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Abstract The emergence, growth and stabilization of stationary
concentration patterns in a chemical reaction-diffusion system are studied
by numerical simulationsof the Lengyel-Epstein model. This model
represents a key to understanding the recently obtained Turing structures
in the chlorite-iodide-malonicacid system.

INTRODUCTION

(

One of the most fundamental problems in theoretical biology is to explain

the mechanismsby which patterns and forms are created in the livingworld.

In his seminalpaper on The Chemical Basis of Morphogenesis, Turing)

showed how chemical reaction-diffusion systems under certain conditions

could become unstable and yield to the growth of stationary concentration
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patterns. TurIng also suggested that the emergence of such patterns could

playa major role in biological form formation.

In its simplest form, the Turing instabilityarises trom the interaction of two

chemical species: an activatQrand an inhibitor. The activator is autocatalytic

so that the rate at which this species is produced increases with its

concentration. More activator also augments the inhibitor production. This

species, on the other 'hand, reduces the rate of production for the activator.

A general condition for the instabilityto occur is that the inhibitor diffuses

significantlyfaster than the activator. If, under this condition; a random

fluctuation of the cheqlicalconcentrations has produced a local surplus of

. activator, the concentration of this species will start to build up. The

activator also produces more inhibitor, but this species diffuses more rapidly

and spreads into the surrounding area. Here it suppresses the activation

process while in the original region the dilution of the inhibitor concentration.
allows the activator concentration to continue to grow, until it is finally

limited by nonlinear constraints.

Over the years Turing's ideas have attracted the attention of a great number

of investigators. A variety of different model systems have been proposed2.3,

the basic theoretical aspects of the problem have been studied in

considerable detail4-8,and it has been illustrated in principle how biological

patterns can arise from the Turing instability>.

Working with the cWorite-iodide-malonicacid or so-called CIMA reaction,

which under other circumstances is known to produce oscillations, bistability

and traveling waves, De Kepper and his coworkersJOdiscovered the

formation of stationary three-dimensional structures with characteristic

wavelengths of 0.2 mm. The structures were confined to the center of the

reactor by the feeding gradients. By using an inert gel as the reaction
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medium, a continuous supply of fresh reactants could be maintained while at

the same time avoiding convection. To allow visualization starch was used

1
1

as a color indicator. Starch forms a reversible complex with iodine which is

practically immobilein the gel. The effect is a reduction of th,~diffusion rate

for the activator (iodide), providing the required difference in the diffusion

constants.

Subsequent studies by Ouyang and Swinney11using a disk reactor showed

quasi two-dimensional patterns in the form of hexagons and stripes and also

lead to an experimental determination of the bifurcation diagram for the

Turing instability.By means of light absorption techniques, Lengyel et al.12

were able to establish the form of the rate laws for the most essential

processes in the CIMA reaction. After proper renormalization and including

the diffusionterms they proposed the following two-variable model:

au =a-u- 4uv +V2u
at 1 + U2 (1)

and

Ov=O
[
b(U - ~ )+ CV2V

]at 1+ U2

Here, u represents the concentration of iodide ions (activator)

(2)

and v the

concentration of chlorite ions (inhibitor). a and b are parameters that are

related to the feed concentrations. A shift towards higher values of a

represents an increase in the supply of malonic acid relative to the supply of

chlorine dioxide. Likewise, increasing b corresponds to a higher supply of

iodine. c is the ratio of the diffusionconstant for chlorite to that of

uncomplexed iodide, and 0 is a resealing parameter which primarilydepends

on the concentration of starch. The higher this concentration is, the larger 0

will be. The effective ratio of the diffusion constants hereafter becomes oc.

In the simulations to be presented below we have taken c = 1.5 and 0 = 8. a
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and b are used as control parameters. Simulationswith the Lengyel-Epstein

model have previously been published by Jensen et aI.13.14

SIMULATION RESULTS

The Lengyel-Epstein model exhibits a unique homogeneous steady state

(UO,vo)=(a/5, 1+a2/25).If diffusionis neglected(V2u =V2V =0),the
homogeneous steady state is stable for b > bH =(-53 + 3a2)/5ao where a

Hopfbifurcation producing self-sustained oscillations occursl2.A nonlinear

analysis shows that the Hopfbifurcation is slightly inverted (or subcritical)

for a > 17.5. Hence, hysteresis occurs, and the stable limit cycle is generated

with a finite amplitude. When diffusionis taken into account, the linear

stability analysis shows that the system becomes unstable towards stationary

spatial perturbations of finite wave number for

(53 + 13a2-4aJlO(52 +a2»)c
b < bT = 5a (3)

The wave number kcat which the Turing instabilityfirst occurs is given by

k2 - I 25ab
c - . (25 +a2)c

(4)

We note that the Turing threshold bTis independent of O.On the other hand,

the Hopfbifurcation point bHvaries inversely with O.Hence, for sufficiently

high concentrations of starch, bT> bH,and a region exists in which the

homogeneous steady state is stable towards uniform oscillations, but

unstable with respect to the development of spatial concentration patterns.

Figure 1 shows the growth of a one-dimensional Turing structure out of the

homogeneous steady state for a = 30 and b = 2.8. The numerical

calculations were performed by means of a semi-implicit Crank-Nicolson

method with no-flux boundary conditions. The calculations were seeded
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with low intensitynoise to represent slight inhomogeneities and thermal

fluctuations in the concentrations of the chemical species. The incubation

time for the structure to emerge is determined by the rate of growth of the

most unstable modes and the range over which they have to be amplified to

reach macroscopic significance.At low aspect ratios (i.e. for systems which

only span a few wavelengths), the boundary conditions influence the mode

selection. However, this influence disappears for larger systems.
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FIGURE 1. Growth of a one-dimensional Turing structure out of the

homogeneous steady state.

Figure 2 shows the bifurcation diagram for the Lengyel-Epstein model with

one spatial dimension. Starting with b in the interval for Turing instabilities

(bH < b < bT), the diagram was obtained by seeding the homogeneous

steady state with noise to obtain the stationary pattern and determine its
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amplitude. Hereafter this pattern was used as initial conditions when

restarting the integration with a slightly different value of b. With this

adiabatic approach we could follow the amplitude of the stationary

structure as a function of b into the region b > bH where it can only grow

out of the homogeneous steady state by applying finite amplitude

perturbations. In each simulation the stability of the structure was tested by

applying a small noise signal. A similar approach was used to obtain the

bifurcation curve for the Hopf oscillations.
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FIGURE 2. Numerically obtained bifurcation diagram for the

one-dimensional Lengyel-Epstein model with a = 30.

For b > Phigh, the homogeneous steady state dominates, and a front

separating this state IToma region with Turing stripes will propagate into the
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Turing area. For b <plowthe opposite occurs. However, in the region

plow< b <Phigh,the front is unable to propagate, and stable localized

structures may exist. For instance, we may have a region with Turing stripes

. surrounded by a sea of homogeneous steady state13.For b < 2.1, the stability

domains for Turing structures and uniform temporal oscillations overlap.

Here, we may have a front between a region with Turing stripes and a region

with Hopf oscillations. In an interval around b = 1.5, this front appears to be

stationary. For lower values of b, the Hopf oscillationswill invade the

Turing area and vice versa for larger values of b. For b < 1.0 one typically

observes that a stripe structure grows up from the noise inflicted

homogeneous steady state and reaches a certain amplitude, before the entire

system switches to a mode of uniform temporal oscillations.

In two dimensions the picture is even more complicated. Here, we have the

possibilitiesof hexagons or stripes, and both types of structure have been

experimentallyobservedll. Moreover, for hexagons the phase is important,

since the activator can show either concentration maxima or minima in the

centers of the hexagons. Figure 3 shows a three-dimensional representation

of the concentration profile for a hexagonal structure. As in figure 1, the

pattern has grown from the homogeneous steady state perturbed by low

amplitude noise. It clearly reveals a number of defects arising from the fact

that at different locations patterns start to form with different orientations.

Once formed, the patterns may adjust a little. However, the original

misalignmentis never completely removed. The hexagonal patterns tend to

become more regular as b is increased from 2.5 (as in figure 3) towards the

Turing bifurcation point at b ==2.8. If b is reduced, on the other hand, even

more irregular patterns emerge.
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FIGURE 3. Concentration profile fora typical hexagonal structure. a =30

and b =2.5.

For comparison with the experimental results obtained with the strip reactor,

we have also tried to simulate the structures which arise when a gradient in

feed concentration is applied to the system. The results of such a simulation

in which b varies linearlyfrom 1.2 to 2 over the investigated spatial domain

are shown on figure 4. Here a = 20. In the forefront of the figure we observe

a region of homogeneous steady state. Hereafter a band with stripes follows,

again followed by a transition to hexagons in the far end of the figure. In

other cases we have found that hexagons arise between the region with

homogeneous steady state and the region with stripes. In the actual

experiment the concentration gradient may not be constant as in our

simulation.
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FIGURE 4. Transitions ftom homogeneous steady state to stripes to

hexagons wJtena gradient in b is applied to the system. a = 20.

CONCLUSION

The observation of Turing structures under laboratory conditions represents

a significantbreakthrough for one of the most fundamental ideas in

morphogenesis and biological pattern formation. This success, which had to

awaitthedevelopmentofnewtypesofgelreactors,isbasedona -

combination o(an oscillatory chemical reaction with a process that rescales

the diffusion constant of the activator species. This discovery has naturally

prompted a rapidly growing interest into the search for new types of

structures. In parallelwith this there is a need to extend the theoretical
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analysis to study the relation between kinetics and the types of patterns

produced. The Lengyel-Epstein model is distinguished from previously

studied, simple reaction diffusion models by producing a strongly subcritical

transition to stripes. This allows for a variety of localized structures to exist

and be stablel3. 14.
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