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Lyapunov and other
spectra: a survey∗

Luca Dieci† and Erik S. Van Vleck‡

1 Introduction
Motivated by the basic problem of studying stability of nonautonomous linear sys-
tems, different definitions of spectra have been proposed over the years. We review
some of these definitions, paying particular attention to how the spectra may be
computed. Since the spectra are given by intervals of the real line, one would like
to compute the endpoints of these intervals. As it turns out, these endpoints may
coincide with the Lyapunov exponents (LEs) of the system. For this reason, we will
review computational methods which have been used to approximate the LEs.

2 Lyapunov Exponents & Spectra

Ever since the seminal thesis of Lyapunov more than one century ago (reprinted in
English in [20]), one of the most prolific and challenging areas of research in dynam-
ical systems has been to unravel the stability structure of the linear nonautonomous
system

ẋ = A(t)x , 0 ≤ t . (1)

Henceforth, we assume that A : t→ IRn×n is a continuous and bounded function.
In many situations of practical interest (1) is the linear variational equation about
a trajectory of a nonlinear system.

Our purpose in this survey is twofold; (i) to review some of the different
definitions of spectra that have been used to study (1), and (ii) to explain how
numerical methods may be devised in order to approximate the spectra. Unlike
its analytical counterpart, numerical work on the subject is of much more recent

∗This work was supported in part under NSF Grants DMS-9973226 and DMS-9973393.
†School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332

(dieci@math.gatech.edu).
‡Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden,

Colorado 80401 (evanvlec@mines.edu).

1



rev final
2001/12/7
page 2

✐

✐

✐

✐

✐

✐

✐

✐

2

vintage. To date, the only techniques that have been studied to any degree of
sophistication are based on analogs of tried and true linear algebra techniques,
and heavily rely on orthogonal (time dependent) transformations to approximate
the LEs of (1). For these techniques, some sufficient conditions can be given that
clarify when the numerical methods may give the appropriate spectral information.
Perhaps new methods lie ahead that will prove valuable in investigating the stability
of (1).

2.1 Preamble

In the autonomous case (A constant), the solution operator is eAt and the stability
problem for (1) is conceptually trivial. A Jordan form of A, V −1AV = J , gives the
entire shading of growth and decay factors, and the generalized eigenvectors (i.e.,
the columns of V ) characterize the initial conditions x0 that lead to the possible
asymptotic behaviors. But in the nonautonomous case, the eigenstructure of A
provides no reliable information as the following example of Coppel [8] shows.

Example 2.1. Take

A(t) = U−1(t)A0U(t) , A0 =
(−1 −5

0 −1

)
, U(t) =

(
cos(t) sin(t)
− sin(t) cos(t)

)
.

The eigenvalues of A(t) are −1 and −1 for all t, but a matrix solution is(
et(cos(t) + sin(t)/2) e−3t(cos(t)− sin(t)/2)
et(sin(t)− cos(t)/2) e−3t(sin(t) + cos(t)/2)

)
,

so that any nonzero vector x0 �=
(

0
α

)
leads to a solution with exponential growth.

In Example 2.1, A(·) is periodic of period 2π, and it is well known that if A(·)
is periodic in t then Floquet theory can be used to reduces the problem to a constant
coefficient problem. Recall that a Lyapunov transformation T is a linear change of
variables y = T−1x, such that Ṫ , T , and T−1, are all bounded. All systems (1) that
can be reduced by a Lyapunov transformation to a constant coefficient problem
ẏ = By, B constant (real or complex valued), allow for a trivial characterization of
the asymptotic behavior of solutions of (1), and the spectrum is given by a set of
n numbers, namely the real parts of the eigenvalues of B. General nonautonomous
problems are another matter.

Example 2.2. Consider the scalar problem

ẋ = (sin(ln(t)) + cos(ln(t)))x , 0 < t0 ≤ t . (2)

Observe that the coefficient in (2) assumes all values in [−√2,
√

2], while the exact
solution is x(t) = κ(t0)exp(t sin(ln(t))), where κ(t0) = x(t0)exp(−t0 sin(ln(t0))).
Therefore, we may want to consider [−1, 1] to be the spectrum, since all the growth
factors in this interval, and only these, are attained infinitely often.
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Various attempts have been made to characterize growth behavior of the so-
lutions of (1), some of them trying to work only with the function A (which is
desirable, since we can think of A as known), in the past century. We refer to
the delightful monograph [2], which we have used extensively for the background
section on Lyapunov Exponents (LEs) in this survey.

Remark 2.3. A favorite tool in the numerical analysis community (e.g., see [33])
is the logarithmic norm of A, which is not actually a norm, but it depends on a
matrix norm:

t→ µ(A(t)) := lim
h→0+

‖I + hA(t)‖ − 1
h

.

For example, if the 2-norm is used, then µ2(A(t)) is the largest eigenvalue of the
symmetric part of A(t). Although the logarithmic norm of A has proven to be a
useful tool in many numerical studies (especially on contractive problems), it does
not seem useful in the context under examination here, because: (i) µ(A(t)) depends
on the norm, while the asymptotic behavior of solutions of (1) does not, (ii) it
only gives one growth factor, not the entire shading, and (iii) in general, it is not
invariant under a Lyapunov change of variables y ← T−1x, whereas the asymptotic
behavior of solutions is.

2.2 The Theory of Lyapunov Exponents

Consider the scalar differential equation

ẋ = a(t)x , t ≥ 0 , (3)

where the function a : t ≥ 0 → IC is bounded and continuous. Let x(t, x0) with
x(0, x0) = x0 �= 0 be the solution. To characterize the asymptotic behavior of x, we
define the Lyapunov (or characteristic) exponents:

λs(x) = lim sup
t→∞

1
t

ln |x(t)| , λi(x) = lim inf
t→∞

1
t

ln |x(t)| . (4)

These LEs are called upper and lower exponents, respectively. Notice that for all
t, |x(t)| = exp(ln(|x(t)|)), so that λs(x) and λi(x) measure the endpoints of the
interval of asymptotic growth factors of |x|. Since a is bounded, these endpoints
are finite. If x is a vector valued function, then λs(x) = λs(||x||), and similarly for
λi(x), where the vector norm is the Euclidean norm1. Further, the values of λs(x),
and λi(x) are independent of the initial condition x0 �= 0. Finally, observe that the
Lyapunov exponents are unaffected by the behavior of x on a finite interval, and
we could replace t ≥ 0 with t ≥ T for any other (finite) value T .

Example 2.4. To illustrate, we have λs,i((t+ 1)m) = 0 for all m, and λs,i(eαt) =
�(α) for all α ∈ IC. On the other hand, in Example 2.2: λs(exp(t sin(ln(t))) = 1,

1Note that the values λs(x) and λi(x) are independent of the vector norm
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and λi(exp(t sin(ln(t))) = −1. Finally, from properties of the lim sup and lim inf,
we have

λi(x) ≤ λs(x) , λs(x) = −λi(1/x) , λi(x) = −λs(1/x) . (5)

Based on (4), we define the Lyapunov spectrum of (3) to be the interval
[λi(x), λs(x)]. If this spectrum reduces to a single point, we say that the solution x
(or the coefficient a) is regular. Example 2.2 is not regular.

Next consider (1), and a fundamental matrix solution X . As above, we have
upper/lower LEs for any solution Xx0. In particular, the following are well defined:

λs(Xej) and λi(Xej) , j = 1, . . . , n , (6)

where the ej’s are the standard unit vectors. Since it is always possible to permute
the columns of X to achieve it, we henceforth assume that

λs(Xe1) ≥ . . . ≥ λs(Xen) .

Consider these λs(Xej), j = 1, . . . , n. When
n∑

j=1

λs(Xej) is minimized with respect

to all possible fundamental matrix solutions, then Lyapunov called the λs(Xej)
characteristic exponents, and the corresponding matrix solution a normal basis. We
henceforth refer to these as the upper Lyapunov exponents, and write simply
λs

j . Lyapunov showed that a normal basis X always exists and how to construct it
from any other matrix solution Z.

Theorem 2.5. ([20]) Let a matrix solution Z be given such that λs(Ze1) ≥ . . . ≥
λs(Zen). Then, there exists a (constant) unit upper triangular matrix C such that
X(·) = Z(·)C is normal.

Because of Theorem 2.5, we can assume we have a normal matrix solution
such that the upper LEs are ordered:

λs
1 ≥ λs

2 ≥ . . . ≥ λs
n .

In a similar way, we may define the lower LEs. Alternatively, consider the adjoint
system

ż(t) = −AT (t)z(t) , (7)

and let {−µs
j}nj=1 be the (ordered) upper LEs for (7): −µs

1 ≤ −µs
2 ≤ . . . ≤ −µs

n. It
is not hard to show that if X is a normal basis for (1), then X−T is a normal basis
for (7). As a consequence of this and of (5) we have

λi
j = −µs

j , j = 1, . . . , n .

Definition 2.6. The Lyapunov spectrum ΣL for the linear system (1) is

ΣL :=
n⋃

j=1

[λi
j , λ

s
j ] . (8)
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If λi
j = λs

j , for all j = 1, . . . , n, then the system is called regular2, and we
simply write λj for the LEs, j = 1, . . . , n. Of course, all systems reducible3 to
constant coefficients are regular.

Example 2.7. A nonregular system (cf. Example 2.2) due to Lyapunov:

ẋ = (sin(ln(t+ 1)) + cos(ln(t+ 1))y, x(0) = x0,
ẏ = (sin(ln(t+ 1)) + cos(ln(t+ 1)))x, y(0) = y0,

(9)

with solution(
x(t)
y(t)

)
=

(
cosh(s(t)) sinh(s(t))
sinh(s(t)) cosh(s(t))

) (
x0

y0

)
, s(t) = (t+ 1) sin(ln(t+ 1)) .

Thus, the Lyapunov spectrum is the interval [−1, 1].

It is easier to work with regular systems since there is no extra difficulty caused
by having to monitor lim inf and lim sup. Not surprisingly, most numerical works on
approximation of LEs assume that the system under study is regular. The reason
resides in the following result, due to Lyapunov,

Theorem 2.8. The system:

Ṙ = B(t)R , with B bounded, continuous, and upper triangular , (10)

is regular if and only if the limits

lim
t→∞

1
t

∫ t

0

Bjj(s)ds , j = 1, . . . , n, (11)

exist, in which case they coincide with the λj , j = 1, . . . , n.

and the following fact:

Fact 2.9. There always exists a Lyapunov transformation to an upper triangular
form. Moreover, this transformation can be chosen to be orthogonal.

Fact 2.9 has been known for a long time, see [15, 29]. A constructive veri-
fication goes as follows. For all t, we want to write X(t) = Q(t)R(t) where Q is
orthogonal and R is upper triangular. At any given t, say t = 0, we orthogonalize
the columns of X(0). Next, we use the Implicit Function Theorem. Differentiating
X = QR, we obtain

AQR = QṘ+ Q̇R or Q̇ = AQ−QB , B := QTAQ−QT Q̇ .

2the original definition of regularity due to Lyapunov is different than, but equivalent to, the
one we have given, which is due to Perron

3regularity is preserved by Lyapunov transformations
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Since we need Q orthogonal and B upper triangular, by letting S(Q) := QT Q̇ =
QTAQ− B, then we define the strict lower triangular part of the skew symmetric
function S as the corresponding piece ofQTAQ and the rest of S by skew-symmetry:

S(Q)ij =




(QTAQ)ij , i > j,
0, i = j,
−(QTAQ)ji, i < j,

.

Since R is invertible (X is full rank), the process is well posed and proves the claim.
Because of this, we can always assume that

Fact 2.10. A fundamental matrix solution X can be taken to be normal and upper
triangular.

To verify Fact 2.10, we reason as follows. Let X be a fundamental matrix
solution, which we assume has ordered upper (and lower) LEs: λs

1 ≥ λs
2 ≥ . . . ≥ λs

n.
By Theorem 2.5, we can consider X to be normal. The orthogonal change of
variables QTX → R therefore gives a normal, upper triangular, fundamental matrix
solution, since ‖X(t)ej‖ = ‖QT (t)X(t)ej‖, j = 1, . . . , n.

Remark 2.11. In general, Fact 2.9 can be extended to only p columns (with p < n)
of a matrix solution X. In this case, Q : t→ IRn×p is orthonormal (QTQ = Ip for
all t) and satisfies

Q̇ = AQ−Q[QTAQ− S(Q)] , (12)

where S(Q) takes values in IRp×p. If p = n, (12) reduces to Q̇ = QS(Q).

The above considerations lead to the following algorithm.

Algorithm 2.12 (Computing LEs for a regular system).

• Given ẋ = A(t)x, integrate the Q–equation and perform the change of vari-
ables R← QTX so that

B(t) := QT (t)A(t)Q(t) −QT Q̇

is upper triangular. Then, approximate the LEs at any time T , from a quadra-
ture rule on the integral in (11).

Remark 2.13. It must be stressed that X does not need to be known (nor found)
in order to obtain the transformed triangular function B. It is sufficient to find Q
by integrating (12).

Algorithm 2.12 is a sensible strategy, but, in spite of its appeal, regularity is
not the most natural property to assume if we are interested in computing the LEs.
Rather, we require that the spectrum be stable with respect to perturbations. We
now discuss this aspect by restricting focus on the upper Lyapunov exponents. By
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working with the adjoint system, all results have an immediate analog for the lower
exponents, and hence for ΣL.

Stability of the LEs is tantamount to continuity with respect to perturbations
in the function of coefficients. Formally, we have the following definition.

Definition 2.14. The upper LEs, λs
1 ≥ λs

2 ≥ . . . ≥ λs
n, are stable if for any ε > 0

there exists a δ = δ(ε) > 0 such that supt∈IR+ ‖E(t)‖ < δ implies

|λs
j − νs

j | < ε , j = 1, . . . , n,

where the νs
j ’s are the (ordered) upper LEs of the differential equation ẋ = [A(t) +

E(t)]x.

It is relatively straightforward to show that stability of the upper (and lower)
LEs is invariant under Lyapunov transformation, such us an orthogonal change
of variables. Because of Fact 2.9, it is thus reasonable to approximate the LEs
after triangularization of the system. But if the system is not regular, can one
approximate the LEs from the diagonal of the transformed system? Can we do it
if the LEs are stable? Should we expect the LEs to be stable?

First of all, it is well known that the LEs are not stable in general; see the many
examples in [2] for what can go wrong. Indeed, for many years, mathematicians
tried to characterize the linear systems with stable upper LEs as thoroughly as
possible. Major contributions bear the names of Perron, Lipschitz, Bylov, Vinograd,
Millionshchikov, Grobman, Malkin, and several others. Eventually, from the mid
’60s to the mid ’70s (and beyond) the problem was resolved, chiefly thanks to the
contributions of Bylov, Izobov, and Millionshchikov (see references at the end). The
key assumption is integral separation.

Definition 2.15. A fundamental solution X is said to be integrally separated if
for j = 1, . . . , n− 1, there exist a > 0 and d > 0 such that

‖X(t)ej‖
‖X(s)ej‖ ·

||X(s)ej+1‖
‖X(t)ej+1‖ ≥ de

a(t−s) ,

for all t, s with t ≥ s. The columns of an integrally separated fundamental solution
are said to be integrally separated.

Below, we collect a number of consequences of integral separation: 1. to 3.
can be found in the cited works of Millionshchikov or in [2], 4. is in [13], and 5. is
in [27] (but see [21]).

1. Integral separation is invariant under Lyapunov transformations.

2. Integrally separated systems have distinct upper LEs: λs
1 > . . . > λs

n. Simi-
larly, for the lower LEs.

3. Distinct upper LEs λs
1 > . . . > λs

n are stable if and only if there exists a
fundamental matrix solution with integrally separated columns.
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4. If a system has a matrix solution with integrally separated columns, then so
does the adjoint. As a consequence, the lower LEs are also stable.

5. Consider the Banach space B of continuous bounded matrix valued functions
A, with norm ‖A‖ = sup

t≥0
‖A(t)‖. Then, the systems with integral separation

form an open and dense subset of B. That is, integral separation is a generic
property in B.

As a consequence of 1., 3., 4., and 5. above, and within the class of systems
in 5., we have the following result.

Theorem 2.16. Generically, the Lyapunov spectrum (8) is stable.

In light of Theorem 2.16, it is natural to assume that we have to deal with
integrally separated fundamental matrix solutions. Because of Fact 2.10, we can
thus restrict consideration to a fundamental matrix solution that is normal, upper
triangular, and (generically) integrally separated. At this point, if the system is
regular, we can use Algorithm 2.12 to approximate the LEs. So, once again, we
must address the following questions.

(i) Is regularity sufficient for stability? Is regularity generic?

(ii) If the system is not regular, but the LEs are stable, can we approximate the
LEs from the diagonal of the transformed system?

In general, the answers to these questions are: (i): No, and (ii): “Yes”. The
following example, modeled after one in [2], shows that regularity does not ensure
stability of the LEs.

Example 2.17. Take the system with diagonal matrix valued function of coeffi-
cients

A(t) =
(

1− π
2 sin(π

√
t) 0

0 0

)
.

A normal matrix solution is

X(t) =
(
t− 1

π sin(π
√
t) +
√
t cos(π

√
t) 0

0 1

)
.

The system is regular with distinct LEs λ1 = 1, λ2 = 0. However, the LEs are not
stable, since X is not integrally separated.

Remark 2.18. Unlike integral separation, regularity is not a generic property for
linear systems. Still, regular systems are prevalent in a certain measure theoretic
sense, see the work [23] and [26]. For example, the work [26] implies that if (1)
comes from linearization of a trajectory of a nonlinear system, and the orbit through
the initial condition x0 generates an ergodic measure, then the LEs exist as limits
(and the system is regular) and they are the same for almost every x0 with respect to
the ergodic measure. This is a very remarkable fact, but we cannot see that it implies
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that the LEs are stable: for this to occur, integral separation remains necessary and
sufficient.

The answer to the above question (ii) is the content of the following result,
which is in [13].

Theorem 2.19. Let the triangular system Ṙ = BR, with B bounded and con-
tinuous, have an integrally separated, and triangular, fundamental matrix solution
R, and let λs

j, j = 1, . . . , n, be the ordered upper LEs of the system. Then for
any given ε > 0 and any j = 1, . . . , n, there exists a permutation π such that
|λs

π(j) − lim supt→∞
1
t

∫ t

0 Bjj(s)ds| < ε.

In other words, for an upper triangular, integrally separated system, and hence
a system with stable LEs, the upper (and lower) LEs can be in principle recovered
to arbitrary accuracy from the diagonal entries. The caveat is that the diagonal
system Ḋ = diag(B)D does not necessarily have stable LEs. For this to be the case,
we need the diagonal system itself to be integrally separated, a condition that can
be rephrased in terms of the functions Bjj , j = 1, . . . , n.

Definition 2.20. The functions Bjj , i = 1, . . . , n, are integrally separated if for
j = 1, . . . , n− 1, there exist a > 0 and d ∈ IR such that∫ t

s

(Bj,j(τ) −Bj+1,j+1(τ))dτ ≥ a(t− s)− d, t ≥ s .

This definition, and Theorem 2.19, suggest the following alternative to the
Lyapunov spectrum (see [13]).

Definition 2.21. For an upper triangular system Ṙ = BR, with B bounded and
continuous, the computed Lyapunov spectrum ΣCL is

ΣCL :=
n⋃

j=1

[λi
jj , λ

s
jj ] , where for j = 1, . . . , n :

λi
jj = lim inf

t→∞
1
t

∫ t

0

Bjj(s)ds , λs
jj = lim sup

t→∞
1
t

∫ t

0

Bjj(s)ds .

Clearly, ΣCL ⊆ ΣL. The following result gives a condition for these spectra to
coincide.

Theorem 2.22. If the diagonal of the upper triangular system Ṙ = BR is integrally
separated, then ΣL = ΣCL, and it is stable.

Proof. A proof is in [13]. We only remark that the assumption allows the construc-
tion of a Lyapunov transformation that reduces Ṙ = BR to the diagonal system
Ṡ = diag(B)S.



rev final
2001/12/7
page 10

✐

✐

✐

✐

✐

✐

✐

✐

10

The relevance of Theorem 2.22 is that the condition of integral separation
of the diagonal of B is –in principle– verifiable without explicit knowledge of the
matrix solution (see Remark 2.13), while the condition of integral separation of
a fundamental matrix solution apparently requires the matrix solution itself. To
verify integral separation of the diagonal of B, we may use a construction based on
so-called Steklov functions. Recall that given a function f , and positive H > 0, the
Steklov function fH is defined by averaging: fH(t) = 1

H

∫ t+H

t f(τ)dτ . A proof of
the next theorem is in [2].

Theorem 2.23. Two functions f1 and f2 are integrally separated if and only if
there exists H > 0 such that their Steklov difference is positive. That is, with

fH
1 (t)− fH

2 (t) ≡ 1
H

∫ t+H

t

(f1(τ)− f2(τ))dτ , (13)

then, for H sufficiently large, fH
1 (t)− fH

2 (t) ≥ a > 0, for all t ≥ 0.

2.3 Other spectra

An alternative concept of spectrum to the ones previously presented is due to Sacker
and Sell, see [32]. It is based on the concept of exponential dichotomy.

Definition 2.24. The fundamental matrix solution X admits an exponential di-
chotomy if there exist a projection P and constants α, β > 0, and K,L ≥ 1, such
that

‖X(t)PX−1(s)‖ ≤ Ke−α(t−s), t ≥ s,
‖X(t)(I − P )X−1(s)‖ ≤ Leβ(t−s), t ≤ s. (14)

Definition 2.25. The exponential dichotomy, or Sacker & Sell, spectrum
ΣED is given by those values λ ∈ IR such that the shifted system ẋλ = [A(t) −
λI]xλ does not have exponential dichotomy. The complement of ΣED is called the
resolvent set.

Sacker and Sell proved that ΣED is given by the union of at most n closed
intervals:

ΣED := [a1, b1] ∪ · · · ∪ [ak, bk], (k ≤ n) ,

and they further proved that ΣED is stable (see [32, pp. 342-346]): “∀ε > 0, if ρ is
in the resolvent of ẋ = (A − λI)x, then there exists δ such that if ‖A − C‖∞ < δ,
then ρ is in the resolvent of ẋ = (C − λI)x.”

Exponential dichotomy plays a fundamental role in many studies in dynamical
systems and has been a widely used assumption also in many numerical works of
recent vintage. For example, shadowing results all need –in one form or another–
exponential dichotomy; see [28] and [30]. Obviously, if 0 /∈ ΣED then the system has
exponential dichotomy, and thus being able to approximate ΣED is of considerable
interest. It is natural to inquire whether or not the end points of the ΣED–intervals
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coincide with the upper/lower LEs. Although some results in [32] suggest that the
end-points of the intervals in ΣED are often given by the upper/lower LEs, in general
we only know that

ΣL ⊆ ΣED .

This makes it tricky to compute ΣED, since the endpoints of the intervals in ΣED

must come about from something else than mere growth behavior of the solutions.
The difficulty is caused by the request for uniformity (for all t ≥ s) in Definitions
2.25 and 2.24. The following example illustrates some of these aspects.

Example 2.26. Consider the scalar problem of Example 2.2: ẋ = c(t)x, t ≥ t0 >
0, with c(t) = (sin(ln(t)) + cos(ln(t))) and solution x(t) = κ(t0)exp(t sin(ln(t))),
where κ(t0) = x(t0)exp(−t0 sin(ln(t0))). Clearly, the function c takes all values in
[−√2,

√
2], while ΣCL = ΣL = [−1,+1], and ΣL is stable. We now verify that

ΣED = [−√2,
√

2]. Thus, we show an explicit connection between ΣED and the
coefficient c of the differential equation.

First take λ > 1, so that having an exponential dichotomy means that for all
t and s with t ≥ s ≥ t0, there are K ≥ 1 and α > 0 such that

e−λ(t−s)e

∫
t

s
c(r)dr = xλ(t)x−1

λ (s) ≤ Ke−α(t−s).

But this is equivalent to

eλt

eλs

e

∫
s

t0
cdτ

e

∫
t

t0
cdτ
≥ 1
K
eα(t−s) ,

which is equivalent to requiring that the following system be integrally separated:

Ẋ =
(
λ 0
0 c(t)

)
X . (15)

The latter condition (recall Definition 2.20) is equivalent to the existence of a > 0
and d ∈ IR such that, for all t ≥ s ≥ t0,

λ(t− s)− (t sin(ln(t)) − s sin(ln(s))) ≥ a(t− s)− d .

Now, consider the following sequences for t and s,

tk = exp(2kπ + τ + h) , sk = exp(2kπ + τ) .

The requirement for integral separation can be rewritten as

0 < a(eh − 1) ≤ λ(eh − 1)− (eh sin(τ + h)− sin(τ)) + de−2kπ .

Taking h > 0 small, and setting τ = π/4− h/2, so that

eh − 1 = h(1 + h/2 + h2/6 + . . . ) ,
eh sin(τ + h)− sin(τ) =

√
2h(1 + h/2 + h2/16 + . . . ) ,



rev final
2001/12/7
page 12

✐

✐

✐

✐

✐

✐

✐

✐

12

we should find a > 0 and d ∈ IR such that

0 < ah(1 + h/2 + h2/6 + . . . ) ≤ λh(1 + h/2 + h2/6 + . . . )
−√2h(1 + h/2 + h2/16 + . . . ) + de−2kπ .

Taking 1 < λ <
√

2, h sufficiently small, and k sufficiently large, so that

λh(1 + h/2 + h2/6 + . . . )−
√

2h(1 + h/2 + h2/16 + . . . ) + de−2kπ < 0 ,

shows that such an a > 0 cannot exist. On the other hand, from

e−λ(t−s)e

∫ t

s
c(r)dr ≤ e−λ(t−s)e

√
2(t−s) ,

it follows that if λ >
√

2 then the system has an exponential dichotomy. The
arguments for λ < −1 are similar, leading to the conclusion that ΣED = [−√2,

√
2].

(For the last inference, we have used that ΣED is a closed interval).

We now extend the idea in Example 2.26 to the case of a general diagonal
linear system, thereby providing a link between ΣED and integral separation. We
then point out the implications for a general integrally separated system.

So, consider

ẋ = D(t)x, where D = diag(Djj , j = 1, . . . , n) . (16)

For all j = 1, . . . , n, and for λ ∈ IR, consider the planar systems

ẏj =
(
λ 0
0 Djj(t)

)
yj (17)

and

ẏj =
(
Djj(t) 0

0 λ

)
yj (18)

We now introduce the integral separation spectrum.

Definition 2.27. The integral separation spectrum is ΣIS =
⋃n

j=1 Λj where Λj =
Λ+

j ∩ Λ−
j with Λ+

j = {λ ∈ IR : (17) is not integrally separated} and Λ−
j = {λ ∈

IR : (18) is not integrally separated}, for all j = 1, . . . , n.

Remark 2.28. A simple rewriting gives, in the above definition,

Λj = {λ ∈ IR : (17) and (18) are not integrally separated}, j = 1, . . . , n.

We then have

Theorem 2.29. For (16), ΣIS = ΣED.
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Proof. Given λ ∈ IR, we have λ /∈ ΣED if for all j = 1, . . . , n, either

e−λ(t−s)e

∫ t

s
Djj(τ)dτ ≤ Ke−α(t−s), t ≥ s, (19)

or
eλ(t−s)e

−
∫

t

s
Djj(τ)dτ ≤ Le−β(t−s), t ≥ s. (20)

If (19) holds then (17) is integrally separated. If (20) holds then (18) is integrally
separated. In either case, we have λ /∈ ΣED ⇒ λ /∈ ΣIS. Conversely, if λ /∈ ΣIS, then
for all j = 1, . . . , n, either (17) or (18) is integrally separated and hence either (19)
or (20) hold.

Remark 2.30. The relevance of Theorem 2.29 is that, for (16), we may attempt
to approximate ΣED by approximating ΣIS. The latter task, in principle, could be
carried out by relying on Theorem 2.23.

The following result of Bylov (see [2, Corollary 5.3.2]) provides the link be-
tween ΣED (via ΣIS) and general (not necessarily diagonal) integrally separated
systems.

Theorem 2.31. Let X be an integrally separated matrix solution for the system
ẋ = A(t)x. Then the transformation T given for all t by

T (t) = {X(t)e1/‖X(t)e1‖, . . . , X(t)en/‖X(t)en‖} ,
is Lyapunov and Y = T−1X is diagonal. The y-system becomes ẏ = D(t)y, where
Djj(t) = d

dt ln ‖X(t)ej‖, j = 1, . . . , n, and the functions Djj are integrally separated.

Unfortunately, in general, Theorem 2.31 is not conducive to a constructive
diagonalization procedure for the system, and hence to a way to approximate ΣED

via ΣIS, because constructing the Lyapunov transformation T requires knowledge
of the matrix solution X . On the other hand, we know that X can transformed to
upper triangular with an orthogonal functionQ, and that the transformed coefficient
function B := QTAQ−QT Q̇ can be found without explicit knowledge of X . Thus,
it is natural to ask if we can obtain ΣIS from knowledge of B. We now show that
this is possible under the same assumptions we needed in order to approximate the
LEs from the diagonal of an integrally separated triangular system (see Theorem
2.22).

Theorem 2.32. Consider the upper triangular system Ṙ = BR, and let D =
diag(B). Let ΣIS be defined from D. If D is integrally separated, then ΣED = ΣIS.

Proof. Similarly to the proof of Theorem 2.22, we reduce the problem to the
diagonal form Ṡ = DS, with D = diag(B). The transformation is Lyapunov and
does not change ΣED. For this diagonal system, ΣIS coincides with ΣED because of
Theorem 2.29.
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3 Computational Aspects

In this section, we briskly review some of the techniques that have been used to
approximate Lyapunov exponents. Then, we discuss approximation of spectral
intervals.

To date, numerical techniques for approximating LEs have rested on the as-
sumption that the given system is regular and that the LEs exist as limits. The
most widely adopted techniques mimic Algorithm 2.12, and therefore attempt to
find the function Q that performs the change of variable to upper triangular form.
We refer to [3, 4, 10, 11, 16, 17] for different variations of this basic approach.
In the end, existing techniques may be classified as either continuous or discrete.
The continuous methods approximate Q by integrating its differential equation, and
hence avoid direct computation of the fundamental matrix solution. The discrete
techniques, instead, approximate the QR factorization of the fundamental solution
at grid points as product of transition matrices, followed by reorthogonalization.
Though in exact arithmetic these two classes of methods are equivalent, in finite
precision they perform differently. In particular, the discrete techniques have po-
tential difficulties in approximating (large and) negative Lyapunov exponents (see
[10, Theorem 4.4, pp. 413]). Below, we restrict to the continuous QR technique.

Remark 3.1. As an alternative to QR based techniques, people have also investi-
gated methods based on the SVD of the matrix solution X, for which [26] provide
the theoretical foundation. Also these approaches come in two flavors: continuous
and discrete. We have not had extensive computational experience with these tech-
niques, and refer the interested reader to the works [1, 13, 16, 18, 34] for various
aspects of these SVD-based methods.

3.1 The Continuous QR Method: Lyapunov Exponents of
Regular Systems

How to implement Algorithm 2.12? The fundamental points to resolve are: approx-
imating Q, and truncating time to a finite interval.

Now, Q is the solution of (12), and we may think that it suffices to integrate it
as any other differential equation. However, this is not true, since a naive integration
scheme for (12) will perform unsatisfactorily, if nothing else because it will fail to
maintain the computed solution orthogonal at the grid points. For this reason,
many recent works have been concerned with appropriate ways to approximate Q.
The works [4, 9, 11, 12, 14, 19, 25] give a good overview into different ideas that
have been explored. Some of the techniques work with no modifications for both
cases p = n and p < n in (12), others require p = n. It is not the purpose of this
review to discuss the relative merits of these different techniques, but it suffices to
stress once more that integration of (12) must be done carefully.

Once we have Q, we can use a quadrature rule to approximate 1
T

∫ T

0
Bjj(s)ds,

j = 1, . . . , n, where B is defined in (10). A simple way to do this, which we
have successfully adopted in [13], goes as follows. For j = 1, . . . , n, let γj(t) =
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∫ t

0
Bjj(s)ds, so that λj = limt→∞ 1

t γj(t). Observe that

γ̇j = Bjj , γj(0) = 0, j = 1, . . . , n, (21)

and (21) can be integrated at once along with Q, yielding the desired quadrature.

Remark 3.2. The LEs are often considered for nonlinear systems. This requires
working with the linear variational equation about a (approximate) solution to the
nonlinear system. In this setting, the LEs are useful in determining instability in
the system, classifying invariant sets, and approximating the dimension of strange
attractors or other nontrivial invariant sets (see [31]). In applications to nonlinear
problems, we can use an algorithm similar to Algorithm 2.12.

Algorithm 3.3 (LEs for Nonlinear Regular System). To approximate p LEs rela-
tively to the trajectory x(t, x0), integrate

ẋ = f(x) ,
Q̇ = AQ−Q[QTAQ− S(Q)] , A(t) := fx(x(t, x0))
γ̇j = Bjj , Bjj(t) = (QT (t)A(t)Q(t))jj , j = 1, . . . , p .

(22)

The exponents are λj = limt→∞ 1
t γj(t).

Truncating time to a finite interval is a tricky issue. In general, it is hard to
decide how to truncate time without some extra assumptions on the problem, such
as recurrency, quasi-periodicity, or the like. The difficulty is inherent in the task
itself: the LEs are defined as limits, say λ = limt→∞ 1

t c(t) (here, c(t) =
∫ t

0
b(s)ds).

Define the function λ(t) = 1
t c(t), for all t; in practice, we can only compute on a

finite interval, say [0, T ], and thus at best we compute λ(T ). How good is λ(T ) as
an approximation of λ? In theory, arbitrarily poor, even if T is very large.

Example 3.4. Take b(t) =

{ 1, 0 ≤ t ≤ τ
t− τ + 1, τ ≤ t ≤ τ + 1
2, τ + 1 ≤ t

so that λ = 2. However, if

T ≤ τ then λ(T ) = 1.

Clearly, we need to require that the asymptotic behavior of λ(t) is determined
by the finite time interval on which we compute. In practice, we do not see a
foolproof way to verify this fact computationally. A simple strategy people have
adopted with apparent success is to compute on progressively longer time intervals,
while monitoring the variation in the answers obtained; convergence is declared if
the variation goes to 0.

3.2 Approximation of Spectral Intervals

Unlike approximation of the LEs, the approximation of spectral intervals has not
received much attention, except in the case of regular systems or of point spectrum:
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the intervals in the definition ΣED reduce to a single point4. Perhaps this is because
many problems appear to be regular or even to have point spectrum, while at the
same time approximation of lim sups and lim infs is an even more difficult task
than approximation of a limit. However, there are good reasons for looking into
approximation of spectral intervals, so we now discuss this issue.

Clearly, the different characterizations of spectrum have advantages and dis-
advantages: for example, the stability of ΣED comes at the price of a seemingly
greater complexity in approximating it than, say, ΣCL. It is a “no win” situation:
the stability derives from the Roughness Theorem for exponential dichotomies, but
the complexity derives from the requirement of uniformity in the exponential di-
chotomy definition. Still, ΣED gives access to information that is not generally
attainable from ΣCL or ΣL. In our opinion, the most important piece of informa-
tion we can retrieve from ΣED is that: “If 0 /∈ ΣED, then there exists a bounded
solution to the inhomogeneous equation ẋ = A(t)x+b(t) defined for t ≥ 0, for any b
bounded and continuous” (see [8]), because it has important implications for shad-
owing. Naturally, if 0 ∈ ΣCL or ΣL, then the system does not have an exponential
dichotomy, since ΣCL ⊆ ΣL ⊆ ΣED. But, in general, we cannot infer an exponential
dichotomy from knowing that 0 /∈ ΣL.

Example 3.5. Take a shifted version of Example 2.26: ẋ = [c(t)−1.2]x, t ≥ t0 > 0,
with c(t) = (sin(ln(t))+cos(ln(t))), and solution x(t) = κ(t0)exp[t(sin(ln(t))−1.2)],
where κ(t0) = x(t0)exp[−t0(sin(ln(t0)) − 1.2)]. Thus, ΣCL = ΣL = [−2.2,−0.2],
and 0 /∈ ΣL, but 0 ∈ ΣED = [−√2− 1.2,

√
2− 1.2].

We now list some aspects that must be considered when approximating spec-
tral intervals.

(a) In principle, ΣCL is the simplest spectrum to compute. The price of simplicity
is the potential lack of stability. However, it is possible to determine if ΣCL is
stable by checking integral separation of the diagonal of B (the transformed,
triangular, function of coefficients); see Theorem 2.22.

(b) The Lyapunov spectrum ΣL is at least guaranteed to be stable in a generic
situation (see Theorem 2.16), but it is much harder to determine if a matrix
solution is integrally separated than it is to check if diag(B) is integrally
separated. For example, take the case of a triangular system Ṙ = BR. To
check integral separation of the matrix solution R, in case in which diag(B) is
not integrally separated, requires monitoring the off diagonal elements of R,
which is at best cumbersome and computationally intensive.

(c) To approximate ΣCL and ΣL, we need to approximate lim sup and lim inf as
t → ∞. Just as for the case of a limit, we do not see how this can be done
without some assumptions on the function whose limits are sought. A simple
approach is discussed in Example 4.1.

4we note that point spectrum implies regularity
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(d) As far as we know, there is no computational work on the approximation of
ΣED. We believe that this task gets greatly simplified if we can reduce it to
computing ΣIS. Constructively speaking, then, we may proceed by triangu-
larizing the problem to the form Ṙ = BR, and further approximate ΣIS from
diag(B). We illustrate this approach in Example 4.1.

3.3 Testing Integral Separation

From the preceding discussion, it is clearly important to infer integral separation
of two functions. This is needed to gain some confidence in the answers we obtain
for the LEs, and also when we attempt to find ΣIS. We have successfully adopted
a construction based on Theorem 2.23. That is, to determine if two functions f1
and f2 are integrally separated, we check that, for sufficiently large H , their Steklov
functions are separated:

fH
1 (t)− fH

2 (t) ≥ a > 0, t ≥ 0 . (23)

We refer to Examples 4.1 and 4.2 for practical considerations.

4 Numerical Experiments

We present two examples. The first is a linear system for which we compute the
different spectra5. The second example is the Lorenz system: in this case we report
on some experiments from [13].

Example 4.1. This is a linear nonregular system for which we approximate ΣL

and ΣED. We have ẋ = A(t)x, with

A(t) =
(

cos(ln(t+ 1)) + sin(ln(t+ 1))− 2 2
2 sin(ln(t+ 1)) + cos(ln(t+ 1))− 2

)
.

The spectra can be found analytically, which is useful for testing our computational
results. To get the exact solution, it is enough to observe that the constant rotation

with Q =
√

2
2

(
1 −1
1 1

)
brings QTA(t)Q into the diagonal form

D(t) =
(

cos(ln(t+ 1)) + sin(ln(t+ 1)) 0
0 cos(ln(t+ 1)) + sin(ln(t+ 1))− 4

)
.

Clearly, D has integrally separated diagonal, and –just as for Example 2.26– we
can find that ΣL = ΣCL = [−1, 1] ∪ [−5,−3] and ΣED = ΣIS = [−√2,

√
2] ∪ [−4−√

2,−4 +
√

2]. Now we pretend to have no idea of the solution to check limits of
computability of the spectra. The numerical method we implement is the following.

We solve for Q using the code QRINT (see [12]) on the interval [0, T ], and
local error control on Q with a tolerance of 10−4. With initial conditions on Q set

5as far as we know, our algorithm based on approximation of ΣIS is the first computational
technique used for approximating ΣED
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to the identity matrix, we observe that Q rather quickly goes towards the matrix

Q =
√

2
2

(
1 −1
1 1

)
, which is thereafter correctly approximated at 5 digits. To

approximate ΣL, we compute λj(t) for j = 1, 2, and then find the maximum and
minimum as a function of t, for τ0 ≤ t ≤ T . To approximate ΣIS, we use the
values of the diagonal system that are obtained numerically, and approximate their
Steklov averages for a given H > 0. Then, we compute the maximum and minimum
of these Steklov averages as a function of t to obtain an approximation of the upper
and lower endpoints of ΣIS. All the integrals used to determine the spectra are
approximated using the composite trapezoidal rule.

In Table 1, we record our results for ΣL. We let T denote the endpoint of
integration, τ0 the value used to compute the approximation to the liminf and
limsup, and [λi

j , λ
s
j ] is the computed j-th Lyapunov spectral interval (j = 1, 2), at

four significant digits. Clearly, ΣL is approximated quite well.

Table 1. Example 4.1: ΣL.
T τ0 [λi

1, λ
s
1] [λi

2, λ
s
2]

105 102 [−1.019, 1.] [−5.019,−3.]
105 103 [−1., 1.] [−5.,−3.]
106 102 [−1.019, 1.] [−5.019,−3.]
106 103 [−1., 1.] [−5.,−3.]
106 104 [−1., 0.9487] [−5.,−3.051]

In Table 2, we record our results for ΣED. With H we indicate the length
used to compute Steklov averages of the diagonal entries. For j = 1, 2, we denote
by [aj , bj ] the computed approximation to the j-th Sacker-Sell interval, at four
significant digits. Again, ΣED is approximated quite well.

Table 2. Example 4.1: ΣED.
T H [a1, b1] [a2, b2]

105 102 [−1.414, 1.414] [−5.414,−2.586]
105 103 [−1.414, 1.373] [−5.414,−2.627]
106 102 [−1.414, 1.414] [−5.414,−2.586]
106 103 [−1.414, 1.414] [−5.414,−2.586]
106 104 [−1.406, 1.414] [−5.406,−2.586]

Example 4.2. Consider the Lorenz equation
 ẋ
ẏ
ż


 =


 σ(y − x)
ρx− xz − y
xy − βz


 ,

with parameter values σ = 16, β = 4.0 and ρ = 45.92. With initial condition
(x(0), y(0), z(0)) = (0, 1, 0), we computed the LEs according to Algorithm 3.3. A
summary of results is in Table 3 below. Integration was done with local error control
on the trajectory x, on Q, and on γj , j = 1, 2, 3, using local error tolerance 10−6.
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Figure 1. Plot of (t, dH(t)) where dH(t) = bH11(t)− bH22(t) for H = 20.

Table 3. Lorenz system.
tend Steps λ1 λ2 λ3

1.E2 8.6E3 1.415 3.E-2 -22.466
1.E3 8.6E4 1.4892 4.64E-3 -22.494
1.E4 8.6E5 1.499 4.64E-4 -22.499
1.E5 8.6E6 1.5027 4.07.E-5 -22.5027
1.E6 8.6E7 1.5024 7.6E-6 -22.5024

The LEs seem to be converging towards λ1 ≈ 1.5, λ2 = 0, and λ3 ≈ −22.5.
In order to infer stability of the exponents, we checked that the assumptions of

Theorem 2.22 are satisfied, in particular that the functions b11, b22, b33, are integrally
separated. A simple inspection of the diagonal of the transformed function B shows
that b22 and b33 are integrally separated. For b11 and b22, we resorted to checking
their Steklov difference; i.e., to check if (23) holds for H sufficiently large. To form
bH11 and bH22, we approximate the integrals by the composite trapezoidal rule. For
t ∈ [0, 10000], the value H = 20 gives sufficient separation; see Figure 1.
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