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SUMMARY / _ _ _1_/

A detailed mathematical proof is given in this report for the following

new result: In the Restricted Three Body Problem with small mass ratio there

exist one-parametric analytic families of synodically closed solution curves_

which are near rotating Keplerian ellipses with rational sidereal frequencies

and appropriate positive eccentricities.

I. INTRODUCTION

The equations of motion for the plane Restricted Three Body Problem can be

written in the form

x"+2ix'-x = -(i-_)(xn_a)Ix+_[ -3 - _(xq_a-1)[x+_-II -3 , (' = d/dt) (i)

where x = xl+ix e is the complex position vector of the infinitesimal body P refer-

red to a co-system rotating with angular velocity i about the center of gravity S

of the two attracting bodies E and M of masses i-_ and _(0_ _ _I) as origin.

When _ = O_ the solutions of (i) are well known and can be represented as

-it zx(t) = e (t),where the complex position vector z(t) describes the Keplerian

motion: that is a solution of z" = -z[z[ -3. Under suitable initial conditions

this latter motion will be periodic. For instance_ with

*/z(0) *ez(0) = a(l+_),z'(0) = ic , c = a(l-¢e), (a_O, 0<¢<i), (2)

z(t) moves along an ellipse with major half axis a and eccentricity c_ having

z = 0 as focus and z(O) at maximum distance from O. Its sidereal period is



To = 2_Ia3/2 I. The corresponding x(t) will be periodic_ iff. To is commensu-

rable with 2_ or a 3/2 = m/k_ where k and m are relatively prime integers_

m70 and k is chosen positive respectively negative_ if z(t) is direct respec-

tively retrograde_ that is_ sign k = sign c . The synodical period on the

rotating ellipse then is T = 2_mand the curve x = x(t)_ (0_ t _ T ) is closed

after k-m positive revolutions around the origin. Wedenote this solution of

(i) with _ = 0 from now on by x (t) and obtain from (2) for its initial values

* dx* x*x a(l+e), /dt i(c* *2= = -x )/ at t = O. (3)

We shall show the existence of periodic solutions x(t) of (i) for small

> O_ which are near the generating solutions x (t) belonging to arbitrary

integers k,m#O and properly restricted e: Namely_ there are for fixed a =

(m/k) 2/3 at most finitely many c in 0 < e < i with e = _F (l-a-3) or with

x (t) = i at least once in 0 _ t _ T . For every closed e-interval I_ contain-

ing none of these exceptional values_ there exists a positive _ such that (i)

,

possesses for every fixed _ in 0 _ _ < _ _ i a family of periodic solutions

depending analytically upon the parameter c in I.

phic also in _ and transfer into x (t) for _ = O.

These solutions are holomor-

Their synodical periods and

Jacobi constants are holomorphic in e and _ and depend both actually upon _.

This result includes especially the existence of the periodic solutions

of the so-called second kind for the Restricted Three Body Problem. Their

• !

existence had been claimed with supposed proofs by H. Pozncare [5_ K.

Schwarzschild _] and C. L. eharlier _213 whose _nvalidity was shown by P.

Staeckel [8j and A. Wintner [9]_ _0]_ however. In these attempts the con-

!

tinuation method of Poincare was employed in an isoperiodic or an isoenergetic

manner. We too apply this continuation method_ but replace the general per-

iodicity condition of Poincare with a more special one which is based on the



symmetryof the dynamical problem (i), and has already beenused by G. D.

Birkhoff _l]. This condition is not only simpler and morenatural, it also

points out and reduces the redundancyin the classical periodicity conditions,

which causedthe critical functional determinants to vanish (Ref. L9] and [7]).

Otherwise, we achieve our goal by employing appropriate variables_ which render

the dependenceof the Keplerian motion upon its initial values in a most simple

form.

In this regard_ it is to be mentioned that G. D. Birkhoff _] showed,

amongothers_ the existence of periodic solutions of (i) for small _, which

close in the rotating co-systemonly after sufficiently manyrevolutions about

the massl-B, if their Jacobi constant determines a simple closed zero-velocity

the orbits in its interior. B. O. Koopmann[3] establishedcurve containing

the analogon for the exterior case of a zero-velocity curve with forbidden

boundedinterior. More recently_ J. Moser E4j showed the existence of periodic

solutions of (i) for small B, which close after many revolutions and are near

I

solutions of the existing first kind of Poincare (generated from circular

motions for B = 0). All these solutions correspond for B = 0 to periodic

motions along rotating ellipses with rational a 3/2. Presently, it is not

known if these solutions for B > 0 coincide with certain of our above solutions

@

x(t) generated from x (t) with large Ik-m I and suitable, small £ > O.

Finally, we remark that several of these solutions for different m/k, whose

existence is shown here for small B > O, have been numerically calculated by

us for increasing _ on high speed electronic computers. They are particularly

of interest when a(l-6)< 5 and i < a(l+e) < 1+5 with small 5 > O, since then

they pass repeatedly near both masses of the Restricted Three Body Problem.

The calculations indicate their existence for values of _ at least as large as

3



that for the case I-_/_ equal to mass of the Earth/mass of the Moon. Thus,

their practical significance for astronautics is apparent and was one of the

incentives for the investigation presented here.

II. EXISTENCEPROOF

Let x(t) be a solution of (i), which is holomorphic on an interval

0 =<t =<T_ T > O; that is, free of collisions. If (with a bar denoting the

conjugate complex number)

x(IT) = x(_T) , x'(iT) = -_' (_T)_ (4)

then the function E(T-t) of t is identical with x(t)_ since it also satisfies

(i) and the two functions and their first derivatives coincide respectively at

t = _T. This implies_ if additionally

x(0) = _(0) , x'(0) =-_'(0), (5)

x'(T) x'that x(T) = x(0)_ = (0)_ so that x(t) will be periodic with period T,

since (I) is autonomous. Then the closed curve x = x(t)3 (0 __<t __<T) is sym-

metric over the xl-axis , since x(-t) = _(t). Especially x (t) satisfies (5)

by (3), and also (4) with T = T =IklTo_ since as a consequence of (2) z(k. To/2 )

is real and z'(k. To/2 ) is pure imaginary for every integer k.

We introduce new real variables F_ H, U, V instead of x = x I + ix 2 and

y = x' + ix = Yl + iY2 by

__ = 1 2 2

: arctg x2/x I , H _(Yl + Y2) - r-i - c, r : (xl2 + x_ _,

(6)
xl/r - cye , V = x2/r + cy I , c = xlY 2 - xey i .

The functional determinant of this transformation is D = -(2H+3c)-ce/r 2

it
Now c and H are first integrals of (i) for G = O_ since with z(t) = e x(t)

then



c = Im _y = Im Ez' = const, of area_

H + c = _Iz'l 2 -Izl -I = const, of energy_

as well known for the Keplerian motion. By (2) then

* * X* I>- *C = C , H = -c - i/2a , r = I (t) a(l-e)> 0 on x (t).

Thus

. *2 *
D = -(c i/a)c /r 2 on x (t)_ (7)

and the transformation (6) is analytic and locally l-to-i in a neighborhood of

every point on the trajectory x (t)_ y (t) = dx (t)/dt + ix"(t)_ (0 =< t __<T )

J.

if D # 0 or ac # i. This holds for 0 < e < i always_ when a < i or when

e _ _l-a -3) for a > i_ c > 0_ and this assumption will be made from here on.

Now (6) transforms (i) in case _ = 0 into

' + i = c/r 2 = c-3(l-UcosF-VsinF) 2_
' = O_ U' = V_ V' = -U_

(s)

since from (6) c = r(l-UcosF-VsinF)/c. If we denote initial values by the

corresponding small letter_ (8) can be integrated up to

I -it

_H = h_ U +iV = (u+iv) e

f

F' + 1 = c-3(l-ucos(F+t) - vsin(F+t)) 2

(9)

This and (6) yield

u s + v 2 = U 2 + V 2 = i-2c2/r + c2(y_ + y_) = i + 2hc e + 2c 3, (10)

so that c depends upon the initial values h_ u_ v. Substituting for these the

special values

f = O_ h = -c -i/2a _ u = % v = 0 (ii)

J_ j.

derived from (3) and (6) gives c = c and by (9) the original solution x (t)_

but now represented in the new variables.



In general (6) transforms (I) into a system

U ! ___ V ! =F' = gz , H' = g2 , g3 , g4 , (i 2)

where the gn = gn (F'H'U'V'_) are holomorphic functions of all variables in a

neighborhood of the special solution determined by (9)_ (11) and for suffi-

ciently small _ _ O, if x (t) is free of collisions for _ = O. Given a =

(m/k) 2/3 such a collision, that i_ x (t) = i for some t in 0 < t < T , can hap-

pen only for finitely many values of e in 0 < e < I. We return to this con-

dition later and assume here only that these e are omitted. Then, according

I

to Poincare's extension of Cauchy's existence theorem for ordinary differential

equations (for a modern proof see Ref. [7]) the solutions of (12) are holomor-

phic functions of t,f_h,u,v, and _ for 0 __< t __< 2T , say, and sufficiently small

Ifl + lh-h*l + lu-el + Ivl + _, _ >= O, using (ii). For _ = 0 (12) becomes (8).

We consider now the solutions of (12) with small _ > 0 and initial values

near (Ii). These solutions can be assumed remaining near the original solution

given by (9), (ll) for O _ t _ 2T , so that especially (6) is applicable. In

order that such a solution will be periodic in the former coordinates xz, x 2

with period T > O_ it is sufficient according to (4)_ (5), and (6) that

(_iT, f,h_u,v,_) = _(k-m) , f = 0 , (13)
(_T,f,h,u,v,_) = 0 , v = 0 ,

since for the considered solutions of (12) c remains near c , and therefore

the assumption c # O at t = _T can be made, if T < 2T . These equations are

actually satisfied for the original solution x (t) and _ = O_ or with (ii) for

, , , 7¢ ,
T = T = 2_n_, f = f _ h = h _ u = u , v = v , _ = 0 , (14)

since

* i *
arc x (_T) = arc [e-im_z(IkITo/2)] = arc[e-im_eik_] = (k-m)_



by (2). Hence (13) can be satisfied for small _ > 0 and initial values near

(14), if for instance the functional determinant

D = FtVh - FhVt # 0 for t = _iTat (14). (15)

By the holomorphy it suffices putting _ = O in F_V first and then calculate

the partial derivatives_ which therefore can be found from (9) and (i0). De-

noting partial derivatives by a corresponding index, (9) gives Vh = O and

Vt =-U_ hence with (ii) and (14)

D = e cos m_ • Fh(m_O_h _ %O)_ (_=O).

Weput

(16)

¢ = t + F(t_O,h_%O) = ¢(t,h) (17)

Then it follows from (9) that ¢ is uniquely determined by inversion of the

integral ¢

t = c 3/ (l-c cos_)-2 dl/ .

o

The value of c here is determined by c e = 1+2hc2+2c a from (10).

(18)

This implies

c h = -c (2h+3c)- z (19)

Differentiating (18) partially with respect to h gives

¢

20 = 3c2c h (1-e cos_)-2d_ + c3(1-c cos ¢)-%h '

o

hence with (19) ¢*

* *)2 * * j'Ch(m_h ) = 3(l-e cos ¢ (2h + 3c )-z (1-_ cos _)-2d_ _ (20)

o

where ¢ = ¢(m_h ). But

2c (t-e cos gr)-2d_ = _+T O = 2_rn/k

o

for the period on the original Keplerian ellipse as well know% thus by (18)

¢ = k_ and by (16), (17), and (20) finalty



-_ .-_ _'3
D = 3e(-l)m(l-e(-l)k)am_/ (c_-a-l) c # 0 _ (21)

J.

so that (15) actually holds_ since 0 < e < i and c # a -l as required for (7).

From the implicit function theorem follows now that (13) can be solved

for T and h in a neighborhood of (14)_ and that T-T and h-h for u=u =e result

as power series in _ without constant terms having positive radius of con-

J.

vergence. This implies especially 0 < T < 2T for small _ > 0 as assumed be-

fore_ so that by (13) the existence of the desired periodic solutions x(t) is

now actually shown. Their initial values x(O)_ x'(O) are determined by (6) and

f = O_ h = h(_e)_ u = % v = O (22)

as functions of _ c and a.

Since for any given a = (m/k) 2/e the foregoing is valid as long as e is

not one of the previously excepted values_ it is a consequence of the local

existence theorem for implicit functions and of the covering theorem that

T = T(_E) and h = h(_e) are holomorphic functions of _ and e on every closed

e-interval not containing one of the exceptional values and on 0 _< _ < p

with corresponding sufficiently small _ > O. The solutions of (12) belonging

to (22) are holomorphic functions of their initial values and thus the corres-

ponding periodic solutions x(t) are holomorphic on O =< t =< T and in e and _ as

stated in the introduction.

If one introduces in the transformation (6) instead of the variable H the

Jacobi integral

J = _lyl 2 c -(i-_)Ix+_l -I- _Ixga-ll -I,

our whole consideration can be carried through in the same way. Thus also

J = J(_e) is a holomorphic function of both variables_ which clearly follows

from

8



J = h + Ixol -(1- )Ixo l  IXo -iL , Xo= x(0)

and the foregoing, too. In (13) then h is to be replaced by the initial value

j of J_ but J = j now. It is then of interest to consider besides (15) the

other two functional determinants suggested by (13):

J. J.

D 1 = FtV u F V and D 2 = F.V - F V.
u t ] u u ]

i *
for t = _T at (14), where j = h . Since here V

U

V
t

namely,

= -sin m_ = O_ V. = O and
J

= -U by (9)_ it follows D e = O and D i = e cosm_.Fu(m_O_h ,e_O).

Putting

= t + F(t_O,h ,u_O) = @(t,u)

it follows from (9) _/t = c-3(l-u cos _)2 and thus similar as from (18) for

J.

now _(mg_u) = kg identically in 0 < u < 1. Hence also D 1 = O. Thus, solvabil-

ity of (13) with respect to T,u for fixed j = h , or with respect to j,u for

fixed T = T remains at least doubtful, if at alI possible. In fact, A. Wintner

129] has shown that for sufficiently small c > 0 isoperiodic solutions do not

exist.

It is interesting to note that the treatment presented here is also

effective for the periodic solutions of the first kind. In this case, e = O

and a_/2 = _ To/2_ = _-i can be taken arbitrarily_ especially not rational,

with the exceptions _ # -i,i and w _ 1 + m -i_ , m natural. Then it follows

J,,- * "c

D i # O, D e _ O, but D = 0 in (15), which is the reverse of our present situ-

ation for e > O. Of course, an existence proof for the solutions of the first

kind is long known.

Finally_ we consider the restrictions placed upon e for our existence

proof. These are



0 < e < i_ e # _l-a -3) for a > i_ c > O,

x (t) 4 1 in 0 $ t $ m_ for a = (m/k) 2/3 (23)

The first of them is equivalent to ac _ i or 2h + 3c # 0 and was required

for (7) and (21). The dynamical meaning of this condition becomesclear, when

the sidereal frequency _ = 2_/T° = Ia-3/21 is used instead of a to characterize

the generating elliptic motiontogether with its eccentricity. Since here

= O_ H coincides with the Jacobi-integral J_ and then (19) shows that the

Jacobi-constant j = h of the generating motion x (t)_ for which now

* * ½ 2/3 c% > o)j = -c - i/2a = - - sign _l-e 2)

has for given e as function of c or _ a relative extremum (absolute maximum)

J.

for ac = I or w = /(l-e2)_ in the direct case only. The inverse function and

thus the sidereal period T o then cannot be defined uniquely as functions of the

Jacobi constant and the eccentricity in a neighborhood of the branch points

(j* = -(l-e2) 2/3 • 3/2, e). The dynamical meaning of (23) is to exclude collis-

ions with the perturbing body.

We shall show that for fixed k and m (23) excludes at most finitely many

values of e. To see this_ we represent the Keplerian motion z = z(t) =

it *

e x (t) with the help of the eccentric anomaly w_ namely with (2) in the

well known foi_

_i = a(e + cos w + iv_l-e 2) sin w) ,a3/2 (w + e sin w)

If (23) does not hold_ then with appropriate e between 0 and 1

it
z -- e , Izl = a (I + e cosw) = i

(24)

(25)

for some w between 0 and k _ inclusively_ using (24). The last equation implies

I I ll-i/a __<e < i_ thus a > -_. Hence (23) holds always_ when 2a< i. If a = i_

i0



then by (25) cos w = O and thus with (24)

e = cos t = cos(w_q-e) = - sin e_

1

which is impossible for O < e < I. Let now a > _ a _ i and (25) be satisfied

for appropriate e and w. Thsn with -A = l-i/a and (24)

e cos w = A _ O_ a(e + cos w) = cost_

]a(cos w + A/cos w) - cos a3/2(w + Atg w) = 0. (26)

Since IAI_ e < 1 and with w* from cos w* = IAI, 0 < we have here

lw- n_ I < w , n = integer, Inl_ Ikl. (27)

Now the left side in (26) is a holomorphic function of w in (27) and even in

all of the finitely-many closed circles lw-n_l_ w*. Thus it has at most

finitely-many zeros in (27)_ and these correspond to at most finitely-many

e = A/cos w satisfying (25). This proves our statement about (23).

One can easily see that our whole derivation remains valid_ if we begin

in (2) with z(O) = a(l-e) at minimum distance from O. This merely replaces e

by -e in the subsequent equations. But it leads to new periodic solutions

of (i) for small _ which are actually different from the previous ones_ even

when considering solution curves only_ if k-m is odd. Additional such solutions

J.

are found starting with x" = -a(l+e) in (2)_ if k-m is even. All of our peri-

odic solution curves are symmetric over the xl-axis _ and they can be readily

visualized in the rotating co-system.

Added are a few illustrations calculated for the case _ = 1/82: Figure 1

and Figure 3 show synodically closed solution curves of (i) for m=l, k=2 and

m=2, k=5 respectively, in the rotating co-system. Figure 2 shows for the first

case the circular paths of E and M and the path of P in an inertial co-system

with origin at S. Figure 4 shows for the second case the paths of P and M in

ii



a co-systemwith origin at E and space fixed orientation. Note the short dura-

tion capture of P by M with subsequentrejection, which happensafter elapse

of every T units of time; i.e., every time whenP has completednearly k

Keplerian elliptic orbits with focus at E.

12
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