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There are many different ways to integrate dif- 
ferential equations numerically.' These various 
methods are usually characterized by the accuracy of a 
single step in time. Thus if in a small time step, h, 
the integration is performed so that it is accurate 

',?r?~hor?e??n!~&ation method. 
then the method is referred to as 

The class of differential equations of interest 

Now the question is: if the parameter t is small 
can this map be found approximately to some given orde; 
in t? If this can be done explicitly, then the process 
can easily be iterated and the error controlled by 
adjusting the step size, t. Of course, the typical 
integration method does just this but sacrifices the 
canonical character of the ma 
avoid. Let the approximate ti 

This we propose to 
n 

be denoted by 
order symplectic map 

here is that in which the equations are derivable from 
a Hamiltonian using Hamilton's equations. The exact 
solution of such a system of differential equations 
leads to a symplectic map from the initial conditions 
to the present state of the system. A characteristic 
feature of all explicit hioh order (n>2) integration 
methods, however, 
tic. 

is that th;y are not exactly symplec- 
One manifestation of this is St the Jacobian of 

the transformation for one time step differs slightly 
from unity, 
excited) 

and so the system will be damped (or 
artificially. 

salient 
In many applications the 

features of the solutions appear only after 
long times or large numbers of iterations; in these 
applications spurious damping or excitation may lead to 
misleading results. 

The purpose of this note is to develop an explicit 
third order symplectic map (i.e. a third order integra- 
tion step that preserves exactly the canonical char- 
acter of the equations of motion) and to indicate the 
method for higher order maps. For a typical numerical 
integration, this method can be used to eliminate the 
noncanonical effects while providing the accuracy 
corresponding to a third order integration step. 

There is in addition another benefit of this 
approach. If we iterate a map of a given order whether 
zanonizal or not, eventually the absolute error in 
x and p gets lprge. In cases where spurious damping 
occurs 
point': 

x and p typically settle into some stable fixed 
If the map is symplectic, this is not the 

case. A symplectic map generates phase space behaviour 
which is close to that of the original system with 
errors in phase which eventually may add up after many 
interations to yield large absolute errors in z and 6. 

Therefore, in the svmolectic case, it is possible 
and sometimes -attractive 'to replace the differential 
equation by a svmolectic rnao.--TK" map then becomes 
the object-of stuby and so can be iterated as much as 
we like. This is possible since the map is the solu- 
tion of some physical Hamiltonian problem which, in 
some sense, is close to the original problem. For 
other integration methods this is not the case and 
iterations must be terminated at some point. 

The Problem 

Consider a system of differential equations gover- 
ned by the Hamiltonian, 

H = ;'/2 + V(;,t). (1) 

This is just Newton's second law with the potential 
V(x,t). The solution of the equations of motion is 
given by the functions 

$("xo,ia,t) and Wo,l&,tL (2) 

where z. and ;, are the initial conditions at time 
t = 0. Due to the canonical character of the equations 
of motions, Equation (2) constitutes a canonical trans- 
formation (or a symplectic map) from the initial condi- 
tions to the state at time t which we denote by 

(x,~) = M(t)(xo>po). (3) 
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(x,~) = M,(t)(xa,po), (4) 

where t is the time step (assumed small) and n is the 
order of the map, i.e. 

/jM(t) - M,(t)1 I=O(t"+l). (5) 

In the next section we demonstrate a method for finding 
M,(t). 

The Method 

To illustrate the method first start from low 
order. If we somehow perform the transformation in 
Equation (3) so that H is expressed in terms of the 
initial conditions, then the equations of motion are 

do _ o 

dt- ’ 

or the new Hamiltonian, H', is identically zero (or at 
least independent of xo,po). This suggests that we 
make canonical transformations in such a way as to make 
H vanish. Thus the program is to make these successive 
canonical transformations until we arrive at the inti- 
tial conditions of the problem, or at least to another 
set of coordinates which approximates (x~,po) through 
some order in t. 

Let (xl,pl) be the new coordinates. Then the 
convenient form for the generatinq function of the 
canonical transformation is that ynvolving the new 
coordinates and old momenta:3 

- 
- 

(X,Pb(Xl,Pl) 

Gen. Function: F,(xl,p,t) = -xlp + G(xl,p,t) (7) 

x=-*=x 
aP 

1 -G P' 
p1 z-5 

ax1 
=p-G 

XI 

H, = Ht % 
(8) 

at 
=H+Gt , 

where subscripts have been used to denote partial deri- 
vatives. Equations (8) suggest that we select 

G= - {P2/2 + V(xl,O)}t (9) 

so that 
Pl = P - f(x1,O)t x = Xl + pt, (10) 

where the force, f, has been introduced, 

f(x,O) = - av(x,o)/ax. (11) 

Subsituting into the Hamiltonian yields 

H1= V(xl+ t(pl+f(xl,o)t),t) - V(xl,o) (12) 

and expanding on the small parameter t, we have 

H, = tVt(xl,O) - tplf(xl,O) f O(t2). (13) 

Since HI is O(t), the right hand sides of the 
differential equations from Hamilton's Equations are 
also O(t). Therefore, the solution is 
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Xl = const + O(9) p: = const + O(t'). (I41 

So if x1 and p1 are us5d as initial conditions, the 
error introduced is O(t ). Thus this7 approach has 
yielded a first order symplectic map, Ml(t). 

Since this is such a low order method, it could 
have been derived by inspection; however, it 
illustrates the method which wil? be used in the next 
and subsequent sections. Notice that if (x1, pl) are 
viewed as initial conditions in Equation (lo), then the 
momentum p must be calculated first and then used to 
evaluate x. This is a characteristic feature of the 
method. In addition note that the transformation leads 
back to the initial conditions; thus, the momentum 
equation must be inverted (trivial in this case). 

The'Second Order Map 

It is possible to continue from the results of the 
previous section to obtain a second order map; however, 
there is a well known method (the leap frog method) 
which is exactly canonical, is second order and which 
requires only one evaluation of the force. In order to 
understand tha-ethod and to lay the groundwork for a 
third order map, it is useful to modify the approach in 
the previous section. The modification consists of 
performing two canonical transformations rather than 
one. These are given by: 

(x,P)'(xI,Pl): x = x1 + apt, PI = P - tf(xl,bt) 

F = - xlp - a $!- - tV(xl,bt), (15) 

(xlrP1)+(xzP2): Xl = x2 + (l-a)plt, P2 = Pl 

F= - X2PI - ($dp,2t. 

Thus, there is an intermediate step at which the 
force is evaluated. At this time the parameters a and 
b are undetermined; however, these can be used to 
generate a second order map. Substituting the two 
transformations into the Hamiltonian and expanding in 
the small parameter, t, yields 

H, = t(l-2a)p2f(x2,0) + t(l-2b)Vt(x2,0) + O(t2). (16) 

The purpose of the expansion in t is to identify the 
coefficients of various powers in Hz. The transforma- 
tion equations in Equation (15), however, must be,kept 
exactly in order to preserve the canonical character. 

Now recall from the previous section that if H is 
of O(tn) 
itions, 

;h;n;es~t/,P,2 J& y- n~i;'",r~~r.i"it:haerec,~~",r 

if we choose 
a = b =1/Z, (17) 

then Hz is O(t2), and the total map is second order. 
To summarize the preceding results shift the 

yyion (x~+xo,P~;~P,o~~ rewrite the transformations in 
reverse and perform the obvious 

generalisation to many dimensions. Then the second 
order map is given by the scheme following: 

1 SecondOrder 

H = &2 + V&t) , i= -N/3;: 

time step = h, initial conditions = (&,&,,to) 

Map : (%,"P) = h(h)(h,h) 
given by two step process: (18) 

1) F1 = $0 I ;1 = t, + :1h/2 

2) I; = & + tf(&,to+h/Z), $ = bl + i;h,'Z 

This method is well known (the leap frog method) 
and used frequently in circumstances where anomolous 
damping or excitation is undesirable. Note that it is 
written somewhat differently than usual since it is 
calculated for one full step. Since it is useful to 
have higher orde=aps for savings in computation time 
and for improved accuracy of the phase space behavior, 
in the next section this method is extended to third 
order. 

Third Order Maps 

There are many possible generalisations to extend 
the procedure described in the previous sections to 
higher order. The first approach that comes to mind is 
to include more intermediate steps or additional force 
evaluations. A second approach is to begin from the 
second order Hamiltonian and make yet another canonical 
transformation to eliminate another order in the t de- 
pendence of H. Both of these approaches are possible 
in principle and will work; however, there is one 
difficulty. The functional dependence in x and p of 
the terms which are of higher order in t can be quite 
complicated. Because of the nature of canonical 
transformations, one is forced to invert an equation 
Pl(PO)-+PO(Pl). This can be done explicitly only in 
the simplest cases. In more complicated cases the 
functional form is implicit, and thus the utility of 
such an approach can be extemely diminished due to the 
lack of explicit formulae. 

Fortunately, for the simple Hamiltonian in 
Equation (1) there is a method of avoiding this. The 
key to avoiding implicit expressions lies in two 
points. The first is that an exact expression relating 
new to old variables is only necessary in trans- 
formation equations. It is fine to substitute approx- 
imate perturbative expressions into the Hamiltonian 
(this has been done already). The second point is that 
only one half of the equations from the generating 
function need to be inverted. In our case this is the 
momentum equation. With this in mind a combination of 
the two approaches mentioned above will be used in 
order to generate a third order map. First write a 
somewhat more general two step transformation given by: 

(x,P)'(xl,Pl): 
ap2t 

F(xl,p,t)=-xlp- - 
2 

- btV(xl,ct) 

Pl=P- btf(xl,ct) x = xi + apt, 
(19) 

(XlrPlb(X2rP21: F= - x2pl-(l-a)pl*t-(1-b)tV(x2,dt) 
2 

~2 = ~1 - (I-b)tf(x2,dt) Xl = x2 f (I-a)plt 

Subsituting into the Hamiltonian in Equation (1) 
and expanding in the small parameter, t, we find (after 
some algebra) 

H2 = tp2f(x2,0)pb(l-a) -13 + tV,p-Zbc-2(1-b)a 

+t2p22fx~(1-a)2b/2-1/~+ t2Vttp/2-3bc2/2-3(1-b)d*/g 

+ t2 ftq2pcb(l-a)-g (20) 

+ t2f2p(1-a)(I-b)b+b2(1-a)/2-ab-(I-ba + O(t3). 

The philosophy of selecting the free parameters in 
this case is the same as in previous sections with one 
exception. Since there are more equations than 
unknowns, it is impossible to eliminate all second 
order terms at this step. However, another 
transformation can remove the remaining terms, provided 
that the equation for the momentum transformation is 
trivial to invert. Anticipating this problem, first 
eliminate all terms in Equation (20) with powers of 
p2* This yields 3 equations for 3 unknowns with the 
solutions, 
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In this case it is necessary to perform a three step 
canonical transformation in order to avoid implicit 
expressions. Using the methods developed in the 
previous sections, the third order map can be written 
as 

b = 314 a =1/3, c =2/3. (21) 
In addition the terms with time derivatives both vanish 
with the choice 

f d = 0. (22) 
With this choice of parameters H2 becomes 

H2 = - t2f2(x2,0)/16 + O(t3). (23) 

The transformation to eliminate the last O(t*) term is 

F(x3,P2) = - ~3~2 + t3f2(xa,0)/48 

t3ffx(x3,0)/24 
(24) 

P3 = P2 - x* = x3 

However, since x is changed, we can simply combine the 
previous transformation with the second one in Eq (19). 

Therefore, if we rewrite with the change of 
notation x2+x0, generalise to the multidimensional 
case, and rewrite the transformations in the opposite 
order, we find a third order symplectic map given by 
the following scheme: 

Map; ("x,"p) = M3(h) &,&I), 

1) fil = F. + f h?(&,to) + ~~~(~,.t,).~c;,.to~ 

-f 
Xl = &, + 2h&/3 

2) " = & +; h -+(;,,t,+$ h) ; = % +f c 
1 

A More General Hamiltonian 

The previous sections have considered the 
Hamiltonian in Equation (1). In this section we treat 
a somewhat more general case given by 

H = g('p) + V(;,t). (26) 
Notice that a special case of Equation (26) is the 
Hamiltonian for relativistic motion. In that case 

g(i;) = cJ$."p + m2c2. (27) 

In addition Equation (26) can be used for the case of 
motion in a magnetic field which is described by only 
one component of the vector potential (say A,). In 
this case the independent variable is z rather than t. 

For the Hamiltonian in Equation (26), the 
"leap-frog" algorithm yields results correct through 
second order provided that it is modified as follows: 

I----- 
More General Second Order1 

H q g(F) + V(“x,t), f  = -av/aj: 

time step = h, initial conditions (;o,$o,to) 

Map: (;,"P) = b(h)&,&) (28) 
given by two step process: ~ 

1) b,=60 + -f 
x1 = x0 + h dg(pl) 

2 dp 

2) "p = ;;I t h+(+o+h/2) h dd;) "x = & +-t 
2 dp 

Again, this method is expressed for one full time step 
and thus may appear somewhat different than the typical 
implementation in a computer code. 

In addition, it is possible to obtain a third 
order map for the more general Hamiltonian. 

rMore General Third OrderI 

H = g(i;) + V("x,t), ? = -av/d 

time step = h, initial conditions (?a,&,to) 

Map: (;,$J = M3(h)&.h) (29) 
given by three step process: 

1) j$ = 6, + qh?(:,,t,) %, = ;o + d&$(61) 

2) J2 = ;I + c2h?(;l,tO+dlh) 'j;2 = ?1 + d2h$(6,) 

3) $ = i;* + csh?(;2,to+(dl+d2)h, t = z2 + d3&(i;) 
di; 

The c's and d's must satisfy the following equations, 

clfc2+cs=1 , dl+d2fd3=1 , c2dl+c3(dl+d2)=1/2 

c2d1*+ c3(d,+d2)*=1/3 , ds+d2(c1+c2)*+dlc,*=l/3 
(30) 

Notice that there are five equations for six unknowns; 
thus, there are many solutions. One particularly 
simple solution is obtained by setting d3=l . 

Cl = 7124 c2 = 3/4 = -l/24 
dl = 213 d, = -213 :', = 1 (31) 

Notice that this three step third order map has no der- 
ivative of the force. In that sense it is the simplest 
(as well as the most general) obtained here. 

Conclusions and Speculations 

The purpose of this note has been two-fold; 
firstly to present results for third order symplectic 
maps, and secondly to illustrate, in some detail, the 
method in order to point the way to higher order maps. 
The third order maps obtained are not unique. , - 

The general Hamiltonian will probably always lead 
to implicit equations for the final state in terms of 
the initial conditions; however, there is one other 
interesting Hamiltonian which may have an explicit high 
order map, 

H =["-A&t)]*/2 (32) 

where A is just the vector potential for an electro- 
magnetic field. In this case the troublesome term is 

" . A. (33) 

This leads to matrix inversion even in the first order 
case and for order higher than two, it may be 
difficult to obtain explicit formulae. However, it is 
probably possible to write down a second order map and 
may be possible to find an explicit third order map. 
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