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Methods of integration which preserve thecontact transfor­

mation property of the Hamilton equations. 

I 

Rene DeVogelaere* 

* This work was sponsored by the Office of Naval Research. 

o. Summary. Hamilton equations are such that the relation, 

between the coordinates and momenta at time t and at time 

t 0 , is a contact transformation. Methods of integration of 

Hamilton equations, which do preserve the contact transfor­

mation property are given here. These methods are of first 

and second order. They are given, for the equation "x= f(x,t), 

then for the case of one degree of freedom, then for the gen­

eral case. Some of the formulae are implicit .

1. Introduction. In recent years the construction of high 

powered accelerators has led to vast programs of computations 

involving the solution s1 over a very long time range of 

Hamiltonian systems describing approximately the motion S 

of a proton in the accelerator. Errors between the compu-

ted solution s2 and s1 are introduced because of the method 

of integration {finite step of increase of t and because 

of round-off (finite number of binary or decimal digits). 

Their worst effect is probably to destroy the contact trans­

formation property of s. Hence the suggestion of using a 

method of integration which, if there was no round-off error, 

would give a solution s3 with the contact transformation 

property. Moroovcr, if the error, due to the finiteness of 

increase of t 1 is not too large, one may even expect that 

the error between s3 and S will be of the same order of 
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magnitude as the error between s1 and S. How good the 

solution s2 has to be, will depend on a study of the 

physical system and its Hamilton approximation. One should 
,_ make sure -ff.lft,f-' 

also check if the discontinuities in the derivatives intro­
at each step, 

duced by the method of integration do not alter significantly

the resul ts.

One may expect that second order methods may lead 

to significant results even with step increments which are 

not too small. 

The contact transformation property does reduce to 

area conservation when the Hamiltonian has one degree of 

freedom. We feel that it is not superfluous to treat 

first this case in detail, it did lead us to the general 

case and we hope that the procedure used may give a lead 

to the construction of higher order methods. Two known 

first order methods are given for the special case

(1.1) 

they are

(L,2) 

X = f(x,t), 

extended to 

X = fy 

the case

.. - ~H y------· dX 

Second ordor methods are described. The error term for 

one stop is given, it may also provide a lead to higher 

order methods. The error after n steps is not given. 

(7.4) and (7.5) are probably the most important formulae 

1n this paper. 



4 .

2. Some basic properties. We will first recall a certain 

number of basic properties relevant to this paper, although 

their generalization is well known.

Definition 2.1 

two functions, continuous in x0 , y0 as well as their first 

partial derivatives, 

J = 

~xl 

= ~XO 

?)Y1 
cY--o 

is called the Jacobian of x1 ,y1 with respect to x 0 ,,J0 ~ 

Property 2.1 

·--d(x2,Y2} 
= 

d(Xa,Yo) 

d(x1,Y1) = 
d(Xo,Yo) 

d{x2 'y 2) 

d(x1,yl) 
• 

Pro;eert;z 2.3 If d(x1,y1 ) t- o., 
d(xo, yo) 

d(xl,yl) 
• 

d(xo ,Yo) 

then 

Property 2J!; The element of area dx0 dy0 and dxidy1 are 

related by 
,dx1.dy1 = dx0 ,dy0 

provided J = l. 

(For the proofs one may consult de la Vallee Poussin, (1), 
I, p. 360-364) • 



If ono considers tho differential equations 

(2.1) 
x = f(x,y,t) 

y = g(x,y,t) 

where f and g are continuous functions in x, y and t and 

have first partial derivatives continuous in x and y; if 

x(t), y(t) are solutions of (2.1) with initial conditions 

x0 and y0 when t = t 0 ; then one has 

Property 2.5 

J = 
d(x,y) 

d(xo,Yo) 

{See for instance de la Vallee Poussin II, p 146). 

Property 2.6 

A necessary and sufficient condition that 

f dy - g dx 

be an exact differential dH - when t is considered as a para-

meter - is 
M + ~= . 
¢X dY 0. 

Poussin.. II, p 41). (1 ft- (J. , II, p. 41).
Hence 

Theorem 2 . 1 A necessary and sufficient condition that 

the equations (2.1)-undcr tho above condition- be such 

that the area in the space of initial conditions at t = O 

be preserved for all t, is that there exists a function 

H(x,y,t) such that 
t _ dH 

- oy' 
or that (2.1) ia a Hamiltonian system. 

(See also Whittaker Ch Xl), 



This theorem shows that tho only systems of two equa­

tions of first order that wo have to consider are of the 

form (1.a). The proceeding properties will enable us to 

prove that the given methods of integration have Jacobian 

6. 

I one, hence are area preserving. These methods of integra-

tion are dependent upon a parameter h (time increment). If 

tho solution of (2.1) has a continuous nth derivative for 

o < t - t 0 :::_ h, one can write 

hn ~ 
x{t0+h) = x(t0 ) + h i(t0 ) ~ ••• + n! [x (to)+ e), 

where e tends to zero with h. 

Definition2.,2 If the method of integration is such that 

the approximation x(t0 +h) expanded in terms of h coincides 

with the above Taylor expressions to the order p :::_ n, ono 

says that the method is of the pth order and we will use
I the symbol (P) besides the formulae of the method. 

We have not included in this paper the algebraic man­

ipulation which proves rigorously, by this identification

method, that tho formulaeare correct to the given order
We refer to Ince Hildebrandt or Kepal { 1956)

for tho famous application of this m&thod to obtain 

Runge-Kutta type formulae. 

Ifp e:.::_ n-l, it is possible to give the error terrn of 

the formula, as the coefficient of hp+l of x( t 0+h)-x( t 0 +h) 

multiplied by hp+l. This error will be given. The error 

after n steps where nh is fixed is of the order of hP.· It 

can be found if necessary, by methods used in similar 



(,f) 
7. 

(y)
cases. Soc for instance Collatz (1951) or Hildebrandt -0 .. 956).

3. The known methods. The following methods are well known 

when a= o, but they are only first order and applicable to 

the special case (l.lh 

(3.1) Xl = X + h ~ t1~ 0 
• • - -t hf(x1,t0 + a. h) xl = XO 

1 the last equation suggests to take a= 2 • 
Also 

(3.3) 

• 
xl == X -& h ~ 

0 

tho error terms are 

( 3.4) xl - x(t0 -+h) = 

• • 
xl - x(t0 +h) = 

the last equation suggests to take d = ½• 

It is easy to check tho area conservation property 

using definition 2.1. 

Alternately, one may also write the transformation 

as a product of two transformations and use the property 2.2. 

For instance {3.1) can be written 

the Jacobian of both transformations is one because of the 

property 2.1. 
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4. Second order methods for (1.1). 

(4 . 1) 

Tho following method can be usod to solve (1.1):

'i1 ~ x0 + ~ f(x0 ,t0 + ah) 

• 
x2 = x0 + h x1 

..!. ~ h --
x2 = xl +,2 f(x2, t + (1-a)h) 

0 

8. 

Ono can infer that the method is second order because

the second equation uses tho slope at the mid-point, and tho 

last equation combined with the first uses the mean of the

slopes of x at tho extremities of the interval, indeed tho 

error terms are 

x(t +h) 
1 .. ~ n 1 er h3 X2 = [ - 6 xrx + ( 2-6) rt' Jo 0 

(4.2) . 2 1 (t ~ 2 t: G .!. x{ t 0 +h) 
. [ l d f .2 

X2 - = 12 cx2 X 4("t,2 )iJx';E° X + 

The alternate method at tho end of section 3, gives 

immediately tho area conservation property. The first
that we 1

equation suggests to take a= 3 • 

A similar argument shows that we can also use 
h - . 4J. ::: XO -t 2 XO 

.!. • 1 i2! (4.3) x2 = XO + h.f'(xi, to+ 2 h) 

- h .!. 
.X2 = xl +-2 x2 

with the error terms:

{4.4) 



This second method has comparable error terms, but asks 

for only one computntion of f( x, t) per interval, hence is 

barely more complicated that tho first order method.

5. First order method for {1.2). 
to

Tho methods (3.1) and (3.3) are symmetrical each

other and do suggest the following generalization: 

x, =XO+ h f(x1,Yo, to +ah) 
(5.1)  fa'( 

y 1 = yo + h g ( xl, yo' to +ah) 

with tho error term 

y 1- y(t0 +h) 

We suggest a=~­

The easiest way 

[ 1 ~ ,,., ( l_) 2.13. ] h2 
= 2 ~ ... g + a.- 2 ~ t O • 

to prove that tho Jacobian is one is 

to wri to the transformation as a product of transformations 

and to uso the properties 2.2, 2.3 (for tho first transfor­

mation) and 2.6. 

The first equation (5.1) gives x1 by an :implicit for­

mula, hence the method is lengthier than the special case

(3.1) obtained when f(x,y,t} ~ y or than the other special 

ca.so when f'(x,y,t) is linear in x. I.n all other cases, the

solution will bo obtained by iteration; because y and t 

are fixed any accelerative procoss of iteration will fur­

nish quickly tho solution. Tho most obvious accelerating

processes are Newton 's and Aitkon 's methods. 

Tho simple iteration method defined by the equation

(5.1) w-ill converge if



(5.3) 

Because h must bo taken small (to make tho error terms 

small enough), this relation will not usually lead to an 

additional restriction and tho rate of convergence will 

usually be fast. 

It is clear that ono may interchange x and yin (5.1), 

tho form (3.3) is then a spacial caso. 

6 .. Seco nd order method for (1.2). 

The methods (4.1) and (4 . 3) did suggest to us the

generalization 

hf'(- t + ah) X = .x + 2 xl, yo, l 0 0 

h - + a.h) y = yo + 2 g(xl, Yo, to ~2s 1,. 1) 
l 

h -
Y2 = yl -t 2 g{x1, Y2, t .. ( 1-a.)h) 

0 

- h - +( l-a.)h) x2 = .xl + 2 :r ( y-i , Y2, t 
0 

with the error terms

X X{t ~ h) -- ( ~ f) 0 hJ 2 - 0 l;. 

(6.2) 
y - y{t -4 h) = { I g) h3 

2 0 0 

Where the operator is given by 

l 2 ~2 1 2 ~ 2 a.2-a 1 ~2 
I= -24: 6~ +v ~ ay2 + C--z- -., +12 > ~t2 

l et A2 1 ~2 l L 
+ (b -:z2. g ~y.St - 12 ~. ~ - 12 r -~ oxoy 

:t ~ c t1 -·~ t o 1 ; ~ ~ ~ 
+ 4 c1t 17 + 2 rt rx + Ii £ ox oi . ,. 

-t 
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Tho two first equations are analogous to (5.1) hence 

tho Jacobian of x1 , y1 with respect to x0 ,y0 is one. The

two last equations are analogous to (5.1) where x and y 

are interchanged, hcnco tho Jacobian of x2,y2 with respect 

to x1, y1 is one. Tho comploto transformation preserves tho 

area because of the property 2.2. 

That the method is second order could have boon inferred 

by remarking that 

hence thatt if y did not appear in g tho slope is taken at 

the mid-point for x and that if x did not appearing ono 

uses the mean of the slopes at the extremity of tho interval 

for y.

Two of tho relations (6.1) are implicit, this seems to 

be tho price we havo to pay ror the general equations, when

ono insists on a method which preserves the area. 

Indeed onemay interchange x and yin (6.1). 

7. Generalization ton degrees of freedom 
Lot us now considor the Hamilton system 

(7.1) H = H(q1, p1 , t), i = 1,2, ••• ,n 

and the solutions q1 {a.pp1,t), p1 (a.1 ,{31 ,t) with initial con­

ditions ai, bi when t = t 0 • 

J=1 
Tho property generalizes into tho Poisson brackets

relations (See WhitakerCh XI), 



[pi, 1 
PkJ = 0 

(7.2) [qi, qk] = o i,k = 1,2, ••• ,n 

[pi' qk] = ~ik • 

To chock that a transformation is a contact one, ono may 

either use (7.2) or prove that 

is a total differential, when p and q are expressed in 

terms of a and b and when t is considered as a parameter.

Tho method 

(7.3) is a contact transformation: 

oH 
= i: U\ - h O qi) 

= dfZ[f3i4i - 131a.i-h H{qi ,f31 

where t isconsidered as a parameter. 



is second order as soon in section 6. (7.4) is a contact 

transformation bocauso it is the product of two contact 

transformations. Wo suggest a= o .

In general two of the above relations are implicit. 

Tho special caso 

H = ½ [zp; + 2U(q1 ,t)] 

is worth mentioning. ( 7 .4) reduces then to 

(7.5) q_ (t -+h) " 
J. 0 

i 5~il to + ~ h) 
!.1 2 

cl qil 

h. 
qi2 ~ qil + 2 q12• 

No detailed example or discussion is given. This will 

best be done by those working on these problems in tho 

Brookhaven, Harwell, MURA or CERN group. 

8. Acknowledgement I wish to thank Professor J. Snyder 

of the University of Illinois and MURA for having brought 

this problem to my attention at tho MURA meeting of April 

14, 1956. 
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