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A CANONICAL
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There are many different ways to integrate dif-
ferential equations numerically. These various
methods are usually characterized by the accuracy of a
single step in time. Thus if in a small time step, h,

the integration is performed so that it is accurate
through order h", then the method is referred to as
an nth order integration method.

The class of differential equations of interest
here is that in which the equations are derivable from
a Hamiltonian using Hamilton's equations. The exact
solution of such a system of differential equations
leads to a symplectic map from the initial conditions
to the present state of the system. A characteristic
feature of all explicit high order (n>2) integration
methods, however, is that they are not exactly symplec-
tic. One manifestation of this is That the Jacobian of
the transformation for one time step differs slightly
from unity, and so the system will be damped (or
excited) artificially. In many applications the
salient features of the solutions appear only after
Tong times or Targe numbers of iterations; in these
applications spurious damping or excitation may lead to
misleading results.

The purpose of this note is to develop an explicit
third order symplectic map (i.e. a third order integra-
tion step that preserves exactly the canonical char-
acter of the equations of motion) and to indicate the
method for higher order maps. For a typical numerical
integration, this method can be used to eliminate the
noncanonical effects while providing the accuracy
corresponding to a third order integration step.

There 1is in addition another benefit of this
approach. If we iterate a map of a given order whether
ganoniga? or not, eventually the absolute error in
x and p gets 1grge. In cases where spurious damping
occurs, x and p typically settle into some stable fixed
point©. If the map is symplectic, this is not the
case. A symplectic map generates phase space behaviour
which is close to that of the original system with
errors in phase which eventually may add up af}er many
interations to yield Targe absolute errors in X and p.

Therefore, in the symplectic case, it is possible
and sometimes attractive to replace the differential
equation by a symplectic map. his map then becomes
the object of study and so can be iterated as much as
we Tike. This is possible since the map is the solu-
tion of some physical Hamiltonian problem which, in
some sense, is close to the original problem. For
other integration methods this is not the case and
iterations must be terminated at some point.

The Problem

Consider a system of differential equations gover-
ned by the Hamiltonian,

Ho= p2/2 + V(x,t). (1)

This is just Newton's second law with the potential
V(x,t}. The solution of the equations of mation is
given by the functions

;(;0"609t) and 5(;Oa_ﬁ(}st)s (2)

where ;0 and Bo are the initial conditions at time

t = 0. Due to the canonical character of the equations
of motions, Equation (2) constitutes a canonical trans-
formation (or a symplectic map) from the initial condi-
tions to the state at time t which we denote by

= M{t){xp,P0). (3)
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{x,p)

Now the question is: 1if the parameter t is small,
can this map be found approximately to some given order
in t? If this can be done explicitly, then the process
can easily be iterated and the error controlled by
adjusting the step size, t. Of course, the typical
integration method does just this but sacrifices the
canonical character of the mag. This we propose to
avoid. Let the approximate n h order symplectic map
be denoted by

(x,0) = M (£)(x0,py), (4)

where t is the time step (assumed small) and n is the
order of the map, i.e.

[[M(t) - Ma(t)]]=0(tn+1). (5)

In the next section we demonstrate a method for finding
Mp(t).
The Method

To illustrate the method first start from low
order. If we somehow perform the transformation in
Equation (3) so that H is expressed in terms of the
initial conditions, then the equations of motion are

939 =0

dpy _
o . (6)
dt dt

3

or the new Hamiltonian, H', is identically zero {or at
least independent of xq,py). This suggests that we
make canonical transformations in such a way as to make
H vanish. Thus the program is to make these successive
canonical transformations until we arrive at the inti-
tial conditions of the problem, or at least to another
set of coordinates which approximates (xg,pg) through
some order in t.

Let (x3,p;) be the new coordinates. Then the
convenient form for the generating function of the
canonical transformation 1is that involving the new
coordinates and old momenta: "~"

(xap)(x1,p1)

Gen. Function: F3(x;,p,t) = -xyp + G{x;,p,t) (7)
-dF3 -3F3
x =23 =y, -6 =203 -p.g
ap ! p°’ P1 dx1 P X1 (8)
aF;
Hp= H+ 23 s |
! ot t

where subscripts have been used to denote partial deri-

vatives. Equations (8) suggest that we select
6= - (p?/2 + V(x;,0))t (9)
so that
pPr = p - f(x;,0)t x = x) +pt, (10)
where the force, f, has been introduced,
f(x,0) = - av{(x,0)/ax. (11)
Subsituting into the Hamiltonian yields
Hi= V{xi+ t(py+f(x1,0)t),t) - V(x;,0) (12)
and expanding on the small parameter t, we have
Hp =tV (x1,0) - tp f(x,,0) + 0(t2). (13)

is O(t), the right hand sides of the
equations from Hamilton's FEquations are
Therefore, the solution is

Since H,
differential
also 0O(t).
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X; = const + 0(t2) p. = const + 0(t?).  (14)
So if x; and py are usgd as initial conditions, the
error introduced is 0O(t Thus this® approach has
yielded a first order symp]ect1c map, Mi(t).

Since this is such a low order method, it could
have been derived by inspection; however, it
illustrates the method which will be used in the next
and subsequent sections. Notice that if (x,, py) are
viewed as initial conditions in Equation (10), then the
momentum p must be calculated first and then used to
evaluate x. This is a characteristic feature of the
method. In addition note that the transformation leads
back to the initial conditions; thus, the momentum
equation must be inverted {trivial in this case).

The  Second Order Map

It is possible to continue from the results of the
previous section to obtain a second order map; however,
there is a well known method (the leap frog method)
which is exactly canornical, is second order and which
requires only one evaluation of the force. In order to
understand that method and to lay the groundwork for a
third order map, it is useful to modify the approach in
the previous section. The modification consists of
performing two canonical transformations rather than

one. These are given by:
(x,p)>{x1,p1): x =x; +apt, pp =p - tf{x;,bt)
2
F=-xp-a E§£ - tV{xy,bt), (15)
(x1,p1 ) {x2p2): xp = xz + (l-a)pit, p2 = py
Fo=-xp - (1£a)D12 .

Thus, there is an intermediate step at which the
force is evaluated. At this time the parameters a and
b are undetermined; however, these can be used to
generate a second order map. Substituting the two
transformations into the Hamiltonian and expanding in
the small parameter, t, yields

Hy = t(1-2a)p,f(x,,0) + t(1-2b)

Vi(xz,0) + 0(t?). (16)

The purpose of the expansion in t is to identify the
coefficients of various powers in Hp,. The transforma-
tion equations in Equation (15), however, must be kept
exactly in order to preserve the canonical character.
Now recall from the previous section that if H is

of 0(t"), and if (py,x) are %ﬁed as initial cond-
jtions, the resulting map is n order. Therefore,
if we choose

= b =1/2, (17)

then H, is 0{t?), and the total map is second arder.

To summarize the preceding results shift the
notation (xp»xg,p2>Po), rewrite the transformations in
the reverse order and perform the obvious
generalisation to many dimensions. Then the second
order map is given by the scheme following:

Bl Second Order '

+n - > >
B = p2/2 + V(x,t) , f= -3V/dx
initial conditions = (Xq,Pgsto)

Map : (%,B) = Ma(h)(Xo,B0)

given by two step process:

0 % =%, + Byh/2
>

1 + t?(-))(l,to"‘h/z), X = ;1 + Bh/z

time step = h,

(18)

#

1) 61 = E
> >
p p

This method is well known (the leap frog method)
and used frequently in circumstances where anomolous
damping or excitation is undesirable. Note that it is
written somewhat differently than usual since it is
calculated for one full step. Since it is useful to
have higher order maps for savings in computation time
and for improved accuracy of the phase space behavior,
in the next section this method is extended to third
order.

Third Order Maps

There are many possible generalisations to extend
the procedure described in the previous sections to
higher order. The first approach that comes to mind is
to include more intermediate steps or additional force
evaluations. A second approach is to begin from the
second order Hamiltonian and make yet another canonical
transformation to eliminate another order in the t de-
pendence of H. Both of these approaches are possible
in principle and will work; however, there is one

difficulty. The functional dependence in x and p of
the terms which are of higher order in t can be quite
complicated. Because of the nature of canonical

one is forced to invert an equation
This can be done explicitly only in
the simplest cases. In more complicated cases the
functional form is implicit, and thus the utility of
such an approach can be extemely diminished due to the
lack of explicit formulae.

transformations,
py {pg)>palp1).

Fortunately, for the simple Hamiltonian in
Equation (1) there is a method of avoiding this. The
key to avoiding implicit expressions 1lies 1in two
points. The first is that an exact expression relating

new to old variables is only necessary in trans-
formation equations. [t is fine to substitute approx-
imate perturbative expressions 1into the Hamiltonian
(this has been done already). The second point is that
only one half of the equations from the generating
function need to be inverted. In our case this is the
momentum equation. With this in mind a combination of
the two approaches mentioned above will be used in
order to generate a third order map. First write a
somewhat more general two step transformation given by:

ap?t
{(x,p)>(x1,p1):  Fx1,p,t)=-x1p- 5 {xy,ct)
p; = p - btf{xg,ct) X

(x1,P1)>(x2,p2): F= - xzpl'(lég)pl

p = p1 - (1-b)tf(x,,dt) xp = xp + (l-ajp;t
Subsituting into the Hamiltonian in Equation (1)

and expanding in the small parameter, t, we find (after
some algebra)

Hy = tpaf(xy,0)[2b(1-a) -17] + tv, [1-2bc-2(1-b)d]

= xp t apt,
(19)
242 (1-b)tV(x4,dt)

+2p,%f, [3(1-a)%b/2-1/2]+ t?v,, [1/2-36¢%/2-3(1-b)d*/2]
+ t2 ft32[§cb(1-a)-i] (20)
+ t2F2[2(1-a)(1-b)b+b?(1-a)/2-ab-(1-b}] + O(t?).

The philosophy of selecting the free parameters in
this case is the same as in previous sections with one

exception. Since there are more equations than
unknowns, it is impossible to eliminate all second
order terms at this step. However, another

transformation can remove the remaining terms, provided
that the equation for the momentum transformation is
trivial to invert. Anticipating this problem, first
eliminate all terms in Equation (20) with powers of
py. This yields 3 equations for 3 unknowns with the
solutions,



b =3/4 a=1/3, ¢ =2/3. (21)

In addition the terms with time derivatives both vanish
with the choice

d = 0. (22)
With this choice of parameters H, becomes
Hp = - t2F%(x5,0)/16 + O(t%). (23)

The transformation to eliminate the last O(tz) term is

F(x3,pp) = - x3py + t7F7(x3,0)/48 (24)
P3 = Py - t3ffx(X3,0)/24 X2 = X3

However, since x is changed, we can simply combine the
previous transformation with the second one in Eq (19).

Therefore, if we rewrite with the change of

notation xp+xg, generalise to the multidimensional
case, and rewrite the transformations in the opposite
order, we find a third order symplectic map given by
the following scheme:

JThird order!
+2 - >
H=p°/2 + V(x,t) , f = - 3V/ax

time step = h; initial conditions = (io,ﬁo,to)

Map; (X,B) = My(h) (%.Po)s
given by two step process:

(25)

LY =1 +
o+ L 0tGt0) + I B[R to) ool |

—
oV
—

1
oYy

;1 = ;0 + 2h51/3

2) D=El +%h?(;1,tg+—§h)

A More General Hamiltonian

The previous sections have considered the
Hamiltonian in Equation (1). 1In this section we treat
a somewhat more general case given by

>

H = g(B) + V(X,t). (26)
Notice that a special case of Equation (26) is the
Hamiltonian for relativistic motion. In that case
2 /’3_3_"'5_5
g(p) = ¢/ p.p + mc”. (27)

In addition Equation (26) can be used for the case of
motion in a magnetic field which is described by only
one component of the vector potential (say A;). In
this case the independent variable is z rather than t.
For the Hamiltonian in Equation (26), the
"leap-frog" algorithm yields results correct through
second order provided that it is modified as follows:

._-_-‘,.______JMore~Genera] Second OrderL_________.

H=g(B) + V(X,t), T = -aV/aX
time step = h, initial conditions (Xq,Pg,to)
Map: (%,B) = My (h) (%o, P0) (28)
given by two step process: N
D b= b 3, - % + h2ay)
2 dp
>
2) B = Bl + h¥(;l’t0+h/2) _))( = -))(‘1 +;_:=g_g}.)l
p

Again, this method is expressed for one full time step
and thus may appear somewhat different than the typical
implementation in a computer code.

In addition, it is possible to obtain a third
order map for the more general Hamiltonian.
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In this case it is necessary to perform a three step
canonical transformation in order to avoid implicit
expressions. Using the methods developed 1in the
previous sections, the third order map can be written
as

_ IMore General Third Orderl
H=g(®) + V(X,t), ¥ = av/ex

time step = h, initial conditions (;O,Eg,to)

Map: (%,B) = My(h)(X,Bq) (29)
given by three step process:
1) B, = bo + ¢ hF(Xgsto) %, = % + 4 35(51)
p
2) By = By + ohF(p,tordih) Xy = Xy o+ dzh%g(az)
p

3) B = By + cshF(Ry,tot(dy+dy)h, X = Xy + dahgg(s

dp

~

The c¢c's and d's must satisfy the following equations,
crtca*ey=l , ditdarda=l , cpdi¥ea(di+dy)=1/2 (34
cpd; 2+ c3(dl+d2)2=1/3 s d3+d2(c1+c2)2+d1c12=1/3

Notice that there are five equations for six unknowns;

thus, there are many solutions. One EarticularTy
simple solution is obtained by setting d3=1".

c1 = 7/24 Cy = 3/4 C3 = -1/24

dl = 2/3 d2 = -2/3 d3 =1 (31)

Notice that this three step third order map has no der-
ivative of the force. In that sense it is the simplest
(as well as the most general) obtained here.

Conclusions and Speculations

The purpose of this note has been two-fold;
firstly to present results for third order symplectic
maps, and secondly to illustrate, in some detail, the
method in order to point the way to higher order maps.
The third order maps obtained are not unique. .

The general Hamiltonian will probably always lead
to implicit equations for the final state in terms of
the initial conditions; however, there 1is one other
interesting Hamiltonian which may have an explicit high

order map,
H =[B-A(X,t)]%/2 (32)

where A is just the vector potential for an electro-
magnetic field. In this case the troublesome term is

. A (33)
This leads to matrix inversion even in the first order
case and for order higher than two, it may be

difficult to obtain explicit formulae. However, it is
probably possible to write down a second order map and
may be possible to find an explicit third order map.
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