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Methods of integration which preserve the contact transfor-

mation property of the Hamilton eguatlons.

; t Com
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e Surmery. Hamilton equations are such that the relation,
between the coordinatss and momenta at time t and at time
t,> 1s & contact transformation. ﬁeth@ds of integration of
Hamilton equations, which do preserve the contact transfor-
mation proverty are given nere. These me?hods are of first
and second order. They are given, for the eguation x= f(x,%),

then for the case of one degree of freedom, then for the gen~

eral case. Some of the formulae are implicit.

1. Introduction. In recent years the construction of high

powered accelerators has led to vast programs of computations
involving the solution 5, over a very long time range of
Hamiltomian systems describing approximately the moticn 8

of a proton in the accelerator. Errors betwsen the compu@’
ted solution S, and Sl are introduced bscauss of the method
of integration (finite step of increase of + and becauss

of round-off (finite number of binary or decimal digits).
Their worst effect 1s probably to destroy the contact trans-
formation property of S. Hence the suggestion of using a
method of integration which, if there was no round-off error,

would give a solution S, with the contact transformation

3
property. Morcever, if the error, due to the finitensess of
incrocase of tl is not too large, one may aven expect that

the evror betwesn 83 end 3 will be of the same ordsr of
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magnitude as the error between Sl and 5. How good the

solution Sg has to be, will depend on & study of the

physical system §%g its Hamilton approximation. One should
& make duwie Yhot

also/fiet +£ the discontingities in the derivatives intro~
at each step,

duced /by the method of integration do not{&&ig;/ggénificanti§\

the results,

One may expect that second order methods may lead
to significant resulis even with step increments which ars

not too smell,

The contact transformation property doss reduce to
area conservation when the Hamiltonlan has one degree of
Iresdom. We fesl that it is not surperfluous to treat
first this case in detall, it did lead us to the genersl
case and we hope that the procedure used may glve a lezd
to the construction of higher order methods; Two known
first order methods are given for the speeial case
(141) x = £(x,1),
they are cxtended to the case

(1.2) % = fyi

= . oH
ex

tefe

o«

Sccond ordor methods are described. The error term for
onc step is given, it may elso provide a lsad to higher
order metheods. The error after n steps is not given.

{7.14) and {7.5) are probably the most important formulae

in this papsr.
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2., Some basic properties. We will first recall a certain

number of basic properties rclovant to this paper, although
thelr generalization 1s well known.

Dofinition 2.1 If xy = f(;b,yg) and yy = g{xc,yo) ars

two functions, continuous in Xys ¥, 8S well as their first

partial derivatives,

a ) 31 ek

- (Xl’yl - ;Eg éyb
d (%s¥,) RY1 37
¢¥o 5?;

is called the Jacobian of x;,v; with respect to X5 ¥y

Property 2.1  If x,=x, and Iy = f(xosyo)x

d(X1’YI) - ¥
d(Xo,¥0) ggg

»

Property 2.2 If x, = F(xy,y;) and yp = G(x3,y4), then

Md(XZ,yz) _ d{X23yZ} ' dfxlsyl}

A(%5sTe)  A(xq,¥7) Ax,,y,)

Property 2.3  If d{xy,y,) ¥ 0, then

a({x,,y,)

d(xo’yo) [d(xz,yl}“dt
) .

T 1d(% v
d(xl:y1> 0’7o
Property 2.1 The element of area ax dy, and dxldyl aro

reiated by
dxl,dyl = dxo.dyo

provided J = 1,

(For the proofs one may consult de la Vallée Poussin, { }}
I, p.360-36l). =
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If one considers the differentlal equations

it

x f(x:y:t‘)

{(2.1)

v = glx,7,%)

where f and g are continuous functions in X, y and t and

i

have first partiasl derivatives continuous in x and y; if
x{t), y{t) are solutions of {2.1) with initial conditions
Xq and ¥, Qhen t = tog then onec has

Property 2.5

_ Ay efzodt('gé + %—g)
d(%,,3,)

{See for instance de la Valléc Poussin II, p 1L6).

Property 2.6

A necessary and sufficicnt cohdition that
£fdy - gdx

be an exact differential dH-when t 1s considered as a para-

meter—is ,
ok,

(; ;ﬁ:’tnﬁﬁ3,

Hence

Theorem 2.1 A necessary and sufficient condition that

the equations (Z2.l}-under tho above condition- be such
that the area in the space of initial conditions at & = 0
be prescrved for all t, 1s that there exists a function
H(x,y,t) such that
fde .;é.g
'_}}-!gwwax ‘
or that (2.1) 1s & Hamlltonian system.

(
(See also whittakeyj?h.X1)a
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This theorcm shows that the only systems of two cguaw
tions of first order that wo have to consider are of the
form (142}, The procecding propertics will ensble us o

- prove that the given methods of integration have.}écobian
one, hence are area prescrving. These methods of integra-
tion aro dependent upon a parameter h {time incremamt). If
the solution of {2.1) has a continuous nth derivative for

0o <t~ t; <h, onc can write

\ ISP o)
x(to#n) = x{to) + h %(ty) +ese + =7 [x

n {to) + £},

where €& tonds to zero with h.

Definition 2.2 If the method of integration is such that

the approximation ﬁ{tc+h} expanded in terms of h coincides
with the above Taylor expressions to the order p < n, one
says that the method is of the p! order and we will use

)
the symbol gpg vesided the formulac of the method.

We have not included in this paper the algebraic man-
ipulation which proves rigorously, by this identification
me thod, that the f?gmulae arc correct %F the given order,

or

We refer to Ince 4&5259A'H12dcbrandt 5o oaKonat—{3556

for the famous application of this method to nbtain

Runge~Xutta type formulae.

Ifp=< n~l, 1t is possible to give the crror term of
the formula, as the coefficicnt of hPtL of ?(to+h)~x{t0+h}
multiplicd by hP*L, 7Phis ervor will be given. Tho error
after n steps where nh is fixed is of the oxrder of KPP, I:

can be found, if necessary, by methods used in similar




7.
(g) (4),

cascs. Sec for instance Collatz ~«39839 or Hildebrandt 3556+,

3. The known methods. The following methods are well known

when a = o, but they @re only first order and applicable %o

i

the special case {l.1):

.1 X hox
(3+1) f? N él%

X, = io 3 hf(Xy,b0+ aB)

The error terms are >

— -ty
xl-‘z(to+h) = 3 f(xo,to)

(3.2) 1 oF 1, . 2
%) - (toah) = (3 % (55, + (a - 3 D) v",
the last equation suggedbts to take a = %.
Also ' ‘ .
(3.3) X, = x % hf(xg,to + agh) N
- h ° (l\
x = Xo + Xy
the error terms are
. _ h2
(30&—) Xl - X(tc'&h> = ‘_é—' f(xosto)
A - _ _J; M 5f 1‘ éf 2
%, = X(t,+h) = [-3 XO(SE)O + (a~5) (5 )03 h™,

the last cguation suggests to take a = %,

It is easy to check tho area conservation property
using definition 2.1,

Alternatoly, one may also write the transformation
as a product of two transformations and use the property 2.2.
For instance (3.1) can be writton
Ei = x, + hx, , io = %

= »

= x4 hf(xl,to+ah), Xy = X
thexgécobian of both transformations is one because of the

property Z2el.




8.

lie Socond erder methods for (1,1).

The following mcthod can bo used to © lve (l.1)¢

o . h
Xy =k o+ 5 f(xg,t+ ah)
’1) T . £ 32
(b Xy = X+ h x4 < z
¥ =% +2rE, 1-a)h)
XZ = Xl > (X, R + {l-a

l One can infer that the mecthod is second order becausc
the socond egquation uses the slope at the mid-point, and tho
last eguaticn combined with the first wses the moan of the
slopes of X% at the extromiticsof the interval, indeed tho

error terms are

= ooty w1, oef 3
‘ x? - x{to+h) = [f6x¥§4%2"6} 3% }o h
(L.2) | 2 2
s . e . 1 3T .2, ,1ag°7C &
x5 - x( to+§z) = L0 {-—-—-12 2 ® +(z-% }53?55 X +

2 2
af~a 1,87 X 3., .3
Gz @yttt

The alternate method at tho cnd of sectlion 3, gives
immcdiatcely the area conservation property. The first

tRat we 1
equation saggestsﬁdb& take q = "é’ .

A similar argument shows that we can also use

X, =X, %2 X,
2 ® — .2“... : }
(Lo 3) X, = %, + bf(X, t+ 5 2) (2%
—~ - h =
EN Xt T X
with the error torms:
- . f e »f B3
3*.'22 x(t,+h) {bx x % }o T
{llnh) ° 1 52 : » 1“’21‘ & h’3
i kA - T 02 é e [ ”ﬁ T e
o - X(to+h): {é.mx +§;§€X%ZW¢' Sxfh o2




This sccond mcthod has comparable orror terms, but asks
for only one computation of f{x,t) per interval, hencc is

barcly morc complicated that the first order mothod.

5, PFirst ordor method for {1.2).

&
The mothods (3.1) and {(3.3) arc symetrical «# cavh

othor and do suggest the following gcneralization.

—

. ¥y = x, + h £(x,,y., t_ +ah) .
(.1 ° ATer e (%
Y. =¥, + h g(xl, yo,tc +ah} T
with tho ecrror toerm-
- Y of 4 .2
X.}.. - X{t0+h) == {“'2§y fg + (G«"é) jt }Oh
— 1 3 1, >g 2
T o vl = [ ol P -
¥y y§t0+h} {2 3% ig o+ {a 2:’ Xg }O h™s
We suggtst a4 = %o

Tho casiest way to prove that the‘jécobian is one is
to writc the transformation as a product of transformations
and to usc the properties 2.2, 2.3 {for thc first transfor-

mation) and 2.6,

The first equation (5.1) gives %, by an implicit for-
mala, hoencoe the method is longthicr than the special case
{3.1) obtained whon f{x,y,t} = y or than the other spcecial
casc whon I{x,y,t) is linear in x. In all other cascs, the
sclution will be obtained by iiteration: because y and ¢
arc fixcd any accelerative proccss of lteration will Tur-
nish guickly the solution.’ Thoe most obvlous acccloratin

proccsscs arc Ncocwton's and Sitkon's methods.

Tho simple iteration method dofined by the cguation

(5.1) will convorgs if




) | hl%é (x,yo,%c+ah)( < 1l

Bucause h must bo taken small (to make the error terms
small onough), this relation will not usually lead to an
additional restriction and tho rate of convergence will

usually bo faste

It is cloar that onc mav intcrchange x and 7 in (5,1),
the form (3.3} is then a spoclial casc,

H. Scoond order rmothod for {1.2).

The methods (L.1) and (L.3) did suggest to us tho

gencralization
X o=x +2 (%, 7, t +an)
g TR, P T R T B v &
——— h -
fy TRt e v e (27
N g
— - h e
Vo= ¥ Y2 83, ¥ %, % (1-aln)
- = Lo o 5 l-a)h)
Xg = Xl + 2 »(}:1) 1’2‘ o +( -0sn;

Xy~ x(t, +h) = (1) n




.

The two first oquations arc amalogous to (5.1) hence
tho Jﬁcobian of X;, ¥y, with rospect to X 1Y, is onc. Tho
two last cguations arc analogous to (5.1) wherc x and ¥y
arc. interchanged, hence tho jacobian of §é,§% with respeet
to Ei, ?i is one. Thg complotc transformation preservoes tho
arca because of the property 2.2.

hat the mothod is sccond order could have boon inforred

by remarking that

Vo Vo * 3 B(E, Vs b, + ah) + 5 g(xl,y ,to%{lwa}h)

2

hence that if y 414 not appcer in g tho slope is taken at
the mid-point for x and that if x did not appear in g onc
uscs the mean of the slopes at the extremity of the intoerval
Tor ve

Two of the relations {(6.1) are implicit, this scoms %o
be the price we have to pay for the gencrel equations, when
ono insists on a method which prcserves_the area;

wgg}gzngée may interchangc x end y in (6.1};

7. Gencralization to n degroos of frecodom
LET U3 NOW CcOonSider Tnc Hamiiton system

i

L
{?'l) H = H(q‘ig pij t}’ i = l,g’ﬁio’n
_3m
Pl - -
A éqi

and tho solutions qi(ai,gi,t), pi(ai,ﬁi,t} with initial con-
ditions Oss By whon t o= to‘

| J=1
The property /goncralizos into the Polsson brackots

{
relations {(Scu Mhitbawer Ch XI)t




0 i’k = 132"00,!}

H]

(7e2) lag, q.]
[py, qk} = §ik .
To check that & transformation is a contact onc, ono may
either usc (7.2) or prove that
z (p, 49y - p; da,)
is & tobgl differential, when p and g are expressod in

toerms of @ and g and when t i1s considorcd as & paramctors

The mothod

z Q* 4
g, = a, + n 9H(41,03,5)
o i Ca
(7:3) ; 3H(A1,B1,%)

) ‘ 1
is first order. Sce {5.1), which suggests t = t, + 5 H.

{7+3) is a contact transformation?
Eipiéqi“gié ai} = 2(pidqi+ aiapi—d{aigi}

%4 dH
z(p, - héqi} dq, + (q4-h ggi} dp,~a(aspy)

fl

]

dgzgﬁif%i - {Sia‘i”h H{qifﬁi't}}g

where t is considered as a paramcter,

Similarly the method .
Qs = a, + g éH(qi,pi,tG*‘ah)
o2 apy .
(7.1) _ _h ég(qilﬁi’tomh) 22{‘
pi @i ) éqi

h (91, P1, Yo+ (1-adh)
1 P17 2
aq,

n u(91, %1, Yo+ (1-a)h)
2 3Py

%4
qi(tﬁ+b) = Qi =q, +




3-»3»

is scecond ordecr as socn in scction 6. (7.&) is a contact
transformation becausc it is the product of two contact
transformations. We suggest a = 0,
In gencral two of the above relations aro implicite
The special casc
H = % £2p;2 + ZU(qi,t)}

is worth mentioning. (7.L) rcduccs then to

h - %
q =q, + =g L
il 10 2 44 %
X %

{7.5) qi(to-ih) ¥ Ay, = qi - £ Rq‘ll, o + % h) |
° 0937 ¢23 |
- h . ’

t . +h) = = - - R

1, (toth) 9, =Yy tE A,

No dectailed examplc or discussion is gilven. This will
best bo done by thosc working on thesc problems in the

Brookhaven, Harwell, MURA or CERN group.
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