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TECHNICAL NOTE D-1859

PERIODIC SOLUTIONS OF THE RESTRICTED THREE BODY
PROBLEM REPRESENTING ANALYTIC CONTINUATIONS OF
KEPLERIAN ELLIPTIC MOTIONS

by Richard F. Arenstorf

SUMMARY o
/A/Lf )//

A detailed mathematical proof is given in this report for the following
new result: 1In the Restricted Three Body Problem with small mass ratio there
exist one-parametric analytic families of synodically closed solution curves,
which are near rotating Keplerian ellipses with rational sidereal frequencies

and appropriate positive eccentricities,
I. INTRODUCTION

The equations of motion for the plane Restricted Three Body Problem can be
written in the form
2ix'-x = - (L-p) () [xhe| 73 - petu-1) [xHu-172, (1 = d/de) (1)
where x = x;+ixs is the complex position vector of the infinitesimal body P refer-
red to a co-system rotating with angular velocity 1 about the center of gravity S
of the two attracting bodies E and M of masses l-u and p(0= p sl) as origin.
When u = O, the solutions of (1) are well known and can be represented as
x(t) = e-ltz(t),where the complex position vector z(t) describes the Keplerian
motion: that is a solution of z" = -z|z|’3. Under suitable initial conditions
this latter motion will be periodic. For instance, with
1 . ¥ *2 2
z(0) = a(l+e),z'(0) = ic /z(0), ¢ = a(l-e ), (a0, O<e<l), (2)

z(t) moves along an ellipse with major half axis a and eccentricity €, having

2z = O as focus and z(0) at maximum distance from 0. 1ts sidereal period is



T, = 2n|a3/2]. The corresponding x(t) will be periodic, iff. To is commensu-
rable with 2x, or a ®/2 = m/k, where k and m are relatively prime integers,
m >0 and k is chosen positive respectively negative, if z(t) is direct respec-
tively retrograde, that is, sign k = sign c*. The synodical period on the
rotating ellipse then is T* = 2mm and the curve x = x(t), (Og t < T*) is closed
after k-m positive revolutions around the origin. We denote this solution of
(1) with p = 0 from now on by x*(t) and obtain from (2) for its initial values
x* = a(l4e), dx /de = i(c-x"D /x* at t = o0, (3)
We shall show the existence of periodic solutions x(t) of (1) for small
B > 0, which are near the generating solutions x*(t) belonging to arbitrary
integers k,m #0 and properly restricted e: Namely, there are for fixed a =
(m/k)2/3 at most finitely many € in 0 < € < 1 with € = ¥/ (1-2a=3) or with

* %
x (t) =1 at least once in 0 < t < T . For every closed e-interval I, contain-

ing none of these exceptional values, there exists a positive p* such that (1)
possesses for every fixed p in 0 <H< p* < 1 a family of periodic solutions
depending analytically upon the parameter ¢ in I. These solutions are holomor-
phic also in p and transfer into x*(t) for p = 0. Their synodical periods and
Jacobi constants are holomorphic in ¢ and p and depend both actually upon p.
This result includes especially the existence of the periodic solutions
of the so-called second kind for the Restricted Three Body Problem. Their
existence had been claimed with supposed proofs by H, Poincare [5], K.
Schwarzschild [b] and C. L. Charlier [ZJ, whose invalidity was shown by P,
Staeckel [8] and A, Wintner [9], [}O], however. In these attempts the con-
tinuation method of Poincaré was employed in an isoperiodic or an isoenergetic

manner. We too apply this continuation method, but replace the general per-

1
iodicity condition of Poincare with a more special one which is based on the
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symmetry of the dynamical problem (1), and has already been used by G. D.
Birkhoff [l]. This condition is not only simpler and more natural, it also
points out and reduces the redundancy in the classical periodicity conditions,
which caused the critical functional determinants to vanish (Ref. [9] and [7]).
Otherwise, we achieve our goal by employing appropriate variables, which render
the dependence of the Keplerian motion upon its initial values in a most simple
form.

In this regard, it is to be mentioned that G. D. Birkhoff [l] showed,
among others, the existence of periodic solutions of (1) for small p, which
close in the rotating co-system only after sufficiently many revolutions about
the mass l-p, if their Jacobi constant determines a simple closed zero-velocity
curve containing the orbits in its interior. B, O. Koopmann [3] established
the analogon for the exterior case of a zero-velocity curve with forbidden
bounded interior. More recently, J. Moser [ﬁ] showed the existence of periodic
solutions of (1) for small p, which close after many revolutions and are near
solutions of the existing first kind of Poincaré (generated from circular
motions for p = 0). ALl these solutions correspond for p = 0 to periodic
motions along rotating ellipses with rational a 3/2. Presently, it is not
known if these solutions for p > 0 coincide with certain of our above solutions
x(t) generated from x*(t) with large lk—ml and suitable, small € > 0.

Finally, we remark that several of these solutions for different m/k, whose
existence is shown here for small p > 0, have been numerically calculated by
us for increasing p on high speed electronic computers. They are particularly
of interest when a(l-¢)< & and 1 < a(l+e) < 145 with small & > 0, since then
they pass repeatedly near both masses of the Restricted Three Body Problem.

The calculations indicate their existence for values of p at least as large as
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that for the case l-p/u equal to mass of the Earth/mass of the Moon, Thus,
their practical significance for astronautics is apparent and was one of the

incentives for the investigation presented here.
II. EXISTENCE PROOF

Let x(t) be a solution of (1), which is holomorphic on an interval
0 <tgT, T> 0; that is, free of collisions. If (with a bar denoting the
conjugate complex number)

x(Z) = %A1 , x'(4D = -X' @D, (4)
then the function X(T-t) of t is identical with x(t), since it also satisfies
(1) and the two functions and their first derivatives coincide respectively at
t = #T. This implies, if additionally

x(0) x(0) , x'"(0) = -x'(0), (5

that x(T)

x(0), x'(T) = x"(0), so that x(t) will be periodic with period T,
since (1) is autonomous. Then the closed curve x = x(t), (O <tg T) is sym-
metric over the x,-axis, since x(-t) = X(t). Especially x*(t) satisfies (5)

by (3), and also (4) with T = T*=|k|To, since as a consequence of (2) z(k-T,/2)
is real and z'(k-T,/2) is pure imaginary for every integer k.

We introduce new real variables F, H, U, V instead of x = x; + ix, and

y=x'+1ix =y, + iy, by
F = arctg x5/x; , H = é(yi + yg) -rt-c,r= (xf + xg)é,
(6)
U=x;/r - cy, , V=xu/r +cy; ; € = X1¥5 - KXoy .
The functional determinant of this transformation is D = -(2H43c)-c2/r2 .

Now ¢ and H are first integrals of (1) for p = 0, since with z(t) = eltx(t)

then



¢ = Im xy = Im Zz' = const. of area,
= X, 112 _ -1
H+c =35z z = const. of energy,

as well known for the Keplerian motion. By (2) then

* *

x * *
c=c, H=-c =-1/2a, r = |x (t)|2 a(l-e)> 0 on x (t).

Thus

oJ.
i

D -(c* - l/a)crg/rg on x*(t), ¢

and the transformation (6) is analytic and locally l-to-l in a neighborhood of

o,

* % kS * *
every point on the trajectory x (t), y (t) = dx (t)/dt +ix (), (0O <t <T)

if D+ 0 or ac # 1. This holds for 0 < ¢ < 1 always, when a < 1 or when

.

e # /(1-a=3) for a > 1, ¢> 0, and this assumption will be made from here on.
Now (6) transforms (1) in case yu = 0 into

F' +1 = c/r® = ¢"3(1-UcosF-VsinF)?,
' (8)
1
H' =0, U' =V, V' = -U,

since from (6) ¢ = r(l-UcosF-VsinF)/c. 1If we denote initial values by the

corresponding small letter, (8) can be integrated up to
. . -it
H="h, U+V = (utv)e ",
- (9

c™3(l-ucos(F+t) - vsin(F+t))2 .

F' +1
This and (6) yield

u® +vZ = U2 + V2 = 1-2c3/r + c3(y5 + ya2) = 1 + 2he? + 23, (10)
so that ¢ depends upon the initial values h, u, v. Substituting for these the
special values

% * % %* *
f =0, h =-c-1/2a,u =¢, v =0 (1D

oL

o

derived from (3) and (6) gives ¢ = ¢ and by (9) the original solution xd(t),

but now represented in the new variables,



In general (6) transforms (1) into a system

F' =g, ,H =82, U =383, V' =84, (12)
where the 8, = gn(F,H,U,V,u) are holomorphic functions of all variables in a
neighborhood of the special solution determined by (9), (11) and for suffi-
ciently small p >0, if x*(t) is free of collisions for u = 0. Given a =

* %*
(m/k)2/3, such a collision, that is;x (t) = 1 for some t in O < t < T , can hap-

pen only for finitely many values of ¢ in 0 < € < 1. We return to this con-
dition later and assume here only that these ¢ are omitted. Then, according
to Poincare's extension of Cauchy's existence theorem for ordinary differential
equations (for a modern proof see Ref. [7]) the solutions of (12) are holomor-
phic functions of t,f,h,u,v, and p for O <tg ZT*, say, and sufficiently small
!f| + |h-h*| + ‘u-e| + |v| +u, u >0, using (11)., For p = 0 (12) becomes (8).
We consider now the solutions of (12) with small p > 0 and initial values
near (1l1). These solutions can be assumed remaining near the original solution
given by (9), (11) for 0 < t g ZT*, so that especially (6) is applicable. 1In
order that such a solution will be periodic in the former coordinates x,;, Xp
with period T > 0, it is sufficient according to (4), (5), and (6) that

F (%T} f) h) U, VJ u')

t(k-m) , f

O J
(13)

1
V(ZT, f,h,u,v,u) 0 , v=0,
*
since for the considered solutions of (12) c remains near c¢ , and therefore
*
the assumption ¢ # 0 at t = éT can be made, if T < 2T . These equations are
*
actually satisfied for the original solution x (t) and p = O, or with (11) for
% * * * *

T=T =2ug, f=f, h=h,u=u,v=v,u=0, (14)

since

o 1 % s . .
arc X (éT ) = arc [e lmﬂz(lleo/Z):l = arc [e lmﬂelkﬁ] (k-m) n



by (2). Hence (13) can be satisfied for small yu > O and initial values near
(14), if for instance the functional determinant
*
D' =FV, -FV 40 fort-= 2T at (l4). (15)
By the holomorphy it suffices putting p = O in F,V first and then calculate

the partial derivatives, which therefore can be found from (9) and (10). De-

noting partial derivatives by a corresponding index, (9) gives Vh = 0 and

Vt = -U, hence with (11) and (14)

D* = € cos mm * Fh(mﬁ,O,h*, €,0), (u=0). (16)
We put

¢ =t +F(t,0,h,e,0) = o(t,h) . (17)

Then it follows from (9) that ¢ is uniquely determined by inversion of the

integral 0
t = c3\/p(1-e cosy) "€ dy . (18)
o
The value of ¢ here is determined by €% = 142hc®+2c¢® from (10). This implies
¢, = -c(Zh43c)"1 . (19)

Differentiating (18) partially with respect to h gives

¢
0= 3c2chu/(l-e cosy) "Zdy + c3(l-¢ cos ¢)'2¢h ,
o

hence with (19) ¢*

W% * o * * -1 ' -2 2
¢h(mn,h ) = 3(l-€ cos ¢ )& (2h + 3¢ ) (l-¢ cos V)™ =dy , (20)
o
* *
where ¢ = ¢(mm,h ). But
14
%3
2c d/\(l—e cos ¥) "Zdy = 4T, = 2m/k
o

for the period on the original Keplerian ellipse as well known, thus by (18)

%
¢ = kn and by (16), (17), and (20) finally



DY = 3e(-1)™(l-c(-1)Yemn/ (¢F-amBe # 0, (21)
so that (15) actually holds, since 0 < € < 1 and C* + a~1 as required for (7).

From the implicit function theorem follows now that (13) can be solved
for T and h in a neighborhood of (14), and that T—T* and h-h for u=u*=€ result
as power series in p without constant terms having positive radius of con-
vergence. This implies especially 0 < T < ZT* for small 4 > 0 as assumed be-
fore, so that by (13) the existence of the desired periodic solutions x(t) is
now actually shown. Their initial values x(0), x'(0) are determined by (6) and

f=0, h=h(u,e, u=¢ v=20 (22)
as functions of u, € and a.

Since for any given a = (m/k) 2/2 the foregoing is valid as long as ¢ is
not one of the previously excepted values, it is a consequence of the local
existence theorem for implicit functions and of the covering theorem that
T = T(u,€) and h = h(u,€) are holomorphic functions of p and € on every closed
e-interval not containing one of the exceptional values and on O < u < u*
with corresponding sufficiently small uﬁ> 0. The solutions of (12) belonging
to (22) are holomorphic functions of their initial values and thus the corres-
ponding periodic solutions x(t) are holomorphic on 0 < t < T and in € and p as
stated in the introduction,

If one introduces in the transformation (6) instead of the variable H the
Jacobi integral

3= 3312 - e - k] e g1,
our whole consideration can be carried through in the same way. Thus also

J = J(u,e) is a holomorphic function of both variables, which clearly follows

from



J=nh +-lx0|'l -(l-u)|x0+pl'l - plxo+p—l|‘l , ¥ = x(0)
and the foregoing, too. 1In (13) then h is to be replaced by the initial value

j of J, but J = j now. It is then of interest to consider besides (15) the

other two functional determinants suggested by (13): namely,
Dy =FV, -FV, and Do=FV, -FV,
for t = éT at (l4), where j = hﬁ. Since here Vu = -sin myx = O, Vj = 0 and
* * *
Ve =-U by (9), it follows D = 0 and Dy = ¢ cosmn-Fu(mn,O,h ,€,0).
Putting

*
v =t + F(t,0,h ,u,0) = y(t,u) ,
it follows from (9) wt = ¢~3(l-u cos ¥)© and thus similar as from (18) for ¢
now V (mm,u) = kx identically in O < u < 1. Hence also D; = 0. Thus, solvabil-

i

ity of (13) with respect to T,u for fixed j = h\, or with respect to j,u for
fixed T = T* remains at least doubtful, if at all possible. In fact, A, Wintner
[9] has shown that for sufficiently small ¢ > O isoperiodic solutions do not
exist.

It is interesting to note that the treatment presented here is also
effective for the periodic solutions of the first kind. 1In this case, ¢ =0
and a%/2 = + T,/2x = w™! can be taken arbitrarily, especially not rationmal,
with the exceptions w # -1,1 and w # 1 i—m‘l, m natural. Then it follows
Di + 0, Dz # 0, but D* = 0 in (15), which is the reverse of our present situ-
ation for € > 0. Of course, an existence proof for the solutions of the first
kind is long known.

Finally, we consider the restrictions placed upon ¢ for our existence

proof., These are



- *
0<e<l, e#$/(1-a® fora>1] ¢ >o0,

x*(t) 1 inoO <t <mr for a= (m/k)2/3 | (23)
The first of them is equivalent to ac* # 1 or Zh* + 3c* # 0 and was required
for (7) and (21). The dynamical meaning of this condition becomes clear, when
the sidereal frequency w = 2q/T_ = |a=3/2| is used instead of a to characterize
the generating elliptic motion together with its eccentricity. Since here
u =0, H coincides with the Jacobi-integral J, and then (19) shows that the
Jacobi-constant j = h of the generating motion x*(t), for which now

j* = -c* - 1/2a = - éw2/3 - sign c*;w'l/s /(1-¢2) , (w> 0)
has for given € as function of c* or w a relative extremum (absolute maximum)
for ac* =1or ws= /?1-62), in the direct case only, The inverse function and
thus the sidereal period T0 then cannot be defined uniquely as functions of the
Jacobi constant and the eccentricity in a neighborhood of the branch points
(3* = -(1-e®)2/3 . 3/2,€). The dynamical meaning of (23) is to exclude collis-
ions with the perturbing body.

We shall show that for fixed k and m (23) excludes at most finitely many
values of €. To see this, we represent the Keplerian motion z = z(t) =
eitx*(t) with the help of the eccentric anomaly w, namely with (2) in the

well known form

z = a(e + cos w + i/(1-€2) sin w) s

(24)
t = a2/2 (w + ¢ sin w)
If (23) does not hold, then with appropriate e between 0 and 1
z = et , |z| =a (1l + € cosw) =1 (25)

for some w between 0 and k x inclusively, using (24). The last equation implies

|l-1/al§ € <1, thus a > %. Hence (23) holds always, when 2ag 1. If a =1

>
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then by (25) cos w = O and thus with (24)
€ = cos t = cos(wte) = - sin g,
which is impossible for 0 < € < 1. Let now a > %, a # 1 and (25) be satisfied

for appropriate € and w. Then with -A = 1-1/a and (24)

€ cos w=A+# 0, a(e + cos w) = cost,
a(cos w + Af/cos w) - cos aS/E(W + Atg wi] = 0. (26)
Since |Al< €< 1 and with w* from cos w' = jal, 0« w?;n/Z, we have here
* ,
|w - nn| <w , n= integer, |nlg Ik‘. (27)

Now the left side in (26) is a holomorphic function of w in (27) and even in
all of the finitely-many closed circles Iw—nnlg w*. Thus it has at most
finitely-many zeros in (27), and these correspond to at most finitely-many

e = Afcos w satisfying (25). This proves our statement about (23).

One can easily see that our whole derivation remains valid, if we begin
in (2) with z(0) = a(l-¢) at minimum distance from O. This merely replaces ¢
by -e¢ in the subsequent equations., But it leads to new periodic solutions
of (1) for small u, which are actually different from the previous ones, even
when considering solution curves only, if k-m is odd. Additional such solutions
are found starting with x5 = -a(l4e) in (2), if k-m is even. All of our peri-
odic solution curves are symmetric over the x;-axis, and they can be readily
visualized in the rotating co-system,

Added are a few illustrations calculated for the case u = 1/82: Figure 1
and Figure 3 show synodically closed solution curves of (1) for m=1, k=2 and
m=2, k=3 respectively, in the rotating co-system. Figure 2 shows for the first
case the circular paths of E and M and the path of P in an inertial co-system

with origin at S§. Figure 4 shows for the second case the paths of P and M in

11



a co-system with origin at E and space fixed orientation. Note the short dura-
tion capture of P by M with subsequent rejection, which happens after elapse
of every T units of time; i.e., every time when P has completed nearly k

Keplerian elliptic orbits with focus at E.
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