Numerical Solution of Bifurcation and
Nonlinear Eigenvalue Problems
Herbert B. Keller

: 1. Introduction.
s roduction
!

We¢ show in this paper how a Ja rge class of bifurcation and noa-

linear cigenvalue ‘Problems can be solved and the numerical method s

t
[ .
" justified. Only equilibrium probleins are treated herc, say in the
: general form v

f L1y S Glu,a) =0

where G IBXIR - I3 for some Banach space, B, We find it noost
instructive to refor eccasionally (o the cannonical example of the

m: trix elgenvalue problem:

Au - xa =0

isan nXn real matrix with real eigenvalues.
By a smooth branch or arc of solutions

(L3 L Las), »(s))

., S ¥s5 %sg
at a

b

Weé mean a one parame ter family of .solutions of (L1}, u(s) . B,

Ms3) e IR dzpending twice continuously differentiably on some parame-
ter s ¢f Sa, Db] Of ¢ urse the parameter. s, is quite arbitrary on
each such branch and this fact is crucial in our study. In tigures 1.

and lb we sketch, respectively, typical solution branches for problenis

e —— -~ =

{1.1) and (l. 2). The "points" at )A and )B represent “simple" bifur-
cation while )D is a multiple bifurcation point. The "apcs? T.

i —

4
in figure Ik for j# 0 “epresent the cigenspaces of A belonging (o
the eigenvalues ). whilc It is the trivial solution, For simple
eigenvalucs the bifurcerion is simple (i.e. a one parameter family or

solutions branches offj. At ) = )C‘ on‘branch I infigere la we

359
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BIFURCATION AND !

ha#é what is called a "limit
These present no difficulties
current theory although they
the past [1 12, 20]. Note thx
“eigenvalue problem are. comy
We assume that the basi
of solution branches of .1y i

each seg'ment,

2. Parametrization and .Cont

The standard approach i:
naturally occbring paramete)
fiﬁi‘ng solution arcs, u(d). 1.

u =ug of (1.1) is isolated, tr

(2.1) G

" is nonsingular, and if Glu, >

[ U, o] then the implicit fur.
unique smooth arc of solution-
Furthermore, with our assur;

du(>})/d exists and satisfies-
(2. 2) Gy,

Many procedures are now ava’
the solution branch through |-
suggests contraction mapping

tor-corrector continuvation, A

. finite dimensiopal problems) i.

lar we have frequently used | :

a predictor:
(2.3) a) a3+ 5y

to supply the initial iterate for
bR > T

(2.3) b) G: su’(x + &) -

where:
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have what is. called a 'flirr\it point" in the applie.d mechanics literature,
These present no difficulties analytically or computationally in our
‘current theory 'although. they seem to have been quite Atroublesome in

the past [ 12, 20]. Note that all the branches T I, ... in the

eigenvalue problem are composed entirely of these limit points.
We assume that the basic problem is to.compute large segments
* of solution branches of (1. 1) including all branches bifurcating from

each segment,

2, Parametrization and Continuation of Solution Arcs

- The standard approach is almost mvanably to use 7( one : of the

naturally occuring parameters of the problem, as the parameter de- -

fining solution arcs, u(x). Indeed if for some’ 2 ; Xo a solution

u=ug of(l.1l)is 1solated that is v

(Z-U o ) EG'(uo.)o)

is nonsmgular and 1f G(u, )) is C, in some Po - sphere about

[ U, xp] then the implicit functlon theorem insures the existence of a
" unique smooth arc of solutions u =) for |) -2 I < p,, séy.

: Furthermore T with our assumed smoothness, it follows that

-‘_du() )/ d> ‘exists and satisfies:
2.2 G0, NG = - G0, )

" Many procedures are now available for extending or approximating
the solution branch through [uo,) }. The implicit function theorem
suggests contraction mapping techniques while (2. 2) suggests predic-

tor-corrector continuatien. A nicé survey of the latter ideas (for

finite dimensional problems) is given by Rheinboldt [ 18]. In particu-
lar we have: frequently used { 3] one step of Euler's method in (2. 2) as
‘a predictor: _ '

du ) Y

(2.3) ay . a® (N +8)) =u(d) + 6>

to supply the ‘initial 1terate for Newton's method to solve (1.1) at
2+ 8

(2.3) b) Gl "+ ex)=-GY, v =0,

where:
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= Gu(‘uv(l+6)), x+61) , GY EG(u (+8)), 2482)
(2.3) ¢) .
Hiorgn) =’ (462) + 60" (0 467)

It is not dlfflcult to base exxstence proofs on such techniques provided
the arc conststs of isolated solutions. .

All of the indicated continuation procedures may fail or encoun-
ter difficulties as a nonisolated solution is approached; that is a
point [y, %] where G° is smgular. We also call these sxngular
points, As we shall see in §3 ‘the above indicated- ‘continuation pro-
cedures could skxp over some smgular pomts but not over limit

points as at =2 1n ﬁgure la. Also at bifurcation points some

special procedureg are requxred to 'switch from one branch to an-
other. A simple analysis shows that the scheme (2. 3) is incapable of
tracing out any nontrivial solutions of the eigenvalue problem (1. 2)!
To circumvent these difficulties we recall that the parametriza-
tion of solution arcs is at our disposal. Thus we are free to impose

some additional constraint or normalization on the solution and we

do this, quite. generally, by replacing (1.1) by:
(2.14) a) . G(u, ) =0 , 'b) N(u,», ) =0

Here N :IB xXIR? = IR and s ¢ IR is the independent parameter on
the solution arc. We shall show sev_eral‘cAhoice.s for N which make
s an approximation to "arciength" on the solution branch. Then, as
we shall see, limit points essentially disappear, it is easy to jump
over singular points or to cnmpufc thtm, relatively large steps in s
can be taken and it is (;,asy to switch branches at bifurcation polnts,
Note that we are not simply changing the parameter in the problem as
was first done in [12] or in another wéy in [ l] .

By introducing x e ¥ =B XIR and P: X XIR - X as

G(u, »)
(2.5) a)- x=2[u] , Plx )=
Nfu, 2, s)

a solution arc of (1.1} or (2.4) is x(s) = [ u(s), »(s)] and it satisfies

(2.5) b ‘ ‘P(x(s), s) =0

L —————— AT S ;o . el .

- O

r e re - —

" s A A

.

BIFURCATION AND ti

For fixed & a solution s(s!
(2.6) Als) = P_(x(s), &)

is nonsingular. Furthermore

satisfies
(2.7 Als) x(s)
"Now continuation in s could .

continuation in 2. However t:
.lations_a_lre clarified by the fa.

(‘,u is sinpular. Indecd thi:

lemma 2.8. Let IB be a E.
operator A BxRY — B Xxi
‘A B
A= where
* where
C D

i) If A is nomsingular th.

(2.8) a) , p-c*a
ii)y ¥ A is si;x ular ana
2,8) b dimN (»

then A is nonsingular iff:

co) dimPR (B) -
(2.8)

*
c ) dimA (C )=
iii) If A is singular and

Proof. Not dxfﬁcult to work ¢

Usmg Lemma 2.8 and ou-

_ prove a variety of bifurcation :

We only use in the present wor

v = 1. Then given (2.8b) the ¢
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= G(u (R +8)), 2 +E)) For fixed 's a solution x{s) is isolated if

\ Gu(u(s), Als)) Gh(u(s), x(s))
) (2.6) Als) = P (x(s), s) =

'n such techniques provided N (u(s), x(s), s) N, (u(s), x(s), s)

is nonsingular, Furthermore on a smooth.arc x(s) = dx{s)/ds

satisfies

2.1 Als) x(s) = -

lures may fail or encoun-

approached; that is a o
also call these singular :

licated continuation pro-

N (u(&gé X(s), s)

ats but aot.over limit Now contmuatum in s could proceed in exact analogy with our prior

oA e, 5. . i Kt e . A g AR W

bifurcation points some continuation in . However the possible advantages of our refoermu-

from one branch to an- lations are clarified by the fact that P canbe nondingulaf while

cheme (2. 3) is incapable of - i Gu is singular. Indecd this is but a special case of the basic:
rigenvalue problem (1. 2)! l

call that the parametriza- i Lemma 2.8. Let'IB bea Banach space and consider the linear
ilus we are frée to irﬁpose ,,i ’ ogerator }4 B xRY — IB X IRY of the form.

n on the solution and we ; .
by: : - A=
.8) =0 Eh

A B . {a:B~-B, B:R' - B ;

where
* *
cC D c :B-R", D:R" - R" .

ndepeadent parameter on i) If A is nonsingular then A .is nonsingular iff:

hoices for N whit':'h. ﬁlake

. k-
‘ y (2.8) a) D~«C A lB is nonsingular -,
soluticii branch. Then, as Ty o
o i ii) If A is singular and
pear, it is easy to jump ’ - o
relatively large steps in s . (2.8) b) dim/A (a) = codim R (A) = v

hes at bifurcation points, then A is nonsingular iff:

arameter in the problem as

(] co) dimf (B) = v c,) R (BYNR (A)=0 ,

{
i (2.8) _ * %
{ XXR ~ X as i ' ) dimR(C)y=v , ) N@AINNE) =0
¢ : '
‘Glu. ) . iii) If A is singular and dimA (A) > v then A is singular,
. 4 Proof. Not difficult to work out; it will appear elsewhere, [10] @
vNfu, ».s) i === :

Using Lemma 2.8 and our reformulation of (1. 1) it is easy to
(sh, M)l 3“4 it satisfies prove a variety of bifurcation theorems which we do not report here.
We only use in the present work the special case of Lemma 2.8 with

v = L. Then given {2, 8b) the conditions in (2. 8c) simply reduce to

o v sttt o A A

PR

e iad
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‘ : . .
(2.9) B /R(A) and C /R(A )
‘As a éimple example of the use of our procedure consider the eigen-

value problem (1. 2) subject to either of the normalizations
(2.10) a) No(u,X,8) =X -8 ; b) Ny(u, 2, s)= llultd - s?

Using Np = 0 the prédictbr-corrector continﬁatién scheme generat'es
the trivial solution branch u=0 2= arbltrary, startmg from-any
point on-this branch. Alternatwely using N, =0 our scheme traces
out the one dxmensional exgenspace belonging to any simple eigen-
value N\ = )u;‘ Swttchmg over from one of these normalizations to the'
other at a snmple bxfurcahon poxnt {u, )) = (0, )o) allows us to trace )
out the two brahches through this point. Indeed this is the key to our
method for switching branches at bifurcation points in the general case,
see §5.

A scmewhat natural pararﬁetrization of a solution branch
{u(s), 2(s)] is to use for s a form of arclength. That is, -for some
0 ¢(0,1):

(2.10) <) Ngl(u, s) = 0llu(s)i? + (1 - o) [i(s)|? -1 =0.

This form is not the most practical one to use, even for merely prov~

ing existence theorems and so we use approximations to it. Assum-

ing a solution of (1.1) known say (u,»] =[n,, Yo} we set Lug, 20) =

[u(se), Asp)] and define over sy <s < s,:

; ‘N, (u, X, s) = 6ltu(s) - uf{se)? + (1-0) l)(s) - )(so)'z

(2.10) 4d)
- (s -89 =0.

Alternatively if in addition to [ug. 2g] we know [, )..0] satisfying

(2.10c) at s = 55 then we can use on 8 <5 < 8,
*
Ny (u, X, 8) = 04 (50 uls) - uleo))

(2.10) «¢) _
F(1-0) M(so ) A(5) - 2 (s)) - (s - 86} =0

Here l'x*(so) € IB* is the dual element to \(s,) such that

u*(so) i(sg) = Md(sg )2, (The existence of such an element is assured
by the Hahn-Banach theorem.) We call N, or Ny pscudo-arclength
normalizations and examine some of their properties in §3. Pre-

vious attempts to use arclength as a parameter in solving nonlinear

7

s e —

W . G i RN S oy o e, e A

BIFURCATION AND NC

algebraic systems have been ;

3. Continuation About Regula

We shall justify continuat
N;- on solution arcs composec

points", ‘Speciﬁ’cally let [up.

Mg, no] satisfy

.

(3.0) a) G?x Uy + G2 ¥,

A
Then we say that [ug, Ny] is

(3.1) - GP =G (u

We call [us,20] a normal i

place of (3.1) we have:

(3.2) a) dimN(Gt’I) = oo

Theorem 3,3. Let [uo.Xc] !
Limit solution. Let G(u ) b,
sphere ‘about {up, 20l Then
[dlse), X(so]= [y, 201 and

exists a unique smooth arc c:

N=N; on ls-so'«%'p for 5

solution arc the Fréchet deriv

Proof, All of these results w*
au—‘c_)_;om applicd to (2. 4) at |«
singular. We first consider !
By (3. 2b) in (3. 0a) it then foll«
Now (3. 2a) implies since \30*“

and (3, 2) now yield with v -}

/’4(50) =

is nonsingular [use the form {.

Next let [uo,)o] be a r-.
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)(A*) ! -algebraic systems have been made in [ 13, 14].

Ay i .

redure consider the eigen- ; 3. Continuation About Regular and Limit Points,

normalizations i : o
)= Heam2 & : We shall justify continuation Procedures using the normalization

‘, s = g Z - i B . N ) .
( N3 on solution atcs composed of "regular points" or "normal limit

tinuation scheme generates t points", Specifically let fug, 2] be a solution of (1.1) and let

itrary, starting from any
N; =0 our scheme traces
ng to any simple eigen- .
these horrﬁalizations to the

(0, 2p) allows us to tra‘,ce

deed this is the key to our-

>n points in the generalcase,

f a solution branch

length. That is, for some

) s -1 =0

1se, even for merely prov-
oximaticns to it. Assum-

1‘0,)0] we set [uo,)o] =

L-8) [x(s) - A(sq)|?

= 0. )

know [y, X ) satisfying
1< 8y

- u{sy )]

(s - so). =0

{sq) such that

iuch an element is assured
or N, p'seudo-arclength

'roperties in §3, Pre-

zter it s»lving nonlinear

i

RPN U

- B A — 7t AT~

e Kb ks

‘ (3.0) a)

) [ho,lo,] satisfy

Gy lo +G) ¥g =0, b) lggh? 4 e 2> 0

Then we say that [ug. 2] isa regular solution {point) if in addition:

3.1 G& = G, luo, 2g) is nonsingular

We calt [ Ug,do) a normal limit solution {point) if (3. 0) holds but in

_Place of (3.1) we have; '

(3.2) a) dimN(G?) = codimR(GY) =1, b) Gy £R(G?)

Theorem 3.3, Let [‘uo,ko

] be either a regular solution or a normal
e ———

limit solution.
=it solution,

Let G(u, A) have two continuous derivatives in some
sphere about [uy,Ng]. Then with Lulsg), asg)]= ] U, Ao,

Ldlse), X(sel=1{dy, %p] and U '(se) as defined after (2,10e) there
exists a unique smooth arc of solutions [u(s), A(s)] of 12.4-[ using
N=N; on [s-s5] <p for some sufficiently small p > 0. On this
solution arc the Frechet derivative )4(5) of (2.6) is non'_singular.

Proof.. All of these results will follow from the implicit function

theorem applied to (2. 4) at [, 2, s] = {u. Xo,so] if A(‘so) is non-
singular, We first consider [uo,lo] » to be a normal limit s'olution.
By (3. 2b) in (3. 0a) it then follows that Xo = 0 and hence i, e/V(G&).
Now (3.2a) implies since 1, Gy # 0 that &f//{(c;’_"), This result
and (3. 2) now yicld with u = ! in Partii) of Lemuma 2.8 that
G
u >
Alsg) =
. %
Buy  (1-0)X,
is nonsingular [ use the form in (2. N].

Next let [uc, Xo] bea regular solution, If Ao = C then by (3. 0a)
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and (3.1), i = 0. This contradicts (3.0b) so X, # 0 at a regular
point, Then (3. 0a)-and (3.1).imply

/%y = - @)

Now by Part 1) of Lemma 2, 8, A(so) above is nonsmgular iff

Q- 9)x° - 0.0, (C0) 1c;° #0
That is, using the above, iff

[ et u., + (1-0)X¢ ]/x,, <[l 12 + (120) [Xo 21/%0 # 0

Since X, # 0 and ‘“uo II‘ 30 it follows that A(sy) is nonsingular. B
jof solutions composed of regular '
| Liry nts :¢ an be determined using, say, Euler-
Newton contmuatxon on‘ (Z 4) with the normahzatxon N=Ny. We
could easily justify the normahzatlon ‘N = N, for sraooth arcs’ since

on them:

u(s) - u(se) = U(so)(s - s¢) + A s - 54 |?)
2Ms) - X(se) = ¥(se)s = 50) + (A]s - =4 |?)

When using (2.10e) over a sequence of intervals [ S, sl], [s,, sz]i .

it is a good policy to impose the arclength condition
BUA(s)NE + (1 - 8) |X(s)[? =1

periodically, say at each joint, s = Sy The resulting arc is then
only piecewise smooth in s, with jump discontinuities in the length
of the tangent vector [u(s), x(s)] at s = Skt Spécifically if

[ﬁ(s-lz), )'(SR-)] is the limitas s | Sy then we use on [sk. sk+l]

Lats, ) Msy)) = clutsp), Msp)]
-2 . .
¢ = ella(sp)i + (1-0) h(s;)lz
This renormalization allows more uniform steps in s to be taken

during the continuation process.

4. Continuation Past Singular Points.

A solution x(s) ={u(s), 2s)] of (2. 4) is said to be singular or a
singular point if As) in (2.6) is singular., We will censide» smooth

arcs of solutions x(s) for S5 €5 <sp on which only x(sy) for some

s e e

- e

s el v < e i m

WOWRY

solutions of (2.5) on [s

- BIFURCATION AND

L ((sa, e, ) is singular, U
1] -

continuation procedures can

from s, to Sy A simple ws

Euler-Newton continuation, =

We assume, as stated a:

(4.0) As) = P_(x(s), &) i

‘Then the tangent, k(sa), is

(4.1 ay Als ) %
and an approximaticn to x(s®
(4.1) b) x® (s} ¢

Using this approximation v
method:

ay  A(s)= P_(x* (s,
(4. 2)
by A%s)

We could also try Newton s 1.
a)  A'ts)= P (y"(s).
b)  A'(s) [y'tu(S) -A

To get convergence we need «

(4. 3)

domain of attraction about x.

lar. We do this in

Theorem 4.4, Let x(s) be .

1
a' °b

functions K(s), ¥ (s) and ¢

(3 &) -
a) L}x(y. 5) I’X(x(.
(4. 4) . Iy
b) niax
s <t

a

For s ¢l S, sb] - {so} defir




)80 Xg # 0 ata regular

0
G) .
ve is n:-nsingular iff

GY 20
2

(1-8) [Xe [2V/20 # 0

t Alse) is nons‘ingular.’ &

1§ composed of regular

mined using, say, Euler-’

1alization N= N,.. We .

N, for smooth arcs since

+a's - solz)
+a,5‘$olz)

rvals [so. S.]. [s,, Sz]-
condition .

) Iz =1

The resulting arc is then
scontinuities in the length
Spee Specifically if

« we use on [Sk' sk+l]
(5]

(s 2

v steps in s to be taken

Vis said to be sirgular or a
We will consider smooth

which unly x{sy) for some

e o aen i omse

.
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S e(sa, sb) is singular. Under mild smoothness conditions various
continuation procedures can "jump" over the singular point in going
from S, to Sy A simple way to do this is by using Euler-Chord or
Euler-Newton continuation, as we proceed to show,

We assume, as stated above, that
(4. 0) /](s) = P (x(s), s) is nonsmgular for s € 54 sb] - {_so} .
Then the tangent, x(sa), is uniquely defined by

(4.1). a) C Als ) k(s ) = - P (x(s,) s )

and an approximation to x(s) is
(4.1) b) ' x(s)-x(s)+[s-s]x(=

Usmg this approximation we consxder the chord (or special Newton)
method:

a)  As)= P _(x(s), s)

(4. 2) ' 41 ) )
by A%(s) [x‘ (s) - x‘(s):‘ =-P(x"(s), s) , v =01
We could also try Newton's method, with ¥vo(s) = x°(s):

a) A'ts)= P (y"(s). )
(4. 3) .

v=01..., .
b)Y A%Gs) [y"-”(s) - y“(s)] = - Ply"(s), s)

To get convergence we need only show that x° (s) is in the appropriate

domain of attraction about - x(s) and that the. )4V(s) are all nunsingu- -
lar. We do this in )

Theorem 4., 4.4. Let x(s) be a twice contllluoule(itfferuntlable arc of

solutions of (2, 5) on (q , s ] Let (4.0) hold and for some positive

functions K(s), ¥ (s) and p(s) defined on [s ,sb]:

a) IIPx(y, s) - Px(x(s), s)l! < K(s) Ly - x(s)tt v y in
.1 ' ly = x(s) < n(s) ;
b) max I#(t\ <= ¥ (s) .
saStSs .

For s ¢ 5. Sb] - {so} define

i
3
!
|
f
:
e S
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(4.4) o M(s) = 1A sy |
. |
and for some positive 6(s) <1/3 define i
, ' . 0 !
(4.4) d) r(s) = min [ p(s), K/ITs_%)@i] ;
Then if 4
(4.4) <) s -5t sy sar(s) , s#s '
the Chord iterates xv(s) — x(s) with geometric convergence factor E
= 26(s) £

1 - 6(s)

Proof. It easily follows from (4.1) and (4. 4) that

x®(s) - x(s)l < Z[s - s ]2 ¥ (s . ! A xe BXR
Then (4. 44, e) imply that Ux%(s) - x(s)ll < r(s). Ncw‘(4‘. 4a, c) yield

A NA (5) - A)] 1 < M=) K(s) r(s) < 0(s)

Thus the Banach Lemma insures that Ao(s) is nonsingular with

e s) M Sl_’_\".(.;(sL)

We can now define

Hiy, s) = y -A°(s)™! p(y, s)

A P8 E VA it

and for all y,z in fly - x(s)!l < r(s)

1H(y, s) - H(z, s)ll = u,4°(s)'1[,4°(s)(y-z) - ‘(P(y, s). - P(z, s)]l

*

<l—¥iei(£-) K(s) 2r(s).lly-zh .

sﬁ@—)— Ny - zlt
1 - 0(5)
Since 0(s) < 1/3 we get that H(y, s) is contracting on ty-x(s)il <r(s)
and the theorem follows, i

e A A PO ek i e R n

‘ S
Note that M(s) must become unbounded and thus r(s) = 0 as ( . a

i~ -

8§ = Sp. Our result thus uses the fact (see figure 2) that there is a t

cone about %(s} with vertex at *{sy)} and interior to this cone the

S R . i
chord method converges, To Jjump over a singular point the tanpent

to x{s) o X(Ha) need only penetrate the cone for some s 59 fur . i

wh_ich (4. 4e) hold_s. Clearly if the curvature of the solution arc is not ;

' )

l

'

+

¢

i

ot . ¢
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9 S ]
A(s) K(s)

’ f
(s) ., s#s, , ’

metric convergence factor

, e
.4) that f
N SN i
r(s). Now (4. 4a, o} yield '
<(s) ris) < o(s) . ' o

=} is pensingular with

L
s)

"y, s)

z) = (Ply, 5) - P(z, s)] Il R

(s) ly-z1 |

ntracting on ly-x{s)ll < r(s)

S S -8

‘d and thus r(s) - 0 ae . ‘ a 0 b
figure 2) that theve is a Figure 2

interior to this cone the

singular point the tangent

one for some s > s, for

“e¢ of th~ solution arc is not

b st o
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too great over [ sé, sb] this can be achieved,

Newton's method can also be shown to converge in the same cone.

However Newton's method may even converge in a much larger re-

gion, including a eylindrical tube about x(‘s). Thus the singular solu-
tion x(sy) can be detefmined di'r_ectly in such cases not only by bi-
section, Unfortunately the status of the 'convergence of Newton's
method at singular points is not completely clear at the present time.
The main idea and no doubt the behavior to be expe(;ted. in many cases
is explained in the basic paper of Rall [16]. But the details of a
proof with reasonable suffxcnent constxons seem to be lacking, Pro-

gress in thls directlon has recently been made by Reddien [ 17]).

S. Switching Branches at Bifurcation Points.

Bifurcation points are solutions at which two or more smooth
branches of solutions of (1.1} have non-tangential intersections.

at which:

In

particular they are singular Vpbints, say [uo,lol,

a) dimA(G®) = codim R(G®) =m
(5. 0) T u
b) G; eR(G&)
From (5. 0a)
such that: -
AG?)
(5.1)
Lo %
A ((.f1 )

. * *
we have the existence of elements ¢j € IB and l};j eIB

i

span{¢,,¢z, F.

. ‘?m}

span {47, 43,

"

k-
oo}
In addition (5. Ob) implies the existence of a unique element ¢, ¢ B
such that:

(5. 2) G&%+G;=0; lsj<sm

ok
\bj ‘o =0, _
Let [u(s), A(s)] be any smooth branch of (1.1} through the bifur-
cation point, say with u(sy) = uy, Afsg) = o . Then since
(5.3) a) G‘;’l- G(sg) + cg Asg) =0
it follows from (5.1)-(5. 2) that

(5 3) b) (sg) =

T S s T (X Yt e .

o o, Aot b+ e

S XN

BIFURCATION AND i

where
(5.3) <)

ag = K(sg) ; =

We get by differentiation of ¢

(5. 4) G° U = - [G?ml @
o -
+ GM *(s
_Since G

:‘ t(sg) € /\)(G:’J) and
right side of (5.4) is also in .
this term and so using (5, 3} .

{ao,

.Y am} mauast satisfy ¢

(5.5) a) JLX? ijk £ 2 -
where .
E"3
= o
(5.5) b) aijk = tbi Guu by
Ci_ w ( ULX

"Thus the tangent, [ (s, ).
the bifurcation point {uy, g j
fy (5.5). Conversely ifata ¢
hold and (5.5) has r 22 dist:
bifurcation point with at least
tersecting there. Essentially
important special case m =1,

(5.5} reduce to the single quac
(5.6) a) ay el +
1f [ap, @

is distinct provided

] is one nontrivial

(5.6) b) ay c

If {uy(s), A, (s)] is a smooth

t Since (5. 5a) is homogeneous
multiplicative constant. Root
scalar multiples of each other
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where
(5.3) c) ‘ap =" X(sg) _¢ u(s'o) , 1<j€m
We get by differentiation of G(u(s), A(s)) =0 at s = 55
(B4 Gt - [Gh, la0)ilsn) + 2GY, tlso) Xsg)

+ G° A(s0) X(so)] - G° >l(so)

Smce G° U(so) € R(Go) and G; eR(G°) the bracketed term on the
rxght szde of (5. 4) is also in R(G'J Then lj,o [ .1'=0 must hold for
this term and ‘so usmg (5. 3) it follows that the m +1 scalars

{ao_, cee, @ } must satisfy the quadratic system:

» 2? . af = €i<m
(55) a) . 2 le a + J.:,lb”arJoz(J Lclao ¢, l<ism

where

ou

_- * L
(5:5) b) 3 =4 G b by = 4G, ¢ + G,

1<j, k€m

;= Uy (G) o + 2G04 +ng> .

Thus the tangent, [u(so) X{s0)], to every smooth branch through
the blfurcatlon point {ug, 2] must have the form (5, 3b, ¢) and satis-
fy (5. 5). Conversely if at a solution [uo, Xl of (L 1) conditions (5. 0)
hold and (5.5) has r 22 dlstmct nontrivial roots then [uo, Ao ] isa
bifurcation point with at least r smooth solut1on branches of (1.1) in-

tersecting there. Essentially this result is proven in [1l]. In the

_important special case m =1, the algebraic bifurcation equations

(5. 5) reduce to the single quadratic

(5.6) a) ayy o + 2by, @y ay +cpaf =0

if [abo, a,] is one nontrivial root of this quadratic then the othér root
is distinct provided

(5.6) b) angy @ tbya #0

If [u,(s). )_,(s)] is a smooth branch »f solutions through the

t Since (5. 5a) is homogeneous a root is determined only to within a
multiplicative constant. Roots are said to be dxstmct if they are not
scalar multiples of each other.
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bifurcation point with tangent [ﬁl {sg), Xy(sg)] determined by
{ag, @,] in (5. 3b, c) with 'm =1 then the condition (5. 6b) can be writ-

ten as:

(5.6) «c) Wy (G2, By (s0) + GOy Xy (s0)] % O

This is es.sentially the ion;n of the bifurcation condition given by

Crandall and Rabinowitz [ 5}, However it is seldom pointed out that

this condition insures the existence of two distinct roots of a quadra- .

“tic'; Rheinboldt { 18] makes this quite exp‘licit.for the class of pro-
blems he treats. . ' '

Method I. An obvious way to determine branches bifurcating at
[wg,Ne] isto determine‘several distinct roots of (5.5), use them in
(5. 3b, c) to construct several distinct tangént vectors [dk(s_o ), Xk(so )1,
k=12 ..., then use each of these tangents in N3 = 0 of (2. 10e)

and prrceed as previously indicated. For m =1, simple bifurcation,
similar devices have been used and suggested in analytical and per-

turbation studies [ 7, 18, 21}. Rheinboldt {18] uses an approximation

to the second root in some of his numerical methods to prediét a point
on the "second"branch. This idea can be used quite generally to .
obtain approx-i;nations to the coefficients {aijk' b;lj, c_:i} . in (5. 5) if

the ¢j and tpj are known (or sufficiently well approximated). Thus
we define:

=¥ L el
a) aijk(e)— L [Gu(uo + ecbj, Xo) Gu]¢k ,
A v 1 .
b) bijle) =y Al (ug €45 M) - G 1y
+ [G)(UO + €¢‘js l0) - G;]}
(5.7) .1
<) cile) =4y TH{lG (o + edo, 20) - GOy

+ 2 G)(uo + Cdg, Ng) -AG;]_

i [G)(uo.lo boe) - G;]}

t In bifurcation from the trivial solution [ul(s), A (s)] = [0,s] it fol-
lows that &=0, since G& = 0. Hence cj= 0 and the quadratic (5. 6a),
in the case m=l of simple bifurcation, has the two solutions: a,/ay =0,
afag = - 2byy/a,y,. Clearly by, # 0 if (5. 6c) holds since a,(s0) = 0.

e s et VA o s e

A o o

A —— s o =

i

Mecthod 111

BIFURCATION AND Nt

Clearly {aijk(e), bij(e). cyle
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(5.8) a) @y gl + e
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Xz = );1(50’

These-are to satisfy:
G

(5.9)

N{uz, »; )= (&
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in the form
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Clearly {aijk(e), bij(s), Ci(r)}_.{aijk’ bij' ci} as € —- 0. The a-
bove scheme avoids the need for determining second Fréchet deriva-
tives,

Method II, There are other devices which avoid the need to evaluate
the coefficients or roots uf (5.5). This assumes that one branch

‘through the bifurcation point has been determined. Then the tangent

[G(so I8 X(so )] can also be assumed known on this branch., The idea

is simply to seek solutions on some subset "parallel” to the tangent

.- but displaced from the bifurcation point in some direction "normal" to

the tangent.

For example in the case m =1 of simple bifurcation the knowr
solution branch ['ul(s), X;(s}] has the tangent at the bifurcation,
§ = 89 given by (5, 3b, ¢). An "orthogonal" to this tangent in the plane
spanned by [ ¢,,0] and {¢,1] isalso given by (5. 3b, c) but with
@; and @y replaced by:l

A
(5.8) a) Gy zag(l - U 12) , &y - -y Ney N2
Then we seek solutions in the form:

(5.8) b) u; :U1(50)+€lao¢o +Ql¢l] tvo,
‘ . A
: Az =X {sg) teaq +

These are to satisfy:

Glu,, ;) =0 ,
(5.9)

A % A % A
N(u,, X)) = (ag ¢y tay¢))v+aoyg n=0
We use Newton's method to solve (5.9) for v € IB and € IR with the
initial estimate (v?, n") =(0,0). Here ¢ must be taken sufficiently

1ar-ge 50 that the scheme does not return to {u;(sg), A;(s¢)) as the
solution.

Method III.  Another way to determine a branch bifurcating from a
known branch | u(s), A{s)] at s = So is to apply a constructive exis-
tence theory, using iterations, say as in | 8,11]. To sketch the basic

idea we consider simple bifurcation and seek the bifurcated branch
in the forim
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(5.10) a) u=ule) +elé, +v] , wv=0;
: A =2, (o)

Then (1.1) is written, using (5.10a), as

(5.10) b) G°v =G°v - l-G(u,(a) el by 4v]a (o)) ; q,fv =0

To insure that the right hand side is in R(G°) we try to pick o = s
such that h(s;e, v) = 0 where

411[G° ——G(u,(s)+e[¢|+v] X,(s))] €#0,
(5.10) c) h(sie, v)= ( o

‘ lpl[G"v-G (u,(s) l,(s))[¢,+v] , € =0,
It easdy follows that h(so,O 0) =0 and

(5.10) d) K =h (so,O 0) = - ¢, [Guu Gy (sg) + Gy Milso )] 4.

Thus as in (5.6), h (so,O 0) # 0 and so the 1mpltc1t function theorem

yields a root, s = o(e. v), of h(s;e, v) = 0. We use this root in (5. 10b)

and thern, by contraction maps, it is easily shown that {5, 10b) has a
unique solution v = v(e) for ' [ sufficiently small [10]

The main d1ff1culty in applying the above procedure is in solving
h(s;e,v) =0 for s at each iterate v = vv, say. Of course if » oc-
curs linearly in the problem and it is used as the parameter s, then
this is trivial., But when ) occurs nonlinearly as it must for secon-
dary bifurcation, modlhcatlons must be introduced, Several have
been proposed in [ 4,6, 15, 19]. For example given the vth iterate,
(uv, vv), we could use the chord method to define (rv+l as in

. _ s *
(5.1 ~) m? awl =m® oV - WMo, vy, mP= ¢y B 3

and then vval is obtained from
5.1 v 6 vl -%C(ul(uv) el 4y + ) 2, (6Y))
"
- B¢ vl Uv]; v’rl =0

Applying u,q to the right hand side above we see that it is in /{(G0

Furthermore with the choice
(5.12) a) B=B% =[G ii(s0) + Gy Xylso)] 4,

it follows from (5. 10d) that m° = h° # 0. There is no difficulty in

showing convergence of the above schcn\L To avoid the evaluation of
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second derivatives we can
(5.12) b) "B = Ble)= G
+ Gx(l_!

Clearly B(e) = B + ey s
proceed as before. This n.

it is justified for finite dirn:

“the solution branch [ u;(s).y

. . . +
lic" approximation; *

Gl(s) = uy(sg) +

" (5.13)

Xi(s) = 2 (s}

the procedure still converg:

Method IV. A final method :

a simple eigenvalue is to us
of the Crandall and Rabinow"

again seek solutions of the .
1
Py G(u,
(5.14) a) g(v, s;e) =
: Gu(“l(
! *
b), N(v, sje)= ¢, v
Now we note that
(5.15) a) £(0. 50 :M

and the Frechét derivative

o _ g, :
(5.15) b) A = a(v

where B is given in (5. 12~
it follows that 4° is nonsin:

theorem shows that

(5.15) ¢) {

t In {19] the parameter s =
generalization can be shown



%
Wy v =0 ;

12(0)) : wiv =0

‘.:’1) we try to pick o = s

b+ el dytvl, X)) ez 0, -

() [é+v] €=0.

‘sg) + Gfm Xy{sg)] &,.

e implicit function theorem §
We use this root in (5.10b) . ‘i

shown that (5.10b) has a

Aly sroail [10] .

ve procedure is in solv.ing
say. Of course if » oc~

as the parameter, s, then

tarly as it must for secon-

roduced. Several have

2 given the L0 iterate, !

N v+l .
define o as in

el ¢y + "] 2, 0"Y)
Vv+1 -0

ve sce that it is in /\J(G?I).

).1(50)] $y

‘here i: no difficulty in

To avoid the evaluation of
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second derivatives we can use the trick in (5.7) and take:

(5.12) b) = B =B(e)= G (uylso) + €by, X (50)) 6;(s0)"

A + Gy luylso) + €4y, Ay (s0)) Xy (50 )
Clearly B(e) =B° + 0_(‘6) so that xp,* B(e) = h‘; +(Xe) and the pr‘oofs
proceed as before., This modification is due to Rheinboldt {19] where

it is justified for finite dimensional problems. He'also shows that if
the solution branch [ul(s),),(s)] in (5.11) is replaced by the "parabo-

lic" approximation: t

Gils) = uylse) + (s-50) Uy (sp) + Hs-80) U, (s9)

(5.13) .
. A _ -
Mi(s) =2 {s0) + (s-50) Xy (50) + Hs-50) X,(s0)

the procedure still converges to a bifurcated solution,

Method IV. A final method for determining the bifurcating branch at

a simple eigenvalue is to use a technique bhased on a modification [10)

of the Crandall and Rabinowitz [ 5) proof of bifurcation. Thus we

again seek solutions of the form {5.10a) and define

Latays) + el oy +vloagsn . exo

(5.14) a) glv, s;e) = E ' :
: G luits) Atsyl ¢ + v] , €=0 ;

. .

b) N(v,‘ sje)= ¢, v

" Now we noté that

(5.15) a) 80, 5030) = 0, N0, 5430) = 0

and the Frechdt de r‘iy'ativ-c at (v, s;e) : (0, 5¢;0) is
. ) GY R
(5. 15) b) )40 - %(gaﬂ ) - u
(v, s) lIJ* 0
{0,.50;0) t

where B s gi'vvvn in (5.12a).  1f (5. 6¢) holds then Ly our Lemma 2,8

it follows that A° is nonsingular., Now the usual implicit function”

glv, s;ie) =0,
_ N(v, s;¢) =0 )

t In119] the parameter s = % is emplryed bat the above indicated
generalization can be shown to work with no additional difficulties,

theoréem sh ows that

(5.15) <)
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has a smooth solution (v(e), a(e)) for each l , and using this

solution in (5.10a) yields the bifurcating branch of solutions.

In solving (5.15¢) we never use € = 0 so that even when employ-

ing Newton's method second derwatlves need not be computed, Fur-

ther we can use the device of R_hemboldt and replace [\1,(5), ()]
in (5.10a) and (5.14a) by [u,(s) ),(s)] of (5. 13) The implicit func -
tion theorem still holds as above and now we get a solution

(v(e) cr(s)) of the modified (5. 15¢) to use in the ‘modified form of

(5 10a). The ngorous Jushflcatxon of this procedure is stra1ghtfor- )
watd and obviousl‘ thé

4h be made constructive, {10].

3. Nume ric'a“léMlé‘thod
%

To applybtho brevmusly mdlcated procedurc.s we must assume
that stable, conve rgent numicrical methods are known for approxima-
ting the solutions of the linea rized problems which arise in Newton's
method or in the chord rﬁcthod. Indeed even more is required to
rigorously justify the numerical methods used in switching branches at
a bifurcation point We must be assured that bases for A(Go) and
A(G° )} can be accurately determined. For the case of simple bifur-

o atxon this is not very difficult since the theory of numerical methods
for computing eigenfunctions belonging to simple exgen\alues for
broad classes of linear operators is well developed. Indeed the only
works thas far to justify nunterical methods at bifurcation points con-
sider simple bifurcation from a tirvial branch, [2 22,23}, We shall‘
not present a general convergence theory here but rather indicate the
practical aspects in actually carrying out our procedures.

Basxcally the problem (2. 4) is discretized in some form whxch
we indicate by,

{(6.1) =) (,l (n v l) o, ‘N (u ..)h,:i) -0

He v (u1 \ ) represents the approximation to (m, 2) on the net or
family of u(,ts which is paramctrized by h. If (2,4) has a smooth iso-
lated solution then under modest assumptions on the consistency of

(}' , Nh] w1th [(;, N] and on the stablllty and Lipschits continuity of
the linearized difference operators, say /) the general theory in

[9] assures us that (6 1) has a unique solutlon which can be c'omputed
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From the comparison with -
difference approximation to
of (large) order h™™ when
*
Similarly bh and ¢, arecx
and Nu, respectively, whil

The basic cor iputations

the form

(6. 2) /',7{
To do this we need only dete
(6.4) a) Ahyh =
and then;

' ¥ T
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by Newton's method, The bulk of the computations occur in this case

and we write the difference operators linearized about (u»h. lh)_ say

. _ ' Ap by
(6. 2) Al |
°h 9

From the comparison with A4 in (2. 6) we see that A isaform of

difference approximation to Gu' Indeed. Ah _is in general a matrix

of (large) order h™™ when the basic problem is formulated in E™,

E 3
Similarly bh and ¢ are column and row vectors approximating G)

\
The basic computational problem is to solve linear systems in
the form

(6.3) A, =

h fh
To do this we need only determine y, and z, satisfying

(6.4) a) Ahyh:b , by Az, =r

hh ° Ty i

and then: )
(6.4) ¢) 6)h=(cl*z + p )/ (d -c*y) , d) bu, =z, - 6 )
h“h h h h’h h h h’h
Of course we solve (6. 4a, b) by some Gaussian elimination procedure
wi'th some form of pivoting to get (neglecting the permufations for

clarity of presentation)

{6.4) e) Ah = LhUh .

Since the bulk of the computations occur in dete rmining the factoriza-
tion (6. 4c) it follows that our nuormalization procedure costs very little
extra effort. Now we sketeh an algorithm for pgenerating "all" the
solution branches of (1, n using the indicated techs iques and assuming

that only simple bifarcation occurs.
ALGORITHM

i) Using Euler-Newton continuation generate an approximate
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solution arc: xlh(s) = (ulh(s), )m(s)), skipping over any "singular“ )
points that are encountered,

ii) Return to the neighborhood of cach singular point and locate
it accurately (i.e. use false position or bisectivon to determine the

zero, sg, of det Ah(s)). In particular simple roots or more ge~

‘nerallv ‘odd order roots aré easily sensed by the sign change in

det Ahf However one must Temember to dccount for the row or

column interchanges in the LU-decomposition.

iii) Test for limit point or bifurcation at each s'ingu,larity. To do

. % * *
this we need an approximation - Yy to ¢y, the null vector of Gg .
We do this as we also compute #), an approximation to ¢, the null
vector of . G;’] This is eas‘ily and efficiently done by inverse iteration.

In fact if we are really close to a singular point then it suffices to use,

say:
(6"5) a) . A:d’h = ¢fl )

b) Apty = ULy =4 s
where ¢;'1 = Guh is the last correction in the Newton scheme used to
compute uh(soh). As we already have the LU-decomposition in (6. 4)
these calculations are not costly, ’

The test is in the form:

20, seek bifurcation

(6.6) 4y, by o
#0 , alimit point. -

iv) To switch overto a bifurcating brénc_h we must also compute
[hlh(S), th(S)]. an.approximation to the tang'envt to the solution
branch, xlh(s), at the point Soh best approximating the bifurcation
point. However, this will have been computed in step i) or ii} if, as
we ass>u1nc., the normalization N; of (2.10¢) has becn employed,
Then we can casily determinc ¢0h an ‘ap'proximation to & of (5.2)
as follows, We set

. N R »* .
(6.7) a) o “nlEon) - B e = Optson) b by

and then compute

| S, -
(6.7 ey bon " ag Ly (sgp) - oy )

b, o e e
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[of course if 0n = 0 we .
‘Place we must use a solut}
tiple of that ¢ &
iple o q.)()h so tha ¢lh %,

Now to use Method I w

by:
.
3l aae) =y
TR
b) Plnt®) = ¥y
(6. 8) .
-4

4,
2 }
Then we approximate the ot

(6.8) ¢) a_lh/a—m

The tangent to the bifurcate

(6.9) “2nloon! = @y,

Using (6.9) in the normalfza
generate the bifurcating bra
To use Method II we pr¢

{6.8). Rather we approxir

. A - oo f
(6.10) a) o = alhlh_

Then we seek-a solution of (¢

u. = u,, (s
(6.10) b) h Ih*7m

where Nh(‘ ) is taken ag:
(6.10) <) Nh(uh.)h)"
Once a solution [vh, nh] is «
and we return to step i) usin -

indicated computations invols




kipping over any "singular"

ch singular point and -locate
isection to determine the

r sifnplr: roots or more ge-
d by the sign change in

r account for the row or

sition.

on at each smgularity To do. -

* %

1» the null vector of G;’~l
pproximation to ¢, the null
ntly done by inverse iteration,

r point then it suffices to use

¢vh:

the N¢ vton scheme used to

+ LU-decomposition in (6. 4)

ifurcation ;

. point,

rranch we must also compute
- tangent to the solution
pproximating the bifurcation
puted in step i) or ii) if, as
10e) has been employed.
proximation to ¢y of (5. 2)

/ *
Oy = on Y Yy, by,

o, Oy
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[ Of course if p = 0 we cannot use this simple procedure. In its
place we must use a solutxon of (6.4a) at s = sOh and subtract a mul-
txple of ¢Oh so that v.plh ¢0h =0.] ‘ ‘ ‘
Now to use Method I we approximate a;{6) and b,; (8) of (5. 7b}

by:
ot L
B a8 =y A G + 84y, 1n{%on")
Apluy (sop). > AL h))]«1>lh
B by =gy F LA Gy (g + iy g (a0,
. (6.8) ' '

Aplug(sopd s 60,

* ] '

+ gy, gl By (50 M4y, 2, (s000)
- bh(ulh(soh)v )(S()h))]

Then we approximate the other root of (5 6a) by [QOh, ;1h] whe re

(8)
(6.8) c) /a - _< 1h + llh )
1h oh _Oh an(o) /

The tangent to the bifurcated branch is approximated by:

(6.9) 205 0n! = @1 O %on o 0 Naplson) = gy

Using (6.9) in the normalization N, we simply return to step i) and
generate the Bifurcating branch.
To use Method II we proceed as before but do not bother with

A
(6. 8). Rather we approximate [(,1\0, a, ] of-(5. 8a) by:

A S 2 A 2
(6.10) a) TN LY L S (I u¢0hn )

Then we seek-a solution of (6.1) in the form:

a

(6.10) b) h = U1n(Son) * Lagutgy + a0 4y
. A
Mntoon! + < agy t oy
whe re Nh(- Y ois taken as:
X _ A * A % n
(6.10) <) Nplug A ) = eg, bop, +ay by vy tag, n .
Once a solution [Vh' nh] is obtained a new tangent vector is computed

and we return to step i) using the normalization N;. Indeed the above

indicated computations involve but minor modifications from the
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procedure of step i).

Method III has been discussed in more detaijl by Rheinboldt [19].
It has also been uysed for bifurcation from the trivial solution in ‘
(15, 22, 23],

To our knowledge the new Method IV has not yet been used in

actual calculations, However it is in the Process of being tested at
the present time. v ' '

7. A Simple Example.

We have used. fh‘e‘ pjlji.)cvéc'lgres of §6 on several examples of the
form; RS '
@ha) e 4 fxud) =0, w©) -y -o |
where ' ' ;
(7.1) b) £, 4iX) = 2 a00) + 72 X plu-qr)x(1-x))

If p(0) =0 then a solution of (7.1) is given by

<
w0
o
o
o
O
Q

(7. 2) ’ u;(x,2) =qX) x(1-x) , A =arb .
The linearizea problem about up(x) is »

: 2 - ) _ -
(7. 3) ¢xx +r )‘pu(O)tbf 0., 0)=¢l)=0
Thus if pu(O)‘rl the eigenvalues of (7.3) are

. 2 ‘
7.4 x = k' k =1 2 {
( . ) ) 1 = N = 1, R .

We have used several choices for q{1) and p(z) but we show here, in

figuré 3, the computed results for the choice

(7.5) q(d) = a? e-)/z v pPlz)= 2+ 22

The differeace scheme used was the Collats Mehrstellenverfahren
which is (Xh? ) accurate and the net spacing was h = 1/20, The pro-

cedures of §6 were a licd using the seudoarclenpgth normalizations
14 14

T”X”g

N and N; and Method Il was used to switch branches at bifurcation
points. (The norm, xll, was allowed to g0 "negative" if it went to
zero along a branch; thus It is a smooth curve on figure 3,) The

only initial guess required was [u, 2] = o 0] employed 'ncaAr > =0

to start the Fuler-Newton continuation on the branch Fo which is the
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basic solution Juy(x, ).

changes in det Ah())

'i‘his braﬁch was easily computed and sign
were.noted near the first three eiéenvalues.
Upon refining the location of these potential bifurcation or limit noints,
using false position, the cigenvector approximations d)h and d;h were
computed, The test s *C')i = 0 indicated bifurcation at each point and
Methed II easily switched fo the branch T, L orp

bifurcating from
the corresponding point 32 - 1, 2o0r 3,

These branches were-extended
in either direction by simply changing the sign of the ¢
fining the normal végt‘or}in Method II.

the branch, .di‘rﬁtWO'»‘of,‘thé'

used in de-

Then continuatiun gencrated

:,,éit‘ensio};s, ‘]", and I;, new zeros of
‘det Ah(X) w‘e'ré"_foundf'butv-.iﬁe‘y"{failed the necessary test for bifurca-
tion,

Indeed we see in figure"é that they are simple limit points. The

‘branch T; as shown in figure 3 is actually covered twice but it docs

not show on the figure due to symmetry. There i a fundamental dif-
ference betwecn bifurcations from odd and even "eigenvalues but
our scheme for computing has no difficulties with either case.

We also started our procedure at a remote point on the bifurcated

branch T,. Tt of course located the basic solution Ty as a bifurca-

tion from this branch and then proce_eded to find the remainder of the

branches in figure 3. To completely automate our procedure we would

have to devise step control teéhniques to allow optimum steps in the

arclength parameter, s, Also net selection, variable order (via

deferred corrections or Richardson extrapolation) and accuracy tests

should be included. However further testing with Methods I-1V
should be ¢

templated,

arried out before general purpose codes are seriously con-
Furthermore since (he bulk of the computationd oecur in
the continuation process the choice of Euler-Newton must be recon-

sidered, Rheinboldt [18] has initiated serious studivs of this question.
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