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Abstract
The bead on a rotating hoop is a typical problem in mechanics, frequently
posed to junior science and engineering students in basic physics courses.
Although this system has a rich dynamics, it is usually not analysed beyond
the point particle approximation in undergraduate textbooks, nor empirically
investigated. Advanced textbooks show the existence of bifurcations owing to
the systemʼs nonlinear nature, and some papers demonstrate, from a theoretical
standpoint, its points of contact with phase transition phenomena. However,
scarce experimental research has been conducted to better understand its
behaviour. We show in this paper that a minor modification to the problem
leads to appealing consequences that can be studied both theoretically and
empirically with the basic conceptual tools and experimental skills available to
junior students. In particular, we go beyond the point particle approximation
by treating the bead as a rigid spherical body, and explore the effect of a
slightly non-vertical hoopʼs rotation axis that gives rise to a resonant beha-
viour not considered in previous works. This study can be accomplished by
means of digital video and open source software. The experience can motivate
an engaging laboratory project by integrating standard curriculum topics, data
analysis and experimental exploration.
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1. Introduction

The teaching of mechanics for physics and engineering students in the first university years
has been historically a pedagogic challenge. It is usually the earliest exposure to the foun-
dations of physics that students face, which presents to them a number of new concepts and
technical difficulties [1]. In this context, students are supposed to learn Newtonʼs laws for
point particles and systems, the ideas of work and mechanical energy, momentum and energy
conservation, simple harmonic motion and elementary rigid body dynamics [2, 3]. The dif-
ficulties are generally overcome by applying the fundamental physical laws and principles to
the analysis of simplified ‘toy’ models, which show the essential features of basic phenomena
without the technical complexities that would hinder the understanding of the relevant con-
cepts. In parallel with the analytical development, students usually participate in demon-
strations and laboratory activities with the aim of supporting the theoretical development with
empirical evidence. Standard demonstrations are pretty straightforward and explore models
that can be solved analytically, directly or by means of reasonable approximations. Within
this class we find free-falling bodies and projectiles, carts or disks moving over inclined
planes, planar pendulums, and spring-mass oscillators, among others [4, 5]. However, many
textbook problems are not investigated experimentally nor connected with laboratory activ-
ities, giving the students the erroneous impression that they are just ‘ideal’ pencil-and-paper
exercises outside the scope of empirical enquiry. This can lead to low levels of student
motivation and engagement, and could produce a distorted perception about the scientific
activity. In the past, this unfortunate situation was justified by the practical complexity of the
needed experiments and the lack of adequate experimental resources. Nevertheless, the rapid
development of information technology in recent years has brought to physics teachers and

Figure 1. Schematic representation of the bead-on-a-hoop problem.
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students a whole new world of experimental and didactic tools that can be applied with profit
to previously inaccessible situations. Besides the now ubiquitous (and usually expensive)
computer-based data acquisition devices, emerging powerful technologies like digital video
[6], 3D printing [7] and a variety of sensors embedded in cheap mobile devices [8] are
entering the educational arena at a steady pace. On the other hand, free and open source
software for scientific computing and data analysis is reaching maturity and accessibility [9].
With these new tools at hand, many old problems can be resignified and the aforementioned
disconnection between theory and experiment can be overcome in many important cases.

As an example of this approach, we develop in the present article an investigation of the
traditional problem of a bead constrained to move on a uniformly rotating hoop—schema-
tically depicted in figure 1—that appears in many physics textbooks in the context of rota-
tional motion [2, 3] and Lagrangian dynamics [10]. An interesting aspect, generally not
discussed in elementary courses, is the existence of a bifurcation due to the nonlinear nature
of the system, which is analysed from a theoretical point of view in specialised dynamics
textbooks like [11].

The problem has appeared in many studies that discuss the analogy between this system
(or some variant) and phase transition phenomena of statistical mechanics, but they are
exclusively theoretical, lacking experimental development [12–16]. On the other hand,
Mancuso [17, 18] shows empirically—but only in a qualitative way—the existence of a
bifurcation, using a manually controlled experimental device (the Groove Tube). The system
is also experimentally investigated in the context of a nonlinear dynamics course using
traditional (analog) video techniques, obtaining quantitatively the bifurcation diagram [19].
However, in all these references the authors remain within the limits of the point-particle
approximation—even in cases when the actual ‘bead’ is a sphere that rolls over the interior
surface of the hoop—and the experimental side of the question is not explored exhaustively.

Figure 2. Actual system configuration and relevant parameters.
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In this paper, we report the development of a more thorough experimental approach to
study the dynamics of a bead on a rotating hoop. In addition, we present an analysis to
improve the existing theoretical treatment while considering the bead as a rigid rolling sphere.
Likewise, we introduce the original variant of taking into account the effects of a slightly non-
vertical rotation axis, which leads to a resonant behaviour not identified in previous works.
Using digital video and open source software, we show that all these features are amenable to
an approach involving both theory and experiments that is suitable for junior students.

2. Theoretical considerations

We begin by paraphrasing the traditional textbook problem, which reads as follows [2, 3]:

‘A small bead of mass m can slide with a slight amount of friction on a circular
hoop that is in a vertical plane and has a radius R0. The hoop rotates at a
constant rate ω about a vertical diameter. Find the angle θ at which the bead is
in vertical equilibrium.’

The situation is schematically represented in figure 1 and analysed in section 2.1. The
analysis summarises the physics behind the presence of a bifurcation [11] and embraces the
case of a rotating hoop around a slightly tilted axis to discover a parameter-dependent
resonance present in this system. In addition, in section 2.2, we develop the theoretical tools
needed to analyse the case of a real rigid, spherical bead over the hoop and again with the
interesting variation of a non-vertical rotation axis, as depicted in figure 2.

2.1. Point-like bead and tilted axis of rotation: bifurcations and resonance

Although we will experimentally study the rolling motion of a rigid sphere over a groove in
the interior side of the rotating hoop, for comparison purposes we first obtain the equation of
motion (EOM) for a point-like bead. This treatment comprises the case of a non-vertical
rotating axis, which gives rise to some resonance phenomena not previously identified.

The Lagrangian approach is straightforward. The kinetic energy T reads

T mR
1

2
sin . 10

2 2 2 2q q w= +( ) ( )

The potential energy V, as can be deduced by looking at figure 2 (although considering a
point-like bead), is given by

V mgR tcos cos sin cos sin , 20 a q a w q= - +( ( ) ) ( )

where θ is the angle measured from the bottom of the hoop with respect to the direction of the
rotation axis and α is the angle formed between the rotation axis and the vertical direction.
We suppose the presence of a friction force proportional to the bead velocity [20]

F bv 3= -
  ( )

which leads to the generalised force

Q bR . 40
2q= -q  ( )

Inserting the previous expressions into the Lagrangian T V = - and operating in the usual
form we get the following EOM
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b

m

g

R

g

R
t¨ cos cos sin sin cos cos . 5

0

2

0
q q a w q q a w q+ + - = ⎛

⎝⎜
⎞
⎠⎟ ( ) ( )

This equation includes a term with a factor that varies periodically with time. If the tilt angle
α is small, the previous EOM can be simplified to

b

m

g

R

g

R
t¨ cos sin cos cos . 6

0

2

0
q q w q q a w q+ + - = ⎛

⎝⎜
⎞
⎠⎟ ( ) ( )

For the particular case 0a = (vertical rotation axis), the forcing term disappears and the
bead settles, by virtue of the friction term, at the equilibrium positions *q q= associated to
the condition ¨ 0q q= =˙ , whence

sin 0 0,* *q q p=  =

or

g

R

g

R
cos arccos . 7

2
0

2
0

* *q
w

q
w

=  =
⎛
⎝⎜

⎞
⎠⎟ ( )

However, the last equilibrium configuration exists only if

g

R
8

0
Cw w= ( )

i.e, if the angular velocity of the hoop ω is greater than a critical angular velocity Cw . Below
the critical velocity Cw w<( ), the , 0q q =˙ configuration is a stable equilibrium. In fact, if
, 1q q ˙ then ¨ 0.2

C
2q q w w» - <( ) Consequently, the natural angular frequency for small

oscillations of the bead about this stable equilibrium position depends on ω and is given by

. 90 C
2 2w w w= - ( )

When Cw w> , the phase space point , 0, 0q q =( ˙ ) ( ) turns into an unstable equilibrium. On
the other hand, linearising the EOM about 0, arccos C

2 2 *q q w w q= = =˙ ( ) we obtain
¨ sin2 2 * *q w q q q» - -( ), whereby the equilibrium position *q q= is always stable. This
behaviour of the stability points as the parameter ω varies, represented in figure 3, is called a
supercritial pitchfork bifurcation about the critical value Cw . This is the behaviour analysed in
[11–14, 17, 19] in the case 0a = .

Figure 3. Bifurcation diagram: behaviour of equilibrium angle *q as a function of the
normalised angular velocity Cw w for a hoop with radius R 0.183 m0 = .
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Furthermore, considering small angles θ in (6) we obtain the following EOM

b

m

g

R

g

R
t¨ cos 10

0

2

0
q q w q a w+ + - =

⎛
⎝⎜

⎞
⎠⎟

˙ ( ) ( )

which corresponds to a forced harmonic oscillator when g RC 0w w< = . Notably, the

systemʼs natural frequency 0 C
2 2w w w= - depends on ω, which is—at the same time—the

forcing frequency.
For 0a ¹ , we can investigate the oscillations of the bead around the stable equilibrium

position 0q = to obtain the resonance curve of the forced harmonic oscillator described by
equation (10). The maximum angle AP of the bead as a function of the angular velocity ω is
given by [2, 3]

A
g

R

g

R g R2
11

P
b

m

b

m

0 0
2 2 2 2 2

0
2

0
2 2 2

w
a

w w w

a

w w

=
- +

=
- +

( )

( )

( )
( )

( )
( )

and the maximum value of this function is found at the resonant frequency

g

R

b

m2 8
. 12P

res

0

2

2
w = - ( )

It is worth noting that this resonance appears as a consequence of the periodic variation of the
coefficient of cos q in equation (6).

2.2. Rigid spherical bead and tilted axis of rotation

Here, we consider the fact that the real bead is a rigid steel sphere rolling over the interior
groove of the hoop, which has the profile shown in figure 4. This section summarises the
relevant results that will be used to compare the modelʼs predictions with the experimental
observations. Although not difficult, the exact calculations contain several steps and are

Figure 4. Transversal section of the groove where the rigid sphere rolls.
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deferred to the appendix. We will show that the formulas for the point-like bead are formally
equivalent to the rigid sphere case, but need a nontrivial correction in order to give accurate
quantitative predictions.

The EOM for the rigid spherical bead rolling without slipping over the interior groove of
the hoop is

b

m

g

R

g

R
t¨ cos cos sin sin cos cos , 13

CM

2

CM
q k q a w q q k a w q+ + - =

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ ( ) ( )

where

R

R

R

r
1 1 14

2

CM
2

CM
2 1

k g= + +
-

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ ( )

is a correction factor which takes into account the geometric properties of the sphere and the
hoop, as well as the sphereʼs moment of inertia represented by the parameter1 γ. RCM is the
distance from the hoopʼs centre to the sphereʼs centre of mass (CM), and r represents the
length between the sphereʼs CM and its instantaneous axis of rotation. The geometrical
meaning of each symbol can be inferred from figures 2 and 4.

Analogously to the point-particle case, we can search the values of θ that fulfil the
equilibrium condition ¨ 0q q= =˙ when 0a = (vertical axis of rotation). Again, 0*q = and
*q p= are equilibrium positions, but now the critical angular velocity is given by

g

R
15C

CM
w = ( )

and when Cw w> a stable equilibrium position appears

g

R
arccos . 16

2
CM

*q
w

=
⎛
⎝⎜

⎞
⎠⎟ ( )

Despite these differences with respect to the point particle case, the bifurcation diagram is
analogous (just changing R0 by RCM).

Under the assumptions of small angles α and θ, the EOM turns into

b

m

g

R

g

R
t¨ cos . 17

CM

2

CM
q k q w q ka w+ + - =

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ ( ) ( )

Consequently, the maximum angle reached by the rigid spherical bead as a function of ω is
given by

A
g

R

18S
g

R

b

mCM
1 2

2 2 2
CM

w
a

w w
=

- +k
k
+( )( ) ( )

( ) ( )

and the angular frequency for maximum amplitude is

g

R

b

m1 2 1
. 19S

res

CM

2

2
w

k
k

k
k

=
+

-
+

⎛
⎝⎜

⎞
⎠⎟( )

( )

Itʼs easy to check that we recover the formulas for the point-particle approximation—
equations (5) to (12)—when the correction factor 1k = (which occurs when 0g =
or R=0).

1 The moment of inertia for a sphere is mR2g , with 2

5
g = . For a cylinder it would be 1

2
g = , for a ring 1g = , etc.
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3. Experimental device

In order to test the theoretical models developed in the previous section, we assembled the
experimental device shown in figure 5. The construction is straightforward and needs only
tools and equipment usually found in teaching laboratories. The whole procedure is accessible
to junior students and suitable as a short-term physics project to accompany a vectorial or
lagrangian dynamics course.

The device consists of a metallic hoop of radius R 0.183 0.005 m0 = ( ) with a
U-shaped profile (figure 4) of width L 0.0174 m= and heigth a 0.007 m= , connected to a
vertical rotatory axis by means of a 3D printed plastic link (blue part in figure 5). The axis is
driven by a belt pulled by a DC motor. The motor and axis are both supported by a cast iron
base whose support plane is adjustable by means of two leveling screws, allowing to modify
the orientation α of the hoopʼs rotation axis. The motor is powered by an adjustable current

Figure 5. Experimental device. The smartphone used to record the motion can be seen
at the top of the hoop.
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source which controls the angular velocity of the hoop ω. This velocity is measured using a
digital photo-tachometer with an absolute uncertainty of 0.2 rad s 1wD = - (about 2 rpm).
The ‘bead’ is a steel ball with radius R 0.0126 0.0001 m= ( ) and mass
m 0.066 0.001 kg= ( ) . The device scheme is shown in figure 2. As was mentioned in the
previous section, the grooveʼs profile geometry (shown in figure 4) has to be taken into
account to develop an accurate model, because it affects the instantaneous axis of rotation of
the sphere and hence the rolling constraint, modifying the EOM.

For tracking the motion of the ball in the moving reference frame of the rotating hoop, a
smartphone capable of video recording at 30 fps was fixed to the uppermost point of the hoop
using a couple of rubber bands. With this arrangement, the position of the sphere was
measured over a metric tape fastened to the interior groove of the hoop, as shown in figure 6.
The error estimation for the measured angle was 0.05 radqD = (approximately 3°), because
the error of the linear distance over the metric tape was estimated as x 0.01 mD = . Another
camera was used to capture the tachometer reading. After the capture, the two videos were
synchronised using the audio track and combined into one, which was analysed to extract the

Figure 6. Camera view from a reference frame fixed to the hoop.

Figure 7. Bifurcation diagram. Comparison between the experimental observations
(blue dots), the predictions of the rigid body model (continuous green line) and the
particle model (dotted red line). The colour bands represent the uncertainty in the
theoretical model due to the experimental error in the parameter R0. The vertical dashed
lines indicate the critical angular velocity predicted by each model.
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needed data—essentially, the ballʼs position and angular velocity of the hoop2. Some videos
showing the device at work are available as supplemental material3.

4. Results and discussion

We empirically tested the predictions of the two models by means of the experimental device
and the digital video analysis of the sphereʼs motion. First, we searched for the bifurcation at
the critical angular velocity with the rotation axis perfectly vertical ( 0a = ). Hence we
measured the equilibrium angle *q as a function of the hoopʼs angular velocity ω and
compared the observed values with the predictions of the particle and rigid sphere models
(equations (7) and (16), respectively). We show in figure 7 the results obtained. The predicted
critical angular velocities were 7.3 rad sC

1w = - for the point-particle model and
7.7 rad sC

1w = - for the rigid sphere model. As can be seen, both models describe well the
systemʼs behaviour within the experimental error bounds, so the accuracy gained by using a

Figure 8. Resonance curves. Comparison between the experimental data, the
predictions of the point particle model (equation (11)) and the rigid body model
(equation (18)) for a tilt angle α=4.5° (upper figure) and α=3.7° (lower figure). The
(colour) bands represent the theoretical model uncertainty due to the experimental error
in the parameters R0 and α. The discontinuous vertical lines indicate the resonant
frequency for the point particle model (red line, equation (12)) and the rigid sphere
model (green line, equation (19)) respectively. The distance between these lines is more
than the absolute error of the angular velocity.

2 This was carried out using the free OpenShot video editing software (http://openshot.org/). However, there are
many open source alternatives to accomplish the same purpose.
3 Supplemental material at http://dx.doi.org/10.5281/zenodo.158943.
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more complex model seems to not justify the extra effort, unless we can improve the mea-
surement uncertainty. However, while studying the bifurcation we unexpectedly observed the
existence of sustained oscillations of θ around the stable equilibrium point for Cw w< . This
observation led to the theoretical analysis of the systemʼs resonance originated in the
deviation of the rotation axis of the hoop from the vertical, which was developed in section 2.

The resonant behaviour, appearing when Cw w< and 0a ¹ , is exhibited in figure 8,
which shows the experimental data obtained for two values of the tilt angle α and the
theoretical predictions for both a point particle and a rolling sphere using the actual para-
meters of the system and its uncertainties. The development of the rigid body model was
initially motivated by the systematic discrepancies observed between the empirical data and
the prediction of the point particle model. In fact, as can be seen in the figure, the resonance
frequency predicted by the point particle model (equation (12)) is 5.2 rad sP

res 1w = - , while
the rigid body model –which also considers the U-shaped profile of the hoop and the resultant
rolling constraint–gives a value of 4.5 rad sS

res 1w = - (as given by equation (19)). Both the
resonant frequency and the width of the resonant curve are better described by the rigid sphere
model. The difference between both predictions more than doubles the absolute error for the
angular velocity measured with the tachometer, which was estimated as 0.2 rad s 1wD = - .
There is no way of obtaining the measured resonance frequency from the point particle model
by adjusting the friction constant—the only free parameter of the models—which was esti-
mated as b 0.09 kg m s2 1= - and was practically the same for the various tilt angles α

considered. This improvement justifies the greater complexity of the rigid sphere model,
thereby giving a better account of the empirical data. Raw data (videos and measurements) as
well as the Jupyter notebook [9] with the previous calculations and figures can be found at the
digital open repository (see footnote 3).

5. Conclusions

Current technology can give new life to old problems. This can be harnessed for the benefit of
the students, who can have the chance to smoothly integrate theory and experimental work. In
this article, we have shown how this principle can be applied to a particular problem, namely
a bead on a rotating hoop, usually found in textbooks as a highly idealised mechanical
system. The use of a smartphoneʼs digital camera allowed us to measure the relevant variables
of the system from a reference frame fixed to the hoop and to get a quantitative description of
the beadʼs motion in order to compare the predictions of two competing theoretical models. In
the past, this has been a difficult operation, hampering the numerical validation of the models
and confining the problem within the paper-and-pencil domain.

On the other hand, we improved the experimental determination of the bifurcation dia-
gram and discovered a resonant behaviour that was not previously reported, which occurs
when the hoopʼs rotation axis is not perfectly vertical. This phenomenon is caused by a
periodic variation of a parameter present in the EOM due to the uniform rotation of the hoop.
We succeeded in accurately describe this behaviour for small values of the tilting angle α.

Overall, we showed that by means of new and readily available technological resources
the students can be engaged in a more realistic pathway through the scientific method while
learning traditional curriculum topics.
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Appendix

Here we briefly summarise the corrections needed for taking into account the finite size of the
bead and the geometry of the hoopʼs transversal profile, which alter the instantaneous axis of
rotation of the bead and hence the EOM. Figure A1 shows the situation. If the sphere turns an
angle dj around its centre while rolling without slipping over the groove, the contact point
advances a distance s rd dj= , where r R L 42 2= - is the distance between the sphereʼs
centre and the instantaneous axis of rotation (see figure 4). The rolling condition establishes a
constraint between θ and j:

s r R a
R a

r
d d d . 200

0j q j q= = -  =
-

 ( ) ( )

Meanwhile, the centre of mass of the sphere travels a distance sd CM in a reference frame fixed
to the hoop,

s R a r Rd d d ,CM 0 CMq q= - - =( )

where R R a rCM 0= - - is the distance from the centre of the hoop to the centre of the
sphere. Hence the velocity of the centre of mass (relative to the hoop) is

v R . 21CM,rel CMq=  ( )

The kinetic energy of the sphere is (by Knigʼs decomposition)

Figure A1. The bead rolling without slipping over the groove.
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where I mRCM
2g= is the sphereʼs moment of inertia about its centre of mass 2 5g =( ).

On the other hand, the formula for the potential energy V is analogous to equation (2),
just substituting R0 by RCM. The same substitution applies to formula (4) for the generalised
friction force. From the usual operations on the Lagrangian, equation (13) follows.
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