ON DIFFERENCE SCHEMES AND
SYMPLECTIC GEOMETRY @
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§1 Introductory Remarks

In this paper we present some considerations and results of a preliminary study, specif-
ically within the framework of symplectic geometry, of difference schemes for numerical
solution of the canonical system of equations

dp; _ OH %_6_}] i=1....

dt ~ dq At 0P ol (1)

with given Hamiltonian function H(p1, -, pn,q1, s qn)-

The canonical system (1) with remarkable elegance and symmetry was first introduced
by Hamilton in 1824 as a general mathematical scheme for problems of geometrical optics.
The success of this approach was evidenced by the subsequent theoretical prediction and
experimental confirmation of the phenomenon of conical refraction. The approach was then
successfully applied by Hamilton himself in 1834 to an entirely different area—analytical
dynamics. It was immediately followed and analytically developed by Jacobi into a well-
established mathematical formalism for mechanics, which is an alternative of, and equivalent
to, the Newtonian and Lagrangian formalisms. The proper geometrization of Hamiltonian
formalism was started by Poincaré in 1890’s, his contributions, together with the later ones
by Cartan, Birkhoff, Weyl, Siegel, et al., in the 20th century, gave rise to a new discipline,
called symplectic geometry, which serves as the mathematical foundation of Hamiltonian
formalism.

For a certain long period of time, however, Hamiltonian formalism and symplectic ge-
ometry had not attracted deserved attention from the general mathematical community,
their theoretical as well as practical significance remained not fully recognized. A turn of
interest was triggered first by Kolmogorov-Arnold-Moser’s researches on the invariance of
conditional periodicity under small perturbation of the Hamiltonian around the integrable
system, which brought to light the potential of the symplectic approach. This was followed
by Keller-Maslov’s contribution to the symplectic-geometrical foundation of the WKB as-
ymptotic method for solving wave and Schrodinger equations and extending thereby the
validity of the method beyond the caustic singularities. Since then, in the recent 2 decades
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there 1s an ever growing interest of research and realization of the importance of Hamilton-
1an formalism in many different areas of pure and applied mathematics. It is known that,
Hamiltonian formalism, apart from its classical links with analytical mechanics, geometrical
optics, calculus of variations and non-linear PDE of first order, has inherent connections also
with unitary representations of Lie groups and geometric quantization (Kirillov, Kostant,
et al.), with linear PDE and pseudodifferential operators (Hormander, Egorov, et al.), with
classification of singularities (Arnold, et al.), with integrability theory of non-linear evolution
equations with soliton solutions, with optimal control theory, etc. It 1s also under extension
to infinite dimensions for various field theories, including hydrodynamics, elasticity, elec-
trodynamics, plasma physics, relativity, etc. Now it is almost certain that all real physical
processes with negligible dissipation can be described, in some way or other, by Hamiltonian
formalism, so the latter is becoming one of the most useful tools in the mathematical arsenal
of physical and engineering sciences. In this way, a systematic study of physical methods of
Hamiltonian systems is motivated and would eventually lead to more general applicability
and more direct accessibility of the Hamiltonian formalism.

§2 Digressions on Hamiltonian Formalism

We give here a brief summary of the Hamiltonian formalism and its basic geometrical
properties. For simplicity we use the usual coordinate description and consider only the
classical phase space R?" of a dynamical system with n degrees of freedom. For details, see,

e.g., [1]. R = RZ X RY z=[z1, -, 290 € R?" splits into 2z = [ f]) ], g=1q1, ,qn) =

q bl
[Znit, - 2om] € Ry, Ry 1s the configuration space, whose “points” ¢ represents positions of
the system; p = [p1 -~ ,pn]’ = [21,- -, 2a] € Ry, R} is the momenta space, whose “vectors”

p represents the momenta of the system.

The phase space R?" is equipped with a standard symplectic structure defined by a
“fundamental” differential 2-form on R>":

wy = zn:dp, A dq,' = zn:dzz A dzn_|_1, (2)

i=1 i=1
i.e., to each z € R?™ a bilinear antisymmetric form
wr(&m): =& Jn (3)

for each pair of tangent vectors & = [&1, -+, €], 1 = [1, -+ ,72a)" at z, J is the standard
antisymmetric matrix

0 I
J= , J=—=J=J"1 detJ=1.
—I, 0

The fundamental 2-form wj is non-singular and closed, 1.e., dwy = 0.

Let w: R* — R?" be a differential mapping, z € R*" — w(z) € R*", the corresponding
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Jacobi matrix is denoted by

L

w B 3».21 87{2n
3_ - . .

: 8wZn 8wZn

821 822n

mapping w induces, for each z € R?", a linear mapping w, of the tangent space at z into
the tangent space at w(z) by

Ow
= e ! — = —
€ - [gla a€2n] w,.f 9z €
w also induces, for each 2-form w on R?", a 2-form w*w on R?" by the formula

N Oow . Ow
w W(gaﬁ)z = w(gga 8_Z77)w(z)

Ifw(é,n), =EA(2)n, A'(2) = —A(z), then w*w(£, n) = £B(z)n, where

B(:) = (24 (=) 2
z) = (— w(z))—=—.
0z 0z
A diffeomorphism (differentiable, one-one, onto mapping) of R*" is called a canonical trans-
formation if w preserves the standard symplectic structure, i.e., w*wy = wy, l.e.,

ow."  Ow

S —) = 4
Gy a3 = (1
i.e., the Jacobian %_120 is a symplectic matrix for each z.

For every pair of smooth functions ¢(z), ¥(z) on R*®, we associate a smooth function

x(z) = {¢, ¢}, called the Poisson bracket by
(6,4} =¢LJ 7,
9¢

where ¢, = [8_21’ e ,%]. The Poisson brackets are anti-symmetric and satisfy Jacobi
identity.
Choose a smooth function H(z) = H(z1, -+ ,220) =H(P1, - ,Pn,q1, " s qn). The

equations (1), or written alternatively as
dz _
=7 ‘., (5)

is called the canonical system of equations with Hamiltonian H (z). According to the general
theory of ODE, for each Hamiltonian system (5), there corresponds a one-parameter group
of diffeomorphisms g* at least locally in ¢ and z, of R?" such that

titts gtl Lt

¢" = identity, g¢ g2,

such that, if z(0) is taken as the initial condition, then the solution of (5) is generated by
2(t) = ¢*2(0).
The basic property of Hamiltonian system (1) is that ¢* are canonical transformations

9wy =wy, (6)



for all ¢. This leads to the following class of phase-area conservation laws
/ wy = / wy, every 2-chain 0 C R?"?,
gt02 o2

/ wJ/\wJ:/ wy Awy, every 4-chain ¢* C R*™,
gt04 04

/ a)J/\~~~/\wJ:/ wrA---Awy, every 2n-chain ¢®® C R?",
gt02n 02n

the last one is the Liouville’s phase-volume conservation law.

Another class of conservation law is related to energy and all the first integrals. A
smooth function ¢(z) is said to be a first integral if p(g*z) = ¢(z) for all ¢, z, the latter is
equivalent to the condition {¢, H} = 0. H, usually representing the energy, is itself a first
integral.

The above situations can be generalized. A symplectic structure in R?" is specified by
a non-degenerate, closed 2 form wrx =Y ki;j(2)dz A dz;

1
wr(é,n), = 55'[((,2)77, K'(z) = =K (z), det K(z)#0.
A differentiable mapping w: R?"® — R?" is called K-canonical if w*wg = wg, i.e.

Gy K w(=) 0 = K(2) (¥

The Poisson bracket is defined as

{¢a 1/)}}'{ == ¢lz[(_1(z)1/)za

which is anti-symmetric and satisfies the Jacobi identity. The equations of the form

o= K™'H, (9)

is called the K-canonical system with Hamiltonian H, whose solutions are generated by a
one-parameter group g¢, which consists of K-canonical transformations. The conservation
laws of (7) remain true with J replaced by K, while the Liouville’s theorem remains un-
changed. The condition of first integrals for (9) is analogous, H is also among the first
integrals.

Darboux theorem establishes the equivalence between all symplectic structures: Every
non-singular closed 2-form wg can be brought to the standard form

Z k,](z)dz, A de = Zdw, A dwn+1

locally by suitable coordinate transformation z — w(z).

83 Difference Schemes for Linear Canonical Systems

Take the Hamiltonian to be a quadratic form

1
H(z)= §z'Sz, S =5, (10)
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and K be an anti-symmetric non-singular constant matrix, then the K-canonical system (9)
becomes linear

d
d—j =Bz,  B=K"'S, (11)

the generating one-parameter group is a group of linear transformations which coincides
with their own Jacobians

z(t) = G(t)=(0), G(t) = exptB. (12)
The matrix B is infinitesimally K-symplectic
KB+ B'K =0, (13)
its exponential transform exp ¢ B is K-symplectic and S-orthogonal
(exptB)'K(exptB) = K, (exptB)'S(exptB) =5, (14)

i.e., both the symplectic structure and the energy are conserved.

In a wider context let ¥(A) be a meromorphic function, in case the matrix B has no
eigenvalue at the poles of ¢ (A)— we then say that B is non-exceptional—, the transform
(B) is well-determined. Tt can be shown that, in order that ¢(B) be K-symplectic for all
non-exceptional infinitesimal K-symplectic matrices ¢ B, it is necessary and sufficient that

PA)p(=A) = L. (15)
When this is satisfied, we have, we have, for all integers m > 0,
(¥(tB)) KB™(¥(tB)) = KB™. (16)
Let
K;i=KB%% S;=KB¥! i=1,2,3,---,n. (17)
Ky = K, K; are anti-symmetric, S; = 5, S; are symmetric, then (14) is extended to
(¥(tB) Ki(4(tB)) = Ki,  (¢(tB)) Si(¢(tB)) = 5;. (18)

The independency of the sets K; and S; depends on the degree of the minimal polynomial of
B. Thus the K-canonical transformation ¢(¢B) has many conservation laws of phase-areas

and symplectic structures as well as many quadratic first integrals ¢;(z) = %Z’S,’Z. The
exponential transform ¢¥(A) = expA — exp B and Cayley transform ¢(\) = % — %

satisfy the condition (15).

In our study of numerical methods, we are interested in the Hamiltonian equations less
as a system of ODE’s per se, but rather as a specific system with Hamiltonian structure. It
1s natural to look forward to those discrete systems which preserve as much as possible the
intrinsic properties of the continuous system. We hope this would lead to more satisfactory
practical performance and theoretical foundation.

Consider now three kinds of difference schemes for linear Hamiltonian system (11). Let

7 be the time-step, z(n7) ~ 2", n =0,1,2,---. Scheme I — Centered implicit Euler scheme
1 1
— (2™t ™y :B§(Zm+1+zm), B=K"'s. (19)
u

The transition z™ — z™m+1

with 1ts own Jacobian

is given by the following linear transformation F, which coincides

-1
S = Fm = (1 - %B) (I + %B) = w(—%B), (20)
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where ¢(A) = %_T_—i‘ the Cayley transform function. Note that the corresponding transition

z(mt) = z((m 4+ 1)) for the true solution at the same time-step 7 is given by
z((m+1)7) = Grz(mr), Gr=-expTB.

So (G and F. are the exponential and Cayley transforms respectively of the same B, so
they have the same sets of invariant “symplectic structures” K; and invariant “energies” S;
as given by (17). Even more than that, it can be easily proved that each function of anyone
of the following types

(a) Quadratic form f(z),

(b) Bilinear form g(z, w),

(c) Linear form £(z)
is invariant under the differential equations (11) if and only if it is invariant under the
difference equations (19). So the conservation properties of (11) and (19) are the same.

For the comparison of the stability properties of (11) and (19), we take, for simplicity,
K = J and the “separable” Hamiltonian

H(p,q) = U(p) + V(q) = kinetic energy + potential energy,

where
1
Up) = §p'Mp, M = M', positive definite,
1
Vig) = §q'Lq, L =1I', not necessarily positive definite,
so that
M 0 0 -7
S = , B=J1ls= ,
0 L M 0
and systems (11), (19) can be written as
dp dq
£ 2 M 21
7 “ = p, (21)
1 m+1 m 1 m+1 m 1 m+1 m 1 m+1 m
—"T =) = Lo (@™ ™), ST =) = MM ™). (22)

The eigenvalue A of B is related to the eigenvalue g of the Pencil L — uM~! by A2 = —p,
where g is real, g = 0 or —w? or +a?, where w and @ are positive. The Jordan normal form
of the matrices B, GG; and F: consists of n diagonal blocks of order 2 of the following three
possible types

Type 1 Type 2 Type 3
5 [0 0] w0 a 0
0 0 0 —w 0 —a
GT [ 1 0 ] eiwr 0 ear 0
0 1 0 e wr 0 e @7
_ i 1+ iwr/2 0 1+ar/2 0
7 0 1 —iwr/2 1 —ar/2
T 0 1 0 1 —iwr/2 0 1—ar/2

1+ iwr/2 1+ ar/2



12

When type 3 is missing in B, all eigenvalues of both (20) and (21) are unimodular with
linear elementary divisors. Type 3 leads to instability for both (20) and (21).
Note that

—L
GTZGXPT[ 0 ]:
M 0

Gr= S E ey, G- 30 L ey,

Gr,ll GT,IZ
Gr,21 GT,ZZ

bl

m=0 (Qm)' m=0 (2m + 1)' (23)
Gr 51 = i (_1)’" (T)2m+1(ML)mM Gr 99 = i (_1)’" (T)Zm(ML)m.
' — (2m + 1)! ’ ' = (2m)!
Scheme II, Staggered explicit scheme for separable Hamiltonian systems (20)

1
Z(pmtl _pmy — ], m+1/2
I(p p™) g : .
_(qm+1+1/2 _ qm+1/2) — Mpm+1.

-
The p’s are set at integer times ¢t = mr, the ¢’s at half-integer times ¢t = (m + %)T

In this case the transition

" pm e pm+1
we = g2 —w = gL/

is given by the linear transformation
-1
I 0 I —7L
e (25)
—TM I 0 I

In order to analyze this scheme we introduce a linear transformation for the true solutions

w™tt = Fow™, F, =

iy — | P wit = | PO
"= q@)]* R PN

I 0 »
w(t) =Tz(t), T= Gro Gras | 2(t) = T w(t).

Define

K=T""JT"" = [ki;(z)], K =-K.
It can be shown that d(} k;j(2)dz Adz;) = 0 and det k # 0, so K actually defines a
symplectic structure. Then w(t) satisfies the K-canonical system

d - -
= KT'H, = K~'Sw (26)
with Hamiltonian f](w) = H(T'w) = %w’gw,
S=7"YsT1,
so the transition
~ t i
Gr:w(t) = p(t) . —w(t+7)= p(t+7) .
q(t+ %) gt +7+3)

is linear and K-symplectic, 1.e., é’,[(é, =K.
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It can be proved that [, is also K-symplectic as 1s expected. However, the en-
ergy conservation properties are somehow different, F» does preserve H(w), which is the
true energy after synchronizing p™, qm‘l'% at staggered moments by T~! to p™, ¢™ at

the same moment. F. preserves, instead, a modified Hamiltonian H(w) = %w’gw, S =
I -IB| |0 -B . . ,
- Jr-1 . ; 4 . Note that in practical computation, the synchro-
T2

nization is done by defining ¢™ = %(qm_% + qm+%), then all the first integrals ¢(p, q),

including the Hamiltonian H (p, ¢) are conserved approximately as
S g™ = ¢(p™,¢™) mod O(7°).

The eigenvalue X of F, is related to the eigenvalue p of the pencil L — pM~! by
A2+ A(r?2—2)+1 = 0, this leads to the Jordan normal form of F', consisting again of three
possible types

Type 1 Type 2
2.2

[1 0] 1+w27' —1—% 4 —w?r? 0
FT 2 2 .

0 1 0 1+w27' —% 4—w?r?

Type 3
a’r? ar

1+ 5 —1—7\/4—|—a272 0

Fr 22
0 1+a27 +%\/4+a2r2

Type 2: When 7 < %, the two eigenvalues are unimodular, complex-conjugate, distinct.
They collide at —1 when 7 = % AsT > % they become distinct and real, one with modulus
> 1 and other with modulus < 1. Type 3: the two eigenvalues are real and distinct, one
with modulus > 1 and other with modulus < 1. In case L being non-negative definite, Type

3 is missing, then all eigenvalues of Fr are unimodular and belonging to linear elementary
2

Wmax

We apply the above scheme to the 1-D wave equation

divisors when 7 <

2 2
ng :cz%, O<e<l, u(0,t)=u(l,t)=0

with finite element semi-discretization

d*u 2
dtZk - ﬁ[uk_1—21tk+uzc+1], k=1 m
1

Uy =Upp1 =0, h=
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Let qx = ug, pr = aa%, we get a canonical system (24) with

2 -1
2 -1 2
M=1I L= 7z
-1 2 -1
L -1 2]
The types 1 and 3 are missing, wy = 2h—c cos 25% < w = 2h—c cos ﬁ < 2h—c So the

Courant condition 7 < % ensures stability of (24). The scheme is in fact equivalent to the
classical 5-point scheme for the wave equation, see [2]. There is an interesting study [3], with
further references there, on computer simulation of fluids base on Hamiltonian formalism
with spatiotemporal staggered scheme.

Schemes III. Energy-conservative schemes by Hamiltonian differencing. For simplicity,

we illustrate the cases only by n = 2. Let 7 = 2™, 7 = z™+1,
1 . -
—(p1—p1)=—= {H(p1p2q192) — H(p1p29192) },
T q1 — 9
1 . 1 S -~
—(p2 —p2) = —= {H(P1p20142) — H(P1p2q192) },
T q2 — 42
1 . 1 S -
—(1 — q2) = =———{H (p1p20192) — H (p1p29192) }, (27)
T Pr—n
1 . 1 e e SO
(2 —q2) = = {H(P1P201q2) — H(P1p2G12) }-
T P2 — P2

By addition and cancellation we have energy conservation for arbitrary Hamiltonian
H(p1P2q192) = H(p1p2q192)-
For quadratic Hamiltonian, H = %Z’Sz, we get

1 1 1
—(zmF My = J_lS§(zm+1 +z2™) — §JR(zm+1 — 2™,

-
where
S11 S12 S13 S14 0 —s12 s13 —s14
S92 823 So4 ) 0 523 S24 ,
S = = S s R = = —R s
* 533 534 * 0 —834
S44 0
and

PLARI (IPLI ARy § g %JR— %J‘lS)‘l(I—i— %JRJF %J*S).

Let K = J — s R, B = K~'S, we can prove that F; is the Cayley transform

T - 1—A
Fr=v¢(—=B A)=——
so we have invariant “symplectic structures” K, = K, K5, K3, --- and invariant “energies”

Si,=5, 59,53, like (17), (18).
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84 Difference Schemes for General Canonical Systems

The three kinds of schemes for linear systems in the previous section can be generalized
to the general non-linear case.
Scheme 1. For the general canonical system (1), we put

1 1 1
;(Zm-l_l - Zm) = J_lHZ(§Zm+1 + §Zm) (28)
m+1

The transition z™ — z is non-linear in general. By differentiation,
gzmtl

az™

—I=rJ""H..(

Zm+1 _|_Zm lazm+1 N 1[ ’
2 2 0zm 2

here H,, (Mf‘l'zm) is the Hessian matrix of the function H(z), evaluated at z = Mf‘l'zm,

5ol
oz™

is the Jacobian matrix F-, so

Zm+1 + Lm

-1 m+1 m
=|r-Z5 Ty, (A
Fe= - (U )] [I+2J H..( )].

2
When z remains bounded and take 7 sufficiently small we can keep the infinitesimally sym-
plectic matrix %J‘lez(szr%zm) non-exceptional, then F;, as a Cayley transform, is
symplectic. Thus all the conservation laws for phase areas remain true. However, unlike the
linear case, the first integrals ¢(z) including H itself are not conserved exactly. Instead, the
approximate conservation
p("H) = p(z™) mod O(r)
can be shown.
We remark that the analogous averaged implicit Euler scheme
1 m+1 m -1 ! m+1 1 m
;(z -z =J §Hz(z )—|—§Hz(z e (29)

which reduces, like (28), to the same symplectic scheme (19) with K = J for linear problems.
Fr=|I- %J‘lez(zm"'l)] [I—i— %J‘lez(zm)] ,

which is not symplectic in general.
Scheme II. For the canonical system with general separable Hamiltonian H(p,q) =

U(p) + V(q), we have

1
;(pm+1 _pm) — _Vq(qm+1/2)’
1 141/2 1/2 1 (30)
(g g2y = U (M),
. pm pm+1 )
The transition qm+1/2 — qm+1+1/2 has Jacobian

-1
P 1 0 I —7L ’
—TM 1 0 1

which can be shown to K-symplectic as for (24), (26), but with

M= Upp(pm+1)a L= qu(qm"'l/z).
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This leads to a class of modified conservation laws of phase areas, but with Liouville’s
theorem unchanged.
The first integrals ¢(p, ¢), including H (p, ¢), are approximately conserved as
o™, %(Q’"J’l“/2 + ") = o (p™, %(qm“/2 +q" %), mod O(7?).
Scheme III. This has already been constructed for the nonlinear case in the previous
section, the Hamiltonian H(z) is always conserved exactly. However, the first integrals ¢(z),
other than the Hamiltonian, are approximately conserved to a lower order as

(/)(zm'l'l) =¢(z™), mod 0(7'2)

due to some kind of asymmetry in the algorithm. Moreover, except in the linear systems,
symplectic properties for the Jacobian of transition could not be established in general.
The details of the results and some other developments will be published elsewhere.
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