
8
 
A
p
r
i
l
 
2
0
1
0



Stability of motion: general problem 729

This case is deduced from the known theorem of Fuchs on regular solutions of
linear differential equations in the neighbourhood of their singular points [see
Goursat, Hedrick and Dunkel, lac. cit., p. 134].

Let us put

e i(2 n1/W) = Z (i = j=1).
On taking Z in place of I as independent variable, we shall transform the system

( I) into the following:

Zni dx,
--;;; Z dz = = Psi(z)x l +Ps2(Z)X2+ ... +Psn(z)xn

(s = I, 2, ..., n). (35)

In agreement with the assumptions made, the coefficients P.,.(z) here will be
functions of the complex variable z, not having singular points in the region of the
plane situated between two concentric circles with radii e 2nh/w and e -2nh/w and with
common centre at the point Z = 0; these functions will moreover be single-valued.
[Lyapunov is using Psiz) to represent Psj(I(Z)). If, for clarity, we write the first of
these as Psj{z}. we have

PSj{z} =Psj C:i 10gz)
and the left-hand side will not change value if we add 21tNi (N integer) to log Z in
the right-hand side, because of the periodicity of Psj(I). Thus Psj {z} is indeed
single-valued.]

We shall now assume that these coefficients do not have singular points
throughout the interior of the circle with radius e 2nh/w.

This being so, system (35) will satisfy the conditions of the theorem of Fuchs for
the point Z = 0 [and therefore (35) will have an analytic solution in the neighbour­
hood of this singular point].

We can therefore state that, XI, X2' ..., Xn being the roots of the equation

the numbers

PII(O) - X

P21 (0)

Pnl (0)

PI2(0)

P22(0) - X

... Pnn(O) - X

=0,

(36)

will be the roots of the characteristic equation of system (35), corresponding to a
circuit round the point Z = 0 along a circle with sufficiently small radius with this
point as centre. [Lyapunov seems to have in mind the following argument, which
for brevity will be set out in terms of matrices. For small Izi the coefficients PSj{z}
in (35) are approximately the constants Psj {O}. Thus we replace (35) by

21ti dx {O}-z-=p x
w dz

Reverting to the original independent variable I, we may write this equation as

dx
dl = P{O}x
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730 A. M. Lyapunov

which, being constant-coefficient, will give as solutions for XI' X 2, ••. , x; linear
combinations of

e>', el2t, ... , e>'

(assuming the Xs are all different). When the real part of t increases by w these terms
become multiplied by the factors (36), indicating that the latter are characteristic
roots for system (35).) And as, in accordance with our assumptions, we can make
the radius of this circle equal to I, the numbers (36) will equally represent the roots
in which we are interested of the characteristic equation of the system (1) corre­
sponding to a change in t, supposed real, by period w.

I t is anyway easy to prove this without having recourse to the theorem of Fuchs.
For this, on designating by £ an arbitrary parameter, let us consider in place of

(35) the system

(38)
dys
"di = qslX I + qs2X2 + ... + qsnxn +PslYI +Ps2Y2

+ ... +PsnYn (s = 1,2, ... ,n),

Zni dx,
- Z-d =PsI(£z)x l +Ps2(£Z)X2+ ... +Psn(£z)xnw Z

(s = I, 2, ..., n),

which is deduced from it on changing Z into sz.
It is clear that the invariants of this new system, corresponding to a circuit

round the point Z = 0 along the circle with radius I and with centre at this point,
will be the same for all values of e for which the moduli do not exceed the number
e2

•
hf

,., greater than I. And from the theorem of Section 48 we conclude that by
making the modulus of t: sufficiently small we shall be able to make these invariants
differ as little as we wish from the corresponding invariants of the system

2ni dx,
- Z-d =P.d (O)XI +Ps2(O)X2 + ... +Psn(O)xnw Z

(s = 1,2, ... , n). (37)

By consequence, the invariants of system (35) relating to the said circuit will
necessarily be identical with the corresponding invariants of system (37).

Now this last system may be integrated in a well-known manner [see the
previous inserted comment), and the roots of its characteristic equation are ob­
tained precisely as has been indicated above. t

For the principal object of our study, the only case of interest is where the
coefficients in the differential equations are real for all real values of t; and the
systems of equations we have just considered do not obviously belong to this case,
at least when their coefficients do not reduce to constants. There are however
systems with real coefficients which can be reduced to them by means of certain
transformations.

Let us consider for example the following system:
dx,
"di = PsIXI +Ps2X2 + ... +PsnXn

t The procedure we have just made use of applies easily to a proof of the actual theorem
of Fuchs.
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Stability of motion: general problem 731

supposing that the coefficients Psa, qsa are periodic functions of t with real period w,
having singular points neither on the real axis nor at distances from this axis equal
to or less than a certain limit h. We shall assume further that these coefficients
satisfy the relations

l
w Znmt lW . Znmt

Psa cos -- dt = qsa Sin -- dt,
o WOw

l
w • Znmt lW Znmt

Psa Sin -- dt = - qsa cos -- dt
o WOw

for every positive integer value of the number m.
These relations express the property that, if the expansions of the functions Psa

in series of sines and cosines of integer multiples of 2mk» are the following:

00 ( Znmt . 2nmt)
P = a(O) + '" a(m) cos -- - b(m) Sin --

S(1 sa i..J sa sa ,
m=l- W W

the expansions of the functions qsa will be of the form

00 ( • Znmt 2nmt)q = b(O) + '" a(m) Sin -- + b(m) cos--
~ ~ ~ ~ - .

m=1 W W

It is known that, under the assumptions considered here, we can represent the
coefficients Psa, qsa by such series for all values of t for which the representative
points are displaced from the real axis by distances less than h.

Returning now to our system of equations, we note that if we take for the
unknown functions the quantities

Us = xs + tv; Vs = x, - ir, (s = 1,2, ..., n),

i designating p, this system will decompose into two systems

du
dtS = (PsI + iqsl)u l + (Ps2 + iqs2)U2+ ... + s»;+ iqm)un ,

dv
d: = (PsI - iqsl)VI + (Ps2 - iqs2)V2 + ... + (Pm - n;»;

(s = I, 2, ...,n),

which may be integrated separately.
Now each of these systems will satisfy the conditions of the system considered

above.
In fact, if we put

e i ( 21tl !W) = z,

the coefficients of the first system will be represented by the series
00

. _ '" «m) 'b,m» mPsu+1qsa- L asu +1 sa Z,
m=O

not containing negative powers of z and defining, as a consequence, functions of the
complex variable z not having singular points in the interior of the circle with radius
e2

•
h

,. , and with centre at the point z = O. Similarly, if we put

e -i(2tr.tlw) = (,
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732 A. M. Lyapunov

the coefficients of the second system will be represented by the series

00

. _" «m) "b(m»)ymPsa -lqS(f - L. a S t7 -I S(1 " ,

m_O

not including negative powers of , and, by consequence, defining functions of the
complex variable' not having singular points in the interior of the circle of radius
e2nh

/
'O and with centre at the point' = O.

Consequently we can state that the roots of the characteristic equation of system
(38) are obtained as follows:

Putting

I 1'0- Psa dt = aStJ'
w 0

I 1'0- q,. dt = b,",
w 0

[a,. and b,. were previously represented by a~~) and b~~), and are the values of the
functions p,. {z} and q,. {z} at z = 0) we replace the coefficients p,", q,. in this
system by the quantities a,", b,. and we form the determinantal equation for the
system with constant coefficients thus obtained. Let X,, X2, ... , X2n be the roots of
this equation. Then the numbers [corresponding to (36))

will be the sought roots of the characteristic equation corresponding to the period
w.

Let us add that the relevant determinantal equation will be of the form t:.!:i: = 0,
where

t:.=

all + ib., - X
a2 , + ib2 1

al2 + ib12

an + ib22 - X
a'n + ib.;
a2n + ib2n

(39)

and t:.' is deduced from it by replacing i by -i. [Recall that the original system has
been decomposed into two independent subsystems.)

Study of the differential equations of the disturbed motion
54. [Integration with the aid of series ordered according to powers of the arbitrary

constants)

Let there be given the differential equations

dx,
dt = p"x, + P,2 X2 + + P,nXn + X,

(s = I, 2, , n),

where the X, designate as usual functions of X,, X2, .•• , x.; t, developable in series

X =" p<m\.m2 .....m,,)xm'xm2 xmn
sL.s 12"'n

in positive integer powers of the variables X" X 2, ... , x; and not containing terms of
degree less than the second.
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Stability of motion: general problem 733

We are going to consider here these equations under the assumption that all the
coefficients p,o, P'["': .... m.) are periodic functions of t with one and the same real
period to.

Moreover, in considering exclusively real values of t, we shall suppose that these
coefficients always remain determinate, continuous and real, and that the series by
which the X, are expressed represent uniformly holomorphic functions of the
variables XI' X 2, ... , x; for all real values of t (Section 33, Remark).

The coefficients in these series being periodic, the latter hypothesis is only
another expression of the hypothesis [at the beginning] of Section 4 or of Section
II.

In place of system (39) we shall often consider various transformations of it,
including among others transformations by means of linear substitutions with
periodic coefficients.

These latter transformations will always be such that the coefficients in the
transformed system will enjoy all the properties set out above.

We shall moreover be able to choose the said substitutions in such a way that,
for the transformed system, the coefficients in the terms of first degree become
constants, and such a transformation will be possible with substitutions with real
coefficients, provided that the period w is chosen so that the number w /2 is again
a period for the coefficients of the system (39) (Section 47).

We shall often speak of the characteristic equation of the system of differential
equations of the disturbed motion, understanding by this the characteristic equation
of the system of linear differential equations relating to the first approxima­
tion. Further, we shall always assume that we have to do with the characteristic
equation corresponding to the period oi, which, for definiteness, will be supposed
positive.

Let us consider the series obtained by integrating the system (39) by the method
indicated in Section 3.

Let PI' P2' ..., p; be the roots of the characteristic equation of this system.
Fixing on any determination of the logarithms, let us put

Then if

I
-Iogpi = XI'
W

I
-log P2 = X2'
W

X ( m ) x(m) x(m)
1 , 2 , ••• , n

I
-logPn = Xn·
w

are the ensembles of terms, in the series in question, of the mth dimension with
respect to the arbitrary constants, we shall have for the quantities x~m) expressions
of the form

(40)

where the summation extends over all values of the non-negative integers
m" m2 , ... , m; subject to the condition

o< m l + m2 + ... + m; ,;;; m,

and where the T~ml"'" m.) represent either periodic functions of t, or sums of a
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734 A. M. Lyapunov

limited number of terms representing products of periodic functions and non-nega­
tive integer powers of t.t

We assure ourselves of this by considering in detail the expressions for the x~m)

given in Section 3, and by taking into account formulae which we are going to write
straightaway.

Let J(t) be a periodic function of t with period w, let m be a positive or zero
integer and let X be a constant such that the number xw does not appear in the form
2nNp, N being a real integer. We shall then have

fe,tt",/(t) dt = e"[tmfo(t) + t m- 'It (t) + ... +Jm(t)] + const.,

ftmJ(t) dt = m : I tm
+ I + tmfIJo(t) + tm- I flJ l (t) + ... + flJm(t),

where all the /s(t), fIJ.,(t) represent periodic functions of t with period w, and h
represents the following constant:

I 1'"h=- J(t)dt.
w 0

[These relations can be verified by induction, with use of integration by parts.]
If, to form the series under consideration, the calculations are carried out so

that the x~m) for m > I become zero for t = 0, these series, when the moduli of the
arbitrary constants are sufficiently small, will actually represent functions satisfying
our equations, at least within certain limits of variation of t.

But, on discarding the condition indicated, we can conduct the calculations in
such a way that in expressions (40) all the terms for which

m, +m2+ ...+mn <m,

disappear, and the expressions for the T~m" m,. ....m.) take the form

where (XI' (X2' ... , (Xn are arbitrary constants and the K~m,,,,,, m.) are functions of t
independent of these constants.

If we consider the series thus obtained as ordered in powers of the quantities

the coefficients in them will be sums of a finite number of periodic and secular
terrns.t

With regard to the convergence of these series, we shall not in general be able
to draw any conclusion. But in the case where among the numbers Xs there are
found

(41)

t The periodic functions we are concerned with here possess the period IJJ and remain
determinate and continuous for all real values of I. In general, all the periodic functions of
I which we shall encounter in the sequel will enjoy the same properties. But, for brevity, we
shall not always mention this expressly.

~ We shall call secular all terms of the form Imf(I), where m is a positive integer and f(l)
is a periodic function.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
O
t
t
a
w
a
]
 
A
t
:
 
0
1
:
0
1
 
2
8
 
A
p
r
i
l
 
2
0
1
0



Stability of motion: general problem 735

for which the real parts are different from zero and all of the same sign, and when
these series are formed under the assumption that

(J,k + I = C(k+ 2 = ... = an = 0,

we shall have for them a theorem entirely similar to that which was enunciated in
Section 23.

In this case, for an arbitrary choice of the constants a" az, ..., ak the series under
consideration will define a solution of system (39), either for every value of t greater
than a certain limit (depending on the choice of the constants as) when the real
parts of the numbers (41) are all negative, or for every value of t less than a certain
limit when the real parts of these numbers are all positive.

55. [Theorems on the conditions for stability and for instability supplied by a
first approximation. Singular cases. Definition of those which will be the
subject of subsequent investigations]

From what precedes we next extract some propositions relating to conditions
for stability in the case which now interests us.

Thus, from Theorem II of Section 13 we deduce the following.

THEOREM I. Whenever the characteristic equation has roots with moduli less than
I, the undisturbed motion will possess a certain conditional stability, and among the
perturbations there will be some for which the disturbed motion will approach
asymptotically the undisturbed motion. If the number of the said roots is k, these
perturbations will depend on k arbitrary constants.

With respect to absolute stability, Theorem I of the cited section, account being
taken of what was noted in Section 26 (Remark), leads to the following proposi­
tion.

THEOREM II. When the characteristic equation only has roots of which the moduli
are less than I, the undisturbed motion will be stable, and in such a manner that every
disturbed motion which is sufficiently near will approach it asymptotically. But if
among the roots of this equation there are any for which the moduli are greater than
I, this motion will be unstable.

It results from this theorem that doubt concerning stability only remains in the
case where the characteristic equation, without having roots with moduli greater
than I, has roots with moduli equal to I.

However, for many problems, such cases, which we may call singular, are the
only ones where absolute stability is possible.

Such are, for example, problems in which the system of differential equations of
the disturbed motion has the canonical [Hamiltonian] form.

We know (Section 51) that, for such a system, to each root p of the character­
istic equation there will correspond a root equal to IIp. Consequently, absolute
stability will only be possible if all the roots have moduli equal to I.

Problems of stability in singular cases, even for steady motion, are very difficult.
And for periodic motion the difficulties assuredly become still greater. However, in
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736 A. M. Lyapunov

certain cases of this sort (under the condition that we have managed to integrate
the system of linear differential equations corresponding to the first approximation),
we can propose general methods of which we can make use in this kind of
investigation; this is what we are going to do now.

In a similar way to that of the preceding chapter, we are going to consider here
the following two cases in succession:

( I) the characteristic equation has one root equal to I, the other roots having
moduli less than I; and

(2) this equation has two conjugate complex roots with moduli equal to I, all
the other roots, as in the first case, having moduli less than I.

We have not indicated the case where the characteristic equation has one root
equal to - I, the other roots having moduli less than I, since this case reduces to
the first of the two previous ones, on taking for the period a number twice as great
as the original period. [Recall that the roots of the characteristic equation corre­
sponding to period 2w are the squares of the roots of the characteristic equation
corresponding to period w.]

First case. Characteristic equation with one root equal to unity

56. [Reduction of the differential equations to a suitable form]

Let us assume that the characteristic equation of the system under consideration
(which will be taken to be of order n + I) has one root equal to I and n roots with
moduli less than I. '

By virtue of what has been expounded in Section 47, we can suppose that by
means of a linear substitution with periodic coefficients our system is reduced to the
following form:

dx-=x
dt '

dx,
"dt = PsI X, +Ps2 X2 + ... +P.<nXn +PsX + Xs

(s = 1,2, ...,n),

(42)

where X, X" which represent holomorphic functions of the variables
X, X,, X 2 , ... , Xn, do not contain in their expansions terms of degree less than the
second.

The coefficients in these expansions, like the coefficients Pso are periodic func­
tions of t. As for the coefficients Ps., we shall suppose them to be constants and, in
agreement with what we have assumed [namely that the characteristic equation has
n roots with moduli less than I], such that the equation

PII - X P12

P21 P22 - X

Pin

P2n =0 (43)

Pnl Pn2 Pnn - X

only has roots with negative real parts.
We shall assume moreover that all the coefficients in system (42) are real.
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Stability of motion: general problem 737

In two cases, as we shall see, the question of stability will be resolved immedi­
ately by the form of equations (42).

If X(Ol, X~Ol are what X, X, become when we put

x, = X z = ... = x" = 0,

one of these cases will be that where all the Ps are zero, and where the expansion
of the function X,Ol in powers of x begins with a term with a constant coefficient
and with degree not greater than the least power of x entering into the expansions
of the functions X~O). The other case will be that where X(O), all the X~O) and all the
Ps are identically zero.

As far as all other possible cases are concerned, they will reduce, as we shall show
immediately, to the two cases which we have just mentioned.

Let us seek to satisfy equations (42) by the series [similar to (49) of Section 34]

(s = I, 2, ... , n),
} (44)

ordered in positive integer powers of the arbitrary constant c, with this condition, that
the coefficients u,l), U~l represent either periodic functions of t or sums of a finite
number of periodic and secular terms,

The calculation of these coefficientswill depend on differential equations which will
be basically of the same character as the equations we dealt with in Section 34, and, just
as there, we shall arrive at the conclusion that, if among the functions u''), u~1) there
exist any non-periodic ones, we shall find them already in the series of functions

and that if u,m) is the first non-periodic function in this series, the functions

u~l), U~2), ... , u~m-I) (s = 1,2, ..., n)

will all be periodic, and this u(m) will be of the form [compare (51) of Section 34]

u(m) <st + v,

where g is a non-zero constant and v is a periodic function of t.
Taking it that we are concerned with this case and that the calculation is carried

out in such a way that all the u'", u\/) become real, let us transform system (42) by
means of the substitution

x = z + u(ZlZZ + ... + u,m-I)zm-I + vz m,

x, = U~l)Z + U~2)Z2 + ... + u~m-I)zm-I + z,

(s = 1,2, ..., n).

We shall then arrive at a system of the original form

dz-=z
dt '

dz,
"dt = Psi Zl +PsZZz + ... + Ps"Z" + Z,

(s = I, 2, ... , n),

(45)
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738 A. M. Lyapunov

but satisfying the conditions of the first of the two cases indicated above. In fact,
we easily convince ourselves that if Z(o>, Z~O) are what Z, Z, become for
ZI = Z2 = ... = Zn = 0, the expansion of the function Z(O) in increasing powers of Z

will begin with the mth power, which will have a constant coefficient g, and at the
same time the expansions of the functions Z~Ol will not contain Z with powers less
than the mth. [Compare the treatment after (52) of Section 34.]

Let us now assume that we are dealing with the case where u'", u~1) are all found
to be periodic, however great the number I.

Then, just as in Section 35, we may show that if the calculation is carried out
according to the rule that all the u'!' become zero for one and the same value of I,

for example 1 = 0, the series (44), lei being sufficiently small, will converge uni­
formly for all real values of I.

These series will then define a periodic solution of system (42), and for every
sufficiently small real value of e there will correspond to this solution a periodic
motion. We shall thus find ourselves with the case where there exists a continuous
series of periodic motions including the undisturbed motion under consideration.

In this case, on transforming system (42) by means of the substitution [compare
the last equations of Section 35]

x = Z + U(2lz2 + U(3lz3 + ,

x, = Z, + U~llZ + U~2)Z2 + .
(s = I, 2, ... , n),

we shall obtain a system of the form (45), where Z and all the Z, will become zero
for z, = Z2 = ... = z; = O. We shall find ourselves, as a consequence, with the second
of the two cases indicated above.

In the two cases our transformations are such that the problem of stability with
respect to the old variables x, x, will be entirely equivalent to the problem of stability
with respect to the new ones z, z..

Let us note further that if the functions X, X, are, with respect to the variables
x, x,, uniformly holomorphic for all real values of 1 (which will hold by virtue of
what was assumed in [the initial part of] Section 54), it will be the same for the
functions Z, Z, with respect to the variables z, Zn.

57. [Sludy of the general case]

Let us consider the system (45) under the assumption that it satisfies the
conditions of the first case. [This case was specified in the previous section.]

On designating by g a non-zero constant, by p(l), r», ..., p(m- Il linear forms in
the quantities z; and by Q a quadratic form in the same quantities, all these forms
having coefficients independent of Z and periodic with respect to I, let us suppose that
we have

Z =gz'" + p(l)z + P(2lz2 + ... + p(m-Ilzm-I + Q + ...,

such that those of the subsequent terms which are linear with respect to the z,
(including those which do not depend on them at all) are at least of degree m + I,
and the others are at least of third degree with respect to z, z.:

As we are dealing by assumption with the first case, the functions Z" in the terms
independent of the quantities Zn, will not contain z in powers less than the mth.
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Stability of motion: general problem 739

As a consequence, only considering besides these terms those which are linear
with respect to the quantities z,, and ordering the ones and the others in increasing
powers of z, we may take it that

Here the gs are periodic functions of t and the p~j) are linear forms in the
variables z; with periodic coefficients.

This settled, let us designate by U(I), U(2), ... , U?": I) linear forms and by Wa
quadratic form in the variables z; with undetermined coefficients which will be
supposed periodic functions of t.

Considering first the case of m even, let us put

V = z + U(I)z + U(2)Z2 + ... + u(m-I)zm- 1+ W

and let us seek to dispose of the linear forms o» so that in the expression for the
derivative dV[dt, formed in accordance with our differential equations, all the terms
disappear which are linear with respect to the quantities z, and contain z in powers
less than the mth.

For this we must choose these forms in such a way that they satisfy the
equations [compare similar equations in Sections 29 and 37]

n 0Ulk) 0U(k)
L (PsIZI + ... +Psnzn)-,- +-,- + plk)

s=1 UZ s ot

n ( OU(k- I) OU(I»)
+ L P\I) + ... +p~k-I) __ =0
s~1 oZs OZ,

(k = 1,2, ...,m -I)

[the left-hand side here represents the contribution to the coefficient of Zk in the
expression for dv'[dt, such that this contribution is linear in the z,] (where the
second sum, for k = I, must be replaced by zero); and this is always possible, the
roots of equation (43) having their real parts negative. Moreover, the condition that
the coefficients of the forms U(k) are periodic makes this problem completely
determinate. [See the discussion following (63) of Section 37.]

The forms U(k) being so chosen, we shall choose the form W in accordance with
the equation

~ aw aw 2 2 2
L. (PSIZ,+PS2 Z2+ ... +Pmzn)-a +-a +Q=g(ZI+Z2+ ..·+ Zn),

s = I Zs t

which equally is always possible.
Then we shall have [similar manipulations are described In more detail In

Section 29]

dVdi =g(Zm +zi+ d+ ..·+Z~) + S,

on understanding by S an expression of the form

n n

S = uz" + L. L VSltZSZI1 '

.~ = J 1I'= I
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740 A. M. Lyapunov

(46)

where v, v,a are functions of the variables t, Z, ZI, Z2, ... , zo, becoming zero for

Z = ZI = Z2 = ... = Zo = 0,

and being periodic with respect to t, and uniformly holomorphic with respect to z,
z, for all real values of t.

Our function V will satisfy, by consequence, all the conditions of Theorem II of
Section 16. We must thus conclude that the undisturbed motion is unstable.

Let us now consider the case of m odd.
On putting

V = W + !Z2 + V(I)Z2 + V(2}Z3 + ... + VIm - I)zm,

let us choose the quadratic form W with constant coefficients in conformity with the
equation

~ aw _ _2 2 2
L. (PsIZI + Ps2 Z2 + ... + PsoZo) a - g(41 + Z2 + ... + Zo)·

5-1 ~

Next let us dispose of the linear forms tr» so that in the expression for the
derivative dV/dt, formed in accordance with our differential equations, all the terms
disappear which are linear with respect to the quantities z, and contain Z in powers
less than the (m + I)th; which requires these forms to be determined by the
equations [similar to the equations following (31) in Section 29]

n aVl k) aVl k)
L (PsIZI + ...+P,ozo)-a- +-a- + plk)

s=1 z, t

o (aVlk- l) aV(I»)
+ L P~I) + ... +p~k-I) __ =0

s-I azs azs

(k = I, 2, ..., m - 2),

o etr-:» aVlm-l)
L (P." ZI + Ps2 Z2 + ... + P.,.zo) a + a + p(m- I)

S" ) z, t

o (aw etr-:» aVl l»)
+ L gs-a +p~1) a + ... +p~m-2)-a- =0.

,~= I Z.\. z, z,

We shall then have

dV _ _m+1 2 2 2di- g(" +ZI+Z2+···+ Zo)+S,

S being an expression of the form

" "
S = vzm

+ 1+ L L. VS(JZsZn,
j"= 10'= I

with the same significance for the symbols v, Vsa as in the preceding case.
In this way, the forms W, U'!' being chosen as has just been shown, the

derivative of the function V will be a definite function of the variables z, z., t, IIzl,
Iz, I being small], and its sign when 14 Iz, I are sufficiently small will be that of g.

Therefore, on noting that because of equation (46) the form W will be definite
and of sign opposite to that of g (Section 20, Theorem II), we conclude, as in
Section 29, that in the case of g < 0 the undisturbed motion will be stable, and in
that of g > 0 it will be unstable.
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Stability of motion: general problem 741

We can further state that, for g < 0, the disturbed motions corresponding to any
sufficiently small perturbations will approach asymptotically the undisturbed motion.

58. [Study of an exceptional case]

Let us now consider system (45) under the assumption that it satisfies the
conditions of the second case, i.e. under the assumption that the Z, Z, all become
zero for z, = Z2 = ... = Zn = O.

As in Section 38, we shall demonstrate that in this case there will exist a complete
integral with equation of the form

where e is an arbitrary constant and f is a function of the quantities z" c, t which
is holomorphic with respect to z" e and uniformly so for all real values of t. We
suppose that this function contains in its expansion neither terms of first degree with
respect to z" c, nor terms independent of the quantities z" and that the coefficients
in it are real periodic functions of t.t

On making use of this equation to eliminate the variable z and on considering
the system that we deduce in this way from (45), we may easily prove (Section 38)
that, under our assumption, the undisturbed motion will always be stable, and that
every disturbed motion sufficiently near this motion will approach asymptotically one
of the periodic motions

z = C, ZI = Z2 = ... = Zn = 0,

which will again be stable, as long as Ie I is small enough.

Remark
From what we have just said it results that, if we can satisfy system (42) by the

periodic series (44), this system will admit a holomorphic integral of the form

(47)

where F represents a holomorphic function of the variables x, x" ..., x n , for which
the expansion does not contain terms of degree less than the second and possesses
periodic coefficients with respect to t.

Thus every holomorphic integral, periodic with respect to t, will be a holomorphic
function of an integral with the form (47).

It is also easy to establish the converse proposition: if system (42) admits an
integral, periodic with respect to t and holomorphic with respect to x, x., it will
equally admit a periodic solution of the form (44) (Section 38, Remark, and Section
44).

t System (45) is a little more general than that with which we were concerned in Section
38 [since the coefficients in the expansionsof Z, Z, can now have an infinite number of terms
in their Fourier expansions]. But this circumstance, from which arises the more general form
for the integral considered here,does not entail essential modifications to the proof. This will
be based as before on the following three assumptions: (I) that the roots of equation (43)
have all their real parts non-zero and with one and the same sign; (2) that the functions Z,
Z, all become zero for z, = Z2 = ... = z, = 0; (3) that these functions, with respect to z, z; are
uniformly holomorphic for all real values of t.
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742 A. M. Lyapunov ,.

59. [Exposition of the method. Example]

The conclusions we have arrived at can be summarized in the following manner.

The differential equations of the disturbed motion being reduced to form (42), we
seek a solution of them depending on an arbitrary constant c, in the form of the series
(44) ordered in positive integer powers of this constant, in accordance with the
following condition which is always achievable: that the coefficients U~I) in these series
are periodic functions of t, that all the U~2) are equally so if the coefficient U(2) is a
periodic function and. in general. that all the u~1) are periodic if all the uU ) for j ,;;; I
are periodic. Under this hypothesis let us suppose that u(m) is the first non-periodic
function in the series

(48)

Then. if m is an even number, we must conclude that the undisturbed motion is
unstable. If on the other hand m is an odd number, to resolve the question we have to
consider the expression for the function uv», which will always be of the form

u(m) =gt + v.

where g is a non-zero constant and v is a periodic function of t. The question will then
be resolved in accordance with the sign of the constant g: in the case of g > 0 the
undisturbed motion will be unstable. and in that of g < 0 it will be stable.

It can happen that in series (48). however far it is extended, all the functions u'"
are periodic. In this case there will exist a continuous series of periodic motions.
including the undisturbed motion under consideration, and all the motions of this series
sufficiently near the undisturbed motion. the latter included. will be stable.

Remark I
To form functions (48) we can if we wish also make use of a procedure similar

to that which was indicated at the end of Section 40. when an analogous problem
was treated.

For this we shall consider the following system of partial differential equations:

axs ax,
x ax + iii = Psi X, + Ps2 X2 + ...+ PsnXn + PsX + x,

(s = 1,2.... , n),

defining the quantities x, as functions of the independent variables x and t.
We easily convince ourselves that. under the conditions considered here. it will

always be possible to satisfy this system (at least formally) by series ordered in
positive integer powers of the variable x not containing terms independent of x, and
possessing coefficients periodic with respect to t. Further, we see without difficulty
that this problem will be completely determinate.

On introducing these series into the expression for the function X and on
representing the result in the form of the series

X( 2)X 2 + X(3)x 3 + XI')X' + ....

ordered in increasing powers of x, we shall next be able to calculate the functions
(48) successively in accordance with the condition that. for every integer value of k
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Stability of motion: general problem 743

greater than I, all the terms containing the constant c in powers less than the
(k + I) th disappear in the expression

dx _ X(2)X2 _ X(3)x3 _ _ X(k)Xk
dt ...

after we have put in it

It may be noted that in the case where the system (42) admits a periodic
solution, the series under consideration, Ix I being sufficiently small, will certainly be
convergent. When on the other hand there does not exist such a solution, we shall
not be able to say anything, in general, on the subject of their convergence. But this
circumstance is not of any importance for our problem.

Remark II
We have supposed that the coefficients P.," in equations (42) are constant

quantities. But this assumption was only made to simplify the proofs, and it is not
at all necessary for the applicability of the procedure which has just been indicated.

Example

Let there be proposed the equations

dx k dv
dt = ay, dl + py = bx",

where p designates a real periodic function of t, having for period wand such that
the integral

l"Pdt

has a posinve value, and a, b, k, n are real constants, among which k and n
represent positive whole numbers, with k not less than 2.

[The linear· system of the first approximation is (if n > I)

dx = 0 dy + py = 0
dt 'dt '

with general solution

-fPdf
X ,= A, y = Be 0

where A and B are arbitrary constants. It follows that the roots of the characteristic
equation are

and 1"'
- pdt

e 0

and because of the above stipulation the second of these has modulus less than I.]
We shall assume that neither of the constants a and b is zero, for in the contrary

case the question of stability would be resolved at once in the affirmative sense.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
O
t
t
a
w
a
]
 
A
t
:
 
0
1
:
0
1
 
2
8
 
A
p
r
i
l
 
2
0
1
0



744 A. M. Lyapunov

Operating in accordance with what has been expounded, let us seek to satisfy
our equations by the series [corresponding to (44)]

x = C + U2C2 + U3C
3 + ...,

Y = V, C + V2C
2 + V3C

3 + ...,

on requiring the coefficients u., VI to be periodic functions of t, as far as is possible.
[To begin with, on substituting these series in the second differential equation

above and equating coefficients of c, c2
, c ', "', we find (for n > I)

dv
----L + pv = 0 (j = 1,2, ... , n - I).tit J

Separation of the variables and integration of both sides yields

-I' pdt .

vj = Kje 0 (; = I, 2, ..., n - I)

where the K's are constants. Because of the initial assumption, pet) has a non-zero
mean value, so its integral is non-periodic. Hence vj here is periodic only if K, is
zero.]

We shall then find that all the VI for I < n will be zero; that V,,, as the periodic
solution of the equation

dVIIdt -s p»; =b,

will be given by the formula

-{Pd'f' {Pdt
Vn = be 0 e 0 dt,

-00

[the periodicity of this formula can be shown on writing

r'J pdt
eO = eM'F(t)

where M. represents the mean value of pet), and the factor F(t), being periodic, is
expressed as a Fourier expansion] and that the first non-periodic function in the
series u2 , U), ... will be Ukn' which will be obtained from the equation

From this we conclude that

abklW -k{Pd/(fl {Pdt )k
g = - e 0 e 0 dt dt

w 0 -00

[this being the mean value of av~]. Moreover we obtain [as the subscript of the first
of the u's to be non-periodic]

m =kn.

Consequently [with application of the rule stated at the beginning of this
section], if at least one of the numbers k and n is even, the undisturbed motion will
be unstable [m being even]. If on the other hand both these two numbers are odd,
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Stability of motion: general problem 745

this motion will be stable or unstable according as the signs of the constants a and
b are different or the same [m is now odd, and g has the sign of ab" since the main
integrand in the above expression for g is positive].

Second case. Characteristic equation with two complex roots with moduli equal to
unity
60. [General form to which the differential equations reduce]

Let us now consider the case where the characteristic equation of the proposed
system has two complex conjugate roots with moduli equal to I, assuming that all
the other roots of this equation (if it is of higher degree than the second) have
moduli less than I.

Let

(49)

(s = I, 2, ..., n),

where X, Y, Xs are holomorphic functions of the variables x, y, x" X2, ... , x; for
which the expansions, possessing real and peiodic coefficients with respect to t, do
not contain terms of degree less than the second. The coefficients Ps' qs are real
periodic functions of t, and the coefficients Psa are real constants such that the
equation of form (43) only has roots with negative real parts.

We may further suppose that the functions X and Y become zero for x = y = 0,
for every other case reduces to this with the aid of a transformation similar to that
which we considered in Section 33.

be the two roots having moduli equal to unity.
We understand here by Aa real number which is for the moment not subject to

any restriction. But in investigations which are going to follow we shall assume that
AOJ/rr is an incommensurable [i.e. irrational] number.

On this subject it is to be noted that if the number AOJ[n were commensurable,
the case under consideration would reduce to that where the characteristic equation
has two roots equal to I. It would suffice for this to take for the period a certain
integer multiple of the original period OJ. [If

AW M
rr N

where M and N are integers, we have as roots of the characteristic equation
corresponding to period 2Nw

(e±'wP)2N = e±M2.P= I.]

Now such a case [two roots equal to 1] requires a special investigation which we
have no intention of taking up here.

We can assume that our system of differential equations (which we shall
designate as having order n + 2) is reduced, by means of a linear substitution with
periodic coefficients, to the form [similar to (45) of Section 33]:

dx dy
dt = - Ay + X, dt = Ax + Y,
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746 A. M. Lyapuno»

This transformation arises from the proposition that, under the conditions
considered, we can always satisfy the system of partial differential equations [which
interpret the first two of equations (49)]

. ~ ~

L (p,,,x, +P,2X2 + ... +P,.X. +p,» + q,y + X,) -0 + -0 = -Ay + X,
s-1 X s t. ~ ~L (p",x, +P,2 X2 + ... +P".X. +p,» + q,y + X,) -0 + -0 = Ax+ Y
,\'. I x, t

} (50)

by holomorphic functions of the variables x" x2 , ••• , x,,, not containing in their
expansions terms below the second dimension, and possessing periodic coefficients
with respect to I.

As for this proposition, it is easily proved with the aid of the same reasoning as
we made use of in the proof of the theorem of Section 30.

For this, we note that if X, , X2' ..., X. are the roots of equation (43), these roots
having all their real parts negative, system (49) will admit a solution containing II

arbitrary constants el" el2, ... , el., in which the functions x, y, x, will be given by
series proceeding in positive integer powers of the quantities

(51)

with coefficients representing either periodic functions of I or sums of a finite
number of periodic and secular terms (Section 54). Moreover the series by which
the functions x and y will be expressed will not contain terms of degree less than the
second with respect to quantities (51). On the other hand the series representing the
functions X,. will also contain terms of the first degree, and the coefficients in these
terms will be such that their determinant will be a non-zero constant.

Consequently, on eliminating the quantities (51), we shall be able to deduce
from this solution expressions for the functions x and y in the form of series
ordered in positive integer powers of the quantities x,,, with coefficients of the same
character as before.land these series will not contain terms of degree less than the
second with respect to the variables x".

These series will define, for every real value of I, holomorphic functions of the
variables X, satisfying system (50).

lt only remains for us, as a consequence, to prove that the coefficients in the
series thus obtained will be necessarily periodic functions of I. Now we may prove
this without difficulty by considering more closely the equations which we shall
have to satisfy in order that our series define a solution of system (50), and by
taking into account that the Xs have their real parts negative.

We shall then see also that system (50) can only admit one solution of the
character considered.

Let u and v be the expressions for the functions x and y in this solution.
Then, to bring system (49) to the required form, we shall only have to introduce

instead of x and y the variables ~ and 1], by means of the substitution

x = U +~, y = v + 1].

With this transformation system (49) will not lose any of its properties; and
moreover the problem of stability with respect to the variables x, y, X, will be
entirely equivalent to that of stability with respect to the variables ~, 1], x,_
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Stability of motion: general problem 747

This settled, we can consider system (49) under the assumption that the
functions X and Y become zero when we put x =Y = O.

With this assumption, on introducing in place of the variables x and y variables
rand 9 by means of the substitution

x ,= r cos 9, y = r sin 9,

(52)

+ (p, cos 9 + q, sin 8)r + X s

dx,
--;It = Ps.X. + PslX2 + ... + PsnXn

we shall arrive at the equations [similar to (46) and (47) of Section 33]:

dr d8

dt
= rR , -=A.+0

dt '

(s = 1,2, ..., n),

where, in the functions X" the quantities x and yare taken as replaced by their
expressions in rand 9.

We have here designated by Rand 0 holomorphic functions of the quantities r,
x, becoming zero for r = x, = ... = x; = 0, for which the coefficients can be pre­
sented in the form of finite sequences of sines and cosines of integer multiples of 9
with coefficients periodic with respect to t ; it is to be noted that the coefficients in
the expansions of the functions Xs in powers of the quantities r, x" X 2, ... , x; will be
of the same character.

Our problem is thus reduced to that of stability with respect to the quantities r,
x" and in treating it we shall be able to impose the condition r ;?o 0, as we did in
the previous chapter when studying an analogous case (Section 33).

61. [Certain characteristic series depending on two arguments. General case
where these series are not periodic]

On considering the quantities r, .r, as functions of the independent variables 9
and t, let us form the following system of partial differential equations [which
interpret (52)]:

or ar
-+(A.+0)-;;-=rR,at 0.9

ax, oXsat + (), + 0) 08 = PsI x, + P,2 X2 + ...+ PsnXn

+ t», cos 9 + q, sin 9)r + X s

(s = I, 2, ..., n),

and let us seek to satisfy them by the series

r = c + U(2)C 2 + u(3)c3 + .."

x s = U~I)C + U~2)C2 + U~3)C3 + ...

(s = I, 2, ... , n),
} (53)

ordered In powers of the arbitrary constant c, under the condition that the
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748 A. M. Lyapunov

coefficients u'!', u~) appear in the form of finite sequences of sines and cosines of
integer multiples of 9, where the coefficients are periodic functions of t or sums of
a finite number of periodic and secular terms,

Let us suppose in this investigation that AW [t: is an incommensurable number.
To determine the functions u"", u~1) we shall have systems of equations of the

following form [compare (50) of Section 34]:

ou(I) au(I)
-- + A-- = U(I)

at 09 •
, (I) , (I)

~ A~- (I) (I) (I)ot + a9 -Ps\U 1 +Ps2U2 + ..·+Psnun

+ (Ps cos 9 + q" sin 9)u(l)+ U~I)

(s = 1.2..... n).

where U(I), U\I). if 1= I, are identically zero. and if I> I, represent entire and
rational [polynomial] functions of the u(i). u'[', au(;}/a9, au~i)/a9 for i < I, with
coefficients of the same character as in the expansions of the functions R. 0. Xs '

Assuming that all the u(i), u~;} for i < 1 are already found, let us present the
functions U(/), U\I) in the form of finite sequences of sines and cosines of integer
multiples of 9. next transforming them into those of the fonn

(54)

[Use is made here of the relations (where j = J'=I)
sin k9 = ii(e -jk9 - &k9). cos k9 = !(e -jk9 + &k9).]

The summation here extends over all integer values, positive and negative.
which are contained between certain limits - Nand + N, and the coefficients Fk

represent functions of t alone.
If all the u(i>, u\;} are periodic with respect to t, it will be the same for all the Fk

for each of the functions U(I). U\I).
Under this hypothesis. let us seek the functions u'", u~1) in the form of sequences

like (54).
We must then begin with the function u'", and if we put

on understanding by the f" functions of t alone. to determine these functions we
shall obtain [from the first equation after (53)] equations of the form

( 55)

(XXV)

[The general solution of this equation is

fk = e-u P, (1' eUP'Fk(t) dt + K)
where K is an arbitrary constant; and this solution will be periodic if the integrand
has mean value zero and K = 0.]

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
O
t
t
a
w
a
]
 
A
t
:
 
0
1
:
0
1
 
2
8
 
A
p
r
i
l
 
2
0
1
0



Stability of motion: general problem 749

Now. under our assumption about .Ie, such an equation. when k is not zero. will
supply for the function h a completely determined expression of the required
character; and this expression, in accordance with what was assumed for the Fk ,

will represent a periodic function of t. Therefore the function u(/) will only be able
to be non-periodic with respect to I in the case where the function fo is found to be
non-periodic.

But let us assume that the latter is periodic. which supposes that we have

rw

Jo r; dt = 0

[i.e. Fo(t) has zero mean value].
Then, passing to the functions u'[', and taking into account the property

assumed for the roots of equation (43), we may easily demonstrate that these
functions will equally be periodic.

It results from this that if among the functions u'", u'[', starting from a certain
value of I, there appear some non-periodic ones with respect to I (and that will
occur in most cases). there will already be found some in the series

(56)

and that if the first non-periodic function in this series is u1m), the functions

u~l), U~2., .•. , u~m-I) (s = 1,2, ..., n)

will all be periodic, while the function u1m) will be of the form

u(m)=gt +v,

where g is a non-zero constant and v is a finite sequence of sines and cosines of
integer multiples of 9 with periodic coefficients with respect to t.

Assuming that it is this case we are dealing with and that the calculations are
carried out so that all the u(/), u~/) are real for all real values of 9 and t, let us put
[compare the equations before (52) of Section 34]

r = z + U(2)Z2 + U(3)Z3 + ... + u 1m- )zm-I + uz",

x, = U~I)Z + U~2)Z2 + U~3)Z3 + ... + u~m -1)z m - I + z,

(s = 1,2•... ,n)

and let us introduce the variables z, z, into system (52) in place of variables r, Xs-

The transformed system will be of the form [similar to (52) of Section 34]

dz d9
dl

= zZ, - = .Ie + 0
dt '

(57)

(s=I,2, ...,n)

and the functions Z. 0. Z, (with respect to the variables z, Zao 9. t) will be of the
same character as the functions R. 0, Xs (with respect to the variables r, x•• 9, t) in
system (52). But. by the nature of our transformation. the functions Z. Z, will be
such that if Z(O), Z~O) are what these become for 2, = ... = z; = O. the expansion of
Z(O) in increasing powers of z will not contain terms below the degree m - I, and
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750 A. M. Lyapunov

the term of this degree will contain a constant coefficient g; as for the expansions
of the Z~O), they will not have powers of z less than the mth. [See the discussion
after (52) of Section 34.]

Our problem will thus be reduced to that of stability with respect to the
quantities z, z" of which the first is subject to the condition z ;;.O. [r;;. 0 was
assumed at the end of Section 60.]

Remark I
Each of the functions u(ll, u~/) can contain a certain number of arbitrary

constants. But all these constants will reduce to those which can enter into the
functions u(l) in the form of the constant terms, and, whatever they may be, we shall
always get the same values of m and g. [Compare Remark I of Section 34.]

We may note that the number m will always be odd (next section, Remark).

Remark II
If the number Awln were commensurable, equation (55) would be able not to

have a periodic solution, even for k non-zero [since the integrand in (XXV) would
no longer necessarily have zero mean value]; this is why the first non-periodic
function in series (56) would then not be of the type indicated above. But whenever,
Awln being commensurable (including here the case of A= 0), we can arrange the
calculations so that this function does become of this type, the preceding transfor­
mation [refer to the equations before (57)] will be possible, and we shall be able to
draw the conclusions which we arrive at in the next section.

Let us note that in the case where the number AW In is commensurable, the
problem of finding the functions u'", u~/) allows a much greater indeterminateness
than in the case considered above; for, if Awln = alP where a and P are whole
numbers, we shall be able to add to each of the functions u(ll a series of sines and
cosines of even multiples (and, for a even, also of odd multiples) of P(I} - At) with
arbitrary constant coefficients. [The reason is that in this case the arbitrary constant
K in (XXV) no longer has to be zero, for fk(t) to be periodic with period w.]

62. [Study of the case where the series are not periodic]
On understanding by t-», t-», ..., p<m - I) linear forms in the variables z, with

coefficients periodic'[ with respect to I} and t, let us suppose that we have

zZ =gz'" + p(llz + p<2lz2 + ... + p<m-I)zm-I + ...
the subsequent terms, as long as they are below degree m + I with respect to the z,
z" being at least of second dimension with respect to the Zs'

Next, only considering in the functions Z, linear terms with respect to the
quantities z., and ordering them in increasing powers of z, let us assume that we
have

z, = P~I)Z + p~2lz2 + p~3lz3 + ...,
where the p~j) are linear forms in the quantities z; with coefficients of the same
character as in the forms r».

t By functions periodic with respect to I) and 1 we understand finite series of sines and
cosines of integer multiples of I) with coefficients periodic with respect to I.
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Stability of motion: general problem 751

Finally, only considering in the function 0 terms independent of the quantities
z" and ordering them in increasing powers of z, let us assume that

0= 0 (1 )z + 0(2)Z2 + 0(3)Z3 + ...,

where the 0(J) are functions of only two variables, 9 and I, and are periodic with
respect to the one and the other.

Designating now by UII), U(2), ..., Ulm-I) linear forms in the quantities z, with
coefficients periodic with respect to 9 and I, and by Wa quadratic form in the same
quantities with constant coefficients, let us put

V = Z + W + U(I)z + U (2)Z2 + ... + Ulm-I)zm-I,

and after having formed with the aid of equations (57) the total derivative of this
function V with respect to I, let us seek to dispose of the linear forms U(J) so that,
in the expression for this derivative, all terms disappear which are linear with
respect to the z, and which at the same time contain z in powers less than the mth.
Such a problem will always be solvable and completely determinate, for, to resolve
it, we shall only have to satisfy the following system of equations [analogous to
those preceding (63) of Section 37]:

n a o» a Ulk) 0Ulk)
L (PsI ZI + Ps2 Z2 + ... + PsnZn) -0- + _.-0- + A----;0 + plk)

s=1 UZs ot U\1'

n ( aUlk- I) aUI I») OUlk -I) OUII)
+ " Pll) + +plk-I) __ +,",(1) + +,",Ik-I) __ =O
S~I s OZs ... s OZs "" iJ9 ... "" iJ9

(k = 1,2, ... , m - I)

(where the expression which figures in the second line must be replaced by 0 when
k = I).

These equations will furnish successively U(I), U(2), ... , Ulm-I). [See the discus­
sion after (63) of Section 37.]

Having thus determined the forms U(J), let us choose the form W to conform
with the equation

~ oW 2 2 2
L... (PsIZI +Ps2 Z2+'" +PsnZn)-'--- =g(ZI +Z2 + ... +Zn)

s-1 UZs

according to which we shall have

dV _ m 2 2 2
dt -g(z +ZI+Z2+",+ Zn)+S

S being an expression which we shall be able to present in the form
n n

S = vz
m + L L VSUZSZ(J

s= 117= I

where v, v,. are holomorphic functions of the quantities z, ZI, ..., Zn, becoming zero
for

Z ,= ZI = Z2 = ... = Zn = 0

and possessing in their expansions coefficients periodic with respect to 9 and I.

[Compare the treatment after (64) of Section 37.] Moreover, as the functions Z, 0,
Z, will be (with respect to the quantities z, z.) uniformly holomorphic for all real
values of 9 and I, we shall be able to choose the same for the functions v, VSO'
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752 A. M. Lyapunov

We see from this that, whatever real function of t the variable 9 is expressed as,
the derivative dV/dt, under the condition z ;;. 0, will be a definite function and its
sign for small enough values of z, Iz, I will be the same as that of the constant g.

As a consequence, on noting that, by the nature of the form W (Section 20,
Theorem II) [this theorem implies that W is a definite quadratic form with sign
opposite to that of g], the function V, under the same condition z ;;.0, will be
positive-definite if g < 0 and will be able to change sign if g > 0, we conclude that
the undisturbed motion will be unstable in the case of g > 0, and stable in the case
of g < O.

In this last case, every disturbed motion for which the perturbations are
sufficiently small will tend asymptotically towards the undisturbed motion.

Remark
If instead of the condition z ;;.0 we had assumed that z ,,;0, we would have

obtained, as in Section 37 (Remark), a result from which comparison with the
preceding one would have shown that m is an odd number.

63. [Exposition 01 the method. Example]
In what has just been expounded there is already contained a method for

resolving the question in which we are interested. We are now going to give a
variant of it in the form of a rule to follow.

Let us take the following system of partial differential equations [similar to (79)
of Section 39]:

(s = I, 2, ... , n). (58)

We ascertain without difficulty that, under the conditions considered, we shall
always be able to satisfy it formally (and in only one way) by series proceeding in
positive integer powers of the quantities x and y and becoming zero for x = y = 0,
where the coefficients are periodic with respect to t.

Although we could not say anything about the convergence of these series, this
circumstance is of no importance here, inasmuch as we shall only be concerned with
sums of terms for which the degrees do not exceed a certain limit.

Supposing that m is the number referred to in preceding sections, let us assume
that

x, =1, (x, y, t), X 2=12(x, y, r), ..., x; =In (x, y, t) (59)

are the ensembles of terms of less than mth degree in the series under consideration.
[Compare (87) of Section 40.]

Next let (X) and (Y) be what X and Y become after the quantities x, have been
replaced in them by expressions (59). Then, if we treat as before the system of
equations

dx dy
dt = -.J.y + (X), dt = Ax + (Y), (60)
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Stability of motion: general problem

transformed by means of the substitution

x = r cos 9, y = r sin 9,

753

(61)

we shall encounter in series (56), discontinued at the term u(ml , the same functions
as before, and in this way we shall arrive at the previous value for the constant g.

We have assumed that the functions X and Y in system (49) become identically
zero for x = y = O. We have also indicated a transformation by means of which
every other case reduces to this one (Section 60). We shall now point out that, if we
do not find ourselves with this case, we shall be able, instead of transforming system
(49), to submit to a corresponding transformation system (60), formed as has just
been indicated]. If, further, we wish to pass directly to the variables rand 9, this
will reduce to transforming system (60) with the aid of a substitution of the form

x = r cos 9 + F(r cos .9, r sin 9, t),}
(62)

y = r sin il + <I>(r cos 9, r sin 9, t),

where F and <I> represent certain holomorphic functions of the quantities r cos 9 and
r sin 9, not containing in their expansions terms of degree less than the second, and
possessing periodic coefficients with respect to t. [Compare the discussion at the end
of Section 39.]

Now we easily convince ourselves that if instead of substitution (62) we use (61)
as before, on next operating as was indicated in Section 61, although we then obtain
another sequence of functions (56), the first non-periodic function that we shall find
will be as before u(m), and its examination will lead to the previous value for the
constant g.

Therefore, whatever the case under consideration (i.e. whatever the functions X
and Y), we can guide ourselves in our problem by the following rule [which is
analogous to the rule given towards the end of Section 40].

The differential equations of the disturbed motion being reduced to form (49), we
form the system ofpartial differential equations (58) and on introducing into them by
means of the substitution (61) the variables rand 9 instead of x and y, we seek to
satisfy this system (at least formally) by series ordered in positive integer powers of
r, not containing the zero power, and possessing coefficients periodic with respect to 9
and t (see the footnote in Section 62). Such series will always exist and will be
completely determined; and if we substitute them for the quantities x, in the expan­
sions in the powers of these quantities for the expressions

d9 Y cos 9 - X sin 9 dr
- - A= and - = X cos 9 + Y sin 9
dt r dt '

these last will present themselves in the form of the series

0, r + 0 2r
2 + 0 3r

3 + ..., R2r
2 + R3r

3 + R.r· + ...,
ordered in positive integer powers of r with coefficients 0 and R periodic with respect
to 9 and t.

On forming these coefficients we at the same time form the functions

(63)

t We have in mind problems for which terms of degree higher than the mth In the
differential equations do not have any importance.
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754 A. M. Lyapunov

of the variables 9 and t, defined by the condition that, k being any integer greater than
2, the expression

ar 2 k 2 ar 2 3 k
at+(A+0,r+02r + ... +0k_ 2r - )a9-R2r -RJr - ... -Rkr

after we put in it

r = c + U2C2 + uJcJ+ ... + uic"

does not include the arbitrary constant c in powers less than the (k + 1)th, and that
moreover each of the functions (63) appears in the form of a finite sequence of sines
and cosines of integer multiples of 9, where the coefficients are periodic functions of
t or sums of a finite number of periodic and secular terms.

Suppose that we find ourselves with the case of incommensurable Aw/n. Then, in
forming the functions (63) until we encounter a function non-periodic with respect to
t, we shall have for this function, say Urn (the number m will be odd), an expression
of the form

urn =gt + v,

where g designates a non-zero constant and v a periodic function of 9 and t, This being
so, the question of stability will be resolved immediately, in the case of g > 0 in the
negative sense, and in the case of g < 0 in the affirmative sense.

Remark I

We have assumed that the coefficients P» in system (49) are constants. This is
permissible since the case of Ps. periodic reduces to this one with the aid of a linear
transformation. But, for the indicated rule to be applicable, it is not necessary to
effect such a transformation.

Remark II
We have assumed that Aw/n is an incommensurable number. But if, this number

being commensurable, we have found for the first non-periodic function in series
(63) an expression "Of the type indicated above, we would have the right to draw the
same conclusions on stability as before.

Example
Let the following system of equations be proposed:

dx dy .
dt + Ay = Z2 cos t, dt - AX = _Z2 sm t,

for which we can take w = 2n.
On putting

dz
-+z=xy
dt '

x = r cos 9, y = r sin 9,

we may transform it into the following [with use of the first two equations of the
preceding rule]:

d9 Z2 • dr
--A=--sm(9+t), -d =z2cos(9+t),
~ r t

~; + z = r 2 sin 9 cos 9.
} (64)
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Stability of motion: general problem 755

This established, let us form the partial differential equation [equivalent to (58)
expressed in terms of rand 9 instead of x and y]

OZ [ Z2. Joz 2 Oz 2 '
01 + ). --;: Sin (9 + I) _ 09 + Z cos (9 + I) Or + Z = r Sin 9 cos 9,

which we shall seek to satisfy by a series ordered in increasing powers, integer and
positive, of r (in which the least power is the second), and possessing coefficients
periodic with respect to 9 and I.

This series will evidently contain neither the third nor the fourth power of r.
[The differential equations for Z3 and Z., the coefficients of r3 and r·, turn out to be
like those written below for Z2 and zs, but with zero right-hand sides. Thus they are
satisfied by Z3 = Z. = 0.] Consequently, on writing only the first two terms, we can
take it to be

(65)

The coefficients Z2 and Zs will be calculated with the aid of the equations

OZ2 OZ2 I •

iii + ). 09 + Z2 = i Sin 29,

oZs Ozs 2[ . OZ2 ]iii+). 09 +ZS=Z2 Sill (9 +1) 09 -2z2cos(9+1) ,

of which the first gives for Z2 an expression independent of I, namely:

sin 29 - 2A cos 29
Z2 = 2(1 + 4),2)

On introducing the angle 8 defined by the equalities

I . 2A
cos 8 = ji + 4),2' Sin 8 = J I + 4),2 '

and putting

29 -8 = ep,

we may present this expression in the form

sin ep
Z2 = 2J I + 4),2 •

If next we take for independent variables ep and r = 9 + 1instead of 9 and I, and
if we make use of the expression found for the function Z2, the second of the
equations written above [the second after (65)] will reduce to the form

(
).) ozs ). ozs _ sin2 ep (cos ep sin r - sin ep cos r)

I + Or + 2 oep + Zs - 4( I + 4),2)3/2

From this we get

Z5 ,= P cos r + Q sin r,
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756 A. M. Lyapunov

(66)

on understanding by P and Q periodic functions of ip, defined by the equations

dP sin3 q>
2A dq> + P + (I + A)Q = 4( I + 4A2)3/2 '

dQ sin' q> cos q>
2A. dq> + Q - (I + A)P= 4(1 + 4A2)3/2 •

Putting P = i we next find

P + Qi = ae'" + be"!" + ce''",

where a, b, c are constants, of which the first two are given by the formulae

A-I+i
a = 8[I + (A _ 1)2](1 + 4A 2)3/2'

3A + I - i
b = 16[I + (3A + 1)2](I + 4A 2)3/2 •

[If we define

i
S = P + Qi, K = 16(1 +4A 2) 3/2

it follows from the two differential equations before (66) that S satisfies

dS . . 3.
2A. dq> + {I- (I + A)i}S = K(2e'· - e :» - e '.).

(67)

This will have as a periodic solution a linear combination of e'", e- i• and e3i~,

leading to (66) and (67).]
Let us now [continuing to follow the rule] introduce series (65) in place of z in

the right-hand sides of [the first two of] equations (64) and let us order the results
in increasing powers of r.

In the series obtained in this manner

the coefficients 03' R4 and R7 will have the following expressions:

Operating next according to the rule, let us form the expression [on taking
k = 7]

ar 2' 3 ar 4 2 3at + (). - Z 2 sm r r ) a9 - r (z2 + 2Z2Z 5' ) cos r,

and, on making

[if we start instead from
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Stability of motion: general problem 757

due investigation shows that we arrive at

u2= u3 = Us = u6 = 0]

let us seek to dispose of the functions u. and U7 so that, in this expression, all terms
disappear which contain the constant c in powers less than the eighth.

For this we must subject these functions to verifying the equations

au. au. 2
-+Je-=22cosr,at a8

aU7 aU7 _ 2 2' au.iii + Je a8 - 4U.22cos r + 2222s cos r + 22Sin t iifj'

[Expressing these equations in terms of partial derivatives with respect to rand tp,

we have

au. au. 2
(I + Je) --ar- + 2A aqJ = 22cos r, (XXVI)

aU7 aU7 2 2' [au. au.] ](I + Je) --ar- + 2Je aqJ = 4U.22 cos t + 2222s cos r + 22 Sin r --ar- + 2 aqJ . (XXVII)

Assuming that Je is an incommensurable number, we may always satisfy the first
of these equations by a periodic function of 8 and t, and this function, being
expressed in qJ and r, will appear in the form

u. = M cos r + N sin r + const.,

where [on substituting in (XXVI) this expression for u. and a previous expression
for 22]

Je sin 2qJ
M = - -------,--0-----,-------'-----,-----

2( I + 4Je 2)(5Je + 1)(3}. - I) ,

N= (Je+I)cos2qJ I
8(1+ 4Je 2)(5Je + 1)(3Je - I) + 8(1 + 4Je 2)(Je + I) .

Under the same assumption we may satisfy the second equation by an expression
of the form

U7 = gt + 2u~ + v,

where g is a constant and v is a periodic function of 8 and t.
Moreover, on considering the equation [found by substituting this expression

for U7 in (XXVII) and then making use of (XXVI)]

in: au 2' (au. au.)
g + (I + Je) ar + 2A a<p = 2222s cos r + 22 Sin t --ar- + 2 aqJ ,

which v must satisfy as a function of the variables qJ and r, we obtain [after
integrating with respect to qJ and t from 0 to 2n, to get rid of zero-mean periodic
terms]

I 12n 12n{ (au au )}g = 4n2 0 dqJ 0 222 2scos r + 2~ sin r a: + 2 a; dt
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758 A. M. Lyapunov

[the last line being found by substituting for X s and U4 and integrating with respect
tcr ; note further that the term

Z~(dN -!M)
dtp 2

is periodic and zero-mean with respect to <p and thus contributes nothing to the
above integral] and in this way we arrive at the following expression for the
constant g:

=~12

< PZ2 dip =_r=A=~
g 2n 0 4JI +4).2'

where A designates the coefficient of sin <p in the expansion of the function P in
sines and cosines of integer multiples of <po

This expression, after we have substituted in it the value for A which is easily
obtained from formulae (66) and (67) [and is (Im b - 1m a)], reduces to

g = - 64(1 ~4).2)2 L+(3~ + 1)2+ I +(f_1)2}
and gives, as a consequence, for g an always negative value.

We therefore conclude [on referring to the rule] that the undisturbed motion will
always be stable.

This conclusion has been obtained under the assumption that). is an incommen­
surable number. But it will be equally true for all commensurable values of ). for
which we can take the functions U4 and v to be periodic.

On considering the expression for the function U4, we see directly that there are
only three singular values of 2 which must be excluded, namely -I, 1/3 and -115
[these being the real poles in the above expressions for M and N]. And if we go to
the function v, we must further associate with them these: 0, I and -1/3; and these
will be the only singular values of 2. [v will be of the form

v = C sin 2, + D cos 2, + E

and evaluation of the periodic functions C(<p), D(<p) and E(<p) will yield the
additional singular values.]

Our conclusion will thus be certainly valid for all real values of )., with the
exception of the following six:

which will require special discussion.

64. [Exceptional case. Difficulties which it presents. Case of a canonical system
of second order]

Under the assumption that 2wln is an incommensurable number, we have
examined completely one of the two possible cases, that where among functions
(63) are found some non-periodic ones. Now we have to consider the other case,
that where all these functions are periodic.

In this case all coefficients u(!), u\!) in the series (53) will equally be periodic.
In analogous cases in the preceding treatment, whenever we have been able to

demonstrate that we are dealing with such cases, the question of stability was
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Stability of motion: general problem 759

resolved in the affirmative sense [Section 38]. Here it will not be the same, and in
general the case under consideration will remain doubtful.

Such difference arises from the circumstance that the periodic series which we
have previously encountered in similar cases could always be made convergent;
while the series (53) do not enjoy this property, and in general the discussion of
their convergence presents great difficulties.

These difficulties do not disappear even in the case of n = 0, i.e. when the
proposed system is of second order.

Such systems have been studied by Mr Poincare, and he has shown that, Awln
being incommensurable, the case under consideration occurs for every canonical
system] [of second order].

This circumstance can be seen immediately from the equations which define
functions (63).

In fact, let the following system be proposed:

dx of dy of
dt = -Ay - oy' dt = Ax + ox'

in which F designates a holomorphic function of x and y, not containing in its
expansion terms of degree less than the third and processing coefficients periodic
with respect to t with period w, and A is a constant such that AW In is an
incommensurable number.

Putting

x = r cos 9, y = r sin 9,

let us form the partial differential equation [both sides of which express dr Idt]

or (~ ~ OF) or = _~ of (68)
ot + . + r or 09 r 09 '

which r must satisfy as a function of the variables 9 and t, obtained by resolution
with respect to r of the equation of any complete integral containing an arbitrary
constant.

We have to show that in the series of the known type

(69)

satisfying formally this equation, all the coefficients u., which we assume periodic
with respect to 9, are equally periodic with respect to t.

Suppose that substitution of this series for r in the functions F and r2 leads to
the following expansions

F3 c3 + F4 c4 + F5 c5 + ... and c2 + V3C3 + V4C
4 + ...

The coefficients Fm , Vm will be deduced in a certain way from the coefficients 11/.

Moreover

t Poincare, 'Sur les courbes definies par les equations differentielles'. Journal de Mathe­
matiques [pures et appliqueesi, 4th series, Vol. II, 1886, pp. 199 and 200. Here we prove a
slightly more general proposition.
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760 A. M. Lyapunov

(70)

will evidently only depend on the u, for 1< m - 1. [This can be seen on expressing
F in the form

and on writing r? as

r2 = c2{1 + 2(u 2c + U3C
2 + ...) + (u 2 c + U3C2 + ...)2}.]

By consequence, on noting that equation (68), which can be written thus:

or
2

or
2

(OF of or)
at + A 0.9 = - 2 09 + or 09 '

furnishes for every value of m (in the sequence 3,4, ...) an equation of the form

oVm AOVm _ oFm
at + a8 - -2 09 '

we shall calculate Vm from the latter, and we shall thus have Um _ I after having
found all the u, for I < m - I. [The right-hand side of (70) can be justified as
follows. If we define the above series for F as G(c, 9):

G(c, 9) = F3c
3 + F4c

4 + ...
we have

G(c, 9) = F(r(c, 9), 9)

so that

eo of of or
09 = 09 + or 09 .

Therefore the coefficient of c'" in the expression in the right-hand side here will be
the same as in the left-hand side, viz. oFm fo9.]

Now, if we present the right-hand side of equation (70) in the form of a series
of sines and cosines of integer multiples of 9, this series will obviously not include
any term independent of 9. [If Fm is a non-trivial function of sin 9 and cos 9, so will
be of,,, fo9.] Therefore, if all the u'" for 1< m - I are periodic with respect to t it
will be the same for the function v'" (Section 61) and, as a consequence, also for the
function u'"_ I .

Thus, for every canonical system, series (69) will always be periodic, provided
that AW fn is incommensurable.

In the questions of stability, in this case we shall have to begin with study of the
convergence of this series, and if we succeed in showing that, Icl being sufficiently
small, this series converges uniformly for all real values of 9 and I, the question will
be resolved in the affirmative sense.

It will be the same, as we are going to show, in the general case.
Returning to system (52), let us assume that in this or that case we have

succeeded in finding the periodic series (53) and in showing that, lei being
sufficiently small, they converge uniformly for all real values of 9 and t.

Supposing that all the u(l) and u~/) are real functions, let us make

r = z + U<2lz2 + U<3lZ3 + ...,

x, = Z5 + U\'IZ + U~2)Z2 +... (s = 1,2, ... , n)
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Stability of motion: general problem 761

and in place of the variables r, x, let us introduce into our system the variables z,
':'S·

We shall arrive then at a system of the form (57), in which the functions Z, Z,
will become zero for z, = ... = z; = 0, while fully conserving the other properties
referred to in Section 61.

In this way our problem will be reduced to that of stability with respect to the
quantities z, Z,.

On discarding in system (57) the equation containing the derivative d8/dt, let us
consider, in the others, 8 as a given function of t, continuous and real but otherwise
arbitrary.

Then, if it is proved that for every given positive value of E we can assign,
independently of the choice of the function 8, a positive number a such that, the
conditions

being fulfilled at the initial instant, the inequalities

IZnl < E,

will be satisfied throughout subsequent time, our problem will be resolved, and in
the positive sense.

We shall prove in the following section a proposition from which the postulate
which we have just enunciated will actually follow, seeing that the functions Z, Z,
in our equations will be uniformly holomorphic (with respect to z, z.) for all real
values of 8 and t.

A generalization

65. [General form to which the differential equations reduce in the singular
cases considered previously. Existence of holomorphic integrals with
bounded coefficients. Conclusions on stability)

Let us pose the problem in a somewhat more general way.
Suppose that the proposed system is the following:

dx,
--;j{ = PsI x, + P.,2."\."2 + ... +PsnXn + X,

(s = I, 2, ..., n),

(71 )

where X" Zj are holomorphic functions of the variables x" X2, •.• , xn , Z" Z2' ••. , zi ;
becoming zero for

X I = X 2 = '" = X n = 0

and not containing in their expansions terms of degree less than the second.
We shall assume that the coefficients in these expansions are any continuous,

real and bounded functions of t, and such that all the XS' Z, are uniformly
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762 A. M. Lyapunov

(i = 1,2, ...,k)

holomorphic functions for all real valuest of I. As for the coefficients P,o, we shall
assume that these are real constants such that all the roots of equation (43) possess
negative real parts. [Note that the differential equations for the z, in the linear
system of the first approximation are

dZi = 0
dl

with solution

Z; = const. (i = I, 2, ..., k).

Thus, although the determinantal equation now has a root of multiplicity k at the
origin, the linear system does not have a solution with secular terms, i.e, terms such
as at! (j > 0).]

[Note further that the following treatment is analogous to that in Section 38,
where a more detailed exposition is given.]

If such are the differential equations of the disturbed motion, we can demon­
strate that the undisturbed motion is stable.

For this purpose, let us show first of-all that the system (71) will always admit
an integral of the form

where L represents a linear form in the quantities Z" Z2, ... , Zk with arbitrary
constant coefficients, and F represents a holomorphic function of the .r,; Zj' not
containing in its expansion terms of degree less than the second, becoming zero for
x, = X 2 = ... = x" = 0, and having for coefficients bounded functions of I.

For this let us consider the equation

" of of n of k (OF OL)
L(P.d X,+P.,2 X2+"'+P"",x,,)-0 +-0 =-LX,-o -LZj -0 +-0 '

.\'_1 ...... x, t .'1=1 x, j=1 Zj z)

which has to be verified by F [and which interprets d(L + F)/dl = 0].
Let

(72)

where the p~;;.1 are forms of the mth degree in the quantities Xs> and where the
summation extends over all values of the non-negative integers m, 1,,/2 , ... , Ik
satisfying the conditions

m > 0, m + I, +12 + ... + Ik > 1.

On substituting this expression for the function F into our equation we shall
represent the right-hand side of the latter in the form

where the summation extends over the values indicated above for the numbers m,

t If we wish we need not consider all real values of t, but only those which are greater
than a certain limit 10 ,

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
O
t
t
a
w
a
]
 
A
t
:
 
0
1
:
0
1
 
2
8
 
A
p
r
i
l
 
2
0
1
0



Stability of motion: general problem 763

/. and where QUI. 12."" Ik ) represents a form of the mth degree in the quantities x
J' m s'
which is deduced in certain manner from those of the forms pUj ..... I,) for which

m

m' + /', + I; + ... + I~ < m + II +12 + ... + Ik •

This established, the equations

n apu,..... Ik) apu,..... Ik)

L (PsIXI + ... +PsnXn) a + ma = _Q~, ..... »>;
.~cl X.~ t

(73)

(74)

which we shall have to satisfy will allow the calculation of all the P~I"'" Ikl in any
order such that the number m + II + lz+ ... + Ik does not decrease. [Compare (69)
of Section 38.]

Suppose that all the P~!"" "k) for which inequality (73) is satisfied are found,
and that they possess bounded coefficients. Then it will be the same for the
coefficients of the right-hand side of equation (74), and this equation, under our
assumption concerning the Psu, will always admit as a solution a form p~.' ..... Ik) with
bounded coefficients; such a solution will moreover be unique. This is what may be
easily seen on considering a certain transformation of equation (74).

In this way, for every fixed choice of the form L series (72) will be completely
determined. Moreover, if the form L possesses real coefficients it will be the same
for the coefficients of the series under consideration.

Let us come to the question of the convergence.
Let XI' X2, ... , Xn be the roots of equation (43).
No longer keeping to the assumption that the coefficients in the equations under

consideration are real, we shall be able by effecting a certain linear transformation
to reduce the general case to the one where all the Psu not contained in the series

Pnn = x"'
Pn.n-I = (1n_l,

are zero.
Let us fix then on this hypothesis concerning the Psu and seek the form P

satisfying equation (74). The coefficients in this form will be calculated in a certain
succession easy to establish, and the coefficient A of

will be obtained from an equation of the form

dA
dt +(mIXI +m2X2+'" +mnXn)A = -B,

whence we get

[Compare the last few equations with the corresponding equations between (69)
and (70) of Section 38.]

The function B which appears here will depend in a certain way on the
coefficients A found previously: namely, by its very origin it will necessarily be an
entire and rational function of these coefficients. Moreover, the coefficients of this
function will be sums of products: of the quantities a., of the coefficients in the form
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764 A. M. Lyapunov

L, of the coefficients in the expansions of the functions X" Zj' and of certain
positive whole numbers.

Therefore, on replacing in the function B the quantities we have just listed by
constant upper bounds for their moduli, suitable for all real values of t, and on
designating the result by B, [the above integral becomes easy to evaluate, and) we
shall have for the modulus of the coefficient A under consideration the following
upper bound:

(75)
B

mlAI +m2A2+ ...+mnAn'

where A" A2, ..., An are the real parts of the numbers - XI' - X2, ..., - Xn'
We can further replace here each of the numbers A, by a smaller positive

number, and these new numbers may be chosen to be distinct.
In this way our problem will be reduced to a similar problem where all the X,

will be different, and in this case we can always assume the preliminary linear
transformation to be such that all the a, are zero [see the equation before (74»).

Now, on considering the problem under this assumption, we can next, in
formulae of the form (75), replace all the A, by the smallest among them.

We thus see from this that it will suffice to examine the convergence of our series
under the hypothesis that all the p," for sand (J different are zero, that

Pll =P22 = ... =Pnn = -A,

A being a positive number, and that the coefficients in the expansions of the
functions X" Zj are constants.

We can further suppose these coefficients to be such that all the X" Z, become
functions of only the two arguments

XI + X2 + ... + x; and z, + Z2 + ... + zi;

and that we moreover have the equalities

XI = X2 = ... = Xn , ZI = Z2 = ... = Zk>

for every other case reduces to this on replacing the coefficients by upper bounds
for their moduli, chosen in a suitable manner.

Finally, for the form L we shall be able to take the following:

L=Z,+Z2+",+ Zk'

On making these hypotheses, and taking into account that the X, and the Z,
must become zero for XI = X2 = ... = x; = 0, let us put

X, = (x, + X2 + ... + xn)X, Zj = (XI + X2 + ... + xn)Z,

Then the equation [before (72») defining the functions F, which we must now take
to be independent of t, will reduce to the form

n of { n of k of }
A L x, -a'= (XI + X2 + ... + xn ) XL" + Z L -;:;- + kZ .

s-I ~xs s=IVXs j=luZj

Now we shall always be able to satisfy this equation on assuming that the
function F only depends on the two arguments

XI + X2 + ... + X n = X and ZI + Z2 + ... + Zk = Z,
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Stability of motion: general problem

in which case our equation becomes

of (OF)(Je - nX) - = kZ I +-
ax OZ

765

and therefore gives for of/ax a holomorphic expression with respect to x, z, of/oz.
Thus, in view of a known theorem of Cauchy, it always admits one and only one
solution, such that the function F, becoming zero for x = 0, appears in the form of
a series proceeding in positive integer powers of x and z, as long as the moduli of
these variables are small enough. [See Goursat, Hedrick and Dunkel, loc. cit., pp.
53-57.]

This series, if we replace x and z in it by their expressions, on then considering
it as ordered in powers of the x" Zj' will be precisely the one for which the
convergence has to be examined.

Therefore, the Ix, I and IZj 1 being small enough, the convergence of series (72),
under the conditions which we have just considered, is established. So, in view of
what has been expounded above, it is equally established under the most general
conditions. Moreover, on going back to these, we can state that series (72)
represents a uniformly holomorphic function of the variables x., Zj for all real values
of t.

In this way, on fixing on any choice of the form L, we shall find for system (71)
a completely determined integral of the required character.

By taking for L successively z, , Z2, ... , Zk we shall obtain k integrals of this kind.
These integrals, which will evidently be independent, may be called elementary,
since every holomorphic integral with bounded coefficients will necessarily be a
holomorphic function of them.

Let us now return to our problem.
Let us consider the integral which is equal to the sum of the squares of the

elementary integrals. It will be of the following form:

z~ + d + ... + d + R,

where R only includes terms of degree greater than the second with respect to the
variables x,; Zj'

Next let us consider the quadratic form W in the quantities x,, x 2 , ... , x; defined
by the equation

This form, as we know, will be positive-definite (Section 20, Theorem II).
It will as a consequence be the same for the function

V=d+z~+ ... +z~ + W+R

[the Ix, I, IZj I being small].
Let us form the total derivative of this function with respect to t, with the aid

of equations (71). This derivative will be

dV _ 2.2 2 ~ oW
-d --(X,+'x2+"'+ X,,)+f...,X,-o .

t s= 1 X,I"

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
O
t
t
a
w
a
]
 
A
t
:
 
0
1
:
0
1
 
2
8
 
A
p
r
i
l
 
2
0
1
0



766 A. M. Lyapunov

Now, the functions X, all becoming zero for XI = X2 = ... = X" = 0, we can write

(78)

understanding by the vs. holomorphic functions of the quantiues X" Zj with
bounded coefficients, becoming zero when all these quantities are simultaneously
zero, and moreover uniformly holomorphic for all real values of t.

Therefore the derivative under consideration will represent a negative function,
and as a consequence our function V will satisfy all the conditions of Theorem I of
Section 16.

In this manner the stability of the undisturbed motion, in the case under
consideration, is found to be proved.

We easily see that every disturbed motion for which the perturbations are
sufficiently small will approach asymptotically one of the motions defined by the
equations

where C" C2, •.•• Ck are arbitrary constants.
We may assure ourselves of this on considering those of the equations of system

(71) which contain the derivatives dx.ldt, and on regarding the quantities Zj in them
as given real functions of t, for which the absolute values never exceed sufficiently
small limits for values of t greater than its initial value.

We may also easily prove that the motions of series (76). for which the Icjl are
sufficiently small. will be stable.

Remark

We can reduce to systems of the form (71) certain more general systems:

dz.
d: = qjl ZI + qj2 Z2 + ... + qjkZk + z, (j =_1,2, ...• k), ) (77)

dx,
---;]f = P.dX, +P.'2X2 + ... +Ps"X" + X, (s - 1.2•...• n),

in which the coefficients qj;. P.,•• instead of being constants. are bounded functions
of t.

Let us consider the case where all the coefficients in system (77) are periodic
functions of t. [The transformation which makes the periodic linear system of the
first approximation become constant-coefficient is discussed in Section 47.]

Supposing as before that all the X:" Z, become zero for XI = X2 = ... = X" = O. let
us next assume that the characteristic equation of the system

dz
d: = qjlZI + qj2 Z2 + ... + %kZk (j = I. 2, ...• k).

only has roots with moduli equal to I. and that of the system

only has roots with moduli less than I.
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Stability of motion: general problem 767

Then, if to each root p of the characteristic equation of system (78) there
correspond only solutions

z, = f, (I)p'/W, Z2 = f2(I)p'/w,

where all the fs(t) are periodic functions of I, we shall be able, in view of what has
just been expounded, to state that the undisturbed motion will be stable, and that
every disturbed motion, for which the perturbations are sufficiently small, will
approach asymptotically one of the motions for which x, , x2 , ••• , x; are all zero and
z, , Z2, ... , Zk satisfy system (78).

Such will be, for example, the case where the characteristic equation of this
system does not have multiple roots.

When, on the other hand, there exist such roots and we encounter secular terms
in the functions fs(t) which correspond to them, the undisturbed motion will be
unstable.

[Actually the conclusion stated above, that when all the 1,(1) are periodic the
undisturbed motion will be stable, does not follow from the previous assumption
that the roots of the characteristic equation of system (78) have moduli equal to
unity. In view of equations (9) and those preceding them, the determinantal
equation of the constant-coefficient system into which (78) is transformed then has
roots on the imaginary axis, and not necessarily at the origin. Consequently system
(77) cannot then, in general, be reduced to system (71). To amend the treatment, we
need to replace the assumption that the roots of the characteristic equation of
system (78) all have moduli equal to unity by one to the effect that these roots are
all equal to unity.]

NOTE. Complement to the general theorems on stability
In the preceding (Section 26), on supposing that in the differential equations of

the disturbed motion, reduced to the normal form, the right-hand sides are series
proceeding in positive integer powers of the unknown functions, and on making
certain further general hypotheses, I have indicated a condition under which the
question of stability does not depend on the terms of degree greater than the first,
in these series; but I have demonstrated only that this condition is sufficient. Now
I propose to show that it is also necessary.

Let x I' x2 , ... , x; be the quantities with respect to which stability is under
investigation, and which must, in the differential equations of the disturbed motion,
play the role of unknown functions of time I.

These quantities are certain given functions of the coordinates and velocities of
the material system under consideration, for which the expressions can moreover
depend explicitly on the time I.

I assume that these functions are chosen in such a way that, for the motion of
which the stability is being studied, and which I call the undisturbed motion, they
all become zero, and that for the disturbed motion they satisfy differential equations
of the form

dx,
--;j/ =Ps'X' +Ps2X2 + ... +PsnXn + X, (s = 1,2, ..., n), (I)

where P<n(s, (1 = 1,2, ..., n) are real constants and X" X2 , ... , Xn are known func­
tions of the quantities x" X2, ... , X n and I, represented for sufficiently small values of
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Stability of motion: general problem 767

Then, if to each root p of the characteristic equation of system (78) there
correspond only solutions

z, = f, (I)p'/W, Z2 = f2(I)p'/w,

where all the fs(t) are periodic functions of I, we shall be able, in view of what has
just been expounded, to state that the undisturbed motion will be stable, and that
every disturbed motion, for which the perturbations are sufficiently small, will
approach asymptotically one of the motions for which x, , x2 , ••• , x; are all zero and
z, , Z2, ... , Zk satisfy system (78).

Such will be, for example, the case where the characteristic equation of this
system does not have multiple roots.

When, on the other hand, there exist such roots and we encounter secular terms
in the functions fs(t) which correspond to them, the undisturbed motion will be
unstable.

[Actually the conclusion stated above, that when all the 1,(1) are periodic the
undisturbed motion will be stable, does not follow from the previous assumption
that the roots of the characteristic equation of system (78) have moduli equal to
unity. In view of equations (9) and those preceding them, the determinantal
equation of the constant-coefficient system into which (78) is transformed then has
roots on the imaginary axis, and not necessarily at the origin. Consequently system
(77) cannot then, in general, be reduced to system (71). To amend the treatment, we
need to replace the assumption that the roots of the characteristic equation of
system (78) all have moduli equal to unity by one to the effect that these roots are
all equal to unity.]

NOTE. Complement to the general theorems on stability
In the preceding (Section 26), on supposing that in the differential equations of

the disturbed motion, reduced to the normal form, the right-hand sides are series
proceeding in positive integer powers of the unknown functions, and on making
certain further general hypotheses, I have indicated a condition under which the
question of stability does not depend on the terms of degree greater than the first,
in these series; but I have demonstrated only that this condition is sufficient. Now
I propose to show that it is also necessary.

Let x I' x2 , ... , x; be the quantities with respect to which stability is under
investigation, and which must, in the differential equations of the disturbed motion,
play the role of unknown functions of time I.

These quantities are certain given functions of the coordinates and velocities of
the material system under consideration, for which the expressions can moreover
depend explicitly on the time I.

I assume that these functions are chosen in such a way that, for the motion of
which the stability is being studied, and which I call the undisturbed motion, they
all become zero, and that for the disturbed motion they satisfy differential equations
of the form

dx,
--;j/ =Ps'X' +Ps2X2 + ... +PsnXn + X, (s = 1,2, ..., n), (I)

where P<n(s, (1 = 1,2, ..., n) are real constants and X" X2 , ... , Xn are known func­
tions of the quantities x" X2, ... , X n and I, represented for sufficiently small values of
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the lx, I by the series

A. M. Lyapunov

proceeding in positive integer powers of the quantities x, and not containing terms
of degree less than the second. I further assume that in these series the coefficients
P';... ), which represent either real constants or continuous real functions of time, are
such that we can find positive constants M and A for which are satisfied inequalities
of the form

for all values of t greater than that which is taken for its initial value.
The problem of stability with respect to the quantities x, reduces to recognizing

whether we can assign, for any given positive number I, another positive number e
such that, the functions x having at the initial instant any real values satisfying the
conditions

the inequalities

lx, I< I. Ix21 < I,

are satisfied throughout the duration of the ensuing motion.
When this question is resolved in the affirmative sense. the undisturbed motion

with respect to the quantities ."., is stable; in the opposite case it is unstable.
Jn what precedes there has been indicated a condition which the constants PSq

must satisfy for this question not to depend on special hypotheses concerning the
functions X,.

This condition is imposed on the roots of the equation

P" - X PI2 P'n

P2' P22 - X P2n =0,

Pnl Pn2 Pnn - X

and if

A" A2 .... , An (2)

are the real parts of these roots taken with a minus sign, it is enunciated as: the
smallest of the numbers (2) must not be zero.

That this condition is sufficient is demonstrated by showing that in the case
where the smallest of the numbers (2) is positive the undisturbed motion is stable,
while in the case where this number is negative it is unstable. and this is indepen­
dent of every special assumption concerning the functions Xs '

To establish that the same condition is necessary, I now need to prove the
following.

Whatever the constants P,", provided they are such that the smallest of the
numbers (2) is zero, we can always choose the functions Xs so that stability or
instability holds at will.
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Stability of motion: general problem 769

That we can always choose, under this assumption, the said functions so that
instability holds already follows from some results obtained previously, and it is
anyway very easy to prove directly.

[By means of a suitable linear transformation we can arrange for the linear
terms in (I) to be those on the right-hand sides of equations (5) of Section 18. Thus
if say X, = 0, one resulting equation will be of the form

dz,
dt=Z"

If we choose Z, = d, the solution will be

z,(t) = {I -2d(0)t}-~z,(0),

indicating instability.
If, on the other hand, x, is imaginary, the equations after (5) of Section 18 will

apply and we shall have

du,
dt = -}J.V, + V"

do,
dt =}J.U, + V,.

Choosing V, = u, (ui + vi), V, = v, (ui + vi), and defining r 2 = ui + vr, we find that
r 2 satisfies the equation

dr
2

= (r 2) 2
dt '

with a solution again exhibiting instability:

r2(t) = {l- r2(0)t}-'r 2(0).]

It thus only remains to prove that if the smallest of the numbers (2) is zero, we
can always choose the functions Xs so that the undisturbed motion is stable.

I am now going to consider two special cases where the numbers (2) will all be
zero.

Let us suppose that system (1) has the following form:

dx, }dt=X"

dx
dr' = x.: I + Xi (i = 2, 3, ... , n).

(3)

On understanding by Ii'" li'2' ... , li'n the functions calculated successively (for
s = n, n - I, ..., 2, I) from equations of the form

with the condition

li'n+' =0,

it is easy to convince ourselves that if

X, = -2xs+' li's+' (s = 1,2, ..., n),

the function Ii', will be an integral of system (3).
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770 A. M. Lyapunov

[It can be proved by induction that

dip, i-I {d<fJ; }
"d(=2 <fJ2<fJ3···<fJi dt-2Xi-IX;

and we also find

(i = 2, 3, ... , n)

With i = n these two equations yield

d<fJI = 0
dt '

confirming that <fJ1 is an integral of system (3).]
Now this function (representing an entire polynomial) is such that, for real

values of the x" it can only become zero for

XI = X2= ... = Xn = O.

As a consequence, with the indicated choice of the functions X" the undisturbed
motion will certainly be stable.

[In fact <fJI is of the form

<fJI = XT + (x~ + (x~ + ... + (X~)2)2 ... )2

(4)

(i = 2, 3, ..., m),Idy,
dt = ux, + Yi-I + Y;

dy,
dt =/lX, + YI ,

dx , -
d/ = -/lYi + Xi_ 1 + Xi'

and is thus a positive-definite function. Moreover its rate of change has just been
shown to be zero. Hence, in view of Theorem I of Section 16, stability holds.]

I shall now assume that the system (I) is of even order n = 2m and has the
following form:

dX I
"d( = -/lY, + X"

where y" Y, are new notations for the quantities Xm+s> Xm+s'
Let <fJI' <fJl' ..., <fJm be the functions calculated successively from equations of the

form

with the condition

<fJm+ 1= O.

Then, if

x:, = -2x,+ I <fJ.,+ " Y, = -2ys+ I <fJs+ I (s = 1,2, ... , m),

the function <fJI will be, as is easy to convince ourselves, an integral of system (4);
and since this function, for real values of x,; y" can only become zero if

X, = Xl = ... = Xm =YI =Yl = ... = Ym = 0,

we must conclude, as before, that with the indicated choice of the functions Xs> Y,
the undisturbed motion will be stable.
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Stability of motion: general problem 771

(i = 2, 3, ... , m)

and we also have

so that again

d({>, = 0
dt .

Further, ({>, is now of the form

({>, = d + (z~ + (Z} + ...(Z~)2)2 ... )2

where

Z7 = x; + Y7 (i = 1,2, ..., In).

(5)}dy,
dt = -AYi +Yi-' + Yi (i = 2, 3, ... , k)

or

Hence ({>, is positive-definite and with zero rate of change; and we can again apply
Theorem I of Section 16 and deduce stability.]

Passing now to the general case, I note that, whatever the constants p,", there
will always be a linear substitution with constant real coefficients which will
transform the system (I) into a system decomposing into sets of equations belong­
ing to one of the following two types:

dy,
dI = -Ay, + Y"

dy,
dI = -).y, - uz, + Y"

dy,
dt = -AYi - uz, +Yi-' + Yi,

dz,
dt = /IY, - AZ, + Z"

dz ,
d/ = /lYi - AZi + Zi_' + Z, (i =2, 3, "', k), }

(6)

where Y" Z, designate the ensembles of terms of degree greater than the first with
respect to the unknown functions. [Compare related equations in Section 18.]

I do not exclude here the case of k = I, where the set of the form (5) reduces to
a single equation, the first one, and where the set of the form (6) reduces to the two
equations in the first line.

In these equations A represents one of the numbers (2).
Therefore, if among these numbers there do not appear any negative ones, we

shall arrive at the case of stability if, in the sets of equations for which A > 0 as well
as in those for which k = I, we put Y, = Z, = 0, and if, in the sets where we have
simultaneously A = 0, k > I, we choose the terms of degree greater than the first as
has been indicated in the two special cases considered above.

We can thus regard as proved the necessity of our condition.
It is however to be noted that this condition will only be necessary when we

consider general systems of the form (I); and if we wish to consider only systems
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772 A. M. Lyapunov

of a specific particular type, our condition, while remaining completely sufficient,
need not be necessary.

Thus it is that if we consider exclusively systems of canonical equations with
constant coefficients, it will certainly not be necessary. [For discussion of canonical
systems and their transformations, see Section 21. Suppose that in such a system

dx, iJH dy, iJH
= --, (s = 1,2, ... , k)

dt iJys dt iJx,

the Hamiltonian H is of the form

H=Q+F

where Q is a fixed positive-definite quadratic form with constant coefficients and F
is a choosable expansion beginning with terms of the third degree. Then dH /dt = 0,
and when the lx, I, Iy., I are small H is positive-definite. Thus H satisfies the
conditions of Theorem I of Section 16, and therefore any choice of F results in
stability.]

[Index
This index gives the section numbers of the places where terms are defined or

discussed, and of those where authors are mentioned.

Section
adjoint 18.47 first method
Aitken 50 Floquet
asymptotic 13 Forsyth

Fourier
Fuchs
fundamental determinant

Bertrand 21
bounded 6

Goursat

Cauchy 4, 52, 65
characteristic determinant 46
characteristic equation 46,54 Gylden
characteristic number 6
Chetayev 17. 18
complete integral 30
conservative perturbations I Hamburger

Hedrick

Darboux 23 Hermite
definite function 15 Hessian
derivative 15 holomorphic
derived determinants 19
determinantal equation 17,22
Dirichlet 16
disturbed motion I infinitely small
Dunkel 3, 17, 18, upper limit

19, 39, 53, instability
65 invariants

Durell 19 irregular system

elementary integrals 65 Jacobi
elliptic functions 49 Joukowsky

Section
5
46
36
59
53
17

2, 3, 17,
18, 19.28,
30, 36, 39,
53, 65
27

53
3, 17, 18,
19, 39, 53,
65
49
45
2

15
I
46
9

49
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Biography of A. M. Lyapunov

V. I. SMIRNOV

Translated by J. F. Barrett t from the Russian article in A. M. Lyapunov:
Izbrannie Trudi (A. M. Lyapunov: Selected Works) (Leningrad: [zdat. Akad.
Nauk SSSR, 1948) edited by V. I. Smirnov, pp. 325-340.

Aleksandr Mikhailovich Lyapunov was born on-25th May 1857 (old style date
[I]) in Yaroslavl' where his father was then director of the Demidovsk Lycee, the
higher general educational establishment.

We shall give brief details about the ancestors and relatives of Lyapunov. His
grandfather, Vasili Mikhailovich Lyapunov, in 1826 took an administrative post at
the University of Kazan. The eldest son of V. M. Lyapunov, Victor, was grandfa­
ther of Academician A. N. Krylov [2] (through his mother, Sophia Victorovich)
and the younger daughter, Ekaterina, was married to R. M. Sechenov, brother of
the physiologist I. M. Sechenov [3]. From this marriage was born the daughter
Natalia Rafailovna, the cousin of Lyapunov. In 1886 she became his wife.

In the numerous family of V. M. Lyapunov was the son Mikhail Vasilievich, the
father of A. M. Lyapunov. M. V. Lyapunov finished at Kazan University in 1839,
he became astronomical observer at Kazan University in 1840, and in 1850 he
founded an observatory. He worked at the University of Kazan until 1855 [4]. In
1856, M. V. Lyapunov became Director of the Demidovsk Lycee in Yaroslavl'
about which we have already spoken. In 1852, M. V. Lyapunov was married to
Sophia Aleksandrovna Shipilova. They had seven children of which four died in
infancy. Of the remaining three sons, the eldest was Aleksandr Mikhailovich. The
middle son, Sergei Mikhailovich (1859-1924), was the well-known composer [5]
(student of M. A. Balakirev) and the youngest, Boris Mikhailovich (1864-1942),
was an active member of the Academy of Science of the U.S.S.R. with specializa­
tion in Slavonic philology.

In 1863 the father of Aleksandr Mikhailovich went into retirement and resided
initially at the estate of his parents and later on the estate of his wife at Bolobonov
in the upper Simbirsk province [6] where he died in 1868.

The first instruction of Lyapunov was obtained from his father. His further
education continued, after the death of his father, in the family of his uncle R. M.
Sechenov, about whom we have already spoken. Here, together with his cousin
(and future wife) Natalia Rafailovna, he prepared for entry into the gymnasium.
All circumstances, both at home as well as with his closest relatives with whom
Lyapunov associated, awakened in him an interest in science. In 1870, Lyapunov's
mother, together with her three sons, settled in Nizhny-Novgorod (later known as
Gorki) and Lyapunov entered the 3rd class of the gymnasium which he completed
with a gold medal in 1876. In the same year he entered the Physico-Mathematical

t Southampton, U.K.

0020·7179/92 $3.00 © 1992 Taylor & Francis Ltd
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776 V. I. Smirnov

Faculty of St. Petersburg University but in a month transferred to the Mathematics
Department.

This was the time of flowering of the famous St. Petersburg mathematics school
created by the great P. L. Chebyshev [7]. Among the university professors in
mathematics then were such outstanding scholars as P. L. Chebyshev himself and
his well-known students A. N. Korkin and E. I. Zolotarev. Among the teachers of
Aleksandr Mikhailovich were also such brilliant professors as K. A. Posse and D.
K. Bobylev. In 1878, two years before Lyapunov, there had finished at St. Petersburg
University A. A. Markov [8], with whom A. M. Lyapunov all his life maintained
a close scientific relationship and with whom he was connected in work in the
Academy of Science after 1902. These circumstances at St. Petersburg University
provided favourable soil for the development of the exceptional mathematical talents
of Lyapunov. Later, in the description of the scientific work of Lyapunov, we shall
dwell more closely on his connection with the SI. Petersburg school.

At the university Lyapunov devoted his greatest attention to the lectures of P.
L. Chebyshev who, as Lyapunov himself acknowledged:

'through his lectures and subsequent guidance imparted a creative influence on the
character of his subsequent research activities'

(Biographical Dictionary. D. Members of the Acad. Sci. I, p. 430). An extraordinarily
vivid characterization of Chebyshev as professor and scholar was given by Lyapunov
in an article dedicated to the memory of Chebyshev (Kharkov 1895).

The first independent scientific steps of Lyapunov were carried out under the
direction of the professor of mechanics at St. Petersburg University, D. K. Bobylev.
In 1880 Lyapunov received a gold medal for an essay on a theme proposed by the
faculty on hydrostatics. This essay was founded on two previously published works:
On the Equilibrium ofa Heavy Body in a Heavy Fluid Contained in a Vessel ofa Fixed
Form and On the Potential of Hydrostatic Pressure. In Lyapunov's autobiography
we read:

'In 1881 on the advice of Bobylev,directing Lyapunov's activity and always encourag­
ing him in attempts at independent work, there were published in the Journal of the
Physico-Chemical Society his first two works relating to hydrostatics.'

On finishing the university course (1880) Lyapunov was received on Bobylev's
recommendation into the faculty of mechanics. The relationship between Lyapunov
and Bobylev continued until the death of the latter (20th February 1917). In a
speech dedicated to the memory of Bobylev, Lyapunov said:

'Almost 40 years I knew the deceased who was my teacher and supervisor of my
activities in the first years after finishing my university course. Remembering these
years in which I knew Dimitri Konstantinovich especiallyclosely, I have to express to
him my deepest thanks for the readiness with which he, often very busy, gave me his
time in looking over my first youthful work, often of a fairly naive character, or
explaining what seemed to me obscure passages of authors studied. Assuredly, other
students of Dimitri Konstantinovich, knowing him as closely as myself, regarded with
the same gratitude the memory of his shining personality.'

In 1882 Lyapunov finished the taking of the master's examination and it became
necessary for him to embark on work on the master's dissertation. In a supplement
to the presently collected lectures On the Form of Celestial Bodies we read:

'In 1882 wishing to seek out a suitable theme for a master's dissertation, I discussed
several timeswith Chebyshevaccording to the occasion various mathematical questions
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Biography of A. M. Lyapunov 777

and Chebyshev always stated to me that the consideration of easy, even though new,
questions which could be solved by generally known methods was not worthwhile and
that every young scholar, if he has already acquired some practice in the solution of
mathematical questions, should test his strength on some serious theoretical question
presenting known difficulties. In connexion with this he proposed to me the following
question: "It is known that for certain values of the angular velocity, ellipsoidal forms
cease to serve as forms of equilibrium of rotating fluids. Do they not go over in this
case to some new forms of equilibrium which, for a small increase of angular velocity,
would differ little from ellipsoids?" He added to this "11' you solve this question, your
work would immediately receive attention." [9]'

Further Lyapunov continues:

'Subsequently I realised that Chebyshev had proposed this same question to other
mathematicians such as Zolotarev, then a young scholar whose brilliant lectures I heard
at the University, and Sonia Kovalevskaya. I do not know if Zolotarev or Ko­
valevskaya had attempted to solve this question. I became strongly interested in this
question, the more so since Chebyshev had not given any observations for its solution,
and I immediately set to work.'

Further Lyapunov writes:

'After several unsuccessful attempts I had to postpone the solution of the question for
an indefinite time. But the question led me on to another, namely that of the stability
of ellipsoidal forms of equilibrium, which I took as the subject of my master's
dissertation. '

This dissertation under the title On the Stability of Ellipsoidal Forms of Equi­
librium of Rotating Fluids was defended in January [1884] at St. Petersburg
University. The opponents were D. K. Bobylev and a Professor of the Artillery
Academy who was working temporarily at St. Petersburg University, N. S. Budaev.

This dissertation made the name of Lyapunov known in Europe. Immediately
after publication, a short summary of it appeared in Bulletin Astronomique [10]. In
1904 it was, on the initiative of E. Cosserat, translated into French and published
in Annales de /' Unioersite de Toulouse. In the spring of 1895 Lyapunov was granted
the title privat-dozent and subsequently was called to accept the chair of mechanics
in Kharkov University, where he went in autumn of the same year.

With this finishes the first period of the life of Lyapunov in St. Petersburg, to
which he returned in 1902 after his election as Acting Member of the Academy of
Science.

We cite a short excerpt from the reminiscences of B. M. Lyapunov about A. M.
Lyapunov concerning the period 1881 to 1885, when the brothers lived together in
St. Petersburg.

'We lived in one room in the apartment of the widow Mikhailovska, the sister of
the Professor of Physiology, I. M. Sechenov, and I was a witness to the pressure of
work on my brother at the time of preparation for taking his master's examination
and the defence of the first dissertation. At that time he liked to work at night. Once
a week at our landlady's apartment there gathered relatives, among them the
physiologist I. M. Sechenov who loved to relax in the circle of studious youth coming
together on Sundays at his sister's. I remember also that at that time my brother A.
M. gave lessons to I. M. Sechenov in those parts of mathematics which he considered
especially important for the physiologist Ivan Mikhailovich who was taking the
warmest pleasure in all scientific successes of A. M. Lyapunov.'

The close relation between A. M. Lyapunov and I. M. Sechenov was sustained until
the end of the life of I. M. Sechenov.
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778 V. I. Smirnoo

Of the beginning of the Kharkov period, Lyapunov, in his autobiography writes:

'Here at first, the research activity of Lyapunov was cut short. It was necessary to work
out courses and put together notes for students, which took up much time'.

These lithographed courses of mechanics were in many aspects original. Their
analysis was presented in a speech of Academician A. N. Krylov delivered on 3rd
May 1919 and published in the same year in Izvestia Akademia Nauk.

At the same meeting, Academician V. A. Steklov, the first student of Lyapunov
at Kharkov University, delivered a speech in memory of his teacher in which he
described the first appearance of Lyapunov at Kharkov University. We follow his
words:

'In 1884, as is known, the statutes of 1863 were abolished and the Delyanov reaction
started [II]. In 1885 I was a student of course III and as a former student under the
1863 statutes stood with the majority of my colleagues in extreme opposition to the
new order. When we students learnt that there was coming to us from 51. Petersburg
a new professor of mechanics, we immediatelydecided that this must be some pitiful
mediocrity from Delyanov's creatures. But into the auditorium together with the
elderly Dean Professor Levakovski, respected by all 'the students, there entered a
handsome young man almost of the age group of some of our colleagues and who, on
the departure of the Dean, began to read in a voice quivering with agitation, instead
of the course on dynamical systems, a course on the dynamics of material points
which we had already followed with Professor Delarue - the course of mechanics
already known to me. But, from the beginning of the lecture, I heard something which
I had not heard or encountered from a single instructor or from any of my known
textbooks. And all antipathy to the course was immediately blown to dust; by the
strength of his talent, by the charm of which in most cases youth unconsciously yields,
Aleksandr Mikhailovich, even without knowing it, overcame in one hour the preju­
diced attitude of the auditorium. From that day A. M. took a completelyspecial place
in the eyes of the students and they came to regard him with exceptionally respectful
esteem. The majority, who were no strangers to an interest in science, strained with all
strength to approach, however little, those heights to which A. M. took his audience.'

At the time of the winter break in activity of the 1885/86 academic year Lyapunov
arrived in St. Petersburg and on the 17th January 1886 married his first cousin
Natalia Rafailovna Sechenova.

Until 1890 Lyapunov conducted alone all instruction in mechanics at Kharkov
University. In the first two years of stay in Kharkov, apart from working on the
construction of courses, he published in Communications of the Kharkov Mathemat­
ical Society two articles on potential theory. Already in 1885 he had proposed
delivering a special course on potential theory at SI. Petersburg University. This
course did not take place in view of Lyapunov's departure to Kharkov.

In 1888 began the appearance in print of the works of Lyapunov devoted to
questions of the stability of motion of mechanical systems with a finite number of
degrees of freedom. In 1892 he produced his remarkable work The General Problem
of the Stability of Motion in which the question of the stability or instability of
motion (or equilibrium) of mechanical systems with a finite number of degrees of
freedom was, for the first time, considered with exceptional depth and accuracy on
the one hand and with generality on the other hand. This work served as a doctoral
dissertation. The defence took place in September 1892 in Moscow University and
the opponents were N. E. Zhukovski [12] and V. B. Mlodzeevski. This dissertation,
as with the master's, was translated into French and published in Annales de
I' Unioersite de Toulouse. After the defence of the doctoral dissertation, Lyapunov
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Biography of A. M. Lyapunov 779

was in 1893 promoted to ordinary professor. In a series of subsequent works
Lyapunov introduced substantial additions to the mentioned dissertation. The
publication of this cycle of works on stability finished in 1902 [13].

To the Kharkov period belong also two other directions of work of Lyapunov:
in the theory of potential and in the theory of probability.

Under the influence of Lyapunov there had developed among the Kharkov
mathematicians a great interest in questions of mathematical physics and primarily
in the fundamental boundary value problem for the equation of Laplace. The
investigation of this problem is closely connected to the theory of potential.
Lyapunov revealed a series of faults and imperfections in this apparently classical
branch of mathematical physics. He, as we mentioned above, had also earlier been
interested in the theory of potential. His works on the theory of potential, especially
the memoir Sur Certaines Questions qui se Rattachent au Probleme de Dirichlet
(1897), for the first time rigorously clarified a series of fundamental features of the
theory of potential and served as directing features for further work, in particular,
for the work of V. A. Steklov.

The works of Lyapunov in the theory of probability, presented in 1900 and 190I
to A. A. Markov of the Academy of Science, are devoted to the proof of the
applicability under highly general assumptions of the Central Limit Theorem of
Laplace for a sum of independent random quantities [14]. Their special meaning in
the theory of probability stems not only from the results obtained but also in the
application in these works of new methods (characteristic functions) which then
took on widespread application in the theory of probability. During 1879-1880
Lyapunov listened to the lectures of P. L. Chebyshev on the theory of probability.
These lectures in the notes of A. M. were published by Academician A. N. Krylov.
In these lectures Chebyshev sketches the proof of the limiting theorems for a sum
of independent random quantities and at the end of this exposition we read:

'The lack of rigour of the derivation consists in the fact that we made various
assumptions not proving the conclusion resulting from this progression. This conclu­
sion however cannot be given by any satisfactory form of mathematical analysis in its
present state.'

At the end of the Kharkov period, Lyapunov delivered lectures in the theory of
probability at the University. The method outlined by Chebyshev in his lectures was
then developed by him in one of his works and carried through completely
rigorously in the work of A. A. Markov. Naturally all this directed the attention of
Lyapunov to the limit theorem of the theory of probability.

Apart from scientific and educational works Lyapunov also took an active part
in general university matters. We quote the characterization of Lyapunov given by
a professor of Kharkov University, Academician V. P. Buzeskul:

'A. M. Lyapunov belonged to those professors who made up the true spirit of the
university by which it lived and flourished and which carried in itself the ideal of the
professor and scholar. All baseness was alien to him. He constantly soared in the
sphere of science. Frequently in the professors' room in the intervals between lectures
you would see him in the circle of his professionally closest colleagues always
conversing about scientific questions. In the course of time to these themes there were
associated also other closely related painful university issues.'

The activity of Lyapunov in the Kharkov Mathematical Society had great
significance. From 1899 to 1902 he was president of this society and the editor of
its Communications. He reported all his works of the Kharkov period to sessions of
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780 V. I. Smirnov

the Society. Here also were published the works of his students V. A. Steklov and
N. N. Saltykov.

In 1900 Lyapunov was elected Corresponding Member of the Academy of
Sciences and on 6th November 1901 Ordinary Professor in the Faculty of Applied
Mathematics. This post became vacant after the death of P. L. Chebyshev (1894).
In this way Lyapunov became the successor of his renowned teacher in the
Academy. In the autumn of 1902 Lyapunov moved to St. Petersburg and with this
finished the Kharkov period of his life. In the published speech of V. A. Steklov we
read:

'Subsequently he remembered this period of his life (from 1885 to 1902) with special
affection and in conversations with me often called it his happiest.'

In St. Petersburg Lyapunov undertook no teaching work and devoted all his
time exclusively to science. He returned to the problem of Chebyshev with which he
started his scientific activity and in a substantial way widening its formulation he,
in a series of works vast in volume and exceptional for the strength of analysis,
carried the whole question to a conclusion. In his speech V. A. Steklov said:

'With that achievement on a subject with which he had attempted to start his
research activity he brilliantly finished, as we saw, his distinguished life, so prema­
turely cut short. The perfect work by Aleksandr Mikhailovich must necessarily be
called something more than an achievement.'

The works of Lyapunov of the second period of his life in St. Petersburg relate
to the fundamentals of the theory of celestial bodies, i.e. to the question of the
forms of equilibrium of uniformly rotating fluids the particles of which mutually
attract according to Newton's law. In these works Lyapunov for the first time
proved the existence of figures of equilibrium close to ellipsoidal in form but
different from ellipsoids and also investigated the stability of these new figures of
equilibrium. The problem was solved by Lyapunov both in the case of homoge­
neous as also in the case of non-homogeneous fluids. In the first two works of this
cycle (1903-1904) a slowly rotating non-homogeneous fluid is considered, the
form of the surface of which is close to a sphere. These works have an immediate
connexion with those of Clairaut and Laplace and in them the formulated prob­
lem is, for the first time, rigorously solved to completion.

On moving to St. Petersburg Lyapunov began initially to be engaged on the
question of figures of equilibrium of homogeneous fluids close to ellipsoids. At
that time he received from V. A. Steklov news that Poincare had published a
book on figures of equilibrium (Figures d'equilibre d'une masse fluide, lectures at
the Sorbonne in 1900). Lyapunov interrupted his work and became occupied with
the above mentioned question on the forms of equilibrium of a slowly rotating
inhomogeneous fluid. We quote excerpts from the letter of this time from Lya­
punov to Steklov. On 15th February 1903 Lyapunov wrote:

Thank you for your communication which spared me a pointless loss of time. How
annoying this would have been with the work now fit for throwing away; for,
according to what you write, Poincare did what would have been the subject for my
investigations, and there is no doubt that he set out from the same premises which
served as the exact point of departure in my researches and thanks to which I also
gave significance to my work: otherwise he could not have made a step forward in
the question considered.'

Receiving the book of Poincare and becoming familiarized with it, Lyapunov
wrote to Steklov on 21 February 1903:
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Biography oj A. M. Lyapunov 781

'To my greatest surprise I did not find anything significant in this book. The
greatest part of the book is devoted to the exposition (which is, it is necessary to note,
highly disorganized) of results already known. As regards questions of interest to me,
Poincare only repeats, and in a very abridged form, that which he said in his old
memoir of 1886 [15]. In no way is there a sign of proof of the existence of forms of
equilibrium close to the ellipsoids of MacLaurin and Jacobi and evidently Poincare
stands at the same point as he did 17 years ago on this question. Thus my work has
not suffered and I apply myself to it afresh. Because of this the week's interruption of
this work seemed very useful, for in this interval I made a start on another work
related to the question of the stability of equilibrium in a non-homogeneous rotating
fluid. The theory of Clairaut and Laplace requires highly substantial additions since
the existence of the forms of equilibrium investigated there is not proved. In this
question I have for a long time also wished to become engaged. But it seems to me
much more complicated than the question of the form of equilibrium of a homoge­
neous fluid close to ellipsoidal. I propose therefore to solve from the beginning the last
problem and afterwards to apply the same principles to the solution of the second.

Now, becoming involved with this question, I am convinced that it is much easier
than the first. The calculations have the same character but are incomparably simpler
(the form of equilibrium being little different from a sphere). Completing this
calculation I noted also in the first question possibilities of significant simplification of
the calculation and that I had gone about it in a too involved way. Thus the break in
the work proved to be useful in two respects: I applied myself to a new work and
clarified the possibility of significant simplification in a former. Now I propose to
continue the second work (relating to the theory of Laplace), as it may more quickly
be taken to a conclusion, and then to set about the first.'

Finally, in a letter of 7th April 1903 Lyapunov writes:

'Only in the last week I succeeded in removing all difficulties in the proof of the
convergence of the series which expresses the solution of the problem of Laplace (on
the form of a non-homogeneous rotating fluid for small angular velocity). Now it is
necessary to take up the simplification of this proof which at present is extremely
complicated. And then, publishing a shortened note on this question I shall go over
to that on which I started to become engaged in January (on the forms of equilibrium
of homogeneous rotating fluids close to ellipsoidal). Detailed memoirs on these
questions I shall hardly be able to edit earlier than two years hence, since the
corrections frequently demand very much time.'

These quotations give a clear idea of the beginning of that huge work which was
carried out by Lyapunov in the second St. Petersburg period of his life [16]. In the
introductory lecture to his course On the form of celestial bodies which he started to
read in 1918 in Odessa, Lyapunov indicated that the problem of Laplace is solvable
for much more general assumptions than previously. The corresponding materials
have not been discovered up to the present time.

In St. Petersburg Lyapunov led a closed form of life. His activities were limited
to the Academy of Science. His circle of acquaintances was limited' to close relatives
and his teachers and colleagues in science: D. K. Bobylev, A. H. Korkin, .A. A.
Markov, K. A. Posse, A. N. Krylov and V. A. Steklov who in 1906 moved from
Kharkov to St. Petersburg. In the summer Lyapunov departed for his village of
birth (Bolobonovo, previously the Simbirsk province) but even there he did not
interrupt his scientific work. B. M. Lyapunov (the brother of A. M.) in his sketch
of the life and activity of Lyapunov writes:

' ...in the hours of rest A. M. loved to give himself up to the delight of the beauty
of nature, loved and knew how. to plant and cultivate indoor and garden trees. Both
the Kharkov and later the Petersburg apartments were beautified by his own culti­
vated ficus and palms.'
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782 V. I. Smirnou

In 1908 Lyapunov took part in the Fourth International Mathematical Con­
gress in Rome. Even before this time he corresponded on scientific questions with
a number of foreign mathematicians. Among them were: Poincare, Picard, Korn
and Cosserat. At the congress he became personally acquainted with many mathe­
maticians. In 1909 Lyapunov took part in the publication of the collected works of
Euler. In particular, he was one of the editors of two mathematical volumes (18th
and 19th) which appeared after his death. This publication, carried out by the Swiss
Society for Natural Science, is far from being completed even at the present time.

The academic achievements of Lyapunov received wide recognition. He was
Honorary Member of the Petersburg, Kharkov and Kazan Universities, Foreign
Member of the Paris Academy, Honorary Member of the Kharkov Mathematical
Society and member of a number of other scientific societies.

At the end of June 1917, Lyapunov left with his wife for Odessa [17] where at
that time his brother Boris Mikhailovich lived. In the spring of 1918 N. R.
Lyapunova suffered worsening tuberculosis of the lungs, from which she had
suffered earlier, and towards the end of the year the illness took on an ominous
character. In September 1918 Lyapunov started in the New-Russian University the
reading of a special course On the form of celestial bodies devoted to the exposition
of his latest work. The introductory lectures of the course are included in the
present publication [i.e. in the Selected Works].

On 31 October 1918 N. R. Lyapunova died and, after a further three days on
3 November, A. M. Lyapunov died [18]. In a letter which he left he asked to be
buried in the same grave as his wife.

After the death of Lyapunov, a large manuscript of finished work was found in
which was given the proof of figures of equilibrium close to ellipsoidal in the case
of a non-homogeneous fluid. This manuscript was published in the Bicentenary
Jubilee of the Academy of Science (Sur certaines series de figures d'equilibre d'une
liquide heterogene en rotation 1925-1927).

Thus an outstanding scholar and a man rare in his personal qualities prema­
turely departed from life. His closest student V. A. Steklov, personally associated
with Lyapunov throughout thirty years, gives in his speech a clear characterization
of him as a man. We quote it in conclusion of this short sketch.

'Brought up from the beginning by his father, a colleague of N. I. Lobachevski at
Kazan University, then in the circle of personalities close to our physiologist I. M.
Sechenov, living out his youth amid a small enlightened part of our society at that
time whose outlook continued to be influenced by N. A. Dobrolyubov and N. G.
Chernyshevski, A. M. Lyapunov personified the best idealistic type for 60 years-at
the present time perhaps one not intelligible to everybody.

All the strength which he derived from that seriesof predecessors he devoted to the
selfless service of science, for which he lived, and in which alone he saw sense in life
and frequentlysaid that without scientific creativityeven life itself for him had nothing.

At the very beginning of his academic activity he worked day by day up to four
or five o'clock in the morning and frequently appeared at lectures (at Kharkov
University) not having slept the whole night.

He did not allow himself any entertainment and if he appeared occasionally (once
or twice a year) at the theatre or in a concert then it was for a very special reason, as,
for example, the rare concerts of his brother, the well-known composer S. M.
Lyapunov.

The circle of acquaintances of A. M. was extremely restricted and consisted of the
closest of his relativesand a small number of scholars, mainly mathematicians, as well
as a sparse group of colleagues, among whom A. M. Lyapunov became pre-eminent,
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Biography oj A. M. Lyapunov 783

especially in the Kharkov period of his life, to the highest degree in instructive
conversation on current scientific matters.

This is partly why he sometimes produced on people who knew him little the
impression of a taciturn gloomy closed man who was frequently so much preoccupied
with his scientific reflections that he looked but did not see and listened but did not
hear. In reality, however, the external dryness and severity of A. M. Lyapunov
concealed a man of great temperament with a sensitive and, it could be said, childlike
purity of spirit, a highly developed sense of honour and of inner dignity, which struck
everyone, even on casual acquaintance, as something impressive and unique.'

Such was the life of the great Russian scholar and of one of the clearest and best
representatives of Russian educated society at the end of the 19th and beginning of
the 20th centuries, Aleksandr Mikhailovich Lyapunov.

ACADEMICIAN V. I. SMIRNOV

Translator's notes on biography
[I] 7th June 1857 by modern calendar.
[2] Aleksei Nikolaevich Krylov (1863-1945). Outstanding marine engineer engaged both in

practical ship design and in theoretical studies. His work laid foundations for the theory
of ship motion. Not to be confused with N. N. Krylov of the Krylov-Bogolyubov
method for non-linear oscillations.

[3] Ivan Mikhailovich Sechenov (1829-1905), the 'Father of Russian physiology'. His
book: Reflexes oj the Brain influenced Pavlov.

[4] Lyapunov's father and grandfather were colleagues at Kazan University of N. I.
Lobachevski (1793-1856) famous for his work on non-euclidean geometry who was
rector of the University from 1827 to 1846. He worked on non-euclidean geometry from
1826 to 1855.

[5] Sergei Lyapunov is known especially for his piano studies and for his collection of
Russian folk music. He died in exile in Paris.

[6] Simbirsk is present-day Ulyanovsk situated on the Volga to the South of Kazan.
Bolobonovo is now renamed Pilna Raion, Gorki province.

[7] Pafnuti L'vovich Chebyshev (1821-1894). Known for his work in the theory of
numbers, probability theory, functional approximation, and the theory of mechanisms.

[8] Andrei Andreevich Markov (1856- 1922). Known for his work in the theory of numbers
and in probability theory. His collaboration with Lyapunov on the Central Limit
Theorem led on in 1909 to his theory of events in a chain, i.e. Markov chains.

[9] The problem of the stability of the ellipsoidal forms had been discussed three years
before in 1879 by Thomson and Tait and this attracted the attention of Poincare.
Chebyshev's acquaintance with the stability problem had, however, apparently origi­
nated many years previously from investigations by Liouville and others. (See S.
Chandrasekhar: Ellipsoidal Figures oj Equilibrium, Dover, 1969, p. 8.)

[10] Actually, the review in Bulletin Astronomique appeared in print the following year, 1885.
This was also the year of publication in Acta Mathematica of Poincare's major memoir
on rotating fluid masses where he proved stability of the ellipsoidal forms of MacLaurin
and Jacobi. Lyapunov had proved the same result in his thesis one year previously
although his proof remained inaccessible in Western Europe until its later publication in
French in 1904. In his memoir Poincare also claimed to have shown the existence of
'pear-shaped' forms of equilibrium which the ellipsoidal forms go over into at higher
angular speeds (cf. Chebyshev's problem). On this subject, though. he was mistaken as
Lyapunov was later to show.

[II] In 1884 Count Delyanov, State Secretary and Minister of Public Education, passed a
statute depriving universities of autonomy.

[12] Nikolai Egorovich Zhukovski (1847-1921), more familiar as 'Joukowsky' in the French
transliteration of his name. He wrote a doctoral thesis on stability and worked in
theoretical mechanics and machine control writing an influential textbook Theory oj
Regulation oj the Speed oj Machines in 1909. He is now mainly known for his later
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784 Biography of A. M. Lyapunov

pioneering work in aeronautics which earned for him the title of 'Father of Russian
aviation' and left his name associated with the Kutta-Joukowsky lift formula.

[13] Lyapunov made no further contribution to his stability theory after this date, his later
work on stability of rotating fluids being discussed by an energy criterion and the
calculus of variations. His stability theory first became applied to control through work
in the 1930s by Chetaev and Malkin at the Kazan Aviation Institute.

[14] For a modern statement of Lyapunov's result see e.g. B. V. Gnedenko: Theory of
Probability. Chelsea, 1962, Chapter 8.

[15) Lyapunov seems here to be referring to Poincare's Acta Mathematica paper. Poincare
had still not proved to Lyapunov's satisfaction the existence of the pear-shaped figures
of equilibrium.

[16] Although Lyapunov was primarily interested in its mathematical aspects, his work on
rotating fluids during his second St Petersburg period had important implications for
astronomy. At that time, G. H. Darwin in Cambridge was attempting to show how the
formation of satellites from rotating fluids could be explained by evolution from
Poincare's pear-shaped forms, this theory having particular application to the Earth­
Moon system. Lyapunov however showed that the pear-shaped forms were unstable and
so could have no physical existence. In his Adams Prize Essay of 1917, Jeans showed
how their instability follows from Darwin's own calculations (see R. E. Lyttleton: The
Stability of Rotating Fluid Masses, Cambridge University Press, 1953).

[17] When they left, St Petersburg (then renamed Petrograd) would have been in turmoil.
Following the formation of the Provisional Government and the Tsar's abdication,
Lenin had returned and was soon after in July to make a first attempt to seize power.

[18] Lyapunov shot himself. Apart from suffering his wife's death he was going blind from
cataract.

Translator's acknowledgment
Thanks are due to Mr R. Beerman of Glasgow University Department of Slavonic and

East European Studies who kindly advised on the translation and to Dr A. T. Fuller for his
friendly criticism and help.
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Bibliography of A. M. Lyapunov's work

J. F. BARRETTt

The following bibliography has been compiled from the extensive bibliography
in Russian given in Lyapunov's Selected Workst which lists, apart from Lya­
punov's own publications and reviews of them in journals, also publications of
other authors, either on Lyapunov's work, or on work related to Lyapunov's
interests. Since Lyapunov's major interest was the theory of rotating fluid masses,
most of the quoted references have also to do with this subject and are consequently
of specialized interest. For this reason, and for the sake of brevity, the present list
is confined to publications of Lyapunov himself. As such it is, to the translator's
knowledge, essentially complete (certain minor notes and comments having been
omitted). References to recent reprintings of Lyapunov's work have been added, as
have cross references to his Collected Works§ and Selected Works. In each of
Sections A, B, C and D below, the references are arranged in chronological order.

The abbreviations adopted for Russian journals are transliterations of those
used by Lukomskaya, and are as follows.

lzv. Akad. Nauk (Izvestiya Irnperatorskoi Akademii Nauk: Bulletin of the Imperial
Academy of Science)

lzv. Akad. Nauk po fis.-matem. otd. (Izvestiya Akademii Nauk S.S.S.R., otdelenie
fiziko-matematicheskikh nauk: Bulletin of the Academy of Science of U.S.S.R.,
physico-mathematical section)

Matem. sb. (Matematicheskii sbornik: Mathematical Collection, issued by Moscow
Mathematical Society)

Protok, zased.fiz.onatem. otd. Akad. Nauk (Protokoly zasedanii fiziko-matematicheskogo
otdeleniya Akademii Nauk: Minutes of sessions of the physico-mathematical section
of the Academy of Science)

Protok . zased. Obshch. sobr. Akad. Nauk (Protokoly zasedanii Obshchego sobranniya
Akademii Nauk: Minutes of sessions of general meetings of the Academy of Science)

Soobshch. i protok, zased. Matern. obshch. pri Khar'k. unio. (Soobshcheniya i protokoly
zasedanii Matematicheskogo obshchestva pri Khar'kovskom universitete: Communi­
cations and minutes of the Mathematical Society at Kharkov University)

Soobshch. Khar'k. matem. obshch. (Soobshcheniya Khar'kovskogo matematicheskogo
obshchestva: Communications of the Kharkov Mathematical Society)

Tr. a/d. fiz. nauk Obshch. lyubit. estesttozn. (Trudy Otdeleniya fizicheskikh nauk
Obshchestva Iyubitelei estestvoznaniya, antropologii i etnografii: Works of the physics
section of the Society of Amateurs of Natural Science, Anthropology and Ethnogra­
phy, Moscow)

t Southampton, U.K.
t A. M. Lyapunov: lzbrannye Trudy (Leningrad, 1948) edited by V. I. Smimov (see

Reference 6 of Section D below). The bibliography was originally compiled by Lukomskaya,
who subsequently published a further version: Lukomskaya, A. M. Aleksandr Mikhailouich
Lyapunov: Bibliografia (Moscow: Izdat. Akad. Nauk S.S.S.R., 1953, 268 pp. In Russian).

§ Akademik A. M. Lyapunov: Sobranie Sochinenii (Moscow, Leningrad: Izdat. Akad.
Nauk S.S.S.R., 1954- 1965).

0020-7179/92 $3.00 © 1992 Taylor & Francis Ltd
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786 J. F. Barrett

Zap. Akad. Nauk po fiz.-matem. otd. (Zapiski Imperatorskoi Akademii Nauk, po
fiziko-matematicheskomy otdeleniyu: Memoirs of the Imperial Academy of Science,
physico-mathematical section)

Zap. Khar'k. univ. (Zapiski Imperatorskogo Khar'kovskogo universiteta: Memoirs of the
Imperial University of Kharkov)

Zhurn. Russk. fizskhim. obshch. (Zhurnal Russkogo fiziko-khimicheskogo obshchestva
pri Imperatorskogo St-Petersburgskogo universitete: Journal of the Russian Physico­
Chemical Society at the Imperial St-Petersburg University)

In addition, Lyapunov's Collected Works and Selected Works willbe abbreviated as follows:
Coli. Works (Akademik A. M. Lyapunov: Sobranie Sochinenii)
Set. Works (A. M. Lyapunov: Izbrannye Trudy)

A. Scientific works
[I] On the equilibrium of a heavy body in a heavy fluid contained in a vessel of a certain

form. Candidate's dissertation, University of St Petersburg, 1881. Zhurn. Russk. fiz.­
khim. obshch., 13 (1881) issue 5, fizich. otd., 197-238, issue 6, 273-307 (in Russian);
Coli. Works, I, 191 (in Russian).

[2] On the potential of hydrostatic pressure. Zhurn. Russk. fiz.-khim. obshch., 13 (1881)
issue 8, fizich. otd., 249-376 (in Russian).

[3] On the stability ofellipsoidal forms ofequilibrium of rotating fluids. Master's dissertation,
University of St Petersburg, 1884 (in Russian). Republished in French in 1904.

[4] Some generalizations of the formula of Lejeune- Dirichlet for the potential function of
an ellipsoid at an internal point. Soobshch. i protok. zased. Matern. obshch. pri Khar'k,
univ., 2 (1885) 120-130 (in Russian); Coli. Works, I, 19 (in Russian).

[5] On the body of greatest potential. Soobshch. i protok. zased. Matern. obshch. pri Khar'k,
univ., 2 (1886) 63-73 (in Russian); Coli. Works, I, 26 (in Russian).

[6) On the spiral motion of a rigid body in a fluid. Soobshch. Khar'k. matem. obshch., I
(1888) 7-60 (in Russian); Coli. Works, I, 276 (in Russian).

[7) On the stability of motion in a special case of the problem of three bodies. Soobshch.
Khar'k. mate/no obshch., 2 (1889) Nos I & 2, 1-94 (in Russian); Coli. Works, I, 327 (in
Russian).

[8) Tile general problem of the stability of motion. Doctoral dissertation, University of
Kharkov, 1892. Published by Kharkov Mathematical Society, 250 pp. (in Russian);
Coli. Works, II, 7 (in Russian); chap. I is in Sel. Works, 7. Republished in French in
1908 and in Russian in 1935.

[9] On a question of the stability of motion. Zap. Khar'k, univ. (1893) No. 1,99-104 (in
Russian); Coli. Works, II, 267 (in Russian). (Addition to 1892 doctoral dissertation.)
Republished with corrections in Soobshch. Khar'k, matem. obshch., 3 (1893) No.6,
265-272. Republished in the 1935 Russian edition of the 1892 dissertation.

[10] Investigation of one of the singular cases of the problem of stability of motion. Matern.
sb .. 17 (1893) issue 2, 253-333 (in Russian). Republished in the 1935 Russian edition of
the 1892 dissertation, and also in the 1963 reprint and its 1966 English translation.

[II) New case of integrability of the differential equations of motion of a rigid body in a
fluid. Soobshch. Khar'k, matem. obshch., 4 (1893) Nos I & 2, 81-85 (in Russian); Coli.
Works, I, 320 (in Russian).

[12) On a property of the differential equations of the problem of the motion of a heavy rigid
body having a fixed point. Soobshch. Khar'k, matem. obshch., 4 (1894) No.3, 123-140
(in Russian); Coli. Works, 1,402 (in Russian).

[13) Some remarks concerning the article of G. G. Applerot: 'On a paragraph of the
first memoir of S. V. Kovalevskaya "On the problem of rotation of a body about a
fixed point" Soobshch, Khar'k, matem. obshch., 4 (1895) Nos 5 & 6, 292-297 (in
Russian).

[14) On the series proposed by Hill for the representation of the motion of the moon. Tr.
Otd. fiz. nauk Obshch. lyubit. estestvozn., 8 (1896) issue I, 1-23 (in Russian); Coli.
Works, I, 418 (in Russian).

[15] On a question concerning linear differential equations of the second order with periodic
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coefficients. Soobshch. Khar'k . matem. obshch., 5 (1896) Nos 3-6, 190-254 (in Russian);
Coli. Works, II, 332 (in Russian).

[16] On a series relating to the theory of linear differential equations with periodic coefficients.
Comptes rendus Acad. Sci. Paris, 123 (1896) 1248-1252 (in French); Coli. Works, H, 387
(in Russian).

[17] On the instability of equilibrium in certain cases where the function of forces is not a
maximum. J. de Math. pures appl., 3 (1897) 81-94 (in French); republished in Russian
(1935); Coli. Works, n, 391 (in Russian).

[18] On the potential of the double layer. Comptes rendus Acad. Sci. Paris, 125(1897) 694-696
(in French); also in l'Eclairage electrique 13 (1897) 423-424 (in French); Coli. Works,
I, 33 (in Russian).

[19] On the potential of the double layer. Soobshch. Khar'k. matem. obshch., 6 (1897) Nos
2 & 3, 129-138 (in Russian); Coli. Works, I, 36 (in Russian).

[20] On certain questions relating to the problem of Dirichlet. Comptes rendus Acad. Sci.
Paris, 125 (1897) 803-810 (ill French); Coli. Works, I, 45 (in Russian).

[21] On certain questions relating to the problem of Dirichlet. J. de Math. pures appt. 4 ( 1898)
241-311 (in French); Coli. Works, I, 48 (in Russian); Set. Works, 97 (in Russian).

[22] On a linear differential equation of the second order. Comptes rendus Acad. Sci. Paris,
128 (1899) 910-913 (in French); Coli. Works, Il, 401 (in Russian).

[23] On a transcendental equation and linear differential equations of the second order with
periodic coefficients. Comptes rendus Acad. Sci. Paris, 128 (1899) 1085-1088 (in French);
Coli. Works, Il, 404 (in Russian).

[24] On a proposition of the theory of probabilities. Izv. Akad. Nauk ;8 (1900) No.4, 359-386
(in French); Coli. Works, I, 125 (in Russian); Se!. Works, 179 (in Russian).

[25] On a series relating to the theory of a linear differential equation of the second order.
Comptes rendus Acad. Sci. Paris, 131 (1900) 1185-1188 (in French); Coli. Works, H, 407
(in Russian).

[26] Reply to P. A. Nekrasov. Zap. Khar'k. univ. (1901) No.3. 51-63 (in Russian).
[27] On a theorem of the calculus of probabilities. Comptes rendus Acad. Sci. Paris. 132 (1901)

126-128 (in French); Coli. Works, 1,152 (in Russian).
[28] A general proposition of the calculus of probabilities. Comptes rendus Acad. Sci. Paris,

132 (1901) 814-815 (in French); Coli. Works, I, 155 (in Russian).
[29] New form of the theorem on the limit of probability. Zap. Akad. Nauk po jiz.-matem.

otd., 12 (1901) No.5, 1-24 (in French); Coli. Works, I, 157 (in Russian); set. Works,
219 (in Russian).

[30] On a series encountered in the theory of linear differential equations of the second order
with periodic coefficients. Zap. Akad. Nauk po jiz.-matem. otd., 13 (1902) No.2. 1-70
(in French); Coli. Works, Il, 410 (in Russian).

[31] On the fundamental principle of the method of Neumann in the problem of Dirichlet.
Soobshch. Khar'k. matem. obshch., 7 (1902) Nos 4 & 5, 229-252 (in French); Coli. Works,
I, 101 (in Russian).

[32] Researches in the theory of the form of celestial bodies. Zap. Akad. Nauk po jiz.-malem.
otd., 14 (1903) No.7, 1-37 (in French); Coli. Works, Ill, 114 (in Russian); Set. Works,
251 (in Russian).

[33] On the equation of Clairaut and the more general equations of the theory of the form
of the planets (in French). Zap. Akad. Nauk po fizsmatem. otd., 15 (1904) No. 10, 1-66;
Coli. Works, III, 147 (in Russian).

[34] On the stability of ellipsoidal forms of equilibrium of rotating fluids (in French). Ann.
de la Fac. des Sci. de PUnt», de Toulouse, 6 (1904) 5-116 (French translation of 1884
master's dissertation.)

[35] On a problem of Chebyshev (in French). Zap. Akad. Nauk pojiz.-malem. otd., 17 (1905)
No.3, 1-32; Coli. Works, Ill, 207 (in Russian).

[36] On the Figures of Equilibrium Slightly Different from Ellipsoidsfor a Homogeneous Liquid
Mass Given a Motion of Rotation. Part I: General Study of the Problem. (St Petersburg:
Academy of Science, 1906), 225 pp. (in French); Coli. Works. IV. 9 (in Russian).
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[20] Dimitri Konstantinovich Bobylev-obituary (with list of publications.) Izv. Akad. Nauk,
11 (1917) No.5, 301-306.
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