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PREFACE.

This book has developed from courses given by the authors and
probably contains more material than will ordinarily be covered in a
one-year course. The selection of material is partly conditioned by the
interests of the authors.

It is hoped that the book will be a useful text in the application of
differential equations as well as for the pure mathematician. Pre-
requisite for this book is a knowledge of matrices and of the essentials of
functions of a complex variable. The notion of the Lebesgue integral is
used in Chaps. 2, 7, 9, and 10. However, Chap. 2 is needed only for
certain parts of Chap. 15, which, so far as applications go, are ade-
quately covered by Chap. 13. The Lebesgue integral can easily be
avoided in Chap. 7, as is indicated there. However, a rigorous study of
Chaps. 9 and 10 requires a mathematical sophistication that would
certainly include the ability to understand the statements of the theorems
required from integration theory. An alternative approach is to apply
the theory of Chaps. 9 and 10 to a restricted class of functions as is done
in the proof of Theorem 3.1 of Chap. 9. This approach requires a
knowledge of the Riemann-Stieltjes integral only.

Chapters 3 through 12 are on linear equations. For linear theory,
it is not necessary to cover the existence theory of Chap. 1. For Chap. 3,
the necessary theorem is sketched in Prob. 1 at the end of that chapter.
The discussion in Sec. 7 of Chap. 3 suffices for Chaps. 4 and 5. For
Chaps. 7 through 12, Prob. 7 of Chap. 1 provides the additional existence
theory needed.

Chapters 4, 5, and 6 are not needed for any later chapters. Chapter 8
is not required for any later chapter, nor are Chaps. 9 and 10. Chapter 8
does not depend on Chap. 7.

Chapter 12 requires only Chap. 7 and, for Sec. 5, also Chap. 11.

Chapters 1 and 3 only are required for Chaps. 13 and 14. Chapter 1
will suffice for most of Chap. 15 and for Chaps. 16 and 17.

No attempt has been made to give the historical origin of the theory,
and only a limited number of references are given at the end of the book.
In keeping with this approach, the authors make no mention in the text
where they present new results.

Yu



viii PREFACE

The problems, in some cases, give additional material not considered
in the text.

The preparation of this book was greatly facilitated by a grant from the
Office of Naval Research.

The authors are indebted to a number of colleagues and students who
read portions of the manuscript, in particular, F. G. Brauer, Prof. A.
Horn, and Dr. J. J. Levin.

Earn A. CoppiNaTON
NorMAN LEvVINSON



CONTENTS

PREPRCE & "o _wom® oo Tolles ool waaifor - copodisfh M o SRTRE L e iy
CuarTER 1. ExmTENCE AND UNIQUENESS OF SOLUTIONS., . . ., . . .

ciExigtencelofBOIEONR Fas v B w6 e ow o e et oM
. Uniqueness of Solutions . .

. The Method of Successive Apprutnnatlons

. Continuation of Solutions :

Syatems of Differential Equations .

. The nth-order Equation .

Dependence of Solutions on Imtml Com!ltluns ﬂ.ncl l’nramctera

. Complex Systems .

Problems

00—

Cuarter 2. ExisTENCE AND UNIQUENESS OF SOLUTIONS (continued)

1. Extension of the Idea of a Solution, Maximum and Minimum Solutions .

2. Further Uniquecness Results |

3. Uniqueness and Successive J\pprt.\mnmtum-t; ;

4. Variation of Solutions with Respect to Initial Londltluns and l’aramctcrs :
Problems

CuaptER 3. LINEaArR DIFFERENTIAL EQUATIONS

1. Preliminary Definitions and Notations.

. Linear Homogeneous Systems

. Nonhomogencous Linear Systems

. Linear Systems with Constant Cﬂt-ﬂlcwnts

. Linear Systems with Periodic Coeflicients .

6. Linear Differential Equations of Order n

. Linear Liquations with Analytic Coeflicients ; ;

8. Asymptotic Behavior of the Solutions of Certain Linecar Systcms :
Problems

T O e GO ES

~1

Cuapren 4. LINEAR SysTEMS WITH ISOLATED SINGULARITIES: SINGULARITIES

or THE First Kinp

1. Introduction

2, Classification of Smgu]nrmes & pa e

3. Formal Solutions . . T AL

4. Structure of I-undumental ‘\lutnce& TSRS ) - e T

5, The Equation of theath Order . . . . . . . . . . .

6. Singularities at Infinity 5

7. An Example: the Second-order Equatmn : i e i s oo

St The FrobeniuaMethad «2: v i@ 5 . 6 0 . o 0 henas
ProblemBird et S0 Lo e MO E n s s e

11
13
15
21
22
32
37

42

42
48
53
57
60

62

62
67
74
75
78
81
90
91
a7

108

108
111

114
118
122
127
130
132
135

‘



X

CONTENTS

CHAPTER 5. LINEAR SYSTEMS WITH ISOLATED SINGULARITIES: SINGULARITIES

o S

W~gyo: o

OF THE SEcoOND KIND .

. Introduction

. Formal Solutions .

. Asymptotic Series. .

. Existence of Solutions Whlt'h ]lme I.In I'ornm] hnlutmna as Ammpiotm

Expansions—the Real Case

. The Asymptotic Nature of the I-urnml Holutlunb in tho CompILx C ase
. The Case Where A, Has Multiple Characteristic Roots.

- Irregular Singular Points of an nth-order Equation .

. The Laplace Integral and Asymptotic Series .

Problems

CuarTER 6.  AsyMmproTic BEHAVIOR OF LINEAR SysTEMs CONTAINING A LARGE

RARAMETER tpff T2 oo qrt seteatl WS Do et b I S
IfEIntrodaction e it o e s e e A ST R
2. Formal Solutions . e ek et e SeeMSIRAELEL i
3. Asymptotic Behavior of So]unom IO A8t 0L e s Sortirrae Wiy
4. The Case of Equal Characteristic Roots . . . , , .
5. The nth-order LEquation .

Problems

CHAPTER 7. SELF-ADJOINT EIGENVALUE PROBLEMS ON A FINITE INTERVAL

1.
2.
3.
4.

Introduction

Self-adjoint Eigenv alue I’mhlems

The Existence of Eigenvalues 3
The Expansion and Completeness Thcuroms -
Problems

CuAPTER 8. OscinratioNn axp Comparison THEOREMS FOR SECOND-ORDER

O =

e

LiNnBar EQUATIONS AND APPLICATIONS .

. Comparison Theorems

. Existence of Eigenvalues. ;

. Periodic Boundary Conditions .

. Stability Regions of Second-order I'.quatwns \uth l‘nrlodw Cm\ﬁmmms

Problems

CHAPTER 9. SINGULAR SELF-ADJOINT BOUNDARY-VALUE I’ROBLEMS FOR

-

SEconp-oRDER EQUATIONS

. Introduction
. The Limit-point and le1t~o|role Cases

The Completeness and Expansion Theorems in t]w Lumt pomt Cn.s u.t
Infinity .

. The Limit-circle Case nt Infnm
. Singular Behavior at Both Ends of an Interml

Problema ootk e L R o 1rm S0 b TN Sl Toetit

CHAPTER 10. SINGULAR SELF-ADJOINT BOUNDARY-VALUE PROBLEMS YOR nTH-

1.

ORDER EquaTIiONS .
Introduction

2. The Expansion Theorcm and Pa.raoval Equa[:ty

138

138
141
148

151
161
167
169
170
173

174
174
175
178
182
182
184

186
186
188
193
197
201

208

208
211
213
218
220

222

222
225

231
242
246
254

261

261
262



2. The Poincaré-Bendixson Theorem .

CONTENTS xi
3. Thc Inverse-transform Theorcm and the Umquencss of the Spcctral Matrix 265
4. Green's Function . . .. . 272
6. Representation of the Spectral Mutnx by Green (] Funcuon . 278
. Problems . . . e e e e 281
CuAPTER 11. ALGEBRAIC PROPERTIES OF men BOUNDARY-VALUE Pnosums
ON A FINITE INTERVAL. 284
1. Introduction . . .+ §
2. The Boundary-form Formula 286
3. Homogeneous Boundary-value Problems a.nd Adjomt Problcms 288
4. Nonhomogeneous Boundary-value Problems and Green’s Function . . 294
. Problems o 297
CHAPTER 12. NON-SELF-ADJOINT BOUNDARY-vALUE PROBLEMS . . . . 208
1. Introduction 298
2, Green's Function nnd the Expans:on Theorem for the Case Lx =~z 300
3. Green’s Function and the Expansion Theorem for the Case Lz = ~z"
gz . . . o e e e e e 305
4. The nth-order Case . ' 308 .
5. The Form of the Expanslon 310
Problems e e e e 312
CuarTer 13. AsyyMrroTic BEHAVIOR OF NONLINEAR SYSTEMS: STABILITY 314
1. Asymptotic Stability . Do 314
2. First Variation: Orbital Stabnllt.y oL 321
3. Asymiptotic Behavior of a System . 327
4. Conditional Stability . . 329
§. Behavior of Solutions off the Stable Mumfold ‘340
Problems 344
- CHAPTER 14, PERTURBATION OF SysTEMS HaviNG A PERIODIC SoLuTiON . 348
* 1. Nonautonomous Systems 348
2. Autonomous Systems. .. 352
3. Perturbation of a Linear Systcm wnh Y Penodw Solution in the Non-
autonomous Case 356
4. Perturbation of an Autonomous Systcm wnth a Vamshmg Jacobmn 364
Problems . . 370
CHAPTER 15. PERTURBATION THEORY OF TWO-DIMENSIONAL REAL AuTONO-
MOUS SYSTEMS . . 37
1. Two-dimensional Linear Systems 371
2. Perturbations of Two-dimensional Linear Sysu'ma o 375
3. Proper Nodes nnd Propcr Spiral Points . . . . . . . . 377
4. Centers. .. e e e e e e e e e 381
5. Improper Nodes . . . . . . . . . . . . . . ., . . 3%
6. S8addlePoints . . . . . . . . . . . . . . . , . . 387
Problems . . . . . . . . . . . . . . . . .. 388
Cuapter 16. THE PoINCARB-BENDIXSON THEORY OF TWO-DIMENSIONAL
AuToNoMous SYSTEMs. 389
1. Limit Sets of an Orbit . 389

391,



X1 CONTENTS

3. Limit Sets with Critical Points . : it gt W i R
4. The Index of an Isolated Critical Point N e Tl ot h e T
5. The Index of Slmple CriticalSPorn il BLE LRt rssss Ll i 28000
Problems . | ol e S e Tl O 1TV S
CHAPTER 17, DIFFERENTIAL EQUATIONS ON A TORUS. ey SEA04
1. Introduction , . AU SR O SRR R R
2. The Rotation Numbt\r i S Ml SR (R e Ve D TR 408
d::ne:Cluster et EREPE S Bt Snginies o amlriliiasn - CopuShabaabiuty - 39700
4. The Ergodic Case. . . St e R Tt A1)
5. Characterization of Salut:ons in tlw Ergodlc Cnae e et S TR 10
6i-AsBystemiof Two Equations: . v 7 0 o0 0 80 G URE
REVERBNCEAY « ¢ 51 S5l HORRNI 1w s i ieitd s v g et RN feg

INDEx.....................‘423



THEORY OF ORDINARY DIFFERENTIAL EQUATIONS






CHAPTER 1

EXISTENCE AND UNIQUENESS OF SOLUTIONS

1. Existence of Solutions

Let I denote an open interval on the real line — » < ¢ < e, that is, the
set of all real ¢ satisfying @ < ¢ < b for some real constants a and b. The
set of all complex-valued functions having k continuous derivatives on I
is denoted by C¥(I). If fis a member of this set, one writes f g C*(I), or
feC*on I. Thesymboleis tobe read “is a member of ” or “belongs to.”
It is convenient to extend the definition of C* to intervals I which may
not be open. The real intervals a <t <basStsbast< b, and
a <t 3 b will be denoted by (a,b), [a,b), [a,b), and (a,b], respectively.
If fe C* on (a,b), and in addition the right-hand kth derivative of f exists
at @ and is continuous from the right at a, then f is said to be of class C*
on [a,b). Similarly, if the kth derivative is continuous from the left at b,
then fe C* on (a,b]. If both these conditions hold, one says f e C* on [a,b].

If D is a domain, that is, an open connected set, in the real (¢,z) plane,
the set of all complex-valued functions f defined on D such that all
kth-order partial derivdtives 9*f/8*az? (p + q = k) exist and are con-
tinuous on D is denoted by C*(D), and one writes feC¥D),orfeC*on D.

The sets C°(I) and C°(D), the continuous functions on I and D, will be
denoted by C(I) and C(D), respectively.

Let D be a domain in the (¢,z) plane and suppose f is a real-valued fune-
tion such that fe C(D). Then the central problem of this chapter may
be phrased as follows: ‘

Problem. To find a differentiable function o defined on a real t interval
I such that

@ Ce@®eD  (el)
os ' : s , d
(i) ’O = fo@  (ee1, -9

This problem is called an ordinary differential equation of the first order,
and is denoted by

(B 2 = f(t,2) C=%
1



2 ORDINARY DIFFERENTIAL EQUATIONS [CrAP. 1

If such an interval I and function ¢ exist, then ¢ is called a solution of the
differential equation (E) on I. Clearly if ¢ is a solution of (E).on I, then
@ e C? on I, on account of (ii).

In geometrical language, (E) prescribes a slope f(¢,z) at each point of D.
A solution ¢ on I is a function whose graph [the set of all points (¢,¢(¢)),
t ¢ I] has the slope f(t,0(t)) for each te I. .

The problem (E) may have many solutions on an interval I. For
example, the simple equation

=1
has, for any given real constant ¢, the solution ¢, given by
ed) =t +ec

on any ¢ interval I. - However, there exists only one solution passing
through the point (1,1), say, and existing on an interval I containing
t = 1, namely, ¢o. Therefore, in order to be able to talk about unique-
ness of solutions of (E), one is led to the problem of finding a solution
passing through a given point in the (¢,z) plane.

Suppose (r,£) is a given point in D. Then an initial-velue problem
associated with (E) and this point is defined in the following way:

Initial-value Problem. T find an inlerval I containing r and a solution
o of (B) on I salisfying

o(r) = §

This problem is denoted by
2’ = f(tz)  wlr) = &

Suppose ¢ is such a solution which exists on an interval I. Then by
integrating (ii) one obtains immediately the integral equation

o) = t+ [ fow@) ds  @eD

Conversely, suppose ¢ a C is a function satisfying the above integral
equation on I. Then clearly ¢(v) = ¢, and by differentiating the equa-
tion it follows that ¢ is & solution of (E) on I. In other words, there is n
correspondence between solutions ¢ of (E) on I satisfying ¢(r) = & and
continuous functions ¢ satisfying the above integral relation on I. Thus
the initial-value problem for (E) and (r,£) on I is completely equivalent to
the finding of all continuous ¢ on I satisfying the integral equation.

Given a continuous function f on a domain D as above, the first ques-
tien to be answered is whether there exists a solution of the equation (E).
The answer is yes, if I is properly prescribed. An indieation of the limita-
tion of any general existence theorem can be seen by considering the sim-
ple example
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z =z

It is clear that a solution of this equation which passes through the point
(1,—1) is given by ¢(t) = —t~'. However, this solution does not exist
at ¢ = 0, although f(t,z) = z? is continuous there. This shows that any
general existence theorem will necessarily have to be of a local nature, and
existence in the large can only be asserted under additional conditions

on f.

The local existence proof proceeds by two stages. First, it is shown

by an actual construction that there exists an *“approximate’ solution

to (E), in a sense to be made precise below. Then one proves that there
exists a sequence of these approximate solutions which tend to a solution
of (E).

Let f be a real-valued continuous function on a domain D in the ({,z)

' plane. An eapprozimate solution of (E) on a ¢ interval I is a function

¢ e C on T such that
() (e@®)eD (tel

P(ii) ¢ ¢ C' on I, except possibly for a finite set of points S on I, where

¢’ may have simple discontinuitiest

@iil) ') —fle@) s (el —S)

Any function ¢ e C satisfying property (ii) on I is said to have a piecewise
conlinuous derivative on I, and this is denoted by ¢ ¢ C;(J).
If f ¢ C on the rectangle

R: t—7r1<a |z—-¢=b (a,b > 0)
about the point (r,£), it is bounded there. Let
M = max |[f(t,z)]  ((t,2) e R)

" and

a=min(a,%)

Theorem 1.1. Letf ¢ C on the rectangle R. Given any e > 0, there exisls
an e-approximate solulion ¥ of (B) on |t — v} £ « such that-¢(r) = &.

Proof. Let ¢ > 0 be given. An e-approximate solution will be con-
structed for the interval [r, 7 + a}; a similar construction will define it for
[r — &« 7]. This approxxmate solution will consist of a polygonal path
starting at (1,8), that is, a finite number of straight-line segments joined
end to end.

t A function ¢ is said to have a simple discontinuity at a point ¢ if the right and left
limits of g at ¢ exist but are not equal. In case ¢ = 0, it will be understood that the
sot 8 is empty.
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Since feC on R, it is uniformly continuous there, and hence, for the
given ¢, there exists a 5, > 0 such that

1ftz) — fE8)} < e (1.1)
o) eR G2 eRandli—1 S8 |o—g <o
‘Now divide the interval [, r 4 a] into n parts -
T=h<h< " <th=r+a

in such a way that

if

max | — #y) S min (6., E) (1.2)

M
From (r,£), construct a straight-line segment with slope f(r,£) proceeding
to the right of r until it intersects the line ¢ = ¢, at some point (¢,,z,).

334

o G o

Fia. 1

This segment must lie inside the triangular-region T bounded by the lines
issuing from (r,£) with slope M and — M yand the line ¢ = r 4 « (gee Fig.
1, where « is shown as b/M). This follows immediately from the defini-
tion of « and the fact that | Gzl s M. In particular, the constructed
segment actually meets thelinet = £;in 7', At the point (,,z,) construct
to the right of ¢, a straight-line segment with slope f(t,,,) up to the inter-
section with ¢ = {5, say at (£s,z,). Continuing in this fashion, in a finite
number of steps the resultant path ¢ will meet thelinet = 7 + a. Fur-
ther, the path will lie completely within 7.
This ¢ is the required e-approximate solution. Analytically it may be
expressed as
e(r) = ¢
o) = o(temr) + fllare(ta-))t — tiy) - (13)
ha<tszth . k='1,... B



Sec. 1] - EXISTENCE AND UNIQUENESS OF SOLUTIONS 5

From the construction of ¢ it is clear that ¢ ¢ C} on [r, r 4 «, and thai
e —e@I =Mt -7 @linlr, 7+ a)) (1.4)

" If ¢ is such that iy < ¢ < &, then (1.4) together with (1.2) imply that
le(®) — o(ta-1)] S 8. But from (1.3) and (1.1),

I’ (&) = ft @ = |f(ti-ne(te—)) — fte(D)| S ¢

This shows that ¢ is an eapproximate solution, as desired.

" The construction of Theorem 1.1 is sometimes used as a practical means
for finding an approximate solution. In fact, what has been found is
really a set of points (x,¢(t:)) and these are joined by line segments. The
points, by (1.3), satisfy the difference equation

Ty — Tx—1 = (‘h - tk—l)f (tl-lazk—l)

This is a formulation that might.be used on a digital computing machine,
for example. ‘

~ The existence of a solution of (E) will now be deduced. For the reader
mainly interested in the applications, other existence proofs, under more
restricted assumptions on f, are given in Theorems 2.3 and 3.1; the rest
of this section can be omitted. ’

In order to prove the existence of a sequence of approximate solutions
tending to a solution of (E), where the only hypothesis is f¢ C on R, the
notion of an equicontinuous set of functions is required. A set of func-
tions F = {f} defined on a real interval I is said to be equicontinuous on
1 if, given any ¢ > 0, there exists a 3 > 0, independent of f e F and also
4, Ie I such that

If() — fD)| <e¢  whenever |t — 1| < &,

. The fundamental property of such sets of functions neéded here is given
in the following lemma:
' Lemma (Ascoli). On a bounded interval I, let F = {f] be an infinile,
uniformly bounded, equicontinuous sel.of functions. Then F conlains a
gequence {fa}, n = 1,2, .. . , which is uniformly convergenlt on I
Proof. Let {r},k = 1,2, ... ,betherational numbersin J enumer-
ated in some order. The set of numbers {f(r1)}, f ¢ F, is bounded, and
hence there exists a sequence of distinct functions {fai}, fa1 ¢ F, such that
the sequence {fa(r1)} is convergent. Similarly, the set of numbers
{fa1(rs)} has a convergent subsequence {fns(ra)}. Continuing in this -
way, an infinite set of functions fueF, n, k=1,2, ... ,18 obtained
which have the property that {fu} convergesatry, . . ., 7 Definef,
to be the function f... Then {f.} is the required sequence which iv
uniformly convergent on I.
Clearly {f] converges at each of the rationals on I. Thus, given any
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¢ > 0 and rational number r; e I, there exists an integer N.(rs) such that

|fﬂ(n-‘) = fm(rk)l <e (H’J?n’ > Nl(rk))
For the given ¢ there exists a 3,, independent of #,7 and fe¢  such that

lf® — /@l <e Jt—17 <

Divide the interval 7 into a finite number of subttervals 7,, . . . , I,
such that the length of the largest subinterval is less than é.. Tor each
Ix choose a rational number 7,e I,. 1If {e 1, then ¢ is in some I;, and
hénce

1a®) = fa®)] S 1fa(t) = £aFD)| + |falFa) — Fu(F)]
+ |fn(Fe) — fu(®)| < 3e

provided that n,m > max (Ne(F), . . ., N.«7)). This proves the
uniform convergence of the sequence {fu} on 1.

Theorem 1.2 (Cauchy-Peano Existence Theorem). If fe(C on the
rectangle R, then there exists a solution & C* of (B) on |t — 7| < « for
which ¢(r) = ¢,

Proof. Let {ea},n =1,2, . . . , be a monotone decreasing sequence
of positive real numbers tending to zero as n — . By Theorem 1. 1, for
each ¢, there exists an ¢,-approximate solution, ¢,, of (E) on |t — 7| < &
such that ¢.(r) = £. Choose one such solution ¢, for each ¢, From
(1.4) it follows that

lea() — ea®)] = M|t — 1] (1.5)

Applying (1.5) to T = 7, one readily sees, since [t — 7| < b/M, that the
sequence {g,} is uniformly bounded by |¢| + b. Moreover, (1.5) implies
that {¢.} is an equicontinuous set. By the Ascoli lemma, there exists a
subsequence {p,}, k=1, 2, . . . » of [en}, converging uriformly on
[r — @, 7 + «] to a limit function ¢, which must be continuous since each
#s 18 continuous. [Indeed, it follows from (1.5) that |e(t) — ()| =
Mt - 1. ;

This limit function ¢ is a solution of (E) which meets the required
specifications. To see this, one writes the relation defining ¢, as an
ex-approximate solution in an integral form, as follows:

en®) = £+ [ (8,000 + An(s)) ds (1.6)

where An(?) = @n(t) — f(t,¢a(t)) at those points where ¢, exists, and
An(?) = 0 otherwise. Because @n 18 AN e,-approximate solution, |4,(0)| S
€. Since f is uniformly continuous on R, and #n — ¢ uniformly on
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fr = a, r + a], as k — =, it follows that J(t, 00 (£)) — f(t,e(2)) uniformly
onfr — a, 7+ a], ask— «. Replacing n by n. in (1.6) one obtains, in
latting &k — =,

o® = £+ [ flo,p(a)) ds (L.7)

But from (1.7), ¢(r) = &, and, upon differentiation, ¢'(t) = f(¢,¢(0)), for
f{t,e(1)) is a continuous function. It is clear from this that ¢ is a solution
of (E) on |t — 7| S a of class C.

In general, the choice of a subsequence of {.} in the above proof is
necessary, for there exist polygonal paths {¢.} which diverge everywhere
on a whole interval about ¢ = 7 as ¢, — 0; see Prob. 12,

If it is assumed that a solution of (E) through (r,£) (if it exists) is
unique, then every sequence of polygonal paths {e.} for which ¢, — 0
must converge on |t — 7| S a, and hence uniformly, to a solution, for {en}
is an equicontinuous set on |t — 7| < a. Suppose this were false. Then
there would exist a sequence of polygogal paths {¢.} divergent at some
point on |¢ — 7| < « This implies the existence of at least two sub-
sequences of {¢.] tending to different limit functions. Both will be solu-
tions, and this gives a contradiction. Therefore, if uniqueness is assured,
the choice of a subsequence in Theorem 1.2 is unnecessary.

It can happen that the choice of a subsequence is unnecessary even
though uniqueness is not satisfied. The example

g =zt (1.8)

illustrates this. There are an infinile number of solutions starting at
(0,0) which exist on [0,1]. Foranyec, 0 < ¢ = 1, the function ¢, defined
by

polt) =0 ©0=st=o

— i
eull) = (%—3—”) C<ts1) (19)

is a solution of (1.8) on [0,1]. If the construction of Theorem L.1 is
applied to Eq..(1.8), one finds that the only polygonal path starting at the
point (0,0) is ¢1. This shows that this method cannot, in general, give
all solutions of (E).

Theorem 1.3. Let fe C on a domain D in the (t,x) plane, and suppose
(r,£) is any point in D. Then there exists a solution ¢ of (E) on some ¢
tnlerval conlaining 7 tn its interior.

Proof. Since D is open, there exists an r > 0 such that all points,
whose distance from (r,£) is less than r, are contained in D. Let R be any
closed rectangle containing (7,t), and contained in this open circle of
radiusr. Then Theorem 1.2 applied to (E) on R gives the required result.
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2. Uniqueness of Solutions

The example (1.8), with the solutions given in (1.9), shows that some-
thing more than the continuity of fin (1) is required in order to guarantee
that a solution passing through a given point be unique. A simple condi-
tion which permits one to imply uniqueness is the Lipschitz condition.
Suppose f is defined in a domain D of the (t,x) plane. If there exists a
constant k& > 0 such that for every (,z,) and ({,z.) in D

[f(t,z1) — f(t,a2)

then f is said to satisfy a Lipschitz condition (with respect to z) in D, and
this fact will be denoted by fe Lip in D. The constant k is called the
Lipschitz constant.  1If, in addition f¢ €' in D, one writes fe (C,Lip) in D.
If f e Lipin D, then f is uniformly continuous in z for each fixed ¢, although
nothing is implied concerning the continuity of f with respect to /. If D
is convex (that is, D contains the line segment connecting any two points
in D), then an application of the mean-value theorem of difierential
calculus shows that the existence and boundedness of fe (= d8f/oz) in D
are sufficient for f¢ Lip in D.

Before proceeding to the uniqueness proof, an important inequality
will be deduced. 1In the following, D is a domain in the (1,x) plane.

Theorem 2.1. Suppose fe (C,Lip) in D, with Lipschitz constant k.
Let ¢y,0: be - and ex-approzimate solutions of (E) of class C} on some
tnterval (a,b), satisfying for some r,a < 7 < b,

ler(r) — oa(7)| < 6 (2.1)

where & is a nonnegative constant. If ¢ = ¢, - €s, then for all e (ab),

= kIII — xel

lor®) = e2(®)] = skt + 7 (e — 1) (2.2)

Theorem 2.1 is of practical as well as theoretical interest since in com-
putational procedures it is always approximate solutions of a differential
equation that are found.

Proof of Theorem 2.1, Consider the case where =t <b; a corre-
sponding proof holds for a < ¢ < r. Since ¢1,¢: are e- and €-AppProxi-
mate solutions of (E),

[’F:‘I(S) = f(s,@s'(s))l S« (1' o 11 2) (23)

at all but a finite number of points on+ < s < b.
Integrating from T tot, wherer = ¢t < b, (2.3) yields

J‘r’i“) el @;(T’) = lt f(s,ﬁp"(s)} ds = E,‘(t — T) ('i = 1, ?)
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Using the fact that |« — 8| S |a| + [8], the above gives
(er(® = @) — (oa(r) — wal)) — [ fa,0a(8)) — Sls,ea(e)] d |
. Set—1)
Let r be the function defined on [r,b) by r(f) = |e:(t) — @a(!)]. Then the
preceding inequality gives
r® < 1) + [ 1f@er®) — flapa)] ds + et — 7)

and using the fact that f¢ Lip in D, one gets
r) S ) +k [ r@) ds + et =) @)
Define the function R by ‘
| RO = ['r@de @=t<b)

In terms of R, (2.4) is
R(@) —kR(t) S5+ et —1)

since by (2.1) r(r) £ 5. Multiply both sides of this inequality by
¢+t and integrate the resulting expression from r to ¢, obtaining

eHDR() S £ (1 — €)= Ko+ k(= 1) + 5
or
R S 3@ — 1) = S +kE ) + e (25)

Combining (2.5) with (2.4), there results finally
r(t) S dett—m 4- .E(em-r) —-1)

which is the desired result on [r,b).

A particularly important case of Theorem 2.1 occurs when ¢, = ¢isan
actual solution of (). - The theorem then shows that as ¢; and § — 0 the
approximate solution tends to the actual solution.

The inequality (2.2) is the best possible, in the sense that equality can
be attained for nontrivial ¢, and ¢;. For example, let %, ¢;, ¢z be any real
constants, and let P;: (0,£), P:: (0,£2) be two points in the (¢,z) plane.
Let ¢1(0) = &, and ¢2(0) = £ and let ¢ and ¢2 be solutions of the
equations
. 3"=k$—€1 x’=kz+eg
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respectively, on [0,1]. Then ¢, and ¢, are clearly ¢,- and éx-Approximate

solutions of
!

2 =kz
there. A simple calculation shows that for ¢, and ¢» the equality sign in
(2.2) must hold if ¢ = ¢,.

‘Note that, roughly speaking, the inequality says that, if 6 and e are
small, then 5o is ¢1(f) — @a(f). In fact, if 8 = ¢ = 0, then ¢1 = ws, and
there is at most one solution of (E) going through any given point (r,£)
in D. This proves the following uniqueness result:

Theorem 2.2, Let fe (C,Lip) in D, and (r,£) e D. If ¢, and @2 are
any two solutions of (I8) on (a,b), a <+ < b, such that o1(r) = @ulr) = ¢
then P11 = .

Actually, in order to obtain uniqueness, it is not necessary to assume
as strong a restriction on f as the Lipschitz condition. However, a more
general discussion of the uniqueness problem will be deferred until Chap.
2, Sec. 2.

An existence proof can be based on the inequality (2.2) also.

Theorem 2.3. Suppose f = (C,Lip) on the rectangle

R: |t—7/sSa |zx—¢Sb (a,b > 0)
and let
M = max [f(t,z)] ((t,x)  R)

- L)
a = min (a_. i

Then there exists a (unique) solution ¢ & C* of (E) on |t — 7| < a for which
e(r) = &

Proof. Let {e.} be a monotone decreasing sequence of positive real
numbers tending to zeroasn — =. Choose for each ¢, an ex-approximate
solution ¢,. These functions gatisfy the relation

and

on® = &+ [ (s.0n()) + An(s)) ds (2.6)

where A.(t) = ¢L(t) — f(t,ex(t)) at those points where ¢, exists, and
A.(t) = 0otherwise. Now A,(f) — 0,asn— =, uniformly on |t - 7| < «.
by the very definition of e,. From (2.2) applied to ¢, and ¢m One
obtains for [t — 7| £ q,

|'I°n(£) —_ \Dm(t)[ é (E,‘ + Em)‘éel—a = 1)

where k is the Lipschitz constant. Thus the sequence {g,] is uniformly
convergent on |t — r| = «, and therefore there exists a continuous limit
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function ¢ on this interval such that @.(f) — ¢(t) as n — « uniformly on
|t — 7| £ a. This fact, plus the uniform continuity of f on E, implies
that

Iten®) = fte®) (n— =)

uniformly on |t — 7| = a. Hence

lim [ (f(s,0n(s)) + Anle)) ds = [ 1(s,0(s)) ds

n— =

and from (2.6) one gets finally, by letting n — o,

o) = £+ [ Js0(s)) ds

which proves the existence of a solution pe C* of (E) on |t — 7| = a. It
is unique by Theorem 2.2. Clearly

le®) — eal®)| = 5@"—-:“—11 (2.7)

8. The Method of Successive Approximations

The existence proof given in Theorem 1.2 is unsatisfactory in one
respect in that there is no constructive method given for obtaining a solu-
tion of (E). However, as was pointed out after that proof, if the solution
through the given point is known to be unique, then the original polygonal
approximate solutions can be used to obtain the solution; no subsequence
need be chosen. In particular, if f satisfies a Lipschitz condition, the
inequality (2.7) gives a bound for the error in using an e.-approximate
solution in place of the actual solution. In the following a very useful
method, known as the method of successive approzimations, will be con-
sidered, and the existence of a solution will be deduced with its aid. Here
again one can conveniently compute an upper bound on the error involved
in stopping the process after a finite number of steps.

The results will be deduced for the case of the rectangle R defined by

R: t—7=a |z — ¢ = b

where (r,£) is some point in the (¢,z) plane, anda > 0,b > 0. Tt will be
clear that the analogue of Theorem 1.3 also holds.

If fe C on R, then f is bounded there; let max |f| = M on R, and, as
before, @ = min (a,b/M). It is clear that a solution ¢ of (E) on [t — 7]
< a for which ¢(r) = ¢ must satisfy the integral equation

o) = £+ [fep@ds  (t—1lSa) (3.1)

and conversely, if ¢ satisfies (3.1), it satisfies (E) and ¢(¥) = £ The
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successive approzimalions for (E) are defined to be the functions o
®1, . .« ., given recursively by the formulas

po(l) = &
anl) = ¢+ [fon@Nds  E=01,2... ;-1 5a @32

It is shown helow that these functions actually exist on [t — 7| S e

Theorem 3.1 (Picard-Lindelof). Iffe (C,Lip) on R, then the successive
approzimations g exist on |t — 7| S « as continuous functions, and con-
verge uniformly on this interval to the unique solution’y of (E) such' that
e(r) = &

Proof. Consider the interval [r, 7 + a]; similar arguments hold for
[r — a, 7).

It will be shown that every ¢y exists on [r, 7 +'al, ¢r e C' there, and'

lex(® — €l S Mt —7)  (tefr,r +a]) (33)

Obviously ¢q, being the constant {, satisfies these conditions. Assume
@ does the same; then f(¢,¢.(¢)) is defined and continucus on [r, 7 + «l.
From (3.2) this implies .. exists on [r, = 4 of; ¢ii1e O there, and
ler+1() — §| = M(t — 7)., Therefore these properties are shared by all
the ‘px by induction.  Geometrically, this means that all the ¢ start at -
(r;£) and stay within a triangular region 7' between the lines

=L M
and! =71 + a. S
It remains to prove the convergence of the g,. ' Let A, be defined by
A = leenr(®) — @] (telr, 7.4 a]) .
Then from (3.2) by subtraction and the fact that f e Lip on' R with some
constant ¢ > 0, '

84(0). = ¢ [ Auea(s) ds ETONER
But (3.3) gives for k =1, 0l LU il
Ao(t) = |ei(t) — @o(t)] = M(t — 1)
and an easy induction on (3.4) implies that

M Fi(t — p)F+

A(t) = I (i 55 0 (te[r, v+ a])

This shows that the terms of the series Z Ax(t) are majorized by those
£=0

of the power series for (M /c)es, and therefore the series Z A, (?) is uni-
: k=0
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formly convergent on [r, 7 + «]. Thus the series
wo® + ) (oena® = )
k=0

ig' absolutely’ and uniformly convergent on [r, 7 - «]; consequently the
partial sum

AL i
o) + ). (pra®) — u®) = gal)
k=0

tends uniformly on [r, 7 + «] to a continuous limit function .

It will be shown that the function ¢ satisfies (3.1), and is hence a solu-
tion of (E) on [r, 7 4+ «] for which ¢(r) = £ Since all the ¢, are within
the region T, so is ¢.' :Therefore f(s,¢(8)) exists for se [r,7 + a]. Clearly

| [ U0 = S pn@)) ds| =0 [156,0()) = fseis)ds
= [*lots) — ouls)] ds

the latter inequality being due to the fact that feLip on R. Now
I;p(s) — @i(s)| = 0ask— o unuormly on [r, r + aJ, and thus the above
inequalities show that (3.2) vields (3.1) as k — .
_The splution ¢ is unique by Theorem 2.2, and this completes the proof.
“An upper bound for the error in approximating the solution ¢ by the
nth approximation ¢, is easily computed. It is given by

o) = ox(0] 5 ) loun(®) = wil0] s 2 E 2l s
k=n k=n+41
.M A (ca)* © M (ca)"! (ca)® i M (ca)atl, o
¢ A K ¢ (n+ 1)!"_0_ kKl ¢ (n+ 1)!

4. Continuation of Solutions

Suppose that f e C in some domain D of the (t,z) plane and that (E) has
a solution ¢ which exists on a finite interval (a,b) and passes through some
point (r,£) e D, a < v < b. If |f| is bounded by some constant M < «
on D, then it is easy to see that both the limits

ela+0) = lim o(t) e(b —0) = lim o(t)
+0 t—+b—0

i—a

exist. This follows at once from the fact that

o) = £+ [SloeNds  (te(ab)
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and therefore, if a < &) < 1, < b,

lott) — o) = [ |f(s,0(e))| ds < Mits —

Thus, as ¢, and ¢, tend to a + 0, ¢(t1) — ¢(t2) — 0, which implies, by the
Cauchy criterion for convergence, that ¢(a + 0) exists; similarly for
e(b — 0).
Suppose that the point (b,e(b — 0)) is in D. If & is the function
defined by
@) = ¢(®) (te(ad))
() = —0) (t=0)

then ¢ is a solution of (E) of class C* on (a,b]. Indeed,

80 = £+ [Jeae) ds  (te(adD
which implies that the left-hand derivative @_ of ¢ at b exists, and

¢L(b) = &'(b — 0) = f(b,¢(b))

The function ¢ is called a continuation of the solution ¢ to (a,b].

The equation ' = z? has a solution ¢(f) = —{~! through (—1,1) which
exists on (—1,0) but cannot be continued to (—1,0]. Here ¢ does not
stay within a region D, where f({,z) = z? is bounded.

Actually the process can be carried further, for by Theorem 1.3 the
equation (E) has a solution ¥ e C! passing through (b,o(b — 0)) which
exists on some interval [b, b + B8], 8 > 0. If now ¢ is defined by

M) = o(t)  (te(ab])
o) =¥  (te[d, b+ 8]

then @ is a solution of (E) of class C! on (a, b + 8], and @(r) = £ The
only point to check is the existence and continuity of the derivative ¢’ at
b. It will be shown that

60 = ¢+ ['fep6) ds (e (a b+ B (4.1)

This is obvious fora < ¢t £ b. For ¢t > b it follows from the definition
of @ that

o) = pb — 0) + [ f(s,6(s)) ds
But
b
olb = 0) = £+ [ f(s,0(s)) de

which proves (4.1) fort > b. The continuity of @ in (4.1) implies that of
1(s,¢(s)), and by differentiation of this integral equation for @, one obtains



Sec. 5) EXISTENCE AND UNIQUENESS OF BOLUTIONS 15
the fact that ¢'(t) = f(t,¢(¢)) for te (a, b + B]. Naturally, @ is called a

continuation of the solution ¢ to (a, b + B]. There are just as many con-
tinuations of ¢ to (a, b + A] as there are solutions of (E) issuing from
(b,e(b — 0)) which exist on [b, b + B]. If it is known that there exists at
most one solution through (b,e(b — 0)) (for example, if f e Lip on D), then
one can speak of the continuation of ¢ to (a, b + B]. In general, if a con-
tinuation of a solution ¢ on (a,b) exists on some interval containing (a,b),
then one says ¢ can be continued, or has a continuation.

The above remarks are summarized in the following theorem:

Theorem 4.1. Let fe C in a domain D of the (t,z) plane, and suppose f
i8 bounded on D. If ¢ is a solution of (E) on an interval (a,b) then the
limits ¢(a + 0) and ¢(b — 0) exist. If (a,e(a + 0)) [or (b,e(b — 0))] s
in D, then the solution ¢ may be continued lo the left of a (or to the right of b).

A more general analysis of the continuation problem appears in Chap.
2, Sec. 1.

b. Systems of Differential Equations

Suppose n is a positive integer and f;, . . . , fa are n real continuous
functions defined on some domain D of the real (t,z;, . . . , z,) space.
Just as in the case where n = 1, this is abbreviated f; e C in D, ¢ = 1,

, n. One can then fmmulate the following problem:

Problem To find n differentiable functions ¢y, . . . , ¢n defined on a
real t interval I such that
) ter®), . . . ,ea®))eD  (tel)

o 7 d._
(11) ¢’i(!) == fi(lj'i"l(t)s x4l :i"n(t)) (tE I; "= R_f..; L 1: 2 ey ‘ﬂ)

This problem is called a system oj n ordinary differential equations of the
first order, and is denoted by

(E) =fitgy, ..., %) (E=1,...,n)

Correspondingly, if such an interval I and functions (g1, . . . , ¢n) exist,
then the set of functions (¢1, . . . , ¢n) i8 called a solution of the system (E)
on I.

Let (5,1, . . ., £) e D. The initial-value problem consists of finding
a solution (¢1, . . . , ¢s) of (E) on an interval I containing 7 such that
ei(r) =

It turns out that the results so far obtained for the case n = 1 can be
carried over successfully to the system (E). Let X denote the Euclidean
n-dimensional space with points = having coordinates (z,, . . . , Z.)
Then the functions f; defined on the (1,z;, . . . , Z.) space give rize to
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functions f; on the (t,z) space defined by
}i(llx) = fl'(!:xh “e Tl gy 3,‘)

Also associated with any point z in the z space is the one-column matrix

I

Tn

called the vector associated with x; z; is called the ith component of £.
Clearly J; defines a function J; of ¢ and the vector £ by

fit) = Jitz)

Associated with the point (¢,z) in the ({,) space one has the vector

fitz)
Jtz) =
-u(t,z)
and this gives rise to a vector f(¢,£) defined by
J1(t,9)
ja) = -
}n(i,:ﬁ)

If the z; are differentiable functions of ¢, then £’, the derivative of £, is
defined by

!
z,

Then the equation (E) may be written simply as
¢ = ft,2)

In actuality, there is seldom any chance of confusing the point z with
the vector £, and so the same notation will be used for both; the circumflex
will be dropped. This has the effect of identifying the space X with the
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space X of all n-rowed one-column matrices, considered as a veetor space.
Similarly, no confusion results by identifying the functions f;, f;, and f;,
and this will be done in all that follows. With this understanding, Eq.
(E) may be written as

(E) z’ = ft,x) 0

where f may be thought of as a vector function of real ¢ andthe point
ze X, or as a function of ¢ and the one-column matrix

T
€T ==
Ty
Here
fl(glx)
f(f,:C) T
a(t,2)
A solution of (E) on an interval I becomes a vector function ¢ with com-
ponents ¢1, . . . , g, defined on I satisfying
(i) (te®) = (tLer(®), . . ., ea®)e D" (te D)
(i) ') = flto®)  (tel)
The magnatude (or norm) |z of a vector z ¢ X with components Zijike 45Tk

is defined byt

n

ol = )l

i=1

The Euclidean length ||z|| of a vector z ¢ X is defined by

lll] = (21 II:-I’)l

The distance between two vectors z,y e X is defined to bely — zl. Ttis

f Other definitions for the magnitude of a vector can be used, such as
Iz] = max (=) G100, m)

or the Euclidean length [lz]l.  As a matter of fact, the following inequalities relating
the various norms are readily-seen to hold:

Izl s Izl s nlz] |z s [z} < nd]z]
and

lzll < lzl = adllz]l  n-diz| S Jlzl| S |2
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obvious that this distance satisfies the ordinary rules for a distance
function

(a) ly — 2zl = |z — 4
(b) ly—2z| 20 and |y — z| =0 if and only if y = =
(c) ly—z| S|y -2l + |z — 2l

This distance function allows one to consider X as a metric space; &
sequence of vectors {z:} is said to be convergent if it is convergent with
respect to this distance function. Note that here the z; are vectors and
not components of a vector. Clearly {zi} is convergent if and only if
each of the component sequences {z)} (zx having components zy,
+=1, ...,n)is convergent.

If g is a differentiable vector function on some ¢ interval (a,b). that is,
¢’ exists on (a,b), and r = |g| is the function defined by

r) = lg@]  (te(ab)

then, if sgn @ = a/|a| for a # 0,

r@) = ), 6:(0) sgn (0

i=1

If none of the components g;(t) of g(t) vanishes, clearly

() = ) o) sgn g0
i=1
exists and

I~ @] = lg'()] (5.1)

In any case [whether a component of g(¢) is zero or not], it is always true
that if ¢'(f) exists, then the right- and left-hand derivatives r(t) and
r’ (¢) existt and satisfy

i@ = lg'(0)] (5.2)

For if ¢ is an isolated zero of any component g; of g, a straigh:forward
calculation shows that the right- and left-hand derivatives of g;| exist
at ¢ and do not exceed |g!|; and if ¢ is a zero of g; which is not isolated (that
is, ¢ is a limit point of zeros of g;), then an approach to ¢ through a sequence
of these zeros shows that gi(t) = 0, and hence |g;|'(t) = 0. Ineither case,
(5.2) is valid.

{ Notice that if g is absolutely continuous, then so is r, since
[r(t) — r(tn)| S lo(ta) — g(ta)]
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If [lg()]| # 0, and |lg|| is the function defined by |[g[|(t) = llg(t)||, then
llgll'(®) exists, and it is easily verified that

| lgll’®)] = llg’®II (5.3)

For integration purposes the magnitude | | is more useful than the
length | ||. If g and r = |g| are integrable over an interval (a,b), then
INTCEIE [[rwa (5.4)

b = .
where by j; g(t) dt, of course, is meant the vector whose 7th component

b
s [0 a.
Suppose a vector f (which may have any finite number of components,

not necessarily n) is defined on a domain D of the (t,z) space. If there
exists a constant & > 0 such that for every ({,z) and ({,&) in D

|f(t,x) — f(4,8)] = klz — Z| (5.5)

then the vector f is said to satisfy a Lipschitz condition (with respect to x)
in D, and one writes fe Lip in D.

Suppose f¢ (' on a domain D in the (t,z) space. An e-approximate solu-
tion of (E) on an interval 7 is a vector function ¢ ¢ C' on I such that

(a) (Le®)eD  (tel)
(8) peeClon [/ except for a finite set of points S on [

™) le' () — flte®) =e  (tel —S)

In terms of the definitions introduced above, all the theorems in Secs.
1-4 are valid for the vector equation (E) if, in their statements and proofs,
z.f are replaced by the vectors z,f and the magnitude is understood in the
sense defined above for vectors. (The Ascoli lemma is valid for vectors
also.) Therefore it will be assumed from now on that these theorems
have been proved for the more general vector equation (E).

A particularly interesting system is the lincar system

n

(L) #= ) ey  GE=1...,n

i=1

where the a,; are continuous functions on some closed bounded ¢ interval
[a,b]. If fis the vector with components f; defined by

n

fta) = ) aull)yy. G=1,...,n)

i=1
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then clearly f satisfies a Lipschitz condition on the (n + 1)-dimensional
region

D: ast=sb |J:|<‘ao

(Here D is not a domain since it is not open.) In fact, if (£,2) and (¢,2)
are in D, .

|f(t,z) — f(t,8)| = klz — 2|
where

k=max ) [a;0]  (elablii=1,...,m)

tm]

Theorem b.1. For the linear system (L), where the functions a;;e C on
[a,b), there exists one and only one solulion ¢ of (L) on [a,b] passing through
any point (1,§) e D, that is, o(r) = E.

Proof. Since the vector f satisfies a Lipschitz condition on D, the
existence and uniqueness of a solution ¢ through (r,£) over some interval
[e,d] g [a,b] are guaranteed. It remains to show that ¢ can be continued
to a unique solution ¢ on the whole interval [a,D].

If ¢ is any solution of (L) through (7,£) existing on any subinterval of
[a,b], then applying the inequality of Theorem 2.1 to ¢ = ¥ and ¢, = 0,
one obtains :

P = |gfere—= (5.6)

for ¢t in the domain of definition of . Now suppose ¢ does not have a
continuation to [a,b], and for definiteness assume ¢ has a continuation v
exigting up tol < b, but cannot be continued past .  But, from (5.6), the
path (¢,§/()) remains inside a closed bounded subset of D, where = C' and
satisfies & Lipschitz condition. Therefore, by Theorem 4.1 (interpreted
for systems), ¢ may be continued beyond 7. This results in a contradic-
tion, thus proving a continuation ¢ of ¥ exists on [a,b]. It is unique, for f
satisfies a Lipschitz condition on D.

Theorem 5.2. Let the functions a;; (1,j = 1, . . . , n) be continuous on
an open interval I, which may be unbounded. Then there exists on [ one and
only one solution ¢ of (L) satisfying

o(r) =t (el |§ < =) (5.7)

Proof. By Theorem 5.1 there exists a solution of (L) satisfying (5.7)
on every closed subinterval of I containing ; using the same argument as
in that proof, any such solution may be continued to the whole of I
uniquely.

A more detailed treatment of the linear system will be the subject of
Chap. 3.
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6. The nth-order Eqaation

Suppose f is a real éontinuous function defined in a domain D of the real
(&%, - . . , T») space. Then the nth-order equation associaled with f,

(%) d*
(El) z™ =f(t,z,z’, o 0oy 3("_”) ( = d_tl") )

is defined to be the following problem:
‘Problem. To find a function ¢ defined on a real ¢ interval I possessmy n
derivatives there such that

@ te®,e'®, . . ., ¢ DM)eD (te])
- (i) ™ () = flte®),e'®), . . ., ") (te D)

If such an interval I and function ¢ exist, then ¢ is said to be a solution
of (E.) on I. If ¢ is a solution, clearly ¢ eCron I, Notethat z, f, and
¢ are not vectors here.

Let (&1, . . ., &) & D. Then the tnitial-value problem consists of
finding a solution ¢ of (E,) on an mterval I containing ¢ such that
or) = b, &'(7) = &, . . ., " 0(7) =

The theory of the equatxon (E,) can be reduced to the theory of a
gystem of n first-order differential equations. Indeed, associated with
Eq. (E,) is the system of equations

3'1 =23

-‘5'2 =23
By .

x,’._l = Xq

z, =ftzy ..., %)
whlch is defined for (t,z) = (4,1, . . . , z») € D. If the vector ¢, with
components (eyn,e2, . . .+ ) ¢.), isa solutlon of (E,.) on I, then since
PE= L P =0 = P, P e

fteit), . . ., ea(®)) = f(tenld), . . . , &) = ()

and the first component ¢, of @ is a solution of (E.) on I. Conversely, 1f
o1 is a solution of (E,) on I, ‘then the vector ¢ with components ¢1,¢),
.. ., ¢V is a solution of the system (£,) on I. - The system (E,) is
called the system (or veclor equation) associated with the nth-order equa-
tion (E). If ou(r) = &, . . ., o (1) = &, then the vector ¢ satisfies
#(r) = ¢, where £ = (&, . . . , &), and conversely. )

Tt is thus clear that all statements proved about the system (if.) carry
over directly to statemhents about the nth-order equation (E,). In par-
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ticular, if fe C' on a domain D of the ({,x;, . . . , x,) space, and P is a
point of D, there exists a solution ¢ e C* of (I£,) on some ¢ interval and
passing through P. 1If, in addition, fe Lip in D, that is, if

iy - g @)= f 8y o B S ), [ — &

i=1
for some constant k > 0, then the solution through P is unique.

7. Dependence of Solutions on Initial Conditions and Parameters

A solution of a differential equation on an interval I can be considered
as a function, not only of ¢ < I, but of the coordinates of a point through
which the solution passes. For example, the first-order equation in one
dimension @' = z has the solution ¢(f) = &'~ through the point (+,£).
This determines a function of ({7,£), which is also calledf ¢, given by
o(t,r, k) = k¢, In the general situation, it is important to know how ¢
behaves as a function of ({,7,£) together, and, in particular, under what
circumstances ¢ is continuous in (4,7,£). In the following the behavior
of the solutions as functions of the initial conditions will be investigated
for the general case of a system.

Let D be a domain in the (n + 1)-dimensional real (¢,z) space and sup-
pose fe (C,Lip) in D. Let ¢ be a solution of the equation

® z' = f(t,x)

on some interval 7. Thus (4,y¥(t)) e D for teI. It follows from the
existence theorem that (E) has a unique solution through any point (7,£)
close enough to the given solution. However, the existence theorem
assures the existence of the solution only over some short ¢ interval con-
taining 7. Actually, it can be shown that the solution exists over the
whole interval I, and is a continuous function of (f,r,£). Th= following
theorem will be proved.

Theorem 7.1. Lei f= (C,Lip) in a domain D of the (n + 1)-aimensional
(t,z) space, and suppose ¥ is a solution of (E) on an interval I: a £ ¢ £ b.
There exists a 6 > 0 such that for any (7,£) e U, where

U: a<t<b |t—y@)|<s

there exists a unique solution ¢ of (E) on I with ¢(7,7,8) = E. Morcover,
@ e C on the (n 4+ 2)-dimensional set

Vit a<t<b () eU

* There will be little chance of confusing these two functions. If ¢ is thought of
as a function of ({,r,£), then ¢’ will always mean de/at.
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Remarks: In many applications r is fixed, and in this case U can be
considered as the set of all ¢ satisfying |& — ¢(r)| < 8, and V the domain
a<t<%b £eU. The proof for this case is contained in the proof of
Theorem 7.1, An important consequence of the proof in this case is that
the mapping T, which associates with each point (r,£), £e U, the point
(to(t,7,£)) for some fixed {, a < ¢ < b, is a topological mapping.f The
uniqueness of the solutions guarantees that T, is one-to-one, and the con-
tinuity of ¢ in £ implies 7', is continuous. Since £ can be considered as the
point § = o(7,t,§), where £ = o(t,,E) = o(l,7,£), the continuity of ¢ again
implies 77" is continuous. Actually, the uniqueness of the solutions
passing through (r,£), te U, is sufficient for the continuity of ¢ in §; see
Theorem 4.3, Chap. 2.

Often ¥ can be continued outside of 7, in which case U, V would include
the end points a and b of I. g

Fia. 2

Proof of Theorem 7.1.- Choose 5, > 0 so that the (t,z) region U,,
given by
U,: tel |z — ¢(@)| = &

is in D. Then let § be chosen so that § < e~*®=a§, where k is the
Lipschitz constant. With this 8, define U as in the statement of the
theorem; see Fig. 2 for the casen = 1. If (r,f) e U, there exists a solution
@ through (7,) locally, and this satisfies

otm®) = £+ [ f(s,0(s,m,0) ds (7.1)
as far as it exists. Moreover, for te I,

) =) + [ fs(s)) ds (@2

t A topological mapping T of a set S onto a set T(S) is a one-to-one mapping such
that T' and T-! are continuous. i
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Thus, using the fundamental inequality, (2.2) with ¢ = 0, there results :
le(tr,6) — ¥ S [E — p@le— <

This proves ¢ cannot leave U,, and can therefore, by Theorem 4.1, be
continued to the whole interval 1.

The continuity of ¢ on ¥V will be proved by showing that ¢ is the uni-
form limit of continuous functiehs on V. Note that ¢ satisfies (7.1) on
[. Define the successive approximations {¢;} for (7.1) by

'ﬂs(f,'-",f) i \“(t) + E o \"(7)
pinltrt) = £+ [[Tepends (=012 ..

Then for (r,£) ¢ U

(7.3)

oty ) — YO = |E— ¥(n)] < &

which shows that (4,@e(t,7,£)) e Uy for te I. Clearly goe C on V. From
(7.3) for_j = 0, and (7.2), it follows that

oD — a8 = | [ Ulspolan,)) — Fapio)) ds

< k| [ loolaim) — 9] ds| = klg — ()] 1t = 7|

and hence ;
lealt,r,8) — (O S (1 + k|t — 7])|E — ¥(2)|
< etli—rl|g — y(r)| < 8,

provided that te I, (r;f) e U. Thus (tei(tr,H) e Uy and ¢1eC on V.

An inductiop shows that if ¢o,¢1, . . . , ¢ are all in U, and continuous
on V, then
; k:‘a‘l]‘ — 1..|:'+1
1"":‘4-1(‘!1'15) o ?J'(thsE)] é '_G"+—1)|_ |E = ‘;’(T)I (7'4)
(]

if te I and (r,t) e U. This implies that

lejra(tr ) — ¥()| < ehl|E — 9(1)] < &

proving that (t,¢j(t,7,8)) e Uy Also, from (7.3), ¢juae Con V. Thus
by induction (¢,¢;(t,7,£)) e Uy and ¢ C on V for all j.

Using (7.4), it follows that the ; converge uniformly on V to ¢, which
proves the continuity of ¢ on V. (Note that the uniform convergence of
the ¢;.also proves the existence of ¢ on I.)

Having established the existence and continuity of ¢ as a function of
(t,7,£), it is natural, and for purposes of ‘application also important, to
give reasonable sufficient conditions for the existence and continuity of
the partial derivatives dg/dr, dp/dt; (G =1, . . . , n), where the §; are
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the components of £ Such a sufficient condition is the existence and
continuity of the partial derivatives af/dz; on D.

Let f. denote the matrix (if it exists) with element df;/dz; in the ith
row and jth column (i, = 1, . . . , n). Alsolet ¢¢ be the matrix (if it
exists) with element d¢;/8%; in the ith row and jth column (3,7 = 1,

., m). A matrix is said to be continuous if all its elements are. If
A = (ay) is an n-by-n matrix, its determinant will be denoted by det A4,

and its trace, 2 ai;, by tr A. The symbol exp u denotes e*.
i=1
Theorem 7.2. Let the hypothesis of Theorem 7.1 be satisfied, and suppose
f= exists and fy e C on D. Then ¢ e C! on V, and moreover

det ¢i(t,7,£) = exp f: tr fz(s,¢(s,7,§)) ds (7.5)

Remarks: The fact that f2e C on D actually makes the explicit Lip-
schitz hypothesis for f superfluous.

Notice that det ¢¢({,r,£) is just the Jacobian of the transformation,
taking & into ¢(f,7,£), which was considered in the remarks following
Theorem 7.1.

For the case where f is an analytic function, Theorem 7.2 is easily
obtained from Theorem 7.1, as is shown in Sec. 8. The reader interested
mainly in this important case can therefore omit Theorem 7.2.

Proof of Theorem 7.2. 1In order to prove the existence of ¢y, it is suffi-
cient to consider the case of d¢/df:, where &= (&, . . ., £.). Let
h=(h,0,...,0),f=%f+h, and let (,§) and (r,E) be in U. If x
is the function defined by

x(t!TJEJh) = P(L"'.E) ;1-1 W(!:T,E)

for (4,r,£) e V, then what has to be proved is that
lim x(t,7,&h) (7.6)
A—0

exists. Tt will be shown that the limit in (7.6) exists uniformly on V and
that the limit function is continuous on V. This will prove 8¢/d, exists
and is continuous on V.
The motivation behind the proof is very simple: The solution ¢ satisfies
(E), and so
P'(ts?:s) o f(t,tp(t,‘f',f))

Thus, if ¢ and f are sufficiently differentiable,

de 7 de¢
(3?1) (‘:frE) — f.(t,w(t,flf)) E’E_l" (t!TrE)
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where the latter product is an ordinary matrix product. Therefore
dp/dk, is a solution of a lincar differential equation. All the following
proof does is to justify this procedure.

Let

0t Eh) = ¢(tr,E) — (ty7,8)

Using the inequality (2.2), there results

0(t,7,E,R)| < |0(r,7,Eh)|eXl— < |hyfere—= (7.7)
Thus as hy — 0, 8 — 0 uniformly for ({,,£) e V.

Since ¢ is a solution of (E)
0'(tr,kh) = f(te(tr,8) — fLe(t,r,8) (7.8)

Using the theorem of the mean on the right side of (7.8), and recalling
that f. ¢ C on D, there exists a matrix I' = (T';) such that

0’ k) = (fx(te(l,E) + T)0(L7,ER) (7.9)

where, given any ¢; > 0, there exists a 8,, which depends on ¢, such that

IT| = 2 Tyl < e if |6] < 8, for (4,7,8) e V.t By (7-.7), then, |T'| — 0
=1
as hy — 0 uniformly for (¢,7,£) e V.
Since x = 0/hy, (7.9) yields

X' Eh) = f2(Le(tr,£)x(tr Eh) + v (7.10)
where y = T'8/h, so that by (7.7)
¥l = |T|er®

Thus ¥ — 0 as hy — 0 uniformly on V. In particular, given any e > 0,
there exists a 8, > 0 such that |y| < eif |hy| < é,. Thus (7.10) states that,
x as a function of ¢ is an e-approximate solution of the linear equation

¥ = fe(belt,r,£)y (7.11)

provided that |h,| < 8. The initial value x(r,7,£h) is e,, where e, is the
vector with components (1, 0,.. . . , 0).

Consider now for fixed (r,f) e U the solution g of (7.11) which assumes
the initial value ¢; at ¢ = . That this solution exists on /:a St S b
follows from Theorem 5.1. The fact that x is an eapproximate solution
of (7.11) for |h,| < &, implies by Theorem 2.1 that

[x(t,r,§h) — B(t7,8)| = i (ex®= — 1)

 Here use is made of the fact that for (¢,r,£) e V the points (¢,¢(t,r,£)) € U,, & closed
bounded set. Thus f. is uniformly continuous on U,.
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for (t,r,&) on V. Clearly this implies that

lim x(t,7,&h) = B(,r,E)

h—0

uniformly on V. This proves the existence of d¢/d&, and also proves that
it is the solution of (7.11) which assumes the initial value e; at ¢t = 7.
The uniformity of the convergence of x as h — 0, and the continuity of
x on V, imply the continuity of de¢/d¢, on V.

An entirely similar argument proves the existence and continuity of
dp/dk, j=2,...,n on V. Also if ¢ is the vector with all com-
ponents zero except the jth, which is 1,

9 :
GECnd =6 (G=1...,n (7.12)

and d¢/aE; is a solution of (7.11). The columns of the matrix ¢¢ are pre-
cisely the vectors de/df;. Therefore the following matrix equation is
valid:

er(tr)8) = f(Le(tr,0)eetr,§) (7.13)
where ¢; = dpg/dt. The relation (7.12) may be written as
ee(rm,k) = E (7.14)
where E is the n-by-n unit matrix,
10 -0
0 1 .
% L = 5 AL
- . -0
O o s R} ]

The relation (7.5) is a consequence of a general fact concerning matrix
solutions of linear systems. Since this relation is of importance initself,
it will be proved in the next theorem. One obtains (7.5) from (7.18)
below using (7.13) and (7.14) and the fact that det £ = 1.

It is but a repetition of the previous arguments to show that de/ar also
satisfies the linear equation (7.11), once it is observed that it has the
initial value given by

d
2 @) = 1G9 (7.15)
=

This is shown by a direct ealculation as follows:

‘r’(rv:"—vg) > 1'9(797:5) - ?”(TJ?:E) Nt E
- sﬂ(f;‘?;g) i | 59(?;*,5)

[ Fs.0s.2,9) ds
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Thus

F—7

go(f,f,f) — lp(T,'T;E) e = i = —/;’f(slg(s’?,z)) dﬁ

Since the integrand is continuous for (s,7,£) e V, it follows that the limit
as ¥ — 7 exists for (r,£) : U and gives (7.15).

Theorem 7.3. Let A be an n-by-n malriz with continuous elements on an
interval I:a =t = b, and suppose ® is a matriz of functions on T salisfying

(1) = AQ)D(L) (te ) (7.16)
Then det & satisfies on I the first-order equalion
(det @)’ = (tr A)(det ) (7.17)
and thus for T, te I
det ®(t) = det ®(r) exp [ tr A(s) ds (7.18)

Proof. Let ¢y, a;; be the elements in the ¢th row and jth column of @
and A, respectively. Then (7.16) says

n

o) = Y aales®)  Gi=1,...,n) (7.19)
k=1

The derivative of det @ is a sum of n determinants

Pli Pia T Pin en iz e
ot e 7 g il e
©nl1 ©n2 " "' @Pnn @Ynl Pnaz " " @an

P11 e Seec S¢@in

+'__+r,on: Haz TS P

] [ '

Pn1 il RS Pran

Using (7.19) in the first determinant on the right, one gets

;flmﬁk: za:wk: ) Eauwm

k k
©21 @22 = P2n

“n1 “n2 R ©nn

and this determinant is unchanged if one subtracts from the first row a,.
times the second row plus a,; times the third row up to ¢, times the nth
row. This gives
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anen augriz 0 Au@ia
L3 P22 S P2n
@n @n2 """ @mn

which is just a,, det ®. Carrying out a similar procedure with the
remaining determinants, one obtains finally (7.17). The eqnation (7.17)
is of the form «' — «(f)u = 0 from which follows

u exp [— j;‘ als) ds] = constant

which gives (7.18).
The ease where the right member f of (E) contains a parameter vector
x can be readily dealt with. Suppose u space has k real dimensions, and
let 7, be the domain of u space, |u — po| < ¢, where pois fixed and ¢ > 0.
As above, D is a domain of (4,z) space. Let D, be the domain of (¢,z,u4)
space
15 5 (t,x)e D pel,

and let f ¢ C on D, and satisfy a Lipschitz condition in z uniformly on D,.
The differential equation

(Ex) z' = f(!.x.fx) .

will be considered here. TFor a fixed given g = ug, let ¥ be a solution of
(E.) on,an interval @ = ¢ =b. Then the following theorem, which
includes Theorem 7.1 as a special case, will be proved:

Theorem 7.4. Let ¢ be the solution of (E,) described above. There exisis

a & > 0 such thal for any (7,§,p) e U,, where
U: a<r<b |E—v@)|+ e —nl <3
there exists a unique solution ¢ of (E,) ona = ¢ = b salisfying
e(rmEp) = &
Moreover, ¢ ¢ C on the (n + k - 2)-dimensional domain
Vi gl<t<b (r,En) e U,

Remank: An alternative proof of this theorem under slightly more
restrictive hypotheses is given in the course of proving Theorem 7.5 below.
Proof of Theorem 7.4. The proof is like that of Theorem 7.1. As
remarked there, the successive-approximations procedure can be used to
prove the whole theorem. Choose &, > 0 so that the (¢,z,n) region Uy,
given by
Up: as=tsb  fz—y@O+ s —ul=é

isin D,. Define the approximations {¢;} by
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eo(tm,bm) = () + & — ¢()
et ) = £+ [ Joi(m ) p) ds
Clearly
lpo(tr,b) — ¥ = £ — ¢()|

and

loxtr ) — woltr&m)] = | [ (7 galoim, b)) = fls,9(s) o)} ds| (7.20)

The uniform continuity of f in Uy, implies that, given any e > 0, there
exists a 8, > 0 such that

|f(s}'laﬂ(8!1'9£|.u)hu) = f(s!¢'(s)!“ﬂ)l < €
provided that a = s = b, (r,§,n) e Uy, and

l& — v+ | — ol < & (7.21)
Thus (7.20) implies

1¢1(£JTIE,N) = @0(!'7951#)1 s fif _— TI
provided (7.21) is valid. Proceeding as before, there now results

el — rlitikd
loin(t,r ) — @ity Em)| S _'(j';l:"[_l_)hi_

where k is the Lipschitz constant. ILet e be chosen so that
€ s 51
T (ef2t—]) < o)

and let § = 8, < §;/2 be chosen as above for thise. Then it follows easily
by induction that, for all j, ({,e;(f,7,&u)) is in the region U7, for all
(r,&,r) e U, The continuity and the uniform convergence of the ¢ on V,
lead to the result of the theorem.

The generalization of Theorem 7.2 to (E,) is valid. In fact, it follows
directly from Theorem 7.2 itself.

Theorem 7.6. Let the hypothesis of Theorem 7.4 be satisfied and suppose
thal f:= C, fue C, on D,. Then the solution ¢ defined in Theorem 7.4 is of
class C' on V.

Proof. Consider the (n + k)-dimensional u space consisting of points
with coordinates

U =2 s AL St )
Un =y (F=1,...,k
and define the vector function F = (Fy, . . . , Fyus) on Dy, by

I

Fitw) = fitzgw) (@G=1,...,n)
Fipa(tw) = 0 Gl o)
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Then, by Theorem 7.1, the system of equations

u = F(t,u) (7.22)
has for a solution the vector x = (x1, :-. . , xn4t) given by

x:'(t) = ¢l'(t;7»£;l‘) (i 1, ..., n)
Xisn(l) = m G=1 ...,k

o

since x has the initial value given by

x® =& G
Coxm® =w G

1,...,n)
1, ...,k

o

Thus uy, . . . , ux may be thought of as forming part of the components

of an initial-value vector for the system (7.22), and the F in (7.22) satisfies

the conditions in Theorem 7.2. Therefore the first partial derivatives

of x with respect to 7, &, and p, exist and are continuous on V,, and from

the definition of x this implies the theorem. .
From

oltimtm) = &+ [ fopler ) ds
it follows that

2e - [ [ ¢ L) ]
£ (7. &) = [ J=(8,0(8,7,8,1) 1) E (8,7,&8) + 3u; (s,0(8,7,£,1),8) | da
This shows that d¢/dp; is the solution of the initial-value problem

Z,’ = f‘(tﬁ’(t:‘rte;ll),”)y + g”i’ (tﬂ’(tﬂye)l‘))ﬂ) y(T) =0

Hypotheses under which the existence of higher derivatives of ¢ with
respect to 7, &, or p; can be shown to exist are readily ascertained from the
fact that the first-order derivatives are solutions of a linear equation.
For example, d¢/d¢; is the solution 8; of

y = fx(‘ﬂo(tﬂ)e:“)"“)y (7°23)

with'the initial value ¢, Clearly 8%/0¢;9¢; is 38:/3¢;, if it exists: But
£ enters (7.23) as a parameter. If r and u are held fixed in (7.23), then ¢
in (7.23) plays the role of u in Theorem 7.5. Thus, if f.(¢,¢(¢,7,£,u),4) has
a continuous derivative with respect to §;, then 88;/0¢; exists. If f has
continuous partial derivatives of the second order with respect to the
components of x, then f:(¢,¢(l,7,£u),4) will have continuous first-order
partial derivatives with respect to &;.

In much the same way, if f has continuous partial derivatives of the
second order with respect to the components of (z.x), then 8%p/dudy;
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exists as do the mixed derivatives d%p/du0¢,. The case where the partial
derivatives of ¢ are taken with respect to the components of (7,£,4) is left
to the reader as an exercise, L

8. Complex Systems

So far it has been assumed in the equation (E) that t,z.f were all real.
If f is a continuous complex-valued function on an open connected set D
in the (¢,w) space, where ¢ is real and w is complex n-dimensional (real
2n-dimensional), then the equation

(Ey) w' = f(t,w)

is defined to be the problem of finding an interval 7 on the real ¢ line and
a (complex) differentiable function ¢ on I such that

(NI (beeD (el
(i) ¢'() = f(te(t) (z;!.'=%)

It is an easy task to see that all the existence, uniqueness, continuation,
and dependence theorems proved in Sees. 1 to 7 are valid for (E;) as well,
if one defines the norm |w| of a complex vector w = (Wl o)

formally as before, namely,
n

el = )

(81

Here, of course, |w,| = ((Mw:)? + (Jw,)*)}, where RNw, and Jw; are the real
and imaginary parts of w;. Moreover, the Theorems 7.4 and 7.5 con-
cerning the equation

(Eu) T = Jr(gr'r:!-‘)

can be extended in an obvious way to-the case where x is & complex
parameter vector, if fis defined for complex z and p.  Linear systems are
an important case where the above remarks apply.

Usually a function defined on a set of complex numbers that oceurs in a
differential equation is analytic. Let I be a vector function defined on
a domain (open connected set) D of the complex n-dimensional w space.
Then F is said to be analytic at a point we D if in some neighborhood
lw — w| < p, p > 0, each component F; of F is continuous in

w=(wy, ...,w)

and is analytic in each w, when all other w;, I  k, are held fixed. An
equivalent definition is that each F; is representable by a convergent
power series
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Fl(wh voe 7w") = z o z A"'l""’*u(wl—"’l)"" ¢t (wn 'wn)m'

mi=0 ma=0

in some neighborhood jw — w| < p, p > 0. The A,,...n, are complex
constants. A function F is said to be analytic in a domain D if it is
analytic at each point of D.

It will be recalled that an analytic function in a domain D possesses
derivatives of all orders on D. A basic property of analytic functions is
that, if a sequence of analytic functions converges uniformly on a domain
D, then the limit function is analytic in D.

It is evident that since an analytic function F in D is represented
locally by a power series it is locally single-valued, that is, for every point
we D thereisa p > 0such that F is single-valued on |w — w| < p. How-
ever, in the large, it need not be single-valued. For example, the function
F given by F(w) = w}, where w has one complex dimension, is analytic in
the ring 1 < |w| < 2 but is double-valued there. If w! is taken as posi-
tive and real on the interval 1 < %tw < 2 and w is followed around a
closed path (lw] = §, for example), then w! assumes negative real values
when w again reaches the positive real axis. The function F(w) = w*, «
real and irrational, assumes infinitely many values in the ring.

An important extension of the problem (E) is to the case where ¢ may
be complex. Suppose that f is an analytic complex-valued vector fune-
tion defined on a domain D in the complex (z,w) space, where the z space
has one complex dimension, and the w space is complex n-dimensional.
Then the equation

(Ev) w' = f(z,w)

is defined to be the problem of finding a domain H in the complex z plane
and a (complex) differentiable locally single-valued function ¢ [a solution
of (E:)] on H such that

@) (ze(2))eD  (zeH)
d

(ii) ¢'(2) = f(z,0(2)) (z eH," = (-1—2)

The existence and uniqueness of solutions of (E:) can be inferred from the
method of successive approximations. Indeed, suppose f has components
fi ..., fnandw = (w, ..., w,), and fis analytic on the domain

Rs: lz— 20| <a jw — wo| <b {a,b > 0)

which will be called a rectangle, although it isn 4+ 1 complex dimensional.
Note that w, is a vector here and not a component.
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Theorem 8.1. Suppose f is analytic and bounded on the open rectangle
R4, and let

M = sup |f(z,w) a = min (a, ﬁ)
(3,0) ¢ Ry M
Then there cxists on |z — 20| < a a unique analytic function ¢ which is a
solution of (E.) satisfying ¢(z0) = we.
Proof. Since the matrix f, = (3f;/0w;) is bounded on any closed
rectangle Ry C Ry, it follows that f satisfies a Lipschitz condition on E..
Therefore one can construct the successive approximations

wo(z) = w

onl) = wot+ [[fGedr  (k=0,1,2..) @1

where the integrals can be taken along a straight line joining z to z.
Applying the argument in Theorem 3.1, one obtains the existence of a
unique solution ¢ on the circle |2 — z¢| < a which satisfies ¢(z5) = w.
Clearly ¢ois analyticin z on |2 — z¢| < @, and thus the function f, defined
by fo(z) = f(z,¢0(2)), being an analytic function of an analytic function,
is analytic on |z — 2| < a. From (8.1) it follows that ¢, is analytic on
|z — 20| < @, and an easy induction proves that all the approximations ¢
are analytic on |z — zo| < a. Since the solution ¢ is the uniform limit of
the sequence {px} of analytic functions, it is itself analytic on |z — zo| < a.
This completes the proof.

Remark: Unless other restrictive assumptions are made on f, the circle
of analyticity |z — zo| < « cannot be improved. For a < b/M, this is
illustrated by the case where f is independent of w, and has singularities
on the circle |z — 2| = a. Fora > b/M the example

o e i [% (1 4 ‘—f})]w

where w is one dimensional, illustrates this, The solution ¢ of this
equation for which ¢(0) = 0 (here zo = wo = 0), is

2 m/{m=—1)
¢(z)=b[(1+5~) Hl]

= ("Q‘_’") b

o S\

Clearly fis analytic and bounded in the circle |w| < b, and sup |f(w)| = M
there. The solution ¢ has a singular point at z = —¢,, < —b/M, and

where
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this tends to z = —b/M asm — «. Therefore, for any givenr > b/M,
the solution ¢ has a singularity in the region

b

W <l <r

if m is made large enough. -

The analogue of Theorem 7.1 for the equation (E,) is the following
result:

Theorem 8.2. Let f be analytic in a domain D of the (z,w) space, and
suppose ¥ is a solution of (Es) on H, where H 1is a closed convex domain of the
z plane. There exists a & > 0 such that for any (¢,w) ¢ U, where

U: teH  ju—y@) <38

there czisls a unique solution ¢ = ¢(2,t,w) of (Eq) on H with et ,tw) = w.
Morcover, ¢ is analytic on the n + 2 complex dimensional domain

V: zeH GwyelU

ReMARK: Actually H need not be convex. It is sufficient if / is simply
connected and if there is some constant ¢ > 0 such that any two points
of H may be joined by a polygonal arc of length less than e.

Proof of Theorem 8.2. The proof follows that part of the proof of
Theorem 7.1 that deals with the successive approximations. The path
of integration from { to z in the successive approximations can be taken
as a straight line if H is convex. In any case, the path can be taken as a
polygonal path of length less than c¢. The argument of Theorem 7.1
carries over with the obvious modifications necessary to meet the require-
ments that the variables are complex. The approximations ¢; are all
analytic on V. Thus the limit function, to which the approximations
converge uniformly on V, must be analytic on V.

Since ¢ has all derivatives with respect to z,{,w on V, the equation

Pl(z;;’:w) = f(z,P(Zyl'»w))

can be differentiated with respect to w;, giving
0 () = %
dw; (zlg.r“’) = f"(zsia(z:r:"’)) 'a_w’

Thus d¢/dw; is the solution of the linear equation

y’ = fw(zt‘P(zJ{’w))y (8'2)

with initial condition (3¢/dw;)(f,{,w) = ¢, Thus the analogue of the
main result of Theorem 7.2 is proved. The result analogous to (7.5)
follows in much the same way as (7.5). The result here is



36 ORDINARY DIFFERENTIAL EQUATIONS [Cuap. 1
det pu(z,f,w) = exp f, tr fo(8,e(s,f,0)) ds

where the path of integration of the integral is along an arc in H.

Since d¢/0¢ exists, it follows easily that it is the solution of (8.2) with
initial value —f({,w) at ¢.

The case

(Es0) w' = f(z,w,)

where f is analytic in (z,w,4) and g is k¥ complex dimensional can also be
dealt with. Let I, be the domain of u space given by |u — uo| < ¢,
where y, is fixed and ¢ > 0, and let D be a domain in the » 4 1 complex
dimensional (z,w) space. Let D, be the set of all (zw,u) such that
(z;w)e D and pe I,. The analogue of Theorems 7.4 and 7.5 for (Es,) is
the following result: :

Theorem 8.3. Let f be analytic in the domain D, and suppose § i3 a
solution of (E.) for p = po which exists for ze H, where H is a closed
convex domain in the z plane. There exists a & > 0 such that for any
($,w,m) € U,, where

Ui teH  Jo—y¢@|+ s —nl <3
there exists a unique solution ¢ = ¢(z,¢,w,n) of (Es,) on H with

¢(§',§',w,#) =w
Moreover, ¢ is analylic in the n + k + 2 comblea: dimensional domain
Vi zeH  (uwnu)elU,

The proof can be obtained using either the method of proof of Theorem
74 or that of Theorem 7.5. The remark following Theorem 8.2 applies
here also.

A theorem which is a mixture of the results of Secs. 7 and 8 is obtained
when { is assumed to be real and w, u, f complex. Let D be a domain of
(¢,w) space, where { is real and w complex n-dimensional. Let I, be the
set of all u satisfying |u — po| < ¢ for some ¢ > 0, where u is k complex
dimensional. Finally let D, denote the set of all ({,w,u) satisfying
(tw)eDand ue I,.

Theorem 8.4. Let f< C on the domain D,, and for each fized ¢ suppose
f i8 analytic in (w,u). For u = po let ¢ be a solution of w' = f(t,w,u) on
some inlerval I: a < t S b [thus ((,¢(1)) € D for t ¢ I) salisfying Y(r) = wo,
where te I.  There exists a & > 0 such that for any (w,x) e U, wheve

Ui o —wol + | —pol <8
there exists a unique solution ¢ = @(tw,u) of w' = f(tw,u; on I with

e(rwn) = o
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Moreover, ¢ is continuous in (Lw,u) for a =t = b, (w,u) e Uy, and for each
fized t < I is an analytic function of (w,u) for (w,u) e U

The proof is very much like that of ‘Theorem 7.4 and is left to the
reader. The uniform convergence of the successive approximations, each
of which is analytic in (w,x) in Uy, leads to the analyticity result for ¢ as a
function of (w,u).

An important application of this result is to the case of a linear system
mvolving a one-dimensional parameter p linearly. Tor example, let
A, B be continuous complex-valued n-by-n matrices defined on some open
real ¢ interval J, and consider the system

w' = (AQ) + uBO)w

Then the vector f defined by f(t,w,u) = (A(t) + pB(f))w is continuous
on the domain D, given by

D ted |lw| + |u| < =

and for each fixed ¢ e J it is analytie in (w,u) for |w| + || < «. Apply-
ing Theorems 5.2 and 8.4, it follows that the solution ¢ passing through
the point (r,@) (rJ, |@| < =) exists for all e J, is continuous in ({,w,u)
for teJ, |w| 4 |u] < =, and for each fixed teJ is analytic in (w,u) for
|w} + || < . In particular, for fixed (r,w) ¢ is entire in u. (See also
Prob. 7.)

A case of great importance where the above is applied occurs in the
study of boundary-value problems involving a parameter; see Chaps.
T-12.

PROBLEMS

1. Let ¢, ¢, x be real-valued continuous (or piecewise continuous) funetions on a
real {interval I:a <t = b. Let x(t) > 0on I, and suppose for { e I that

o) 590 + [ x0)e ds
Prove that on [
o® 590 + [ xouo) exp ([ x@ du) ds

HinT: Let R(1) = f‘: x(s)e(s) ds and show that R/ — xR = xy.

2. A function f defined on a domain D of the real (¢,z) space is said to be of class
Lip (1) on D if there exists an integrable function k of ¢ such that for all (¢,z) and
(t,E) in D

Let fe Lip () on D. Let ¢, ¢ be two continuous functionson I:ta St = b such
that (&,¢:(t)) e D for te I, and f(t,¢:(8)) is integrable over I for i = 1,2. Let
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w0 = 0 + [ S0 ds + By

where r e I, and suppose lé.(r) - w(r).l S8
Prove, if E(t) = |E\(t)] + |Ex(t)], that forr < ¢ S b

1) — ws(®)] S 8 exp [ /. “kes) ds] +EQ) + f' * E(e)k(s) exp [ j; ) du] ds

and a gimilar result fora £ ¢ 5 r.

HinT: Use Prob. 1.

3. Let the functions ¢,, s presented in Prob. 2 be of class C} on I, and in addition let
let® = FLoi®)] S a(t), () = at) + alt).

Prove that

ler® — 2] S 8 exp [ _/: ' ko) da] + j; * (s) exp [ ]; ! kw) du] de

Hint: E(t) S f *e(a) ds.
IfK = L b k(s) ds, then the above inequality yields

e — sl 5 (5 + [} ds) ox

Clearly the above inequalities can be used to prove uniqueness of solutions of

z' = f(,z)
if feLip () on D.
4. In the hypothesis of Theorem 3.1 let the condition (C,Lip) in R be replaced by

V@Ol = kO + J&)

V) — 52) S k@l — 2|

for (t,z) and (,2) in R. Assuming f is such that the integral of f(t,4(?)) is defined
for any continuous function ¢, show that there exists an intervalr < ¢ =27 tai(a >0)
on which the successive approximations converge uniformly to a solution.

HiNT: Let K(t) = [t k(s)ds. If(1 + IEI)(e"f“’ — 1) = bforsome {, in the interval

{r, r+a) let tg—r = a1 Otherwise let a; = a. Show that all the successive
approximations ¢; stay in |z — §| = (1 + JED(eX® — 1) for te[r, r + ay). Show

3

and the condition Lip (¢),

loi®) —~ @il S sl_-l-lsﬁ(_lf(mf

REeMaRk: If the above hypothesis on J is true for all z and Z and for all ¢e (a,b], and
if 7€ [a,b], then the successive approximations converge uniformly on {a,b). This is
the case when f is lincar in z.

8. Let fe C! on the (4,x,y) set given by 0 =t 51, and all z,y. Let ¢ be asolution
of the second-order cquation z” = f{t,z,z") on [0,1], and let ¢(0) = a, o(1) = .
Suppose af/az > 0 for ¢ £(0,1] and for all z,y. Prove that if 8 is near b then there
exists a solution ¢ of 2/’ = J({t,z,z’) such that ¢(0) = a, ¢(1) = 8,

Hinr: Consider the solution 6 (as a function of (t,a)) with initial values 6(0,a) = g,
8(0,a) = a. Let ¢'(0) = ao. Then for la — aof small, ¢ exists for i e [0,1]. Let
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u(t) = aig (¢, o)

Then

w - L ot O - ¥ (o9 = 0

where 4(0) = 0, u'(0) = 1. Because 8f/dx > 0, u is monotone nondecreasing and
thus u(1) = (30/3a)(1,a0) > 0. Thus the equation 6(l,a) — 8 = 0 can be solved
for « as a function of 8 for (a,8) in a neighborhood of (ae,b).

‘8. The following problem shows that analyticity with respect to initial conditions
may prevail for the solution of a differential equation with a right member which is
discontinuous. (This situation arises in practicr when a curve may be replaced by a
polygonal line to obtain linearization in each of several regions.)

Let F be a real-valued analytic function defined on the n <+ 1 real dimensional space

R: ] £a Izt b

Here ¢ has one real dimension, and z is n real dimensional, and the analyticity of F
means that at each point of R it can be represented by a power series convergent in
some domain containing the point. Let the surface S defined by F({,z) = 0, {{,z)e R,
divide R into R; and R, such that

F(z) <0 (t,z)e R,
Fiz) >0 (t,x)e Ry
Fiz) =0 (tx)eS

Suppose f is a real-valued vector which is analytic for (¢,z) e B\ 8, and g is a real-
valued vector analytic for (t,z) e R:\J S. Counsider the differential equation

{1) T’ = f(t,z) L) e R,
{2) z' = g(l,z) tr)e R,

A continuous function ¢ defined over some ¢ interval I contained in |{| £ a is a solution
of this differential equation if (¢,¢(f)) e R for te I, and ¢ satisfics (1) for (£,¢(f)) e Ry
and (2) for (l,¢(t)) € R, and if ¢ has only a finite number of pointsin Sforte ., (This
definition can be generalized considerably by allowing (f,¢(f)) ¢ S on one or scveral
{ intervals contained in I, but this necessitates some additional hypotheses involving
J1 and J. defined below.]

Let (t,,z1) € R1 and ({3,72) e Rs, and suppose ¢ is a solution on [¢,,t:] such that

() = 21 o(ls) = x2

Buppose (Le(®))eS fort =7, ... ,7m Where §; <71 <713 < ¢+« <14 <3 and
for no other values of { on [f4,25]. Let J, and J; be the functions defined on S by

L=—+2

i=l

Ja oz'*'Zaz.

t=1

and suppose (—1)iJa(rsp(ry)) <O for k=1,2, andj=1,...,m Prove that
for (¢,n) &€ R: near ({1,z:) there exists a solution ¢ = ¢(l,0,n) ono St S {1 satisfying
¥lo,0m) = n, and prove that the function Y defined by y2(0,m) =.¢(ls,0,n) is analytic for
(e;n) near (,,74).
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Hint: It suffices to take the case m = 1 since the same argument is repeated at
each r;. Thus it can be assumed that there is only one point (r1,¢(r1)) of the given
solution pathon S. It is first shown that ¢ is analytic in (t,0,9) for (¥ (t,0,n;) e R,\\J S.
The value of ¢ for which ({,¢({,5,n)) intersects $ is obtained by solving F(L,¢ ({,¢,7)) = 0
for t. Because Ji(r,¢(r1)) > 0 there exists a unique analytic solution ¢ = y(e,n),
where y(t,21) = 7.

The solution of (2) is then considered with initial value t = y(e,9), £ = ¥(v(o,n),5,7).
This initial value is analytic in (o,n). Because Ja(r1,¢(r1)) > 0 this solution will not
again intersect S near (r1,9(r1)). Since it stays close to (t,(t)), it can be continued to
ts. The solution is analytiic in ¢ and in its initial conditions, The initial conditions
are analytic in (o,9). Thus ¢ is analytic in ({,0,) for (t,0,9) sufficiently near (43,41,7,).

7. Let f be a continuous function defined on a real ¢ interval @ S ¢ S b'and for all
complex w and p, where w is complex n-dimensional and g is complex k-dimensional.
For each fixed ¢ let f be analytic in (w,u) for |w] + |u} < ©. Forall w, %, and (¢ [a,b)
let

,f(llw)“) _f(t:ﬁ;“)' = M(lﬂl)lw - 'T’I
70,0} = M(lu) < =

where M is a monotone increasing function, (This hypothesis implies f is a linear
function of w.) Prove that the solution ¢ of the initial-value problem w’ = f(,1,4),
w(a) = w, i3 continuous in ({,w,u) for ¢ ¢ [a,b] and le ~+ |u] < », Thus ¢ for fixed ¢
is an entire function of (w,x).

REeuark: If the hypothesis is valid for ue D, where D is a domain in 4 space, instead
of for |u} < =, then the result holds for ue D.

Hinr: The successive approximations ¢;, where vo(t,w,n) = w, satisfy

lovatbon) = pibnl] 5 Ut DOLGDY G - gy

and each ¢; is an entire function of (w,z) for any fixed ¢. The result follows from the
uniform convergence of ¢;. (The result also follows from Theorem 8.4.)

8. Let F be a real continuous function of (£,z,y) in a real domain D containing the
" point (fo,%o,y0). Let 9F/az and aF/dy exist and be continuous in D, and suppose
Fto,zo,y0} = 0, (OF /dy)(lo,x0,40) #= 0. Prove that there exists a unique function ¢
[a solution of F({,z,z') = 0] on some interval containing o satisfying F({t,¢(1),¢'(¢)) = 0,
ello) = zo, ¢'(te) = yo.

ReMArk: The above theorem may fail where F(l,z,y) = 0 and (oF/ay)(t,z,y) = O.
A solution of F(t,z,2') = 0 may satisfy both these equations but uniqueness may fail.
An example is (z')? — 2z’ 4+ 4z = 4({ — 1 at (0,0,1) with solutions ¢ and ¢ —~ ¢1.

9. In Theorem 7.2 it was shown that d¢/dt;, j = 1, . . . , n were solutions of the
linear equation y’ = f:(l,0(t,r,£))y with initial values e;at r. Prove that every solution
of this linear system is a linear combination with complex coefficients of these n
solutions. ~ Bince 9¢/ar is the solution with initial value —f(r,£) at 7,.prove that

ana+znma ) =0

J=1

Hm'r. If 0 is any solution and 6(r) = a, then & = Zaje; for some complex constants
a;. Prove that 0 = 2a;(d¢/3%;).

10. The following problem illustrates the abstract idea behind the Picard theorem.
Consider a Banach space B (a complete normed linear space) with the norm of an
element ¢ denoted by |l¢ll. Let T be a transformation defined on the set of all ¢
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satisfying [[¢]l = b (b > 0) which is such that [|[T¢|| < b, and 7" satisfies a Lipschitz
condition
Ty — TYl < Klly — ¢

with constant k < 1. Prove that there exists an element ¢ such that Te = ¢, that
is, T has a fixed point. Moreover, prove that ¢ is unique.

Hixt: Define the successive approximations ¢o, @1, . . . by w0 = 0, ¢ju = T,
and using the Lipschitz condition show that [e;41 — ¢;l| = kib, and hence

logsm — ol S (i 4+« + 4 kitn1b

Since ki 4 - - + 4 ki*m=1 ig the Cauchy difference for the convergent geometric
series ki, it follows that the sequence {¢;] is convergent in B, and hence has a limit
et B. Since [lo;]| S b, clearly [l¢ll = b, and thus T'¢ is defined. Also [|[Te — ol
STy — Teill + ITe; — oll = klle — esll + ilejsr — @ll = 0 as j— =. Unique-
ness follows from the Lipschitz condition.

11. Let fe C on the n + 1 dimensional real rectangle I given by || = q, |z] = b,
and assume f satisfies the Lipschitz condition

Wtz — S8 5 X e — 5

for a constant k& < 1 in R. Further, suppose |f(t,x)] = b/a for (t,) e B. The initial-
value problem 2’ = f(t,z), z(0) = 0 is equivalent to the integral cquation

20 = [ 762 ds

Let B denote the space of all continuous veetor functions ¢ on |{| = @ with a norm
given by |l = max |¢(¢)| for |t|] < a. Show that B is a Banach space. Let T' be
the transformation defined for ¢ & B satisfying [[¢|| = b by

t
e = [ Gs,9(5)) ds
Prove that [|Ty! = bif |y = b, and that 7" satisfies the condition

1Ty — 7Yl = kly — Jll

Apply Prob. 10 to obtain the existence and uniqueness of a solution of the initial-
value problem 2’ = j(t,z), z(0) = 0, on [t| = a.

12. Let 2’ = |z|}z 4 sin (x/1), z(0) = 0. Show that if polygonal approximate
solutions are set up as in Theorem 1.1 they need not converge as ¢ — 0.

Hint: Consider { = O and let tx = k8, k =0, 1,2, . . . , where 5 = (n -+ %)~ for
some large n. If n is even, show that the polygonal solution e.(t) satisfies ¢.(8) = 0,
en(28) = 8, pa(35) > 368 Once ga() = {1/6, it stays there as long as ¢ < 1/2,000.
Indeed, for { = 45 and as long as g. () = /6, ¢L(t) > eutt — 8) —t > 5(t — &)t — ¢
> 11/10. Since 5! > (d/d()(11/6), the result follows. If n is odd, ¢a(t) < —t1/6
for 36 <t < 1/2,000.



CHAPTER 2

EXISTENCE AND UNIQUENESS OF SOLUTIONS (CONTINUED)

1. Extension of the Idea of a Solution, Maximum and Minimum Solutions

It has been seen that if f is a continuous function in some (t,2) domain
D, then the differential equation

(E) z' = f(lz)
together with an initial condition
z(r) = & (1.1)

is equivalent to the integral equation

2() = &+ [ fs2()) ds (1.2)

That is to say, if g isa solution of (E) on some interval I for which o(r) = ¢,
then z = () will satisfy (1.2) on I, and conversely.

Clearly the integral in (1.2) makes sense for many functions 7 which are
not continuous. Recall that the continuity of f guaranteed that a solu-
tion of (E) was of class (. Thus, if a continuously differentiable solution
of (E) is not demanded, the continuity restriction on f can be relaxed.

Suppose f is a real-valued (not necessarily continuous) function defined
in some set S of the (¢,x) space. Then one can extend the notion of the
differential equation (E) by defining (E) to be the following problem:

Problem. To find an absolutely continuous function ¢ defined on a real
t interval I such that

(i) (Le(®) e S (te D)
(i) ¢'(1) = f(t,e() Jorallte I,except on asetof Lebesgue-measure zero.

If such an interval 7 and function ¢ exist, then ¢ is said to be a solution
of (E) in the extended sense on I. Notice that the absolute continuity of a
solution guarantees the existence of ¢’ almost everywhere on I (that is,
except on a set of Lebesgue-measure zero), so that (i) makes sense.

If fe C on S, and ¢ is a solution of (E) in the above sense, then from (ii)
¢’ e Con I, and therefore the more general notion of the equation (E), and
of solution ¢, reduces to the ordinary definition of (E) when fe € on 8.

42
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It will usually be clear from the context as to the meaning attached to (E)
and the solution ¢, and hence it will rarely be necessary to add the phrase
“in the extended sense.”

As regards the existence of a solution of (E), Caratheodory has proved
the following quite general theorem under the assumption that f be
bounded by a Lebesgue-integrable function of ¢ The proof will be
carried out for the case n = 1 only; it will be clear what modifications are
required in the case of a system (E). R will denote the rectangle

R: jt—17Sa |z—¢ =D

where (r,£) is a fixed point in the (¢,z) plane, and a and b are positive real
numbers. :
_Theorem 1.1 (Carathéodory). Let f be defined on R, and suppose 4t is
measurable in ¢ for each fixed z, continuous in z for each fized t. If there
exisis a Lebesgue—*inte;grable function m on the inlerval |t — 1| S @ such that

l7¢2) = m@®)  ((tz)e R) (1.3)

then there exists a solution ¢ of (E) in the extended sense on some interval
|t = 7| < 8, (8> 0), satisfying ¢(r) = &

Proof. The caset = 7 will be considered; the situation is similar when
t S If Misdefined by ‘

M@ =0 t<7

M(t)=f"m(s)da rsStsSr+a) (14)
then it is clear that M is continuous nondecreasing [m = 0 by (1.3)}, and
M(r) = 0. Therefore (4, + M(t)) e R for some interval r St S +
B S 7 + a, where 8 is some positive constant. Choose any 8 > 0 for
which this is true, and define the approximations ¢; (j = 1,2, . . .) by

eit) = ¢ (1' stst+ g) , w5

t—B/i ﬁ
wi(t) = £+ j: J(3,0i(s8)) ds (T + 3 <ts7t+ B)
Clearly ¢ is defined on 7 = ¢ S 7 4 B, for it is the constant §. For any
fixed j = 1, the first formula in (1.5) defines ¢; on » S ¢ S r 4 /7, and
gince (2,¢) ¢ B for r S ¢ < r + B/j, the second formula in (1.5) defines ¢;
a8 & continuous function on the interval r 4 8/j <t S r + 28/5. Fur-

" ther, on this latter interval

lest) — &8l s M (z = g) (1.6)
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by virtue of (1.3) and (1.4). Assume that ¢; is defined on r £ ¢ =
T+ kB/jfor 1 < k <j. Then the second formula of (1.5) defines ¢; for
T+ kB8/j <t =1+ (k+ 1)8/j, since knowledge of the measurable
integrand is only required on r St < 7 + kB/j. Also, on 7 + kB/j <
t <7+ (k4 1)8/4, the function ¢; satisfies (1.6), because of (1.3) and
(1.4). Therefore, by induction, (1.5) defines all ¢; as continuous func-
tions on v = ¢ = 7 + B8, which satisfy ;

wilt) = & (‘r§€§‘r-§-§)
' .7
|w(ﬂ-£l§M(£—§) (r+%.<g§f+ﬁ)

If ¢, and ¢, are any two points in the interval [r, 7 - 8], then on account

of (1.3), (1.4), and (1.5),
M(ﬂl—ﬁ.)—M(ta—Q)
J J

lei(t) — wilta)| =
Since M is continuous on [r, 7 + 6], it is uniformly continuous there.
This implies, by (1.8), that the set {¢;} is an equicontinuous set on
[r,7 4+ B]. Also, by (1.7), the set {¢;} is uniformly bounded on [r, 7 4 B].
Consequently it follows by the Ascoli lemma that there exists a subse-
quence {¢;,} which converges uniformly on [r, 7 4 g] to a continuous
limit function ¢, as k — .
From (1.3),

(1.8)

lften®) S m@) @sSt=r+6)
and since f is continuous in z for fixed {,

ften®) = fLe®)  (k— «)

for every fixed ¢ in [r, = + B]. Therefore the dominated convergence
theorem due to Lebesgue may be applied to give

lim [ o) ds = [ 1(5,0(6)) ds (1.9)

for any tin [r, 7 4+ B]. But
en® = £+ [ Fen©) ds — [1 . J0n(s)) ds

where it is clear that the latter integral tends to zero as k — «  There-
fore, letting k — <, and using (1.9), it follows that

o) = £+ [ f(s,0() ds

from which the theorem follows at once.
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It is interesting to remark that the original approximations (1.5) must
converge to a solution in the case where a unique solution is known. This
situation does not obtain for the ordinary successive approximations; see
the example in Sec. 3.

For the case n = 1 it can be shown that all solutions of (E) issuing from
an initial point (7,£) can be bracketed between two special solutions, the
mazimum and minimum solutions. Let f be defined on the rectangle E,
as in ‘Theorem 1.1. If ¢u is a solution of (E) passing through (7,£€),
existing on some interval [ containing =, with the property that every
other solution ¢ of (E) passing through (r,£) and existing on [ is such that

o) Seult) (tel)

then ¢ is called a mazimum solution of (E) on I passing through (r,£).
Similarly, if . is a solution of (E) on an interval I for which ¢n(t) = §
and such that :

o(t) Z pu(®)  (tel)

holds for every other solution of (E) on I for which ¢(r) = &, then ¢ i8
called & minimum solution of (E) on I passing through (r,£). Clearly, the
functions ¢x and ¢, if they exist, must be unique.

The existence of ¢x and ¢ will now be demonstrated under the
Carathéodory assumptions.

Theorem 1.2. Let the hypothesis of Theorem 1.1 be satisfied. Then
there exisls a mazimum solution ¢x and a minimum solution ¢. of (E) on
|t — 7| < B passing through (r,£).

Proof. The existence of ¢ux on [r, = 4 B] will be proved. Now any
solution ¢ of (E) passing through (r,£) must satisfy

o) = £+ [ fs(s) ds (1.10)
as far as it exists, and from (1.10) it follows that

lo(t) — e(ta)| S | M) — M(t:)| (1.11)

for any two points ¢, t2 where ¢ exists. Recall that M is defined by (1.4).
Since M is continuous, (1.11) implies, by the Cauchy criterion for con-
vergence, that the solution ¢ can be continued, if necessary, to the entire
interval [r, v + B], making use of the Carathéodory existence theorem.
The details of this argument are entirely gimilar to those given in Theorem
4.1, Chap. 1. Therefore, all solutions of (E) passing through (7,£) exist
on [r, r + ], and all must gatisfy (1.11) there. From the uniform con-
tinuity of M on [r,7 + B, it follows from (1.11) that the set of all solutions
{¢} of (E) on[r, r + B]is an equicontinuous set, that is, given any e > 0,
there exists a 8, > 0, independent of t and the solulion ¢, such that
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le@) — o()] < ¢ - whenever -7 <aé, (1.12)

and ¢, fare in [r, + + 8] Further, from (1.11), putting ¢, = 7, the set
{¢} is uniformly bounded on fr, r + Bl :
Let & be the function defined by

) = wup lo®)  elr, 7+ 4D

taken over all solutions ¢ of (E) on [r, T 4 8] passing through (r,8).
Clearly & exists on [r, 7 + 8] and is continuous (and hence uniformly
continuous) there. Therefore, for any given ¢ > 0, a 8, > 0 exists such
that, not only is (1.12) true for this 5, but also for Liinfr, r+ g,

|#@) — #()| <e¢  whenever | = 7] < 3, (1.13)

It will be shown that & is a solution of (E) satisfying &(r) = & and if
¢ i8 defined to be &, it is clear that this ¢ar Will satisfy the requirements
of the theorem on [r, r 4+ 8). For a given ¢ > 0, choose 5, so that (1.12)

“and (1.13) hold. Subdivide the interval [r,  + B] into n intervals by the

pointsr =t <{ <3< -+ - <, = 7 + B in such a way that
max (i — &) < 8,
Forevery 4, (: = 0,1, ... ,n — 1), choose a solution ¢; of (E) passing

through (r,£) s0 that )
0=®) ~ oilt) <e
and for ¢ = 1

wil) — pia(t) 2 0
This is possible from the definition of @,
~ Now, for the given ¢, define the function ¢, as follows: Let
P) =) (1 StSta=r+p)

If pu1(tam1) > Pu-s(tay), define ¢« to the left of t._; as pn_, up to the
point r,_y (if it exists) in (fa-s,ts-,) nearest ¢,_, such that

Vo(fnf!) = Pn_1(Te—g) = ?ﬂ-l("u—_l)

If 7as exists,. define p,(f) = pa_y(t) for ta_s S ¢ < To—s. If ro_s does not
exist, define ¢, on [te—sta-1) 88 ¢u_; If Po—1(ta-1) = @a_y(ta~,), define
@) = pas(t) on [tagyla_y). Continuing in this way, one can define a
solution ¢, of (E) on [r, + 4 g} passing through (r,£), obtained by patching
together solutions of (E), and having the property ‘

0=S%(t) —wlt) <e (i=0,1,...,n) (1.14)

Since the variation of ® and ¢, in each interval [titi41] i8 less than ¢, by
(1.12) and (1.13), there results from (1.14) .
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0= ®() — eut) <3e (rst=s7+8) (1.15)

Letting e = 1/m, (m = 1, 2, . . .), one obtains a sequence ¢,/ of solu.
tions which, by (1.15), converges uniformly to® on [r, 7 + £}. From this
fact and an application of the Lebesgue dominated convergence theorem
to (1.10) with ¢ replaced by ¢y/m, it follows that

) =+ [ fle@E)de (G Stsc+h)

_that is, ® is a solution of (E) satisfying ®(r) = £, and from its definition
it is the maximum solution ¢, on [r, r + 8].

Theorem 1.8. In a domain D of the (t,x) plane let the function f be
defined, measurable in t for fixed x and continuous in x for fixed t. Let there
exist an integrable function m such that |f(t,z)| S m(t) for ({,2) e D. Then,
given a solution ¢ of (E) for L (a,b), it i3 the case that (b — 0) exists and
if (bye(b — 0)) e D then ¢ can be continued over (a, b + 8] for some § > 0.
A similar result holds at a. Thus the solulion ¢ can be continued up tlo the
boundary of D. Moreover, the same conlinualion is valid for @ maximum
golution ¢y or a mintmum solution ¢...

The proof is very similar to that of Theorem 4.1, Chap. 1.

Corollary to Theorem 1.8. Let the hypothesis of Theorem 1.1 be satisfied
and let oy and om, the mazimum and mintmum solutions through (s,f),
exist over [r, 7 + B], where 8 < a. Then for any c salisfying pun(r + B) <
¢ < ¢u(r + B) there is al least one solution ¢ through (v,) for r S ¢ 5
t 4 Band with o(r + B) = ¢.

Proof. Start with the solution through (r 4 8, ¢) and continue it to
the left. It need not leave the region pn(t) < z S ou(l),7 St S 7+ 8,
gince it can always be continued back along one of these extreme solutions
if it meets one of them. Thus it can be continued back to (r,£).

Theorem 1.4. Let the hypothesis of Theorem 1.3 be valid, and suppose
the maximum solution ou; of (E) through (r,t) exists over an interval
[r,7 + a]. Then there existsa 8 > 0 such that (E) has a maximum solution
pug foreach 9, E S 9 < E-+ Sonr, 7+ a] with gu.(r) = . Moreover,
@uq— pug a8 7 — £ + 0, uniformly over [r, 1 + a].

Proof. By Theorem 1.2, ¢, certainly exists over some interval with
the left end point 7, if n — £ is small enough. From the definition of the
maximum solution, it follows readily thav, for 7 > 7 > ¢,

pus(t) Z oug(t) = oue(t)

-Thus ¢, is monotone nondecreasing in 5 and is bounded from below.
'Therefore, for each ¢ on some interval [r, r 4 8), there exists

B(t) = pupro(t) 2 oui(t) (1.16)
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Since ¢, satisfies (1.11),

|B(t) — ®(t)| S |M(L) — M(ts)]

so that @ is continuous. From

eu® = 1+ [ F5,0i0(s)) ds

it follows on letting 7 — £ + 0 that °
() = £+ [ f6,8()) ds

But this implies ® is a solution of (&) through (r,£). Thus, by (1.16),
®(t) = ¢ui(t) over [r, 7 + B]. The uniformity of the convergence of
@arq 10 @ar; follows from the equicontinuity of ga, in ¢, as proved by (1.11).

The above argument is clearly valid over the range of existence of ®
on [r,  + a]. Suppose that for some {; = 7 + a and for every small
h > 0, @ exists over [r, to — k] but not over [r, to + A]. Then for any
given € > 0 there exists a § > 0 such that

l@aalto — € — euelto — )| S € (1.17)
if0 < 9— &< b
Let the region H be the set of points (f,#) which satisfy the inequalities

L=t v |z —emelo =7 S v+ MY - Mt — )

By choosing v small enough, H C D. Any solution ¢ of (E) which starts
on the left vertical side t = to — v of H [that is, [p(te — v) — eumeto — ¥)|
< ~] will, by (1.11), remain in H as t increases. Thus any such solution
can be continued to £, + 7.

By choosing e in (1.17) so that e = ¥, it follows that for0 < — £ < &,
the solutions ¢, can be continued to fo + . This implies the existence
of ® over [r, t + 7], which contradicts the assumption about ¢ Thus
to > r + a and therefore ® exists over [r, 7 + «l.

2. Further Uniqueness Results

Considerable research has been done on the problem of uniqueness of
solutions of the system (E). The following theorem gives a criterion for
uniqueness which is sufficient for many practical cases, and includes as
special cases many known criteria. i

Theorem 2.1. Let y = y(t,r) be a continuous nonnegalive junction
defined on :

0<t<a r20 (a>0) (2.1)

and nondecreasing in r for fized t there.  Suppose that for each a, 0 < a < a,
the function p defined by p(t) =0, 0 =1 < a, 18 the only differentiable
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function on 0 S t < a for which p/(0) = lim (p(t) — p(0))/t as t — 0+

exisls,,

pPit) =y(te®) (O<t<a) (2.2)

and '
p(0) = p4(0) =0 (2.3)

Let fe C on the (n + 1)-dimensional region
R: t—7l=a |t — £ =b (a,b > 0)
and satisfy there, for t # ,

17¢,2) — f&2)| = (|t — 7,|€ — ) (2.4)

Then there e:cests al most one solution pe Crof (E)inRon |t — 7| S aj'or
which ¢(r) =
Nore: If ¢ IS tha function defined on (2.1) by

y(t,r) = kr

where k is a positive constant, then y satisfies the conditions of the ¢ in
Theorem 2.1. It is an easy exercise to see that for each @, 0 < « < a, the
identically zero function is the only differentiable function on 0 £ ¢ <
satisfying (2.2) and (2.3) for this choice of y. In this case, (2.4) just
becomes the Lipschitz condition, and thus Theorem 2.1 includes as a
special case Theorem 2.2, Chap. 1. :

Actually the following generalization of Theorem 2.1 holds and is just
as easy to prove. Only its proof will be given.

Theorem 2.2. Let ¢ be a nonnegative function defined on (2.1) which s
Lebesgue measurable in t for fized r, and continuous nondecreasing in r for
fized t. Further, for every bounded subset B of (2.1), let there exist a function
xun defined on 0 < t < a such that

y(tr) = xs(t) ((tr) e B) (2.5)

and for which xs 1s Lebesgue integrable on v < t < a for every v > 0.
Suppose that for each a, 0 < a < a, the identically zero function 1is the only
absolutely continuous function on 0 < { < « which satisfies

p'() = y(tp®) (2.6)
almost everywhere on 0 < t < a, and such that p,(0) exists, and
p(0) = 5,(0) = 0 2.7)

Then if for this ¢ the function f satisfies the same conditions as in Theorem
2.1, the result of Theorem 2.1 is valid.

Proof. The proof will be given for the interval + £ ¢ < 4 a; the
caser — a = t = 7issimilar. Also, it will be assumed that (r,£) = (0,0)
for simplicity.
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Suppose that there are two solutions 1 and o1 of class C! of (E) on the
‘interval 0 £ ¢ S a satisfying

. #1(0) = 2(0) =0 (2.8)
Let p be the function defined by '
() = le1(t) ~ @2(®)] (0 =t<a)

Then there exists a o, 0 < ¢ < a such that p(s) > 0. From Theorem
1.1 it follows that through the point (s,p(c)) there exists an absolutely
continuous function p satisfying the equation

p'(®) = ¥(te(®))

on some interval to the left of o. \
As far to the left of o as p exists, it satisfies the inequality
p(t) = () ‘ 2.9

for if this were not the case there would exist a point to the left of ¢, say
¢, where p(¥) = p(¢), and p(t) > p(?) for ¢t < {, and sufficiently near ¢-
(¢ = o is not excluded). - Now, since ¢, and ¢; are both solutions of (E)
satisfying (2.8),

mn—Uimwm—mmmwd
and for small enough A > 0, |
o — 1) = | [ Uten®) - fesen) at|
~ Since |u| — o] = Ju — v|, it follows by subtraction that

pm—m-msU;wmw—wmmal
S,nmmm—mmwm

wmmm‘ 2.10)
using (2.4). From the definition of p one has, since p(¢) = »(¢),
pE) — o — B) = [ w(ta(®)) &t @.11)

where h is new assumed so small that p exists on [ — A, {]. Since ¢ is
nondecreasing in r,

vitp®) S¥(le(®) (G —-hst=))
and this, together with (2.10) and (2.11), implies that p({ — h) s ‘
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p(t — h), which contradicts the definition of ¢. This establishes the
inequality (2.9).

Now p(t) > 0on0 <t =0, as far as it exists. Otherwise p(¢) = 0 for
some ¢, 0 < ¢ < ¢, and the function p defined by

plt) =0 0=st=9)
plt) = p(t) (¢ <l=0)

would be a function on 0 = ¢ = ¢ not identically zero, which satisfies (2.6)
and (2.7). This contradicts the hypothesis of the theorem. Therefore,

0 <o) = pO) (2.12)

I

as far to the left of o as p exists. But by (2.12), and an application of -
Theorem 1.3, it follows that p can be continued as a solution, call it p
again, on the whole interval 0 < ¢ = ¢. Hence lim o(t), ¢t — 40, exists,
and by (2.12)

lim p({) =0

t— 0
Define p(0) to be 0.
From (2.12) it follows further that

o<&{"’g&(” 0 <t=o0) (2.13)

and since ¢;(0) = ©4(0) = f(0,0), the ratio

t t

tends to 0 as ¢t — +4-0. From (2.13), therefore, p,.(0) = 0. This contra-
dicts the hypothesis of the theorem, for p is an absolutely continuous
solution of (2.6) on 0 < ¢ < ¢, and satisfies (2.7), but is not identically
zero on 0 < ¢ < ¢. Therefore p(¢) > 0 for any g, 0 <o < a, and this
proves the theorem.

It is casily seen from the proof of Theorem 2.2 that this theorem is valid
when f is required to satisfy a Carathéodory hypothesis (that is, the
hypothesis on fin Theorem 1.1), if instead of (2.7) it is only required that
p(0) = 0. The continuity of / was used only at the origin in order to be
able to assert that ¢1(0) = ¢5(0).

The proof of Theorem 2.2 is valid for Theorem 2.1, except that the con-
tinuity of ¢ now serves to guarantee the existence of the function (of class
C* here) satisfying p'(1) = ¢(¢,p(1)) to the left of (o,p(s)).

Theorem 2.1 can be improved if the ideh of a minimum solution is used.

Theorem 2.3. Let f and ¢ be functions salisfying the conditions of
Theorem 2.1, except that  need not be monotone in r. Then the conclusion
of Theorem 2.1 still remains valid.
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Proof. The only place in the proof of Theorem 2.1 where the non-
decreasing nature of  in r was used was in establishing the inequality

_ pt) = p()) (2.9)
where p is a function of class C* satisfying
p'(t) = ¥(tpt))  plo) = plo) >0 (2.14)

A procedure by which (2.9) can be proved for the minimum solution p,, of
(2.14), and which avoids the monotonicity restriction on ¢, is as fellows:
Consider the problem of finding a solution to

= yY(r) + e 0b<e<l)

passing through the point (o,p(¢)). TFor every such e there exists at least
one solution p, of this problem on some intervale — a <t < ¢, for some
positive « which is independent of e.  Also

p(t) = p(0) (c—ast=o) (2.15)

for if this were not the case there would exist a point to the left of ¢, say
¢, where p,(§) = pt) and p(t) > p(t) for t < ¢ and sufficiently near ¢.
At such a [, the left-hand derivative p’ (¢) exists, and

PLE) = |ei(®) — ¢a()] = UEp(E) < ¥(E,p8)) + € = pild)

Therefore, for b > 0 sufficiently small,

plf — h) < P& — h)

which contradicts the definition of . This proves (2.15).
In the same way, it follows that

lim sup p.() = pu(t) (2.16)
e—0
Now

P(@) = pu0) = [ ¥(tp ) dt + e — 1)

and hence on ¢ — a = { = o, (@ > 0), the set {p.} is an equicontinuous
uniformly bounded set of functions. Therefore there exists a subsequence
{pe} such that p,, tends uniformly (as e — 0) to a function pone — a <
t = o, where p satisfies (2.14). But by (2.16), this p must be p,., and from
(2.15)

pn(t) = p(0) (c—a=t=o0)

The remainder of the proof is the same as the corresponding part of the
proof of Theorem 2.1, only replacing p by p,. throughout.
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3. Uniqueness and Successive Approximations
Let R denote the (n 4 1)-dimensional region
R: [t —71 = a le — ¢ = b (a,b > 0)
Let fe C on R, and suppose M = max |f| on B. In Se'c. 3, Chap. 1, it
was shown that the successive approximations ¢o, ¢1, @2, . . . defined by
eolt) = &

¢ 3.1
o) = £+ [ foonds  m=0,1,3,..y &

converge to a solution ¢ of (E) on the interval

=rize (ammin (o)
[t =7 = a = min | a, 37

and o(r) = &, provided that fe Lip on R.

The following example (n = 1) illustrates the fact that the continuity
of f alone is not sufficient for the convergence of the successive approxima-
tions. Let f be defined by

0 t=0—w <z < +=)
2 0<t=s1 —w <z<0)

Jz) = m-% 0<t=1,0<z=p) 3-2)
—2t G<t=sl,r<z<+»)

On the region 0 £t =1, —= <z < +«, this f is continuous and
bounded by the constant 2. For the initial point (r,£) = (0,0), the suc-
cessive approximations (3.1) become, for 0 =t = 1,

eo(t) = 0 ¢’2m—1(t) = eam(l) = —1? (m' =12,.. )

Therefore the sequence {¢.(f)} has two cluster values for each ¢ = 0, and
hence the successive approximations do not converge. Note also that
neither of the two convergent subsequences {@sm—1}, {¢2n} converge to a
solution, for
Prni() = 2t = f(,1%)
and
o) = —2t # f(t,—1*)

Since the Lipschitz condition guarantees a unique solution of (E), one
may ask whether the continuity of f plus uniqueness is sufficient to guar-
antee the convergence of the successive approximations. The answer to
this is in the negative, however, for the above example (3.2) is one for
which a unique solution of (E) exists passing through (0,0) and proceeding
to the right of the origin. This follows from the fact that this f is mono-
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tone nonincreasing in z for fixed ¢. It is left as an easy exercise to show
that this latter condition implies uniqueness to the right of the origin.

It is equally true that if the successive approximations converge, the
solution obtained may not be unique. The familiar example

shows this. TFor the initial point (0,0) the successive approximations are
all the zero function, and hence they converge to the identically zero
solution. On the other hand, the function ¢ defined by

w0)==(%5l

is another solution which exists to the right of the origin.

Although uniqueness does not imply the convergence of the successive
approximations, it is true that the hypotheses of the general uniqueness
Theorems 2.1 and 2.2 are sufficient for this convergence.

Theorem 3.1. Letfe Con R, and suppose thal the hypothesis of Theorem
2.1 or Theorem 2.2 is assumed. Then the successive approximalions {e,)
defined by (3.1) converge (uniformly) on |t — 7| £ « to the solution ¢ of (E)
on this interval satisfying

o(r) = ¢

Proof. 'The proof will be carried out using the hypothesis of Theorem
2.2, and assuming (r,£) = (0,0). The latter is clearly no restriction.

It follows from the definition (3.1) of the successive approximations
that they satisfy the inequality

lem(t) — om(ta)| = M|ty — ta (3.3)

for any {,,t, in the interval |{| < «, where M = max |f| on R. This

implies that the set {¢.] is an equicontinuous set there. Letting {, = ¢,
ts = 0, in (3.3) one obtains

lem(@®)| < M|t € Ma S b

and hence the set {¢,} is uniformly bounded on |{| £ «. By the Ascoli
lemma there exists a subsequence {¢,,,] which is uniformly convergent to
a function ¢ on |{| < @, as k— =. The subsequence {@n,}, which

satisfies I
e = [ S om) ds (1 £ @)

is uniformly convergent on |f| = « to the function ¢* defined by

ot = [[fGee@)ds (I S @
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for f is uniformly continuous on |{| = «, |z| = b. It will be shown below
that on t| £ a,

emi1(t) — @u() >0 (m— =) (3.4)

Assuming this, it follows that
iam.-i-l(t) — iﬂ'nu(t) — 0 (k =) w)

and this implies ¢* = ¢, that is, ¢ is a solution of (E). Because of
uniqueness, every subsequence of {¢,} which is convergent will tend to
the same solution, and this proves that the original sequence {¢,} is con-
vergent on |f| = « to the solution ¢. This convergence is uniform on
|t| £ «, for the set {¢wn] is equicontinuous and convergent there.

In order to prove (3.4), let w,, be the difference

w,..(t) = lp...q..lu) ¥ ‘Pm(t) (!‘i = a)
and v be defined by

o(t) = lim sup lwa@®|  (|t| = a)

Now »(0) = 0, and v is continuous on |{| = «, for it is the upper limit of
an equicontinuous uniformly bounded sequence of functions. To prove
Wa(t) — 0, (m— =), on |f| = «a, is equivalent to showing v(t) = 0 on
|f| £ «. This will be done for 0 < ¢ < «a; the proof for —a < ¢ S 0 is
similar.

As a matter of notation, for any At > 0, and function g defined at ¢ and
t - At, let Ag be defined by

Ag (1) = gt + At — g(t)
Then from (3.1) it follows that for any ¢ and ¢ + At in the interval [0,q]

180z O = [ 176, 0mi(8)) = Fls,m(s)] ds
and because of (2.4)

(A O] S [ 0(s J0m()]) ds (3.5)

¢

Given any & > 0 there exists an integer N, independent of s and m,
such that

[wa(8)] S v(s) +8  (m > Ny) © (3.6)

for all s in the interval t = s = ¢ + At. To see this, note that v is uni-
formly continuous, and the set {w,.} is equicontinuous, on¢ < s < ¢ + AL
Therefore corresponding to any & > 0, there exists an n; > 0 such that

b — 0@ <3 lun(6) — wa®] <3 3.7)
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whenever |s — 8| < m;, and s, § are in the interval [¢, ¢ 4 Af]. Divide the
interval [¢, ¢ 4 At] into a finite number of subintervals

=8 <8 <+ <o =1-+4Ak

such that max (s;q1 — &) < m. From the definition of v as & lim sup, it
follows that for each s;, (i =0, 1, . . . , k), there exists an integer N
such that

&
lwm(8:)] = v(s:) + 3 (m > Ng) (3.8)
Define Ny tobe max Ny, (i = 0,1, . . . , k). Then the inequality (3.8)
holds for m > N;. For a fixed sin [¢, { + At] there exists an s; such that
|s — 8| < m. Applying (3.7) to this s and § = s;, and combining with

(3.8), the inequality (3.6) results.
Since ¢ is nondecreasing in r, it follows from (3.6) that

U(s,|wn(8)]) = ¢(sp(s) +8)  (m > Ny) (3.9)
and consequently, using (3.5),
t+4at ;
Aon O S [T W00 +8)ds  m>N)  @.10)
Trom the definition of v, it is easy to see that

|Av (#)] = lim sup |Aw,, ()]
and this with (3.10) shows that

lav (1)) < f"““ W(s,0(s) + 8) ds (3.11)
On account of the continuity of ¢ in r,

Y(s,0(s) + 8) — ¢(s,0(s)) (as 6—0)

and from (2.5), and the dominated convergence theorem of Lebesgue, it
follows that

lim [ y(s(s) + 8) ds = [ wis(s)) ds
50
The last relation, along with (3.11), yields
a0 @] < [ vian(o) ds (3.12)

The inequality (3.12) implies that v is absolutely continuous over any
interval in [0,a], and consequently v’ exists almost everywhere on [0,al].
From (3.12) this derivative satisfies

[v'(@)] = () (3.13)

almost everywhere on [0,a].
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Suppose for some s, 0 < ¢ = @, thatv(s) 5% 0. Because of the hypothe-
sis on ¥, there exists a function p on some intervale — ¥y S ¢ = o, (v > 0),
satisfying

PO = ¥(tp®)  po) =v(e) >0

ag shown in Theorem 1.1. Now on this interval

p(t) = v(t) (3.14)
and from this it follows that p can be continued to the entire interval

0<t=og and

lim p(¢) =0
t—0+

The proof of these facts is entirely similar to the steps between (2.9) and
(2.12) in the proof of Theorem 2.2, and so will be omitted.
On account of (3.14) one has

0<¢;')§‘i%9 0<tso) (3.15)

It will now be shown that v(t)/i — 0 as { — 0+4. TFor this purpose, con-
sider, for 0 < { = a,

Wnlt) = euia®) = on(®) = [} (5,0n(5)) = f(8,mr(s))]ds (3.16)

Since fe C on R, and using the fact that |g.()] = M, from (3.16) it
follows that, given any ¢ > 0, there exists an 5, > 0 such that

lwm@®)| <et (0 =t=9)
Hence

v(t) = lim sup |wa.(t)| = e

provided 0 £ ¢t = .. or v(t)/t— 0 as { — 04. From (3.15) it now fol-
lows that p(¢)/t— 0 as t— 0+, or since p(0) = 0, p3(0) = 0. This
contradicts the hypothesis of the theorem, for p is an absolutely con-
tinuous function satisfying

p'(t) = ¥(t,p(D) 0<t=so)
and

p(0) = p4(0) = 0

although p is not identically zero on 0 = ¢t = ¢. Therefore v(¢) = 0 foi
any o, 0 < ¢ = «, and this proves the theorem.

4. Variation of Solutions with Respect to Initial Conditions and Param-
eters

In Theorem 7.4, Chap. 1, it was shown that if f was a continuous func-
tion of (t,x,u) and satisfied a Lipschitz condition in , uniformly in g, then
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the solution of the initial-value problem
' = fltzu)  z(r) =&

was continuous in (4,4). Actually, the requirement of a Lipschitz condi-
tion is too strong; its consequence, the uniqueness of the solution, is
sufficient for this important result. ~ The z space is n-dimensionsl and the
u space is k-dimensional, as in Theorem 7.4,

Theorem 4.1. Let D be a domain of (t,x) space, I, the domain |p — po
< ¢ ¢ > 0, and Dy the set of all (t,x,p) satisfying (t,x) e D, pe I,. Suppose
[ 18 a continuous function on D, bounded by a constant M there. For
K= polet

z = f(t)xr»u) I(T) = ¢ (41)

have a unique solution ¢, on the interval [a,b], where v e [a,b]. Then there
exists a & > 0 such that, for any fizxed p satisfying |u — po| < 8, every solu-
tion ¢, of (4.1) exists over [a,b] and as p — g

Yu " o
uniformly over [a,b].

Nore: Though (4.1) need not have a unique solution for g  uo, never-
theless its solutions are continuous in g at uo.

Proof of Theorem 4.1. The proof will be carried out for the case
7e(a,b). The result will first be proved over [ — 7| < « for some « > 0.
Choose a small enough so that the region R: |t — 7| < @, |z — §| < M«
isin D. All solutions of (4.1) with e I, exist over [r — a, 7 + a] and
remain in B. Let ¢, denote a solution. Then the set of functions {¢,},
pe I, is a uniformly bounded and equicontinuous set in ¢ — 7| = a.
This follows from the integral equation

o® = £+ [[foe@mds (6= S ) (4.2)

and the inequality |f| £ M.

Suppose ¢,(7) does not tend to ¢o(f) for some {e[r — a, 7 -+ a]. Then
there exists a sequence [u:}, &k = 1,2, . . . , for which yy — po, and corre-
sponding solutions ¢, such that ¢, converges uniformly over [r — a,
T+ a) as k— = to a limit function ¢ but ¢(f) # ¢o(f). From the fact
that fe C on D, that ¢ eC on [r — a, 7 + «l], and that ¢,, converges
uniformly to ¢, (4.2) for the solutions ¢,, yields

WO =+ [[fep@urds  (t—1] S

Thus ¢ is a solution of (4.1) with p = po. By the uniqueness hypothesis,
it follows that ¢(t) = @o(t) on [t — 7| < @. Thusy¢(f) = ¢o(f). Thus all
solutions ¢, on [t — 7| S « tend to ¢o 8s p— po. Because of the equi-
continuity, the convergence is uniform.
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To prove the result over [a,b], & region H similar to that used in
Theorem 1.4 will be introduced. The interval [r,b] will be treated. Sup-
posé that £ ¢ [r,b) and that the result is valid for every small & > 0 over
[, to — h] but not over [r, to + k]. It is clear that o 2 7 + & By the
above assumption, for any small ¢ > 0, there exists a 5. > 0 such that

: lpulto — € — @olto — €)] < e ' (4.3)
for |u — po| < & -
Let H denote the region of (¢,x) space

t—tlSy lz—elo—MSy+Mt—-to+v 44)

where v is small enough so that H C D. Any solution of z' = f(t,z,u)
starting on ¢ = fo — y with initial value zo, |20 — @o(to — ¥)| = ¥, will
remain in H as ¢ increases. Thus all solutions can be continued to
ot .

By choosing ¢ = v in (4.3), it follows that for [u — u¢| < &, the solutions
¢x can all be continued to ¢, + ¢. Thus over [r, &, -+ ¢] these solutions are
in D so that the argument that ¢, — o which has been given for |t — 7| £
«, and is based on (4.2), also applies over r, {o + ¢]. Thus the assumption
about the existence of {; < bisfalse, The caset, = b is treated in similar
faghion on £, — vy S ¢ < ;. A similar argument applies to the left of r
and therefore the theorem is valid over [a,b].

The same result is true if f satisfies a Carathéodory type of hypothesis.

Theorem 4.2. The conclusion of Theorem 4.1 remains valid if the
Kypothesis f ¢ C in D, is replaced by the aseumptions that on D, f i3 measur-
able in ¢ for each fixed p and z; f 8 conlinuous in z for each fixed ¢t and u; for
fized t, f is conlinuous in (z,u) at p = po; and

|7 (t,zm)| < m()
where m is Lebesgue integrable over [a,b).

The proof is similar to that of Theorem 4.1 with the usual changes
necessitated by the Carathéodory type of hypothesis and is left as an
exercise for the reader.

Theorem 4.3. Let the hypothesis of Theorem 4.1 be satisfied. Then
there exists a & > O such that for any fixed (o,n,u) salisfying

fo—r+ln— &+ s —nl<s
all solutions ¢ = ¢(l,o,m,p) of
' = flt,zu)  zle) =19
‘exist over [a,b). Moreover, as (o,9,8) — (v,£,10),
¢(t:°';'7:“) - ‘Po(t) = ¢(t)T)E,“°)
uniformly over (a,b].
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Proof. A proof can be constructed with minor changes from that of
Theorem 4.1.

An important result in connection with the continuity of solutions with
respect to initial conditions is contained in the following theorem.

Theorem 4.4. Let 7o, 71(r0 < 71) be fized real numbers, and (ro,£0) a
Jized point in the (n + 1)-dimensional (t,x) space. Denole by Uy the set of
all points Pq: (70,£) such that

E— &l <bo (b > 0)
Suppose that through each point ({,z) in the region
45 Tn=t=7 |z — & < b (0 < by =)

there exists a unique solulion of

(E) ' = f(tx)

f being continuous on V. Lel ¢ = o(l,;o,E) be the solution of (E) pass-
ing through Poe Ug. Let b be sufficiently large so that (t,¢(i70,8)) eV
for |E — kol < bo, 7o St = 71. Lel U, denote the set of all points Pi:
(r1,0(r1,70,E)), where (v¢,£) e Us. Then the mapping T which assigns to
each point Pye Uy the point Py e U, 1s a topological mapping of Ug onto U,.

Proof. Because of the uniqueness assumption, it is clear that T is
one-to-one. By the definition of U, for every P,e U,, there exists a
point Pye Uy such that TPy = Py, and thus 7' is onto. The function ¢
defined on [§ — &| < by by

\z’(E) = 'P(Tl:fﬂss)

(with 71,7y fixed) is a continuous function of ¢ on [&§ — &| < b, by the
uniqueness of ¢. Thus 7 is a continuous mapping. Applying the same
continuity argument at v,, one gets the continuity of the inverse mapping
T which assigns to each P, e U, the point Pye Uo. This completes the
proof. '

PROBLEMS

1. Let @ be a nonnegative measurable function of fon 0 < ¢ < a and let F be a non-

a
negative measurable function of ron 0 <r <a. Let ﬁ] ®(t)dt < « and for any

5 >0, fn“ dr/F(r) = =. If for small ¢t and [z, |f(t,z) — f(,3)| = ®(OF(z — Z]|),

show that if f satisfies the hypothesis of Theorem 1.1 then the solution ¢ of (II) satisfy-
ing ¢(0) = 0 is unique.

Hint: If y(t,r) = @(OF(r), then p’'(t) = ¢(t,p(t)), p(0) = 0, implies that p(¢) = 0.

2. Show that Theorem 2.1 is valid with ¢({,r) = r/L

8. LetfeC (n = 1) on therectangle 0 = ¢ = a, x| = b, where a,b > 0, and assume
ftz) < f(tzs) if 7 S 74, and f(1,0) =2 0 for 0 S ¢ = a. Prove that the successive
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approximations (3.1) converge to a solution of #’ = f(t,z), z(0) = 0, on
0 £t S a=min (ab/M)

where M = max |f| on the rectangle.

4. Let fe C on the (n 4 1)-dimensional (4,z) region 0 St < a (a > 0), x| < o,
and suppose ¢ is a solution of the system z’ = f(¢,z) starting at (0,¢) and existing for
0 =t < <a. Provethateither o(f — 0) exists as a finite limit, in which case  can
be extended as a solution beyond 7, or else |o(t)| — « ast— { — 0.

6. Let f be as in the previous problem, and suppose further that there exists a con-
tinuous function ¢ on 0 = r < = such that |[f(t,z)| < ¢(|z|), and for some 5, 0 <

§ < oo, j; I dr/¢(r) = =. Prove that every solution ¢ of the system (E) such that

©(0) = F exists on the whole interval 0 = ¢ = a.
Hint: Use the result of the previous problem.



CHAPTER 3

LINEAR DIFFERENTIAL EQUATIONS

1. Preliminary Definitions and Notations

If A is a matrix of complex numbers (a;) with n rows and n columns,
define the norm, |A|, of A by

n
Al = ), lad] (L1)
=1
In case z is an n-dimensional vector, represented as a matrix of n rows
and one column, then the vector magnitude as defined in See. 5, Chap. 1,
coincides with the norm of = as defined by (1.1). It is easily seen that
the norm satisfies the following properties:

@) |A + B| < || + |B]|
(i) |AB| = |A] |B]
(iii) |Az| = |A] ||

where A and B are matrices, and z is an n-dimensional vector.

The distance between two matrices A and B is defined by |A — B|, and
this distance satisfies the usual properties of a metric.

‘The zero matrix will be denoted by 0, and the unit matrix by E. If
there is danger of confusion concerning the dimension, these n-by-n
matrices will be denoted by 0, and E,, respectively. Note that [0, = 0,
and |E,| = n, and not 1.

The complez conjugate matrix of A = (as), denoted by A, is defined
by A = (@), where a;; is the complex conjugate of a;. The transposed
matrizt of A, denoted by A%, is defined by A® = (a;). The conjugale
transposed matrix of A is A* = A*. Note that |A* = 4] = |4] = |4].
Also (AB)* = B*A*. The determinant of A is denoted by det A.

If det A = 0, then A is said to be singular. A nonsingular matrix A
possesses an inverse (or reciprocal), A~', which satisfies

AA'= A"'A=E
The polynomial in X of degree n, det (\E — A), is called the characteristic
polynomial of A, and its roots are the characteristic roots of A. 1f these

{ The notation A’ will be reserved for differentiation, when A is a matrix function.
62
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roots are denoted by N\, ¢ = 1, . . . , n, then clearly

n

det OE — A) = [l 0 = N)

i=1

Two n-by-n complex matrices A and B are said to be similar if there
exists a nonsingular n-by-n complex matrix P’ such that

B = PAP!

If A and B are similar, then they have the same characteristic polynomial,
for

det (\E — B) = det (PO\E — A)P™")
= det P - det \E — A) - det P!
det (\E — A)

i

Il

In particular, the coeflicients of the powers of X in det (\E — A) are
invariant under similarity transformations. Two of the most impor-
tant invariants are det A and tr A, the determinant and trace of 4,
respectively.

The following fundamental result concerning the canonical form of a
matrix is assumed.

Theorem 1.1. Every complex n-by-n matriz A 1s similar to a matriz
of the form

T A0 80 08 eir=if)
) O
G D0 iteaes e
where J o is a diagonal matriz with diagonal Ny, Ns, . . ., Ag, and
p T S (e (1 (1IN ) S ) 0
0 le—l' 1 (i e ahe 0 0
Ji = ; ; A e & a y (1:':1!--‘1')
o 0 oo Noh
0 0 00 0  Aews
TheM,j =1, . . . ,q - s, are the characleristic roots of A, which need not

all be distinet. If \; is a simple root, then it occurs in Jo, and therefore, if
all the roots are distinct, A is similar to the diagonal matriz

P50 MM BLROHEEOSN b
J-:O)\:O"‘O

ﬂ 0‘ 0"'kl
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From Theorem 1.1 it follows immediately that

det A = [[ ™ trA=z)\,v

where the product and sum are taken over all roots, each root counted a
number of times equal to its multiplicity. The J; are of the form

Je = NeriEirt 2

where J; has r; rows and columns, and

[CERSY 80 F 0 JSETRORORI § R0
0 Qiel 0 s 0050
Z: =
o000 ---01
0 0 0 0 --- 00

An equally valid form of J; is Ngy:Er, + vZ;, where v is any constant not
zero. Incidentally, the matrix Z} has its diagonal of 1s moved one ele-
ment to the right from that of Z; and all other elements zero. From this
it follows that ZF~!is a matrix which contains all zeros except for a single
1 in the first row and last column. Hence Z} is the zero matrix, and Z; is
nilpotent.

If {A,} is a sequence of matrices, this sequence is said to be convergent
if, given any ¢ > 0, there exists a positive integer N such that

A, — 4, < e whenever p,qg > N,

The sequence {A,} is said to have a limit matrix A if, given any ¢ > 0,
there exists a positive integer N, such that

A, — Al <€ whenever m > N,

Clearly {A,.} is convergent if and only if each of the component sequences
is, and this implies that {A4.} is convergent if and only if there exists a
limit matrix to which it tends.

The infinite series

An

me=1

is said to be convergent if the sequence of partial sums is convergent, and
the sum of the series is defined to be the limit matrix of the partial sums.
A particular series which is of great importance for the study of linear
equations is the one defining the exponential of a matrix A, namely,
et = E+ 2 a (1.2)
ml

pi=]
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where A™ represents the mth power of A. The series defining e is con-
vergent for all A, since for any positive integers p,q,
ptaq Ptq
Am |A|m™
\ RS | A"
m! m!
m=p-+1 m=p+1

and the latter represents the Cauchy difference for the series el which is
convergent for all finite |[A[.  Also

et = (n — 1) + el (1.3)

For matrices, it is not in general true that e**? = e4e?, but this relation
is valid if A and B commute. Tt will be seen in Theorem 4.1 that

det et = e+ (1.4)

and hence e4 is nonsingular for all A. Since —A commutes with A4,
e = (c.l)—l_

Eyery matrix A satisfies its characteristic equation det (NE — A) = 0,
and this remark is sometimes useful for the actual calculation of e*. As

a simple example, if
D il
5 (0 o)

then det Z\E — A) = \? = 0, and therefore A? =0, which implies
A== 0,m > 1. Hence,

1 1
e*‘=E+A—(0 l)

If B is a nonsingular matrix, then it will be shown that there exists a
matrix A (called a logarithm of B) such that et = B. Indeed, if B is in
the canonical form J of Theorem 1.1, it is evident that A can be taken as

Ag 10080 v 0
0. A 0 == 0
0 0 () IR

provided that eti = J;, j = 0,1, . . ., 8 It isalso easily verified that
a suitable A, is given by

lﬂg)\i 0 0
ol i SO
0 05k ols oo Topide
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Clearly

Ji = Newi (En 17 AL ZJ)

a+i

where Z; is the nilpotent matrix defined after Theorem 1.1. Since large
powers of Z; all vanish, the series

(= 1) (o) 2]
k=1

has only a finite number of terms, and is thus convergent. Define

log (a + 5 z,-)
to be this series, which is, of course, a polynomial in A\;};Z;. Thus
FONSZ) = exp [log (Er, + ;5]
is a polynomial in A\ };Z;. On the other hand, from

143 = ¢los 0+=)
1 1 1 3
=1+(3:—-§I’+"')+§—I(x—-—2-x’+°")+"‘ lz| <1,

it follows that, when the right member is rearranged, the coefficients of
z*, k = 2, are all zero, while the coefficient of z is 1. This implies the
same result for ¥, and proves that

exp [log (E., + N\gi;Z )] = E,, + NghiZ

From this follows readily that a suitable A;, 7 = 1, . . . , s, is given by
1
A; = (log MH)EH + log (Efi T T Zﬁ)
at+i

Using the fact that for any matrix M,
(PMP-Y)t = PM*P-! (B'= 15200 %)

one readily sees that
Pe“P-1 = ghur

From this it follows that the result just sketched for a canonical matrix B
is valid for any nonsingular matrix B. Indeed,if J = ¢*and B = PJP-!,
then B = e, where A = PAP-'. Naturally A is not unique. For

example,
€4 = pdgivitE — gdtiviky (k=0 %1, +£2, ...
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If @ is an n-by-n matrix of functions defined on a real ¢ interval I (the
functions may be real or complex), @ is said to be continuous, differenti-
able, or analytic on [ if every element of ® is continuous, differentiable,
or analytic on I. If & is differentiable on 7, then ®’ denotes the matrix
of derivatives. Note that if ®, ¥ are differentiable

(@T) = V¥ + DV (1.5)

and that &I = ¥4’ in general.
If @'(f) exists and @ is nonsingular at ¢, then &' is differentiable at Z.
This follows from the fact that
o

oy
g det ®

where & = (&;), and @; is the cofactor of ¢, in ®. From (1.5) and the
fact that ®b—! = E, it follows that

(@) = —d 1P/ det & 0 (1.6)

Recall that in Sec. 7, Chap. 1, it was shown that, if A is a continuous
matrix on a ¢ interval I, and ® satisfies ®'(¢) = A (t)®(t) on I, then

(det @) = (tr A)(det @) (1.7)
or, in integral form,

det 3(t) = det ®(x) exp [ tr A(®)ds (e D) (1.8)

2. Linear Homogeneous Systems

Let A be a continuous n-by-n matrix of complex functions on a real
t interval I. The linear system

(LH) o = Az (te])

is called a linear homogeneous system of the nth order. It was shown in
Sec. 5, Chap. 1, that given any £, and 7 ¢ /, there exists a unique solution
¢ of (LH) on I such that ¢(r) = &1 In the following it will be assumed
at least (*) holds for A.

The zero vector function on I is always a solution of (LH). This will
be called the trivial solution of (LH). If a solution of (LH) is zero for
any 7 ¢ I, then, by uniqueness, it must be zero throughout I.

t More generally, if each element of A is measurable on I and
*) lA®| s m@® (e D

where m is Lebesgue integrabile on I, then an application of Prob. 4, Chap. 1, vields
the existence and uniqueness of a solution ¢ of (LH) satisfying ¢(r) = £ See also
Prob. 1 at the end of this chapter.
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Theorem 2.1. The set of all solutions of (LH) on I form an n-dimen-
stonal vector space over the complex field.t

Proof. If @1, ¢2 are solutions of (LH) and ¢y, ¢, are two complex num-
bers, then ¢ip; + cap: is again a solution of (LH). This shows that the
solutions form a vector space.

To show that the space is n-dimensional, a set of  linearly independent
solutions ¢y, . . . , ¢, must be exhibited such that every other solution
of (LH) is a linear combination (with complex coefficients) of these
¢i. Let&,i=1, ... n,belinearlyindependent pointsin the n-dimen-
sional z space. For example, each £ may be taken as a vector with all
components zero except the sth, which is 1. Then, by the existence
theorem, if 7 ¢ I, there exist n solutions ¢;, ¢ = 1, . . . , n, of (LH) such
that ¢i(r) = &. It will be shown that these solutions satisfy the required
conditions.

If the ¢; are linearly dependent, there must exist n complex numbers
¢;, not all zero, such that

Y ael® =0 (tel)
i=1

This implies that
D, ceir) = ) ciki =0
i=1 i=1

and this contradicts the assumption that the £; are linearly independent.
This shows that the ¢; are linearly independent.
If ¢ is any solution of (LH) on I, such that ¢(r) = &, then for some

(unique) constants ¢;
n

£ = 2 ik

i=1
for the £ form a basis for the n-dimensional z space. Hence the function

Cis
i=1
is a solution of (LLH) on 7 which assumes the value £ at 7, and, by unique-
ness, this must be ¢, that is,

1 A reader unfamiliar with the terminology of the statement of the above theorem
will find that by reading the proof he can readily restate the result in more familiar
terms. See P. R. Halmos, Finile dimensional vector spaces, Princeton, for a discus-
sion of vector spaces.
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n
Pl Z Cipi
R L
Therefore every solution ¢ is a (unique) linear combination of the g;, and
this proves Theorem 2.1.
If @1, . . ., ¢n are a set of n linearly independent solutions of (LH),
they are said to form a basis or a fundamental set of solutions of (LLH).
If ® is a matrix whose n columns are 2 linearly independent solutions of
(LH) on I, then @ is called a fundamental matriz for (LH). Evidently
¢ gatisfies the matrix equation

() = AQBE)  (tel) (2.1)

By the matriz differential equation associated with (LH) on I is meant
the problem of finding an n-by-n matrix ® whose columns are solutions of
(LH) on I. This problem is denoted by

X' =AMX (te ) (2.2)

The matrix ® is called a solution of (2.2) on I, and & satisfies (2.1). From
Theorem 2.1 it is now evident that a complete knowledge of the set of
solutions of (LH) can be obtained if one knows a fundamental matriz for
(LH), which is, of course, a particular solution of (2.2).

Theorem 2.2. A necessary and sufficient condition that a solution
mairiz ¢ of (2.2) be a fundamental matrix is that det ®(¢) > 0, for t e I.

Remark: If det ®(¢) # 0, for some te I, then by (1.8) det ®(¢) < 0 for
alltel. '

Proof of Theorem 2.2, Let ® be a fundamental matrix with column
veetors ¢;, and suppose ¢ is any nontrivial solution of (LH). By Theorem

2.1, there exist unicque constants ¢y, . . . , ¢, not all zero, such that
n
= Z Cip;
J=1

or, in terms of P,
¢ = dc

where ¢ is the column vector with componentse,, . . . ,e,. This relation
is a system of n linear equations in the n unknownse, . . . , ¢, at any
7 e I, and has a unique solution for any choice of ¢(r). Hence det ®(r) =
0, and by the remark above, det ®(t) # 0 for any te I. Notice that this
proves that the column vectors of a fundamental matrix are linearly
independent at every te I.

Conversely, let ® be a solution matrix of (2.2) and suppose det ®(t) > 0
for te I. Thus the column vectors of ® are linearly independent at
every te I.
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A matrix of column vectors may have a determinant identically zero
on an interval 7, although the, vectors may be linearly independent. For
example, let ® be defined as

A
o(l) =
o= %)

for any real interval 7. The content of Theorem 2.2 is that this cannot
occur for vectors which are solutions of (LH).

Theorem 2.3. If ® is a fundamental matriz of (LH) and C a (complex)
constant nonsingular matriz, then ®C is again a fundamental mairiz of
(LH). Every fundamental matriz of (LH) 1s of this lype for some non-
singular C.

Proof. From (2.1), if ¢ is a fundamental matrix,

(U)C = AQBWC  (te )
or
(@C)! = A(C)

and hence ®C is a solution matrix of (2.2). Since
det (#C) = (det ®)(det C) # 0

&(C is a fundamental matrix.

Conversely, if ®, and &, are fundamental matrices, then ®; = 4,C for
some constant nonsingular matrix €. To show this, let &7'd, = ¥,
Then &, = ®; ¥, Differentiating this equation gives @, = &V -+ $1¥.
Using (2.1), this gives A®, = &1’ + A®¢ ¥ or &7 = 0. Thus ¥’ =0
and therefore ¥ = (' is a constant. It is nonsingular since &, and ®, are.

Remarks: If it is only required that ®; be a solution, then C' may be
gingular. d

Observe that, if @ is a fundamental matrix of (LH) and C'is a constant
nonsingular matrix, then C® is not in general a fundamental matrix.

Two different homogeneous systems cannot have the same funda-
mental matrix, for in (LH), A(t) = ®'(t)® (). Hence ¢ determines A
uniquely, although the converse is not true.

Adjoint Systems. If @ is a fundamental matrix for (LH), then

(@) = - P! = —d14
or, taking the conjugate transpose,
(@*1) = — A*Pp*-1
Therefore ®*-! is a fundamental matrix for the system
2= —A¥({)z (te ) (2.3)
The systen. (2.3) is called the adjoint to (LH), and the matrix equation
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X' =—-4*)X {te I) (2.4)

is called the adjoint to (2.2). The relationship is symmetric, for (LH)
and (2.2) are the adjoints to (2.3) and (2.4), respectively.

Theorem 2.4. If & 8 a fundamental matriz for (LH), then ¥ 18 a funda-
menial matriz for its adjoint (2.3) if and only if

v*¢ = C (2.5)
where C is a constant nonsingular matriz.

Pioof. If @ is a fundamental matrix for (LH) and ¥ one for (2.3),
then since &*~! is a particular fundamental matrix for (2.3),

¥ = &*'D
for some constant nonsingular matrix D (Theorem 2.3). Hence

| v*¢ = D*
and let C = D*.

Conversely, if ® is a fundamental matrix for (LH) and satisfies (2.5),
one has ¥* = Cd-! or ¥ = &*-1C*, and hence, by '}I‘heorem 23, Visa
fundamental matrix of the adjoint system (2.3).

If A = —A*, then since #*~! is a fundamental matrix of (2.3) it is
also one for (LH). Hence by Theorem 2.3 & = &*~! C, or
o*® = C (2.6)

. where C is a constant nonsingular matrix. Equation (2.6) implies, in
_ particular, that the Euclidean length of any solution vector ¢ of (LH) is
constant. .

Reduction of the Order of a Homogeneous System. X m (0 <m < n)
~ linearly independent solutions of (LH) are known, it is possible to reduce
the order of (LH) by m, and hence a linear system of order n — m only
need be solved.

Suppose ¢y, . . . , ¢m are m linearly independent vectors which are
solutions of (LH) on an interval I. Let ¢; have components ¢;; (2 = 1,

.,n). Then the rank of the n-by-m matrix with elements ¢;; G=1,
.,m;j=1,...,m)at every te I is m, because of the linear inde-

pendence of its columns. This means that for each te I there is an
m-by-m determinant in this matrix which does not vanish there. Pick
any o e I and assume for the moment that the determinant of the matrix
&, whose elements are ¢;; =1, ... ,m;j=1,...,m)is not zero
at t,. Then, by the continuity of det &, in its elements ¢;;, and the con-
tinuity of the functions ¢;; near {, one has that det ®.(¢) > 0 for ¢in some
interval I containing f,. Let I be any such interval; the reduction
process will be outlined for I.  (The idea behind the processis a modifica~
tion of the variation of constants.)
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Let the matrix U have the vectors ¢y, . . . , ¢, for its first 7 columns
and the vectors en.y, . . . , e, foritslastn — m columns, where ¢; is the
column vector with all elements 0 except for the jth which is 1. Clearly
U is nonsingular on I. The substitution

z=Uy (2.7)
is made in (LH). [Note that 2 = ¢; (j =1, ..., m) in (2.7 corre-
spondstoy = ¢ (j = 1, . . . ,m). Thus the substitution (2.7) may be
expected to yield a system in y which will have ¢;, j = 1, . . . , m, as

solutions.] The use of (2.7) in (LH) gives

Uy+ Uy = AUy
Writing this out gives

m m m n :.

z @il + Z ol = Z Z aerlyi + Z Aixlk G=1,.7.,m)
j=1 j=1 J=1lk=1 k=m-+1

m m m b n

z oy + i + Z ouY; = E Qaxorili + Z il

Jm=1 =1 J=1k=1 k=m+1

G=m4+1,...,n)

Expressing the fact that the vectors ¢; with components ¢;; are solutions
of (LH),

n

oi=) aapy  G=1...,mj=1,...,m)
k=1

there results

i@ijy;= E @il f=1...,m

- =m+1

)ml k ni (28)
v+ E\a.;y:-: E i G=m41,...,n)

J=1 k=m+1

Since det ®,, 7 0 on I, the first set of equations in (2.8) may be solved
fory; (=1, ...,m)interms of g, an, and s bk =m + 1, . . . 1),
and these values of y; (j =1, ..., n) may then be put into the
second set of formulas of (2.8). This gives a set of first-order equations
satisfied by the y; (1 = m + 1, . . ., n) of the type

n

vi= ) ba (G=m+1,...,m (2.9)
k=m+1

that is, a linear system of order n — m.
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Working backwards, suppose ¥ms1, . . . , ¥a [¥; having components y,;
(1, = m+ 1, . .., n)]is a fundamental set on I for the system (2.9).
Let ¥,_,, denote the matrix with elements ¥ (i j =m 4+ 1, . .., n).
Clearly det ¥,_,.(t) ¢ 0 on I. For each j=m+1, ..., n, let ¢;
(i=1,...,m) besolved for by quadratures (that is, by integration)
from the relations

m n
’
Z iV, = E airrp
i=1 k=m-1
U= 18 A D =m-tl; ..i,Mn

(2.10)

Let ¢y, (p =m -+ 1, ..., n) denote the vectors having components
Yip G =1; . .. ,n), and let

¥ =& (sl anaism)

Since ¥, p =1, .. ., n, satisfy (2.9) and the first set of equations of
(2.8), they must also satisfy the second set of equations of (2.8),
and therefore ¢, p = 1, . . ., n, are solutions of (2.8). Thus, if now
¥ is the matrix with columns ¢, p = 1, . . . , n, and if

¢ =U¥

then ® is a matrix solution of (LH) on I. U is nonsingular. Since
det ¥ = det ¥,_, on I, it follows that @ is nonsingular on I and hence a
fundamental solution of (LH) on I.

The above procedure is summarized in the following theorem.

Theorem 2.6. Let ¢y, . . ., ¢m (m < n) be m known linearly inde-
pendent solutions of (LH) with ¢; (7 =1, . . ., m) having components
ey (=1, ...,n). Assume the delerminant of the matriz with elements
pi (1,5 =1, ..., m) is not zero on some subinterval I of I. Then the
construction of a set of n linearly independent solutions of (LH) on I can be
reduced lo the solution of a linear system (2.9) of order n — m, plus quadra-
tures (2.10), using the substitution (2.7).

The restriction that the matrix ®,, should be nonsingular on an interval
will now be removed. It is clear that the n-by-m matrix with elements

pij =1,...,n;j=1, ..., m), has rank m because of the inde-
pendence of the solutions ¢;, 7 = 1, . . . , m. Thus, at any { = t,, there
is a nonsingular m-by-m matrix obtained by taking m rows, 73, . . . | im,

of the n-by-m matrix. By continuity, this matrix is nonsingular over
some interval T,

It is well known, and readily proved, that there exists a constantnon-
singular matrix 7" which has the property that, applied to any vector z
with n components, 7'z has the ¢;, . . . , 7., components of z as its first m
components. Setting & = 7'z, the equation (LH) is replaced by a similar
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equation where now the original restriction holds. Since z = T- 1%, the
result for z follows from that for &

3. Nonhomogeneous Linear Systems

Suppose A is an n-by-n matrix of continuous functions on a real ¢
interval 7, and b is a continuous vector on I which is not identically zero
there. The system

(NH) ' = A(t)x + b(t) (t=1)

is called a nonhomogeneous linear system of the nth order. If the elements
of A4 and b are continuous, or are just measurable and majorized by
integrable functions on I, there exists a unique solution ¢ of (NH) for
which

o(r) = &

where re ] and |§| < . The continuous case follows from Sec. 5,
Chap. 1, and the more general case from Prob. 1. That the solution is
unique also follows from the fact that if there were two such solutions
@1, ¢2, then their difference ¢ = ¢; — @2 would be a solution of (LH) on
I and would satisfy ¢(7) = 0. But, by the uniqueness theorem for
(LH), ¢ must be the zero function on I, and thus ¢, = ¢..

If a fundamental matrix ® for (LH) is known, then there is a simple
method for calculating a solution of (NH).

Theorem 3.1. If & s a fundamental matriz for (LH), then the function
¢ defined by

o) = 2@ [ b ds (e l) @3.0)
18 that solution of (NH) satisfying
() =0  (rel)

Proof. The proof follows at once by direct verification.

An intuitive idea of how one obtains the expression (3.1) is given in the
following: Tor any constant vector ¢, the function ®c¢ is a solution of
(LH). The method here consists of considering ¢ as a funetion, or
parameter, on [ and determining what ¢ must be (if it exists) in order
that the function ¢ = ®¢ be a solution of the nonhomogeneous system
(NH).

Suppose ¢ = &c is a solution of (NH). Then

¢ = dc 4 e’ = Ade P’ = Ap + P’ = Ap + b
the latter following from (NH). Therefore ®¢’ = b, or

¢ = d1h
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This equation is always solvable and one gets

c(t) = f ‘o' s)b(s)ds  (te D)

asg that function for which ¢(r) = 0. Thus ¢ is given by (3.1).
It is a simple matter to see, under the assumptions of Theorem 3.1, that
the solution ¢ of (NH) satisfying

o(r) =t (rel, | < =)
is given by

[
o) = er(®) + 20 [(#@b(e)ds (e D) (32
where ¢y is that solution of (LH) on I satisfying

en(r) = &

The formula (3.1) [or (3.2)] is called the variation-of-constants formula for
(NH).
Note that (3.1) may be written as

o(t) = ¥*1(2) f T*(s)b(s)ds (el

where ¥ is a fundamental matrix of the adjoint system
= —A*zx

to (LH). Another form of (3.1) is
o) = () [ W*()b(s) ds

but here the restriction ¥*({)®(f) = E is needed.

4. Linear Systems with Constant Coefficients

Let A be an n-by-n constant matrix, and consider the corresponding
homogeneous system

g’ = Az (4.1)

If n = 1, then it is trivial that (4.1) has as a solution ¢**, and the solution
assuming the value £ at 7 (|7| < «, |§] < =) is given by ‘4L It
turns out that the form of the solution is the same when z, ¢ are vectors
of arbitrary finite dimension n, and A is an n-by-n matrix.

Theorem 4.1. A fundamental malriz ® for (4.1) is given by

@) =t (Y] < ) (4.2)
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and the solution ¢ of (4.1) satisfying

o) =& (lfl < =, ¢ < =)
is given by
p(t) = e M4t (Ji] < =) (4.3)

Proof. Since e*+494 = gedit it follows easily from the definition of
derivative that
(e*4) = Aet4

Thus the ® defined by ®(¢) = ¢'* is a solution. Since ®(0) = E, it follows
from (1.8) that det ®(f) = ¢4, Thus & is a fundamental matrix.
The formula (4.3) is obvious.

Remark: Notice that exp (f A(s) ds) need not be a solution of
z' = A(f)r unless A(¢) and f A(s) ds commute. They do commute if

A is constant or if A(¢) is diagonal.

It is of interest to investigate the form of the fundamental matrix
(4.2). Let J be the canonical form of 4, as given by Theorem 1.1, and
suppose P is a nonsingular constant matrix such that

AP = PJ
Then
gtd = ptPIP-t — Potl p—1 (4'4)
and J has the form
S HOFSH0TT te )
LT I P (4.5)
0 0 0 oS . Jc
where J is a diagonal matrix with diagonal Ay, . . . , \,, and
ATl Ny SRS () SR ()
0f Ay 1 ¢ 0 0
Ji = . . byl e . G=1...,8 (4.6)
0 0 0 Mg 1
0 0 0 0 Agwr
It follows that
e’ 0 0
gy
sty bl Doy 1 0 %))
0 0 et

and it is an easy calculation to see that
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cﬂu 0 N 0

A v s e
G, .8
O 0 v 3 p_ﬂ{
Since J; = AyiEri + Zi, €' = e™siet%, Thus
ti tr.-—:
Libbia) Whis e
y tr.—'.‘
eti = cb\‘,,. 0 1 t L -(?‘____—2)! (4.9}
QRSO (age 1
where J; is an r-by-r; matrix (n = ¢+ + - - - 4+ ). Therefore, if

the canonical form (4.5), (4.6), of A is known, a fundamental matrix e
of (4.1) is given explicitly by (4.4), where ¢ can be calculated from (4.7),
(4.8), and (4.9).

Another fundamental matrix of (4.1) is given by ¥, where

¥(l) = e4P = Pe¥ (4.10)
Suppose P has as columns the vectors py, . . . , po. The columns of
¥, which are ¢y, . . ., ¥n, make up a set of n linearly independent

solutions of (4.1), and from (4.10), and the form of J, one obtains
l.h(t) = e‘hplr 'l[’?(t) = '3“‘1’2; T T :‘lﬁ'w(t) = en'pw
Ver1(t) = eMevpgyy
Vera(t) = €™ (tpos1 + Poy2)

..................................

Il

.................................

Ya(t) = e (fr.——l)' Duzrid 1 1 Pdpharich Pn)
Since AP = PJ, py, . . . , pn satisfy the relations

Api=Npy, . . ., AP = Nepy
APgir = Nep1Pes
APgr2 = Pei1 + Agp1Pot2

.................

APeir, = Petri—1t + Met1Potr,
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Apn—r.-i—l — lq-}v:}':’u—r.-{-!.
‘4‘pﬂ—ff+2 = Pa—r41 -+ )\e-papn—r,-}vz

...................

Apn . pn—l + Xq-[—:pn

The solutions y; are expressed in terms of the independent vectors p,,
P2, . . ., Pain the preceding set of equations. (For another derivation,
see Prob. 13.) y
The variation-of-constants formula (3.1) applied to the nonhomo-
geneous system 1
' = Az 4 b(l) (te ) (4.11)

where A is a constant matrix, gives for the solution ¢ of (4.11) satisfying
¢(r) = 0, 7 eI, the following formula

o(t) = et f: e~*"4b(s) ds = f e—4p(s) ds (tel)

The solution ¢ of (4.11) satisfying ¢(r) = £, where 7¢I, |t < o, is
given by

'P(f-) = e(l—'r).{E - f: e*—24b(s) ds (t el)

b. Linear Systems with Periodic Coefficients

Consider the linear homogeneous system
=AMz (—o <i<+») (5.1)
where A is a matrix of complex continuous functions, and
At + w) = A(t) (5.2

for some constant w = 0. In this case, (5.1) is called a periodic system,
and w a period of A. The fundamental result for such systems concerns
the representation of a fundamental matrix as the product of a periodic
matrix with the same period w and a solution matrix for a system with
constant coefficients.

Theorem 6.1. If ® is a fundamental matriz for (5.1), then so is ¥,
where

V() = &t + w) (—w << w)

Corresponding lo every such &, there exists a periodic nonsingular matriz P
with period w, and a constani matriz B such that

() = P(t)e* (5.3)
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Proof. Since
(1) = A()D() (—» <t< +4x)
one has
Vi) =¥(t+w) =A(t+ )Pl +o) = AQ¥(O) (= <I< +=)

using (5.2). Thus ¥ is a solution matrix of (5.1), and it is a fundamental
matrix since det ¥(f) = det ®(t + w) # 0 for — 0 <t < 4o,
Therefore there exists a constant nonsingular matrix €' such that

Bt + w) = ®(OC (5.4)
and, moreover, there exists a constant matrix R such that
C = ¢ut (5.5)
as shown in Sec. 1. From (5.4) and (5.5) one obtains
DL+ w)= B(t)eur (5.6)
Let P be defined by
P(t) = ®d(t)e® (5.7)

Then, using (5.6),
P(! + w) — ']‘(l 4 w)c"{"“‘”‘ = (I)(z)cuﬂc—(l-i-uﬂt — ‘[,(t)c-ui — P(l)

Since ®(f) and e~'* are nonsingular for — = < { < =, sois P(f), and this
completes the proof.

The significance of Theorem 5.1 is that the determination of a funda-
mental matrix ® over an interval of length w, for example, 0 < ¢ < w,
leads at once to the determination of ® over (— = ,=). Thus ('in (5.5)
is given by ®~1(0)®(w) and from this, R is given by (log C)/w. P(t) is
then determined by (5.7) over (0,w). However, since P({) has w as a
period, it is determined at once over (—=,»). Then & is determined
over (— =,=) by (5.3). h

If &, is any other fundamental matrix for (5.1), where (5.2) holds, then

b = (I)lT
for some constant nonsingular matrix 7. From (5.6) one has

Dl + w)T = $, (1) Te="
or
Byt + w) = by(t)(TesrT-1) (5.8)

Thus, by (5.8), every fundamental matrix @, determines a matrix
Tes*T-1, which is similar to ¢*¥, Conversely, if 7' is any constant non-
singular matrix, there exists a fundamental matrix &, of (5.1) such that
(5.8) holds. Consequently, although @ does not determine R uniquely,
the set of all fundamental matrices of (5.1), and hence A, determines
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uniquely all quantities associated with R which are invariant under a
similarity transformation. In particular, the set of all fundamental
matrices of (5.1) determine a unique setl of characteristic roots, namely,
those of ' = ¢“*. Denote these roots by Ay, . . . , As, and call them the
multipliers assoctated with A. None of the multipliers vanishes for
I\ = det e® # 0, The characteristic roots of £ are called characteristic
cxponents. .

It is of interest to see the explicit form that a set of n linearly inde-
pendent solution vectors of (5.1) assumes. Let T be a constant non-
singular matrix such that T-'RT = J has the canonical form given in
Theorem 1.1, and put &, = &7, P, = PT. Then from (5.3) one has

Pi(l) = Pa(t)e’  Pa(t + w) = Pa() (5.9)

Therefore, if the characteristic roots of R are p;, then e will have the form

v 0 -0 0
Rerals D edieiells ()
0 0 =0 g
where
elm 0 ) 0
e 0 em .+ 0
0 0 = g
and
fiee el
(Fo="1)I
etli = ptpasi Ol Wi .(_rt-.—;’)‘ @=1...,8,q+ Zri=n)
oo --- 1

Clearly \; = e“rt, and therefore, while the p; are not uniquely deter-
mined, their real parts are. TFrom (5.9) it follows that the columns
@1, « .« . 5 ¢a of @y, which form a set of n linearly independent solutions
of (5.1), are of the form

e1(t) = epi(t)
ea(t) = epa(l)
wo(t) = e'ip (1)
Per1(t) = e'*1pgia(l)
ar2(t) = erer(tpga(t) + Paia(D)) (5.10)

.....................................
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Potni(t) = efent ((Tltrl__—[lﬂ Peit®) + * » +ipein(t) + Pa+r:(5))

......................................

.....................................

tr.--l

pﬂ(t) = glress mpn—r.-i-l(t) + LA + ipn—-‘.l(t) + ?)n(t))

In the above, p1, . . . , p. are the periodic column vectors of P,.
From (5.10) it is clear that if Rp; < 0, or equivalently || < 1, then

@i(t) > 0 (t— + =)
exponentially fast.
From (5.6), ®#(w) = ®(0)e*?, and hence the \; may be thought of as the
characteristic roots of the matrix @ 1(0)®(w). In particular, if #(0) = E,
then e“® = ®(w), and the \; are the characteristic roots of ®(w). Since

det @l =2Di -« b %, = exp L‘“ tr A() ds (5.11)

it follows that, if n — 1 of the A\; are known, the remaining one is deter-
mined from (5.11).

A real nonsingular matrix €' need not have a real logarithm; that is,
there need exist no real B such that e = . Indeed, the matrix of one
row and column € = —1 is an example. However, it is the case that if
(' is real then there is always a real matrix B such that C? = e”; see
Prob. 41.

The above used in the proof of Theorem 5.1 yields readily that if A(¢)
is real in (5.1) and of period w, then corresponding to any real fundamental
matriz ¢ there exists a real matriz P of period 2w and a real constant matriz
R such that

P(t) = P(De®

6. Linear Differential Equations of Order n

Suppose ao, ay, . . ., a, are n + | continuous (complex) functions
defined on a real ¢ interval I, and let L, denote the formal differential
operator

dn—l

dan
L“=and'_¢f"+a={_t'i"_:—’+ ity

that is, if ¢ is any function possessing n derivatives on I,
Lag = ag™ + ayg™" + - -+ +axg

Further suppose ao(t) #¢ 0 for any te I. Then the equation
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Lz =0 (te )

[written out as ao(®)x™ + a;()ax®D 4 + + + + anH)xz =0, (tc )] is
defined to be the differential equation
a‘(t) =) (ol ot s ant) . _

+ +au(£):c~0 (te )
and is called a linear homogeneous differential equation of order n. The
system associated with this equation (see Sec. 6, Chap. 1) is then the
vector equation

) +

& = A(t)¢ (6.1)
where
0 1 0 0 35 UL 0
0 0 1 0 siee 0
s ; , - ’ e 3 6.2)
0 0 0 0 T L 1
— @y —0n—1 —n-2 —n—3 S __a!.
g 1) ap ay E

Since (6.1) is a linear system with a continuous coefficient matrix 4 on I,
there exists a unique vector solution ¢ of (6.1) on I satisfying

¢(r) =
where 7¢I, || < ©. Thus ¢y, the first component of @, satisfies
ei(r) = &, tP;(T) = £ . & v o (1) = &n (6.3)

Since ¢, is a solution of L.z = 0, it is the solution satisfying (6.3).
The remainder of the results so far obtained for linear systems will be
interpreted for L,z = 0.

If o1, . . ., enare n solutions of L,z = 0, then the matrix
@1 e1 "' pn
! ' Sl r
e | EAMRTRHIEE s R (6.4)
q!;‘t‘lﬂ—'.l.! q95;1—1} St ‘lall"n--l)

is a solution matrix for (6.1). The determinant of this matrix is called
the Wronskian of L.x = 0 with respect to ¢,, . . . , ¢, and is denoted
by W(es, . . ., ¢n). Itisafunction of t on 7 for fixed ¢y, . . . , @u;its
value at ¢ is denoted by W(ey, . . ., ¢.)(t). From the fact that for a
linear system, such as (6.1),

det ®(t) = det ®(7) c:;p f: tr A(s) ds (teD)

one obtains, noting from (6.2) that tr A = —a,/a,,



Sec. 6] LINEAR DIFFERENTIAL EQUATIONS 83

]V('Pll o siwiiwiiy ‘Pn)(t) = IV(‘PM s J‘Pu)(r) expﬁ = Z:‘%; ds (te 1)

(6.5)

Theorem 6.1. A necessary and sufficient condition that n solutions
@1, « « -, ¢n 0f Lax = 0 on an interval I be linearly independent there is
that

W(ey, - . ., en)(t) #0 (te I)

Every solution of Lyz = 0 is a linear combination with complez coefficients
of any n linearly independent solutions.

Proof. 1If ¢y, . . ., ©. are linearly dependent on I, there exist con-
stants ¢;, . . . , ¢» not all zero such that

n
Cigi = 0
i=1

This implies that,

k) = e Lo
'_Zlc.-@,. [00) 2 il 4 gl SR

and hence the vectors @ with components ¢;, 5 . . ., o™ (=1,

., n) are linearly dependent on I. Conversely, if the vectors ¢; are
linearly dependent, so are the solutions ¢y, . . . , ¢s of L,z = 0. From
Theorem 2.2 a necessary and sufficient condition that the vectors @,

., ¢» be linearly independent is that det ®(¢) # 0 on I, where @ is the
matrix (6.4). But this is just the condition W(ey, . . . , @a)(f) 50 on
I. By (6.5),if W(ey, . . . ,0n)(r) #£0forsomerel, W(ey, . . . ,ea)(l)
#0foranyiel,

Since every solution vector of (6.1) and (6.2) is a linear combination
of n linearly independent vector solutions, every solution of L,z = 0 is a
linear combination of n linearly independent solutions of L,z = 0. This
proves the theorem.

Because of the properties exhibited in Theorem 6.1, a set of n linearly
independent solutions of L.z = 0 is called a basis, or a fundamental set,
for Lyz = 0.

Theorem 6.2, Suppose ¢y, . . ., ¢, are n funeclions which possess
conlinuous nth-order derivatives on a real t inlerval I and W(ey, . . . ,en) ()
#= 0 on I. Then there exists a unique homogeneous differential equation
of order n (with coefficient of =™ one) for which these functions form a
Jundamental set, namely

4 Ilr(zl Py -« - - l‘p") —
St ) ov 1 et i (6.6),
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" Nore: The Wronskian W(z, ‘o1, ..’ , ¢a)'is the determinant of the
matrix w1th the first row consisting of the elements Z, o1 . - ., ¢nand
the ‘other réws being the derivatives-of the first row up to'the order n for
‘the last row.

- Proof of Theorem 6.2. Cleartly W(p;, o1, . . ., ¢n) =0, (i = l
sty n), for two columns of this: determinant are equal: “An’expansion
‘of the numerator; W(z; ¢1, . . . ,'@n), of (6.8) by the first column shows
that (6.6) is a differential equation of order n, and the coefficient of z(»
in W(z, ¢1, . . . , @n)is just (—1)*W(ey, . . .., @a), which proves the
coefficient of =™ in (6.6) is one. Since W(ey, . . . , ¢a) # 0, it follows
“from Théorem 6.1 that ¢, . . . , ¢« form a fundamental set for (6.6).

The_ uniqueness of (6.6) follows from ‘the fact that the corresponding
vectors ¢; with components ¢;, «p., R determme the coefficient
matrix (6.2) of the associated system'(6.1) uniquely. 'Since there is a
one-to-one correspondence between linear equations of order n and linear
systems of the type (6.1), (6.2), the proof is complete.

If one or more solutions of L,z = 0 are known, then using the asso-
ciated system (6.1) it follows that a reduction of order can be effected.
A more direct procedure is suggested by the following process, which is
the variation of constants adapted to L.z = 0. Let Lap; = 0, and set
T = yor Then L.z = 0 yields a linear difierential equation of the nth
order in y which has y = 1 as a solution, since o, is a solution of L.z = 0.
Thus the coeﬁiclent of 7 in the new’ equatlon must vanish. Considered
‘d8 an equationin 4 ='y’; it is of order n' = 1. " If @y is mdependent of ¢,
:and Lags = 0 then (¢2/ 1)’ i5°a golution of the (n — 1)st-order equation
in u, wluch can, by a repet,utlon of the above, be reduced to an equatlon
of order'n = 2, ete.’
i+ Adjoint Equations. ‘Intimately connected with the' formal operator L,
is another linear operator L} of order n, called the adgomt of L,., glven by

that is, 'if gis any functlon on'T whlch is such that a.g (k = 0 1 ',‘ n)
.hasn-kdenvatlvesonI t.hen JT, P

Ly = (~10Ga)® + (=D @g)D + - -+
The equation

L’*:c = 0 (t e I)
[wntten out as

(= 1)"(6o(t):c) 4 ( -1)%1(@, (z) >0 + - " haz=0
called the adjoint equalion to L.z = Q on [, is deﬁned to be the problem
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of finding a function ¢ (a solution) on I such thatdwe (k = 0,1, . . . , n)
has n — k derivatives on I and satisfying

(_l)n(an(p)ln) + (_l)u—l(dl’p)ha—-l) 4 e + Gnp = 0
on [.
If ax = C** on I and ¢ is a solution of L}z = 0 with n derivatives on I,
then by using the product rule of differentiation

Lip = (=1)dop® + + = = 0

and by dividing by (—1)"d, one sees ¢ is a solution of a differential equa-
tion of order n of the type considered previously.

Consider the special case of an L, where ag = 1. For the system (6.1),
(6.2) associated with the equation

Laz=z"+4az"" 4 -+ 1 az=0 (6.7)
the adjoint system is
£ = —A*()¢ (tel) (6.8)
where, from (6.2),
0 0 0 a.
= ]. 0 0 du—]
_A* — (.} '_.1 0 Ap—2 (6.9)
. . . .. 0 fiz
0 0 --- =1 @

In terms of components, (6.8) and (6.9) give
L, = GoZn TL = —Ti_1 + Anrs1Tn k=2 ...,n (610
Thusif ¢1, . . . , ¢a is a solution of (6.10) for which ¢ and
(@n—ri100n) 0

exist, one obtains, by differentiating the kth relation in (6.10) (k — 1)

(n)

times and solving for ¢,”,
en’ — (@en)D + -+ o 4 (=1)"(dnga) = 0
Therefore ¢, satisfies the equation
Liz = (1)@ 4 (—1)~'@z)*0 + +++ +dx =0

which is just the adjoint equation to (6.7). '

The importance of L} is due to an interesting relation connecting L,
and L}, which is indispensable for the study of boundary-value problems
(see Chaps. 7-12).



86 ORDINARY DIFFERENTIAL EQUATIONS [CrAP. 3

Theorem 6.3 (Lagrange Identity). In L, supposea,eCr*on I (k = 0,

L, ...,n). If upv are any two (complex) functions on I possessing n
derivatives there, then
Lu— uliv = [w]’ (’-= %) (6.11)
where [wv] s a form in (u, ¥, ..., uV) and (v, o/, ..., v00=D)
given by
n
=) ) (~)uB(@nad)? (6.12)
mwmljthmm—1 .
S0k 20

Proof. Using the product rule for differentiation,
fum = (-—1)"‘5‘“’”1& + (u(m—l]ﬁ — =25 + CE + (_l)n—luﬂ(m—n}’

form = 0,1, ... ,n Thus one obtains

n

Anmt™ + Dau
=1

2

iLau =

I
| e L

(Ap_m?)u™ + Ta,u
1

m

]

2 (= 1)"(an-md)"™ u + Danu
m=1

+ Y (=D () |
meml jk=m—1
7 20,k20
proving the result.
Corollary (Green’s Formula). If the ax in L, and w,v are the same as

in Theorem 6.3, then for any by, tae I,

ﬁ “® @Lau — ul7v) dt = [w)(ts) — [uv](ts) (6.13)

where [uv](t) is the value at t of [uv].

Proof. Integrate the Lagrange identity (6.11) from ¢, to fa.

If ¢ is a known solution of Liz = 0 on I, the solution of the equation
L.z = 0 is reduced by (6.11) to finding a function ¢ on I satisfying an
equation of order n — 1, namely,

n
(—1)iz®(an_mp)? = constant

mwljtkmm—1
J20kz0
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The Nonhomogeneous Linear Equation of Order n. On a real ¢ interval
I, suppose ap # 0, ai, . . . , @y, and b are continuous functions, and
consider the equation

L.z = ap(t)z™ + a,()z'" + « + + 4 a.(t)z = b(l) (tel)

which is defined to be the same as

a.(!) ax(t) _ b(®)

#® + 20 ) > = @D)

in—1 + T
This is called (in case b = 0) a nonhomogeneous linear equation of order n.
The system associated with this equation (see Chap. 1, Sec. 6) is given by

= A2 + b@t) (tel) (6.14)

where A is the matrix (6.2), and b is the column vector with all elements
zero except the last which is b/a,. Thus the system (6.14) associated
with L,z = b(¢) is a linear nonhomogeneous system, and the existence
and uniqueness of solutions of (6.14) can be interpreted, as usual, as
existence and uniqueness results for L.z = b({).

It is of interest to determine the explicit form that the variation-of-
constants formula (3.2) takes for the special system (6.14). Only the
first component ¢ = ¥, of any vector solution { of (6.14) is of interest,
since this component is a solution of the equation L.,z = b(?).

Theorem 6.4. If ¢y, . . ., ¢n 18 a fundamenial set for the homogeneous
equalion
Ly =M™ 4 a2z 4 + « + gz =0 (areC on I)

then the solution  of the nonhomogeneous equation

Lax = b(1) (beCon I)
salisfying
¥ =£ (el |f| < =)
18 given by

WO = 0@ + ), ) [ e e @) 4 (615)
k=1

where ¥y, 18 the solution of L,z = 0 for which ¥i(r) = £ and Wi(ey, . . . ) ©n)
18 the delerminant obtained from W(ey, . . . , ¢n) by replacing the kth
column by (0, . . ., 0, 1).

Proof. By (3.1) the first component ¢ = y; of the vector solution ¢
of (6.14) for which §(r) = 0 is given by

W) = [ yint,)b(s) ds
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where vix(t,5) is the element in the first row and nth column of the matrix
$(¢)@'(s). Recall that the element in the ith row and jth column of
®(2) is @i, and det B() = W(ey, . . . , ¢a)(). Now the element in
the ith row and nth column of ! is given by
@in
Wy, . . ., n)

where @, is the cofactor of ¢{*~" in ®. Therefore,

n

Wie ot o) @it 8= z O Wales - . &5 en@
k=1
where Wi(e1, . . . , ¢a)(s) is defined as in the statement of the theorem.

Thus the solution ¢ of L,z = b(t) satisfying ¢(r) = 0 is given by

Wiles, . . . ,son)(-‘?)]
i 2 w0 [ (i@ o
and obviously (6.15) gives the solution satisfying y/(r) = £ if gulr) = £
The Linear Equation of Order n with Constant Coefficients. Consider the

case where in L, the functions ag = 1, ay, . . . , a, are all constants.
Then I may be assumed to be the entire real ¢ axis. In this case,
Loz =™ 4+ gz 4+ -+ + 4+ a.,x =0 (6.16)
has as its associated system
£ = Ad (6.17)
where A is the constant matrix
0 1 0 siameinn ()
0 0 1 sl 0
A= ; . : T 0 : (6.18)
0 0 0 T v 1
—Qp  —Gn1 —0n-x ' —

As is to be expected, a fundamental set of solutions of (6.1€) can be
exhibited, and the precise form of these functions depends on the char-
acteristic polynomial f(\) = det (\E — A) of the constant masrix 4 in
(6.18).

Lemma. The characteristic polynomial for A in (6.18) is given by

fO) =A"+adt 4 - ¢ - +an (6.19)

Note that f(\) can be obtained from L.z by formally changing z®
to Ak
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N otz

Proof. The proof proceeds by mductlon Forn = l A = —ay, and
hence det (\E; — A) = \ + a,, and therefore (6.19) is true for n= 1
Assume the result forn — 1. Thenexpand .- .- - Lo

A =1 0 PP T '0 A
0 A =1 Tee e 0 o RIS
det (\E, — A) = . e .
0 0 0 7 .- A -1
lan @, Gt @ ANta

by the first column, and notice that the coefficient of  is a determinant
of order n — 1 equal to det \E._, — A,), where

0 1 0 s 0

0 0 1 ces 0
A, = . . . ceel iy e e
o o 0 e Loy
~0pel —Cpn-2 =—Gp-3 °*° :—TA - :

Hence \det (\Eay — A)) = A +aA"14 ¢« - 4 a,\." The only
other nonzero element in the first column is a,, and the contribution to
det \E — A) due to a. i8 a, itself, since the cofactor of a, is'1.  Hence
det OE — A) = A"+ a2+ - -+ 4 @u) + @, which was to be
proved. _
 Theorem 6.5. Let A, . . . 5 N, be the distinet roots of the characteristic
equation ‘ P eade
FO) =N tapt4 -+ 4@, =0 SR
and suppose \; has mulliplicity m; i =1, . . . ,’8). Thena fundamental
set for (6.16) is given by the n funclions

P (k=01 ...,m—1;i=1...,8) (620)'

Proof. The proof can be based on the corresponding result for linear
systems with constant coefficients. However, a direct proof will be given
here, which depends upon the fact that, if A; is-a reot of f(A\) = 0 with
multiplicity m;, then it is also a root of the equations f'(\) =0, . . .,
f==D(A\) = 0. Now clearly =

La(e?) = f(A)e?
and in general

L) = Lo (T o) = (o) = 2 UOIe)
[ FOQ) + kv 4 252 ( 1) e\ + -
+.f(k)¢‘] &
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From this it is now obvious that, for any fixed 7,
La(te?) = 0 k=01, ...,m=1)

thus proving that the functions (6.20) are solutions of L.z = 0.
Suppose the functions (6.20) are not linearly independent. Then there
exist constants cx not all zero such that

a8 mi—1
z C.‘kt"{-’m— =0
g=]1 k=0
or

2 P(t)e™ =0
g=]1

where the P;(f) are polynomials and ¢ < s is chosen so that P, $ 0 while
P,yi(t) = 0,7 = 1. Divide the above expression by e and differentiate
enough times so that the polynomial P,(¢) becomes zero. Note that the
degrees and the nonidentically vanishing nature of the polynomials
multiplying e® ¢ > 1, do not change under this operation. Thus

there results
) Qe =0
i=2

where Q;(¢) has the same degree as Pi(t) for ¢ = 2. Repeating the pro-
cedure results finally in a polynomial F(#) of a degree equal to that of
P,(¢) such that F(f) = 0 for all . This is impossible, since a polynomial
can vanish only at isolated points. Thus the solutions are linearly
independent.

7. Linear Equations with Analytic Coefficients

Suppose A is an n-by-n matrix and b an n-dimensional vector defined
and analytic on a simply connected domain D of the z plane, and let
zoe D. Using the method of successive approximations, it is readily
shown that the linear system

W = A(2)w + b(z) (7.1)
has a unique analytic solution ¢ on D such that

Pz0) = 0
where 6] < .,
Indeed, let 2y ¢ D and let C be an arc from z, to z; which lies in D, has a
continuously turning tangent, and is of length L. Let the arc length
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along € starting from z, be denoted by s. Let the constant K be large
enough so that |A(z)| < K and |b(z)| < K forzon C. Let ¢o(z) = & and

@) = 0 + [ A@@u@) dr + [ b@) dr

where the integration is carried out along C so that @, is defined on C.
It follows readily that

0w = @] S Ko(l0] + 1) Z < KL o) + 1)

7 i 1

Clearly these appraisals are valid at all points z in D which ean be
reached from zy on an arc of length L on which |4(z)| and [b(z)| are
bounded by K. Thisimplies that they are valid in any fixed closed region
R contained in D. Since each @, is analytic in R, it follows from the uni-
form convergence of @, that the limiting function ¢ is also analytic in R.
It also follows that

8@ = o+ [[A@e@ e + [ b@) de

This proves the result in R and therefore in D,
Moreover, all the theorems proved in Secs. 2 and 3, being essentially
algebraic in nature, are valid for the system (7.1).

Correspondingly, if a,, . . . , a,, b are n analytic functions on D, then
the linear equation of order n,
w™ + a, (2w 4 -+ - 4 a.(2)w = b(z) (7.2)
has a unique analytic solution ¢ on D satisfying
w(ze) = wy, W(20) = w2, . . . , W V(20) = wp
where w), ws, . . . , w, are any given n complex numbers. In addition,

all the results of Sec. 6 carry over to the case (7.2) in an obvious way.

8. Asymptotic Behavior of the Solutions of Certain Linear Systems

If the coefficients of a linear system of differential equations tend to
constants as { — o it is sometimes possible to characterize the behavior
of the solutions. In the analytic case, this problem is treated in Seecs.
4 and 5, Chap. 5.

A real variable problem will be considered here. Simpler cases are
treated in Probs. 20 and 35 at the end of this chapter. First consider the
example

' +[14+v@) +r®))z =0

where v is a real-valued differentiable function with lim v(t) = 0, r is
— -
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integrable, and

[Sbold< e [T @< e
for some f5. [Actually it is suflicient for » to be of bounded variation on
(to,2).] With no real restriction, t, will be taken as zero in what follows.

A consequence of the theorem stated below is that the equation has two
solutions.¢ and ¢ such that

o(t) — exp [i ﬁ: V1 + v(7) dr] — 0
¢'(t) — iexp i j;‘ VIFu@) dr] -0
as { — o, and y has similar behavior with 7 above replaced by —i.

This result indicates that r does not affect the gross asymptotic behavior
at all. However, the case

u(t) =t 0D<a<l)

shows that v enters in an essential way. The result shows that, if the
equation were treated as though r(f) were zero and 1 + »({) constant, the
result would be accurate to within & term which is o(1) as ¢ — <.

In what follows, a linear system

2= (4 4+ V@R + RO (8.1)

will be considered, which includes the above example as a specizl case.

Theorem 8.1. Let A be a constant matriz with characteristic roots
g, 7 =1, ... ,n, all of which are distinct. Let the matriz V be differen-
tiable and satisfy

LS vl < = (8.2)
and let V(t) — 0 as t — . Lel the malriz R be integrable and let
[ 1RO dt < = (8.3)

Let the roots of det (A 4 V() — AE) = 0 bedenoted by M(1),7 =1, . . .,
n. Clearly, by reordering the p; if necessary, lim )\;(t) = p;. For a given

k, let A
Dii(t) = RO(@) — M)

Suppose all j, 1 = j = n, fall inlo one of two classes I, and I,, where
jely if E Dyi(r) dr — © ast— and

i (8‘4)
, Du@)dr > —K (t:zt, 2 0)
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jeli i ['Dy@dr <K  (azhz0) (8.5)

where k 13 fired and where K is a constant. Let px be a characteristic vector
of A associated with py, so that

Apr = ppe (8.6)
Then there is a solution ¢ of (8.1) and a to, 0 = o < =, such that
¢
lim eu(0) exp [ = [ () dr] = ®.7)

= =

If the hypothesis is satisfied for all k, 1 = k = n, and if ® is the matrix
with columns ¢, @2, . . . , ¢n, then @ is a fundamental matrix because
det ®(t) 5 0 for large t since the p; are independent.

Suppose first that A + V(¢) is in diagonal form A(t) for ¢t = &, where
to is chosen so that

e 7R dr <3 (8.8)
Let ¥(t) be the diagonal matrix
w(t) = exp | [ AG) ds)

so that
U = AW (8.9)

Let ex denote the column vector with all components zero except the kth,
which is 1, and let ¥, be the vector defined by

Yi(t) = ¥(0)er = exp [ﬁ: Me(s) ds] ek
With % fixed and I, and I, defined as in (8.4) and (8.5), let
W o= + ¥,

where the diagonal matrices ¥, and ¥, contain those elements of ¥ asso-
ciated with columns of index j belonging to I, and I, respectively. Then

) = AY; G=12) (8.10)
Consider next the equation
o) = ) + [ WOV RE)e() dr
~ [T v @R dr - (8.11)
If the equation (8.11) has a solution ¢, it may be verified directly that
¢ = A+ R (8.12)

which is the form of Eq. (8.1) under consideration here.
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Let ¢°(¢) = 0 and

PO = ) + [ OY D RE)) dr
— [T Y@ ROe) - (8.13;
Then ¢!(t) = ¥+(t) and for ¢ = o
' = @ = [ exp [ [ (o) as]| (8.14)
Each element of the diagonal matrix ¥,()¥=(r) is of the form
m® =esp | [N ds|  @en

orelseis zero. Butforiy <7 = ¢

[hi(t)] = exp [— f Dy(s) dS] exp I_f IAe(s) ds]
= ef exp [f HAL(s) ds]

Thusfortg =7 = ¢
¢
[ OF @R S x| RG] exp [ [ 5ihu(s) ds |
In the same way for r = ¢,
[T O¥ O RE)| < e [RG)| exp [ — [ 9huls) ds
Using these inequalities in (8.13)

@) — O] exp [ = [ 90N ds]
s ek ([ + [7) IR Ieo) = 1@ exp [ = [ 90uls) ds ] d
Using (8.8) and (8.14), it now follows by induction that
I — @l exp [ — [ 9nus) ds] s @)
From this follows the uniform convergence of [¢/] on every finite sub-

interval of [t, ). Since each ¢/ is continuous, the limit function ¢ is
also continuous and clearly

le@] s 2 exp [ [ 9tns) as (8.15)
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Clearly ¢is a solution of (8.11). It will be shown that
. t
lim {e@ exp[ = [1 ds] — e} =0 (8.16)
This will follow by showing that as t —» o«

ep [~ [ o) ds] [ WO @ROe@ dr -0 B17)
and

exp[ = [ (o) ds] |7 0¥ @ R@e@) dr -0 (8.18)

The proof of (8.18) follows at once from (8.15) and (8.5). The proof
of (8.17) requires

lim |90 exp [~ [ ) as] =0 (8.19)

which is a consequence of (8.4). Given any ¢ > 0 it is possible to choose
t, so that

205 [ |R(r)| dr < e
Thus, denoting the left side of (8.17) by J(t),

WIS e+ exp |~ [ o) ds | @] [ [950) Ryt dr
As t — o=, it follows from (8.19) that
lim sup |J(¢)| < ¢
f— w

Since e is arbitrary, (8.17) is proved. Thus if ¢, is taken as ¢, the theorem
is proved for the case A + V(I) = A(?).
The proof of Theorem 8.1 is a consequence of the following lemma,
Lemma. Suppose A and V salisfy the requirements of Theorem 8.1.
Then there exists a matriz S(t), which as t — = lends lo a constant non-
stngular matriz 1, such that

S(A + V) = AS (8.20)

where A(t) is a diagonal malriz with diagonal elements \;(t), 7 = 1, 2,
.,n. Ast— o, N(l) — pj, where the p; are the characteristic roots of
A. Moreover, for some t,,

[7 10l de < = (8.21)

The proof of the lemma will follow that of Theorem 8.1.
Proof of Theorem 8.1. Since S(tf) — T ast— =, and T is nonsingular,
S(¢) is nonsingular for all sufficiently large {. Choose ¢, so large that not
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only (8.21) is valid but S—(¢) exists for ¢t = lo. Then, letting y = S(t)z
in (8.1),
Yy = Ay + (SRS 4 S’'S-Yy (t = t) (8.22)

Let £ = SRS-! 4 S8’S-'. Then, by (8.3) and (8.21), it follows that ||
is integrable. Thus the proof for the special case of Theorem 8.1 given
above is valid for (8.22) so that (8.22) has as a solution 6, where

tl_lfll 0:(t) exp [~ ﬁ: Ai(8) ds] = e
Thus (8.1) has as a solution S~16, = ¢,. Since, ast— «, S=3(t) — T,
it follows that
er(t) exp [—~ ﬁ: Ai(s) ds] — Pk (t— =)
where p; is the kth column of 71 Since AT-! = T-1A(=), it follows

that Apy = upi. This completes the proof of Theorem 8.1.
Proof of Lemma. There exists a constant matrix 7' such that

TAT-'=B

where B is a diagonal matrix with diagonal elements y;.
Let 8 = ST. Then it is required that

S(A + V)8~ = 87(4 + V)T-1§
S(B + TVT-H)3~ =
S(B + V)81 = A

where ¥V = TVT-'. Because V is linear in the elements of V it satisfies

L" 7)) dt <

]

and P(=) = 0.
Consider the matrix
M\t = B + V() — \E

Thus det M(\,t) = 0 has roots \;(t), where \j(®) = y;. Denote the
cofactor of the element mu()\t) of M(\t) by Ciu(At). Let

Cu(M(D),1)

| T

i=1

ga(t) = (8.23)

where the prime on the product denotes that j = 7 is omitted. Because
Cii(Ai(t),t) tends to the cofactor of the element in the kth row and ith
column of (B — w,E) as { — o, it follows that

Sa(=) = 5a
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which i8 1 if ¢ = k, and 0 otherwise. Let the matrix with elements
8a(t) be 8(t). Then clearly

S(w) = E
Also

n

Y, Cat(Dlbn + 0a() — M@l = 0 (8.24)

i=1

fork=1,...,n. Fori sk thisis true because a determinant with
two columns identical is zero. Fort = k it is true because A\;(¢) is a char-
acteristic root of B + ¥ (and thus also of 4 + V).

Thus (8.23) and (8.24) imply that

SB+ V) =48
Because S(») = E, clearly §-! exists for large ¢ and
8B + )81 =a
Finally
' L' 18] dt < (8.25)
This follows from the fact that s, is linear homogeneous in the elements
03 and A;. The former are absolutely integrable. Thus it remains only

to show that the A; are absolutely integrable. Let F(\,f) = det M()\,0).
Then since F(A(¢),t) = 0, ,

2 a0 + % i =0

Because the characterisic roots of B are distinct, (3F/a)\)(\:(¢),t) tends to
a nonvanishing limit as ¢t— . The term (aF/at)(\(t),t) is linear
homogeneous in bj; and so is absolutely integrable. Thus )} is absolutely
integrable and the proof of (8.25) is completed.

‘Clearly S = ST eatisfies the lemma.

PROBLEMS

1. Let the matrix A and the vector b be integrable functions of ¢ over [a,b]. Let

1AL s kO | s k@
where

[:k(t)dl < »

Let r ¢ [2,b] and consider the initial-value problem
z' = A(t)x 4 b(t) z(r) = ¢
Prove that there is a unique solution ¢ over [a,b] in the sense that ¢ ¢ C and
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o) = &+ fd{s)w(s} ds + fb(;)d.

on [a,b].
Hinr: Use successive approximations. Let ¢o(t) = £ and

ein® =t + [ Awwd+ [‘bwds G20

t
Prove that, if f k(s) ds = K(t), then

lei®) — eia®)] S (A + &) |KJf:)I"

so that [g;] converges uniformly over [a,b]. If the above holds for all b < b, then the
solution exists over [a,b). The case b = « is allowed. A similar situstion prevails
at the left end point. For uniqueness, use Prob. 1, Chap. 1.

2. In this problem let the norm of a matrix A be defined by

n
4] = max ) la|
i
Then |A + B| = |A| + |B| and |AB| = |A||B|. Let A be of class (' on [a,b].
Product integration of z’ = A(t)z is defined as follows:
Divide [a,b] into m parts a = t, <, < - + + <, = b. For given {, choose k so
that fy <t = fi1. Let E be the unit matrix and

Pr(t) = [E 4 (¢ — ) AU)IE + (le — i) Aley)] + - - [E 4 (6 — to) A(to)]
Clearly ®, is continuous and @, is piecewise continuous on [a,b]. If |A(f)] 5 K, then

B+ (4 — ti-)A-)| S 14 (4 — ) K < eXti-n

Thus
[ (t)] S eKlma) 5 gK(b—a)

From the definition of ®.,(f),

() = AW)IE + (t — t) A" en(t)

Show that
O, = AP + Jult)

where, given any ¢ > 0, m can be chosen large enough so that |J.(t)] < «. Thus
®,(a) = E and ¥, is an e-approximate solution of 2’ = A(f)x. Use this to prove the
existence of the fundamental solution @, ®(a) = E.

8. Let the matrix A be continuous over [0, =]. A fundamental solution & of
z' = A(t)z is uniformly bounded over [0, =] and

t
lim inf R p trd(@)ds > — o

=+ =

Prove that ®~! is uniformly bounded over [0, =]. Moreover, prove that no solution
» not identically zero can satisiy ¢() — 0 ast— e,

Hint: Use (1.8).

4. Consider the differential equation of Prob. 3 and also the differential equation
z’ = B(t)z (Be C on (0, =)), a solution of which will be designated by y. Suppose
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j;" |A() — B@®)| dt < w

Prove that ¢ is bounded over (0, ). (Ilere ¢ is a solution of z’ = Az.)
HinT: Use ¢(t) = () + ﬁré(t)@"(a)(B[a} — A(s))¢(s) ds and Prob. 1, Chap. 1.
[]

6. Show in Prob. 4 that corresponding to any given ¢ there exists a unique ¢ such
that ¢(t) — ¢(t) > Oast— e,

HinT: Use ¢(t) = ¢(t) — j: % $()P~1(s)(B(s) — A(s))y¢(s) ds.

8. If Le |B(t)| dt < «, then any =olution of ' = B(t)z not identically zero tends

to a limit different from zero as t — «=. Moreover, given any constant vector ¢, there
is & unique solution ¥ which tends to c as t — =,

HinT: Use A = 0 and ®(t) = E.

7. Let aj,a; be continuous and periodic of period w. Let ¢, and ¢4 be solutions of
2" + ai()z’ + aa(t)z = 0, where ¢,(0) =1, ¢;(0) = 0, ¢2(0) = 0, ¢;(0) = 1. Use
the system formulation and show that the multipliers (or characteristic roots) are solu-
tions of A* — AX 4 B = 0, where A = ¢,(w) + ¢3(w) and B = exp [ — .l;u a;(t) dt].

8. Let a and b be real constants and p a real continuous function of ¢ of period w.
Consider z'/ + [a + bp(t)]r = 0. Let ¢ and ¢: be defined as in Prob. 7. Let
F(a,b) = ¢1(w) + ¢a(w). Show that F is an entire function of (a,b). Show that if
—2 < F(a,b) < 2 then the multipliers are complex conjugate and of magnitude 1 and
that all solutions are uniformly bounded, together with their first derivatives, on
('_ w0, )'

Bhow that if F(a,b) > 2 or F(a,b) < —2 then no solution is uniformly bounded on
{_ LA )'

9. If in the previous problem F(a,b) = 2, show that there is at least one solution of
period w, and that if F(a,b) = —2 there is at least one solution of period 2w.

10. If in Prob. 8, a # n*for any integer n,a = 0,b = 0, and @ = x, then show that
~2 < F(a,0) < 2. From the continuity of F(a,b) show that if a » n? and b is suf-
ficiently small, all solutions are uniformly bounded on (— =, «).

11. In Prob. 8 let p(t) = cos 2t and consider the ease where a is near 4n? and b is
small. This may be formulated as

z"” + [4n? + yu + pcos 2z = 0

where v is real and u is a small real parameter. Determine the behavior of the curves
on which F(a,b) = F(4n? 4 yu, p) = 2 in the neighborhood of (4 = 0, v = 0).
Hint: In vector form, &' = (A + uP(1))%, where

P tl)) P{!)ﬂ( 0 0

—4n? —y —cos82 0
The fundamental solution ® which is E att = 0 is an entire function of x and therefore
Blt) = e 4w (0) + w0s(0) + - - -
where F(4n? + yu, ) = tr ®(m,x). Show that

t
@i(t) = L eAU=0P(s)d;_1(s) ds
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where

Bi(t) = oAt fn * ~4eP(s)o4r ds
At !l = »

By(x) = L " 41D (5)eAr ds
and therefore

tr @y(x) = fo' tr [e=4+P(s)e4?] ds

= fu‘-trP(s)ds =0
Thus
FAn? + yu, p) = 2 + p? tr ®a(x) + pd tr $3(x) + - - -

and from the behavior of tr 4;(x) obtain the result for small u.

12. Give a direct proof of (6.5) by showing that W’ = (—a, /a,) W with the use of
(6.4) and L.z = 0.

13. Let A be a constant square matrix. Give the analogue of the proof of Theorem
6.5 for the system 2’ = Az,

Hinr: Let p be a constant vector. Then

(f% A A) (@) = M(EX — A)p
Taking the partial derivative with respect to ),
(E% - A) leMp = M(EN — A)p + eMp
Using the above relations, show that if
Apr = amy and Ap: = \ip: + p

then eM'py and eMpy - tehiip, are solutions. Generalize the procedure to include the
general result of Sec. 4.

14, Let Lyz = z™ + ayz*™Y 4 - . . + a,z, where the a; aré periodic functions of
period w on (— =, ). Find the form of the solutions over (— =, =),

16. If i and ¢ are solutions of =’ + ay(t)z’ + as(t)z = 0, show that

P0FA®O — e O = coxp - [ o ds |

where ¢ is a constant. If ¢, is a solution, show that

[ 4 (] da
m(t}f exp[—f a;(u) du]m

is an independent solution on an interval where ¢, (t) # 0.
16. In z'" 4 ay(t)z' + a:(t)z = 0, make the change of variable s = F(i), where

F'(t) = exp [ - ft ai(s) ds] and let { = G(s). Show that this leads to

as(t)

% +g(s)z =0 where g(s) isWJ—,

evaluated at t = G(s).
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17. Let z = y exn (—i— / ! ay(r) dr) in the equation in line 1 of Prob. 16. Bhow
that it becomes ’

18. Let a{t) > 0 and let a e C*. Consider z"” + a*(})z = 0. Let s = F(), where
F'(¢) = a(t), and let ¢ = G(s). Then the equation becomes

dz | dz @
e E =0 a0 =g

Let z = y exp (—ﬁ- j ' ay(s) ds) and show the above becomes

:%’,’ + (1 +b(s)ly = 0

where b(s) is
’ St -z at t = G(s)

Jt b is of class C3, the above may be repeated. If a*(!) is a polynomial in ¢, note that
b(s) — 0 as ¢ = = and, indeed, that b is of bounded variation so that the result of
Theorem 8.1 applies.

19. Show that the conjugates of Waler, . . ., @a)/W(py, - . . 5 #), 88 defined in
Theorem 6.4, are solutions of the adjoint equation Liz = 0.

HinT: Use the system formulation.

20. Obtain the result (6.15) by using the ‘“‘variation-of-constants” procedure
directly. That is, assume

v=cpr+ ¢ 0+ copn

where the ¢; are to be regarded as functions of ¢ subject to the requirement

B
zc;¢;"=o ¢=01...,n-2)
i=1

where ¢} denotea the ith derivative of ¢;.
81. Letf = f(t,5) denote the solution of L.z = 0 which satisfies the initial conditions
i (s) =0,7=0,1,...,n — 2 and z*~1(3) = 1/a¢(s). Bhow that

[ 16006 ds

is a solution of Lnz = b(¢) which vanishes with its first n ~ 1 derivatives at ¢ ar.
Comparing this solution with (6.15), show that

< Wiles, . . - , ex)(8)
J5) me‘ OO Tl lae®

92. Let a; € C~~ifa,b] 8o that L} is defined. Let K({,8) = f({,3), as defined in Prob.
21 fors <tand K = Ofors >t Show that K is of class C*~%[a,b] as a function of
(s,¢) and that a*~1K /32~ has a simple discontinuity, (—1)*/6.(t), at s = ¢ but is con-
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tinuous fora S8 <t =banda <t S s <b. Alsoshow that, as a function of s, K
is & solution of L}z = 0 for s < .
Hint: Let H = H(t,s) be the solution of Ltz = 0 for { S s which satisfies
a*H

otk

att =sfork=0,...,n—2andlet " 'H/r ! = (—1)"1/do(s) at = 2. Let
H = 0fort > s. Then for any p, g ¢ C[a,b] the functions u and v defined by

w® = [[Koperas w0 = [* HEo ds

satisfy L.u = p and Liv = ¢, respectively, and u'¥(a) = v(b) =0, 7 =0, ...,
n — 1. Thus by Green’s formula,

b
_L (pp — u) dt = [uv](b) — [uv](a)

Since u?(a) = v@(b) = 0, both terms on the right above vanish and therefore

[P a0 a [[ & - Be0pe ds =0

Since this holds for all p and g, it follows that K(f,s) = H(s,t) and the differentiability
of K with reapect to s follows from that of H with respect to t.
28. If the form (6.12) is written as
n—1
[uv] = E Bju®pd
Jk=0

determine the form of the matrix B = (Bj;) and prove that it is nonsingular for all
tel. In fact, compute its determinant.

24. If u is a solution of L,z = 0 and vis a solution of L}z = 0, show that [ur](t) is a
constant [uv], independent of te 1. Let ¢y, ..., ¢s be a fundamental set for
Lax = Oon [, and let ¢y, . . ., ¢. be asimilar set for Ltz = 0 on I. Show that the
matrix S = (s;3) = (le;¥4]) is nonsingular on I, Let 87! = (s3!) be the inverse
matrix to S. Define K by

n
KG9 = ) sia®fe) 650

Sik=1

Prove that the function u given by
u(t) = f ‘K(,)be)ds  (rtel)

is a solution of L,z = b which vanishes with its first n — 1 derivatives atr. Compare
this result with Probs. 21 and 22.
26. If L, = L}, prove that [ur](t) is skew Hermitian, that is,

[uv](t) = —[vul()

What does this imply concerning the matrix B in Prob. 23, and the matrix S in
Prob. 247
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26. Let P; be polynomials and X; be constants and
m
1O = ) P
J=1
Let m = 1 and A\; # Ay, J # k, and let none of the P; vanish identically. If

o = max (RA;)
then show that
lim sup (e=**|f(®)]) > 0
=+ =

Remark: This proves the linear independence of the terms P;(t)e*s.
Hint: Case 1. Let the P; all be constants and the A; = iy;, where the u; are real
80 that

m

1O = ) cpetun

Il

lim 1 f Tt dt = c
T = T Jo L
prove that lim sup |7(¢)] > 0.
(= =

Case 2. Let Aj = iy; as above and the highest power of { in any polynomial P; be
M, Then

JO = @) + ) + - - ()

where the f; are as in Case 1 above and f; does not vanish identically. Thus, for

large ¢,
EMf(@) = fi(t) + 0 G)

and by Case 1
lim sup (&¥|f(t)]) > 0
=+ w

General Case. Here
) = e2dfi(t) + e®sfa(t) + - - - + e%ifp(t)

where oy > 03 > - - + > o, and the f; are as in Case 2 and f; is not identically zero.
Clearly,

eHf(t) = fu(t) + O(Re~w1-91)
for some constant Q. Thus, by Case 2,

lim sup |e="vf(¢)] > 0
{—» =

27. Consider the system of linear equations
w4+ Awtb 4 .. A =

where w is an m-dimensional vector and the A; are m-by-m constant matrices, Defino
a fundamental matrix for this equation and compute one such.
28. Let f be integrable and let

fl" il dt < w
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Prove that ' 4+ f(t)z = 0 has a solution ¢ such that

lim ¢(t) =1 lim ¢'(t) =0
f=+ =

— =

Prove that there is a solution y such that

]im@—l

— =

lim ¢'(f) = 1
=+ =
Hint: Use successive approximations on

O =1+ [ 7 €= 9@ee) ds

and

i =
w0 =+ [[sonerds +t [ 0w do

L -]
where a is chosen so that f t|f()] dt <% (Therelation ¢¢’ — ¢'¢ = 1can be used
i
as an alternative way to get v, once ¢ has been shown to exist.)

This problem is a special case of Prob. 35.
29. Let A be a constant matrix and R an integrable matrix such that

L' IR@)| dt < =

It is nssumed that the eanonical matrix J similar to A is diagonal, that is, J = Jo.
(In particular, this is always the case if the characteristic roots of A are distinct.)
If ; is a characteristic root of 4 and p; is the characteristic vector, so that Ap; = Ay,
then prove that

z' = Az + R(l)z
has a solution p; such that

Hm g;(t)e™it = py (Fme2h . yim)
f—» =
[In other words, for large ¢ the solution acts like the corresponding one for the case
R(t) = 0.]
Hint: Let j be fixed, let M\; = o, and let e = Y,(t) + Ya(t), where the elements

of Y1(t) are sums of terms of the form ¢*!, ®\x < o, and V:(t) contains only terms of
the form eM¢, By = 0. Then there exists 3 > 0 and constants K, and K, such that

[Y1(0)] = Kiete—dt (t=0)

[Ya)| = Kaet (t <0)
Let ¢a(t) = e'itp; and

V() = e'p; + f; Yilt — s)R(s)¥u(s) ds — j;d Ya(t — s)R(s)r(s) ds

where a is chosen so large that
(K1 + Ks) L" IRW|dt < 3
Let |[yo(t)] S Keet, t = 0. Then show
Wrn@® — o) s 55
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thus proving the existence of a limit function which is denoted by ¢; and satisfiea
lei()] S 2K
wi) = dip + [ 1 = ORO@ &5 = [ 1i — ) Res0) do
From this,
e“tor(®) = ip 5 2KeK; [ 20-0lR(e)] ds + 2KoK,s [ ® |R(s)| ds

S 2K oK et ‘L“ |R(8)) dz + 2Ko(K1 + Ks) /‘: |R(s)| ds
which gives the result as £t — .
80. Let z” 4+ (1 + r(#))z = 0, where /‘,. [r(®| dt < . Show that the equation
has solutions ¢; and ¢s such that

“lim (a(t) — ") = 0 lim (gy(t) — ie®) = 0
— @ — o .

and similarly for ¢s with ¢ replaced by —i.
81. Formulate and prove a result similar to the above for 2” — (1 + r(t))z = 0.
82, Let Lz = 2 + [a; + r(®))z®™ + - - - 4 [@s + ra(f)lz = 0, where the a
are constants and

[Thola<e ®=1...,m

Let the roots of A* + a3t 4+ + + 4 a, = Obe distinet and let A\;bearcot, Then
Luz = 0 has a solution ¢; such that

lim (o () — Met)e™ Mt = 0 *k=01...,n-1)
= @

forj=12...,n
Hint: Use Prob. 29.
83. Let 4 be continuous and periodic of period o,

= [A(M) + RO)z

where R is as in Prob. 29. Suppose the equatfon ¥’ = A(l)y has n independent solu-
tions of the form e®*p;(t), where the p; have period w. Then prove that the given
equation has n solutions ¢; such that

‘linl les@e?t —ps)) =0  (G=1,...,n)

Hint: The equation y* = A(f)y has as a fundamental solution P(t)e?!, where B is
in diagonal form, B = Jo. Clearly, P’ 4 PB = AP. Let z = P({)z. Then the
equation for z becomes

2 = Bz + P'RP:

Now Prob. 20 may be used since B is constant and this yields the required result.
Note that 4’ = Bu has as solutions e?i%;, where ¢; is the constant vector with jth row
1 and all other rows 0.

84. Formulate and prove a result similar to the above for the equation
Loz = 2™ [al(l) + ri()]zis-0 4 .‘ .o+ [a-(t) + rat)lz = O
where the a; are periodic of period w.
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86. Consider the case z' = Az 4 R(l)z, where A is constant but where now the
canonical form of 4 has, in the terminology of Theorem 1.1, submatrices Jy, k & 1, and
where 7 + 1 is the maximum number of rows in any matrix Ji, k = 1. Then no
polynomial multiplying an exponential term in any element of et is of degree higher
then r. Here the case r = 1is considered. (Forr = 0, see Prob, 20.) Assume that

]:.l’]R(!)[ di < =. Let A\; be a characteristic root of 4 and let ' = Ay have a

solution of the form
Mitthe 4 0(M-1)

where ¢ is a vector. Clearly, 0 £ k S r. Then show that z’ = Az + R({)z has a
solution ¢ such that

lim [e(t)e ™t * —¢] =0

=+ =

Hint: Let ®\; = o.  The elements of e4¢~* are sums of terms of the form &s—flgm,
0sSl+ms=r. Let
e (™) = Y,(t,s) + Ya(t)8)
where
_]Y1(1,8)| < Kqeolt-a)ph—igr—ki1 t=s=1)
[Ya(t,s)| S Kaeot=nhgr—k s=2t=1)

That is, Yi(t,s) has all terms for which the exponential factor e*s! saiisfies Ry <o
If 9r, = o, then Y, has the terms which have as factor a power of ¢ less than k. The

t
proof is analogous to the case r = 0. In the final step, L involving Y, is now written

aaj:i+}:;.

36. Formulate and prove the analogue of the above result for an equation of the
nth order, L,z = 0.

87. Formulate and prove the analogue of Prob. 35 for » = 1, for the case where A
is replaced by a periodic matrix A (¢).

38. Formulate and prove the analogue of the above result for the nth-order equation
Laz = 0.

89. Let A be the n-by-n matrix A = \E + Z, where Z = (z;) and 2z;; =1 if
Jj =1+ 1, and z;; = 0 otherwise. Show that A is similar to a matrix B = AE + +Z,
where v # 0.

Hixnt: Let P = (p;;), where pi; = 15, and prove B = P-14P,

40. Let A be a real n-by-n matrix. Prove that there exists a real nonsingular
matrix P such that A = P~'AP has the real canonical form consisting of real square
matrices Ay, . . ., Ay, By, . . ., Bn down the main diagonal. Each A; has the
form

S,‘ 0 -+ 02 O
E: 8 +-: 0, 0
A; = 0: E: LIt 03 0;

0, 0 .- E; 8

where 0: is the 2-by-2 zero matrix, E; the 2-by-2 unit matrix, and

(a1 —B;
H (8; ﬂf)
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The By have the form

A 0 e 00
T} g0 siere 010
Bi=lL0f 1 viow O 0
of 0% i 1 %

41. If C is a real nonsingular n-by-n matrix, prove there exists a real matrix A such
that e4 = C%.

Hint: Use Prob. 40, and consider the two cases A; > 0, A; < 0. Note that

log (af + AP} — tan— (&)

g

S; = exp 5
tan—! (—-{) log (a} + ﬂf)’
el



CHAPTER 4

LINEAR SYSTEMS WITH ISOLATED SINGULARITIES.
SINGULARITIES OF THE FIRST KIND

1. Introduction
In this and the next chapter the linear system

w = A(z2)w  (z complex) (1.1

will be analyzed, where 4 is an n-by-n (complex-valued) matrix with at
most an isolated singularity at some point zo, but is otherwise single-
valued and analytic near zo. If A is assumed to have only a pole at z,,
certain very specific results can be derived concerning the nature of a
solution matrix & of (1.1) near zo. However, there is one general result
which gives a qualitative picture of & even when A has an arbitrary
isolated singularity at zo.

Suppose the domain in which. A is analytic and single-valued is 0 <
|z — 20] < a, where a is some positive constant. This domain is not
simply connected, and because of this the solutions of (1.1) need not be
single-valued. For example, consider the equation w' = w/(2z), where
w is one-dimensional. Then (wz1)' = 0 or w = ¢z}, where ¢ is & con-
stant. Thus the solution, except for the case ¢ = 0, is not single-valued
for0 < |2| < a.

The problem can again be considered in a simply connected domain
if the domain is allowed to be many-sheeted. Let z — 2o = pe'%, where
p = 0 and 9is real. Let the domain D be given by

D: 0<p<a,~w <<

This domain is simply connected. The method of successive approxima-
tions, as stated in Sec. 7, Chap. 3, leads readily to the existence of an
analytic fundamental matrix in D for (1.1). .

An alternative procedure is to set z — 2o = ef Then (1.1) becomes

M B@w  BG) = tdGeo+ oD

Clearly B is analytic for { ¢ D, where D is the half plane, — e < Rf <
108
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log a. Since D is simply connected, there exists a fundamental matrix
solution ¥ analytic for ¢ ¢ D. Thus ®(z) = ¥(log (z — z¢)) is an analytic
fundamental matrix for (1.1) for ze D. Since log (z — 2p) is not single-
valued, ® need not be a single-valued function of z.
If M is any matrix of complex numbers, let the exponential matrix z*
be defined by :
2M = plloe )M (1.2)

Note that for z # 0, z¥ is nonsingular for all M, and (z¥)~! = 2z,
Theorem 1.1. If A in (1.1) is single-valued and analytic in a punctured
vieinily of zo, 0 < |z — 29| < a, then every fundamental matriz ® of (1.1)
has the form
®(z) = S(z)(z — z0)" (0 < |z — 2] <a) (1.3)

where S s single-valued, analytic on 0 < |z — 2| < a, and P is a constant
mairizx.

Proof. The proof is essentially the same as that of Theorem 5.1, Chap.
3, and will be given for the case z; = 0. Consider a fundamental matrix
@ on the infinitely sheeted domain D deseribed above. On D,

¥'(z) = A(2)3(2)
Since A (ze**) = A(z2), it follows that
®'(ze*7) = A(2)P(ze*7)
Therefore ®, where ®(z) = ®(ze?7), is a fundamental matrix, and hence
B(ze*) = ®(z)C (1.4)

where C' is a constant nonsingular matrix. Since €' is nonsingular, there
exists a constant matrix P so that

C = eniP (1.5)
(note that P is not unique), and from (1.4) it follows that
P(ze*) = d(z)e* P (1.6)
Now let S be defined by the requirement that
&(z) = S(2)z" (0 < |z| <a) (1.7)

Clearly S is analytic for 0 < |z| < a;it will be shown that it is also single-
valued there.
On the one hand, from (1.7),

®(ze?*) = S(ze?*7)(ze?)? = S(ze?*?)zPeviP (1.8}
and on the other, from (1.6),
d(ze?) = S(z)zPe?ri? (1.9)
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A comparison of (1.8) and (1.9) shows that S(ze?™) = S(z), and therefore
S is single-valued on 0 < |2| < a, thus proving the theorem.

There is a fundamental matrix in which P is replaced by its eanonical
form J, where J and P are related by PT = TJ for some nonsingular
constant matrix 7. Clearly S(z — 20)?7T is also a fundamental matrix
and is equal to STT-'(z — 20)*T = ST(z — 2z0)’. Since T is constant,
U = ST is analytic and single-valued for 0 < [z — zo| < a. The explicit
form of (z — z0)” is given by (4.7), (4.8), and (4.9), Chap. 3, if # is there
replaced by log (z — z). If the column vectors of U are denoted by w;,
J=1,..., n then the u; are analytic and single-valued for 0 <
|2 — 20| < a, and the columns ¢; of the fundamental matrix U(z — zo)’
are given, much as below (4.10), Chap. 3, by

993(3) = (3 = 20)“1:;(2) (J = 1: 2: LRI sQ)
ee11(2) = (2 — z0)M1ugy1(2)
Pe+2(2) = (2 — 20)ugs1(2) log (z — 20) + ug4s(2)]

‘Pq+rl(3) = {Z — zo)lq.u[_(:_{l’-'f(j))_l ]ogr,-l (Z = 30) ANt

+ uu-r.(Z)] (1.10)

Pon+1(2) = (2 — 2™ gyr,11(2)

Un—r+1(2 e
en(2) = (2 — zn)""[ﬁ“l()l) log'(z—20) + - - + u,.(zl]

In any case corresponding to any characteristic root \; of P, there is
always at least one vector solution

(2 — zo)*u (1.11)

where u is analytic and single-valued on 0 < |z — 2| < a.
As in Theorem 7.3, Chap. 1,

(det )’ = (det ®)(tr A) (1.12)

Since
det d(z) = det S(2) det (z — z0)” = det S(z)(z — zo)**

there follows
(det S)’ 1 _
det S +z—zotrp 4
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Integrating around a circle " with its center at zo and radius less than a,
1
m+trP—-%_-iﬁ tr A(z) dz (1.13)

where m is an integer. If det S(zo) # 0 or =, then m = 0.
From the integration of (1.12) there results

det ®(z) = det ®(z;) exp ( f " tr A(p) d;') (1.14)

2. Classification of Singularities

If A has a singularity at zo, then 2o is called a singular point for the
system

w = AR)w (2.1)

If A has at most a pole at 2z, (that is, either A is analytic at zo, or has a
pole there), but is analytic for 0 < |2 — 2| < a, a > 0, then A may be
written as

A(2) = (2 — 20 1A (2) (2.2)

where 4 is an integer, A analytic for |z — 20l < a,a > 0,and A(z) 5 0.
When 4 = —1, it is clear that A is then analytic at 2o and hence every
fundamental matrix of (2.1) is analytic for |2 — 2o| < a. Because of this,
if g £ —1, the point 2 is called an analytic point for (2.1). If u = 0, the
integer u is called (after Poincaré) the rank of the singularity. It turns
out that there is a significant difference between the cases p =0 and
# = 1. Therefore, according as u = 0, or = 1, the point z; will be
called a singular point of the first kind, or a singular point of the second
kind, for (2.1). The case where zo = » will be treated in Sec. 6.

The above classification of the systems (2.1), (2.2) is without regard
to the nature of the solution matrices of (2.1) at zo. From Sec. 1 it follows
that any fundamental matrix & of (2.1), where A has an isolated singu-
larity at zo, is of the form ®(z) = S(z)(z — 20)*, where S is single-valued,
analytic for 0 < [z — 29| < @, and P is a constant matrix. 1f S has at
most a pole at zo, then z, is called a regular singular point for (2.1); other-
wise zq is called an irregular singular point for (2.1). These names are not
very suggestive, but they have been in common usage, and therefore will
be retained here. If zo is a regular singular point for (2.1), then S may
be written as S(z) = (z — 20)7*S(z), where k is an integer, S analytic at
20, S(z0) # 0. Consequently, ® may be written as

®(z) = S(2)(z — 20)7—** (2.3)

Theorem 2.1. If z, 1s a singular point of the first kind for (2.1), then
i s a regular singular point jor (2.1).
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Proof. The proof will be given for the case 2o = 0. By hypothesis,
the system (2.1) may be written

w =z 'A(Zw (2.4)

where 4 is analytic for 0 < |2 < a,a > 0, and A(0) 0. If ¢ is any
fundamental matrix for (2.4), it must be shown that in the representation
& = Sz* (see Theorem 1.1) S is either analytic or has a pole at z = 0.
This will be done by showing that there exists a positive integer m such
that 28 is bounded in a neighborhood of z = 0, and, by a theorem due to
Riemann, this implies the result.

Let ¢ be any nonzero vector solution of (2.4), and let ¢(p,0) = ¢(pe®),
r = ||¢||. Then

0@ d
3, (P0) = g7 (ee?
and thus .
% = if i9
|| 22 (0,0 || - || 2 (orit)

| = 1y 22

But as was seen in Sec. 5, Chap. 1, with ¢ in place of p,

dp
< ==
- "3p

or
op

Therefore, if | A(2)|| < cfor|z| S o < a,

or
dp

< °—p’ ©<pSp)
J From this follows

ar cr :
—4=20 0<ps
6p+ p 2 (¢ PSS p)

and hence for0 < p = py
pir(p1,0) — pr(p,0) 2 0
If M denotes the maximum of r(p,,0) for 0 £ 6 < 2=, then

leteesl = (o) 5 SELD < 2ot

Thus, if ® is a fundamental matrix for (2.4), there exists a constant
d > 0 such that if z = pe'?

l8()| < f— 0S652r0<le =< p) 2.5)
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It remains to appraise the term z=" in the representation § = &z-7,
One has z77 = g~0unP = ~Uep)Pe—it” gqnd hence

|z—-PI é |c—(lo¢p}P| Ie“'"’] (2.6)
Now
|g—flo;p1P| é (ﬂ - 1) + e||o:pl Ipl
andif 0 < p < 1,

Ie—tlolp)!’l < (.n e 1) -+ e—(lqp)h“f =< np—l}’[ (2?)

Also, if 0 £ 0 = 2,
le="| < (n — 1) + erlel (2.8)

Therefore, from (2.6) through (2.8), there results
|z""| < 1,“:,—IJ»I((ﬂ -1+ e:rirl)

provided 0 <p <1, 0 =6 = 2r. Combining this with (2.5), one
obtains finally

pHISGz)| =d, O<p<min(l,;y), 0=0Z2rn

where d is a constant independent of z in the range 0 < || < min (1,p,).
Therefore a positive integer m can be chosen so large that 278 is bounded
in a neighborhood of z = 0, thus completing the proof of the theorem.

For systems (n > 1) the converse of Theorem 2.1 is not in general true.
For example, let n = 2, and consider the system

w = (z7%C, + Cyw

0 0
a-(z) @-()
16

This system has at z = 0 a singularity of the second kind with rank
# = 1. A fundamental matrix ¢ for this system is readily seen to be

given by
2t 1
D) = (-}r! J}z—i)

If S and R are defined by

s=li )= %)

where
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it is seen that & = Sz®, and from this representation of ® it follows that
= 0 is a regular singular point,

Tor an equation of the nth order, however, it is possible to give a neces-
sary and sufficient condition on the coefficients of the equation for a point
zo to be a regular singular point; see Sec. 5 of this chapter, especially
Theorems 5.1 and 5.2.

It may happen that, even though the coefficient matrix A in (2.1) has
a singularity at zo, every fundamental matrix is analytic at zo. In this
case, zq is referred to as an apparent singularity for (2.1). TFor example,
consider the system

w = z7'Bw

Clearly a fundamental matrix for this is given by ® = 2% = 2K, which is
analytic at z = 0. Notice that det ®(0) = 0. This is the general situa-
tion under these circumstances.

Theorem 2.2. In (2.1) let A be single-valued and analyltic in a vicinily
of zo but have a singularily at z,. If ® is any fundamental matrix. then
either ® has a singularity at zo, or det ®(z0) = 0.

Proof. Suppose @ is analytic at z, and, if possible, det ®(zy) = 0.
Then ®-! exists at zo, and is an analytic funetion of z in a neighborhood of
zo. Hence ®'d-! is analytic at zp. But &'® ! = A, and this gives a
contradiction,

3. Formal Solutions

Although Theorem 2.1 gives a qualitative idea of the solutions for a
system with a singularity of the first kind at a point zo, it does not give
explicit information concerning the matrix P — kE in (2.3), or, for that
matter, a constructive procedure for calculating the solutions. This will
be done in the present section. The case zo = 0 will be treated; the
modifications necessary for any zo will be obvious,

As an example, consider the case

1
w
0 (‘We)

wy) _

wh
This leads easily to the second-order equation wi — wi/z = 0. Using
the fact that, by (1.11), there is at least one solution of the form z7(sp +

|- O

81z + + + -), where p, so, . . . are constants, it follows that
p(p — Dsezr=2 + (p + L)psizrt + + + » — 80277 — 812P — » » 0 = 0
Thus

p(p — 1)soz»= + [(p + 1)psy — 8olz"~' + -« + =
++EBP+Ek—-Ds — aale?t™2+ - - - =0
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From this follows as one possible solution

= l = 1 —3 l = = _1—_ « *
P y 80 =1,8 n 82 (2),3r 83 = 2,3’4) . ’
1
R CE ) S
Thus the series
N o Zb+l
L, BNk + 1) ‘

satisfies wy — wy/z = 0. The question arises as to whether the series
represents an actual solution or, what is equivalent, whether the series is
convergent. In this case, it is obvious that the series does converge.
Indeed, it is always the case that a series which satisfies (2.4) formally is
an actual solution and this will be proved.

[It is not always the case that a formal series satisfying a more general
class of equations than (2.4) converges. Indeed, the divergent series

zk!z"

¥=0
is a formal solution of the second-order equation

2w+ B:z—- 1w +w=0
where w is a scalar.]
It is necessary to define the notion of a formal series in sufficient
generality to include all actual solutions of (2.4).
' By a formal (Laurent) series f will be meant an expression of the form

©
|
[

i

where the ¢.. are complex numbers, .and all but a ﬁmte number of the ca
with negalive indices are zero. 1If

is another formal series, then f is defined to be equal to g if and only if
‘ 6m = dn for all m. The sum, f + g, and product Ja, of two such formal
geries are defined by the relatxons

f+g= 2 (6 + dn)e™
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fg = z h2™ b = 2 cxd;
mat e , bl=m

Note that the sum involved in the definition of h., is a finite one, and hence
Jg is defined for all formal series f and g. (If the c_.. do not all vanish for
sufficiently large m, then the sum which defines k., would not be finite and
hence need not converge. Thus products fy would not be defined.) If
a formal series f is such that c_. = Oform = 1,2, . . . , then fis called
a formal power series. The derivative f’ of a formal series f is defined to be

. the formal series

J'= i (m + 1)¢u-+lz_"

If the f; are formal Laurent series and #; are complex numbers, the
finite sum

p= ) fur(logz) fu=0forj+F large

Jik=0

is said to be a formal logarithmic sum. Let

g= z gz (log 2)*
jk=0
also be a formal logarithmic sum. The sum p 4 ¢ and the product pq
are defined by proceeding as though the coefficients f; and g; were
scalars. The resulting coefficients. may then be combined, and yield
formal Laurent series. Thus the addition or multiplication of formal
logarithmic sums results in formal logarithmic sums.f The derivative of
a formal logarithmic sum p is defined by
P= ) Un+umfart + (b + Djeartlrilog 2 (3.0)
ik=0

which is again a formal logarithmic sum.

A formal logarithmic sum is said to be reduced if none of the differences
m — pj ¢ # j,isaninteger. Clearly a formal logarithmic sum can always
be reduced. - A reduced sum p is said to be zero if and only if all the coeffi-
cients, fi, are zero. A formal logarithmic sum is said to be zero if and
only if its reduced sum is zero. Two formal logarithmic sums are said
to be equal if their difference is zero.

t Algebraically speaking, a formal logarithmic sum is an element of the algebra over
the complex numbers generated by formal Laurent series, powers of z, and integer
powers of log 2.
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A formal logarithmic matriz L is defined to be a matrix with elements
Li(i,j =1, . . ., n)which are formal logarithmicsums. The sum, prod-
uct, and equality of two such matrices are defined to be the usual formal
matrix sum, product, and equality. The derivative L’ of such a8 matrix
ig defined to be the matrix with elements 1.

‘Now, to return to differential equations, consider a system having a
gingularity of the first kind at z = 0, :

v = A(2)w 3.2

where A(z) = z 2"An is a convergent Laurent series about z = 0.
. me—]
Clearly A can be regarded as a formal logarithmic matrix. By a formal
solution of (3.2) is meant a formal logarithmic matrix ® which satisfies
& = A% (3.2) considered as an equality for formal logarithmic matrices
Theorem 3.1. If & i3 a formal solution of (3.2), then ® iz an actual
solution, that s, all formal series occurring in  are convergent in a region
0 < [¢| < a, for some a > 0.
Proof. There exists an actual fundamental matrix & of (3.2) which, by
Theorem 2.1, has the form

$ = S

where P is in canonical form and where S is single-valued, analytic for
0 <|z] < a,and hasat mosta poleatz = 0. Hence S can be expanded
in & convergent Laurent series for 0 < l2| < @ with a finite number of
negative terms. From the structure of S and 27 it is clear that & can
be regarded as a formal logerithmic matrix also. Since $~! = P
exists for 0 < |z| < g, it is true that & may also be regarded as a formal
logarithmic matrix.
If ® is any formal solution of (3.2), then in a formal sense

(F'9) = —F'E1 + T = —F 145 + 3148 = 0

since both & and ¢ are formal solutions of (3.2). It will now be shown
that this implies that the formal logarithmic matrix $-1® is a constant
matrix. It is sufficient to prove that if P i8 any formal (scalar) loga-
rithmic sum and p’ = 0, then p is a constant.

Let p be reduced. Since p’ = 0, it follows from (3.1) that

T+ wfazt + (& + Dfjagaz! = 0 (3.3)

for all j and k. Let the highest power of log z in p with nongero coeffi-
cient be N, and suppose :

out® + Jinths 4« ¢ o fruam
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is this coefficient. For k = N, (3.3) yields

fiv + uifivzt =0 (G =10,1,: « 58

gince fix4: = 0. Using the fact that fiv is a formal Laurent series

Zenzm, there follows

(m + w)e = 0
forallmandj = 0,1, . . . ,r. This implies y; has to be an integer for
some j, for otherwise cj = 0 for all m and j =0, 1, ..., 7 which
would imply fjx = Oforally = 0,1, . . ., T, contradicting the choice of

N. There is at most one y; which is an integer, for p is reduced. Let
this be po, and assume o = 0 with no restriction. Then it follows that

fw=0 Gz
fo.v = C(u:::}
Now assume N = 1. Then from (3.3), with k = N — 1, it follows as
above that :

fin-1=0 Gz1)
fow—y + Nefzt =0

But the last relation cannot hold unless ¢gy’ = 0, again contradicting the
choice of N. Thus N = 0 and p = c¢gq, & constant.

Now &1 = C, C' a constant matrix, implies that & = ®C formally.
But since ® is an actual fundamental matrix for (3.2), $C is an actual
solution matrix for (3.2). Therefore & itself must be an actual solution
matrix for (3.2), and all formal series in ® must be convergent for 0 <
|z] < a. This proves Theorem 3.1. In particular, any formal vector
solution is an actual solution since @ can have all its columns identical.

4. Structure of Fundamental Matrices

The form of the solutions of (2.4) is known from (1.10) and Theorem
2.1. Here will be given an explicit way of finding the solutions by
recursion formulas for the coefficients of the series. A system w = A(z)w
with a singularity of the first kind at z = 0 may be written as

w = (z“R -+ i z2m A, ) w (4.1)

m=0

where R # 0, A, are constant matrices, and the power series in (4.1)
converges for |z| < a, a > 0. If all the A, =0, then the equation
reduces to the system w’ = z !Rw which has a fundamental matrix
® = 2%, as can readily be checked. The essential effect of the power-
series perturbation in (4.1) is to introduce a power-series term in the solu-
tion, that is, a fundamental matrix for (4.1) is given by ® = Pz*, where
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P is a power series and [ is a constant matrix (see Theorem 2.1). Ina
special case, R turns out to be the R appearing in (4.1).

Theorem 4.1. In the system (4.1), if R has characteristic roots which
do not differ by positive integers, then (4.1) has a fundamental matriz ® of
the form

¢ = Pzt 0 <zl <ee>0), (4.2)

where P is a power series

P@)= ) :Pn Py=E (4.3)

0

Remark: From (4.2) and (4.3) follows at once the fact that a funda-
mental matrix is also given by Sz**, where I, is the canonical form of R,
and S is a power series with S(0) nonsingular. This puts the solutions
in the form (1.10) with the u; analytic in a vicinity of z, = 0.

Proof of Theorem 4.1. 1t will be proved that (4.1) has a formal solution
of the type (4.2), (4.3), and, by Theorem 3.1, this implies that (4.2) is an
actual solution. Since Py = F, it follows that P(z2) is nonsingular on
lz] < ¢, for some ¢ > 0, and this implies ® is nonsingular for 0 < |z| < ¢,
and hence is a fundamental matrix in this region.

Let J be the canonical form of B, Then there is a nonsingular con-
stant matrix 7" such that RT = TJ. J has the form given in Theorem
1.1, Chap. 3. Let the @, be constant matrices and let

P(2) = Q@) = (Qo+2Q1 + - - )2’ (4.4)

be a formal logarithmic matrix. Substituting it in (4.1), there results

z (m + 1)2"Qmi1 = z7H(RQo — QoJ) + 2 2™(RQmi1 — QumirJ)
m=0 m=0
-+ m(.  (4.5)
mzoz (

where

E ]

Cn = zo:;kQH

For (4.5) to hold, it is necessary and sufficient for
RQo = QoJ
Qm,i.:[[ur + (m "I“‘ I)E] = RQM+1 + Cm (m = 0, 1, 2, o .) (4.6)

The first equation of (4.6) is satisfied by taking Q, = T. To satisfy the
other equations, it is convenient to treat the matrix equation column by
column. Let the columns of Q. be denoted by ¢2, 7 =1,..., n.
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The jth column of J contains two elements which may be different from
sero, \; (the jth characteristic root of R) in the jth row of this jth column
and, for j = 2, 5} in the (j — 1)st row of this jth column, where §} is
either 0 or 1. In what follows &} is always zero. Taking the jth column
of (4.6) yields

[A; + (m + Dy + 8fe97? = Rgiy, + &
(al=pls e s nm =0/, 2.5 i (4:7)

where ¢ is the jth column of C,. The equation (4.7) can be written as

(G +m + DE = Bigl, = o = o103}
(i =i sy s mo = 0818205 1 ilI(4.8)

The ¢ depend only on ¢, ! < j, k < m. Taking m = 0, the equations
(4.8) are a recursive set for ¢, j = 1,2, . . . , n, because A; + 1 is not
a characteristic root of 2. Taking m = 1, (4.8) is again a recursive set
for ¢, 4 =1, ... ,n, and by an induction it follows that the formal
solution (4.4) is determined recursively by (4.8). (It may actually be
found column by column, which means that n vector solutions may be
found which then comprise the matrix.)
Clearly ®7-! is also a solution of (4.1). This may be written as

QT-(TZT-') = Pz*

where P(z) = Q)T ' = (T +2Q:+ + - )T ' = E + zPy + - -
This completes the proof.

The general case, where R may have characteristic roots which differ
by positive integers, may be reduced to Theorem 4.1 by means of the

following lemma.

Lemma. Let the distinct characteristic rools of R (disregarding their
multiplicity) in (4.1) be py, . . . , pr (k £ n). There exists a malriz func-
tion V of z, nonsingular for z # 0, and linear in z, such thal the {rans-
formation w = Vo transforms (4.1) into a system for w with the same
properties as (4.1),

W = (r’R + i z"‘ff..‘) ) (4.9)
m =0

and where B has the characteristic roots py — 1, pa, . . . , ps.
Proof. It will be assumed to begin with that R isin canonical form and

(R 0
R‘(o R,)

where R, is a p,-by-p; matrix which contains all the terms involving the
root py in R,
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o 82 0 --- 0
P O
0 O 0 s e py

8¢ being either 0 or 1. The matrix U is defined by

_[(zE;, 0\
v (50 ) a

Clearly U is nonsingular for z » 0, and

— _ [z B, 0
U ‘= ( 0 En-m)

Then w = U implies, by (4.1),

@ = [~'U-'RU — U~V + z (U-4 Mo (4.11)

But U-'RU = R, and after some calculation one obtains

0 R

y _ (An Au)
4o = (An A
where A, is the block in A, of length and width p,, then (4.11) may be
written as (4.9), where
b= (R. — E,, An)
0 Ry

This R has the required properties. In case R is not in the assumed
form, the transformation U can be replaced by T'U, where 7 is chosen so
that T-'RT is in the desired form. Setting V = T'U, -the lemma is

FU-RU — UV’ = 2 (R‘ = En 0 )
2

proved.
Theorem 4.2. The syslem (4.1) has a fundamental matriz & of the form
® = Pt O<|z] <e,ec>0) (4.12)
where P {8 a power series
P@) = ) zPa (4.13)
me=0

and R 13 a constant mairiz with characieristic roots which do not differ by
positive inlegera.
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Proof. The proof follows directly by applying successively the above
lemma and finally Theorem 4.1. Indeed, by using sufficiently many
transformations ¥V, ¢ = 1, . . . , I, of the type determined in the above
lemma, there results finally & = V, - - - V,Pz?, where P(0) = E, and
R is derived from R in an explicit fashion. ThematrixP = V, - - - V,P
and is thus a power series.

6. The Equation of the nth Order
Consider an equation of the nth order

Y, Grn(ew™ =0 (ace) = 1) 6.1
m=0
where the a, are single-valued and analytic in a punctured v1c1mty of a
point zo. If any of the a. have a singularity at zo, then z; is called a
singular point for (5.1); otherwise 2z, is called an analytic point for (5.1),
Analogous to the definition of a singular point of the first kind for a
system of the first order, one says zo is a singular point of the first kind for
(5.1) if 2o is a singular point for (5.1) and the coefficients in (5.1) have the
form '
a(2) = (z — 20)7*bi(2) k=1...,n) (6.2)

where the b, are analytic at zo. The equation (5.1) is said to have at most
a singularity of the first kind at zoif 2o is either an analytic point or a singu-
" lar point of the first kind for (5.1).

The simplest equation of the nth order having the origin as a singu-
larity of the first kind is

w('l) + blz—lw(!l—l) + bﬂ_’w(“—” 4+ - + b,,z"'w =0

where the b; are conslants This equation is equivalent, in an obvious
way, to the equation :
znw(n) + b;z““w‘“"’ + PR + b“w =0

which is called Euler’s equation. It can be transformed into an equation
with constant coefficients by the substitution z = e, for if @(s) = w(e*),
then

Do = 0 m, = ED gy _dD
(zw )D—O‘ = d8 (3) (z’w )D—c‘ = dsg (3) d8 (8), etc.
The transformed equation

w(n) + clw(n—l) + .. + Cald = 0

with constants ¢;, has a fundamental set of solutions consisting of func-
‘tions of the form
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where 4 is a root of the characteristic equation
' Mgt - Fea=0

and k is a nonnegative integer less than the multiplicity of x. The
original Euler equation then has a fundamental set of solutions of the
form :

' z*(log 2)*
A short calculation shows that the characteristic equation which u
satisfies is given in terms of the b; by

MA=-1D - QA—n+D)+NA=1) - A=—n+2)b1+ -
+by=0
It is called the indicial equation for the Euler equation.
Another way of obtaining the solutions of the Euler equation is to
observe that if one puts N

L(w) = z00™ 4 bzt o« v« 4 by
then
' L) = f0)2
where f is the indicial polynomial

IMV=A2-1D - - QA-n2+DD+AA -1 - A —n+2)H

4+ - '+' bn
Therefore z* is a solution if f(u) = 0. If all the roots A, . . . , An of
fQ) = 0 are distinct, then 2, . . ., 2* is a fundamental set for the

Euler equation. If x is a root of double multiplicity, then

Jw)=f'(w) =0
But

L (5% z‘) = L(2 log 2) = a—‘; L)
= [f'\) + (og 2)f(N)]2

and hence z* log 2z is another solution in this case. Continuing in this
way, one can obtain a fundamental set for the Euler equation. Thisidea
can be generalized so as to yield a fundamental set for an arbitrary nth
order equation having the origin as a regular singular point; see Sec. 8.

It is to be observed that if zo is a singular point of the first kind for
(5.1), then zo may not be a singular point of the first kind for the first-
order system associated with (5.1). (See Chap. 1, Sec. 6.) Indeed, only
in the case where the coefficients a; have at most simple poles at z, will
this be true. However, there does exist a first-order system connected
with (6.1) with the property that, if 2, is a singular point of the first kind,
then 2, is a singular point of the first kind for the system.
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Suppose (5.1) has, at most, a singularity of the first kind at zo, and let
¢ be any solution of (5.1). Define the vector ¢ with components ¢,
.+ @a bY
o = (2 — 20)¥ 1p® 0 (=il iy m) (5.3)
Then clearly
(z — zo)er = (k — Do + @ain k=1, 0 ni=a)

(5.4)
(c — 2)0h = (= Don = ), bamis(em
o1
Therefore the vector ¢ is a solution of the linear system
w" = A(z)w (55)
where A has the structure
0 1 00 0
0 1 1 0 0
1 0 0 gh 5l 0
AR =(E—2)"'| O 0 0 3 0 (5.6)
0 0 0 0 <+ 1
""bn _bn—l 2 = Lt (ﬂ e 1) = bl

Obviously (z — zo) 4 is analytic at 2 and does not vanish there, and hence
the system (5.5), (5.6) has at 2o & singularity of the first kind. From
Theorem 2.1 the point zo is a regular singular point for (5.5). Since the
elements of the first row of any fundamental matrix for (5.5) constitute n
linearly independent solutions of (5.1) [see (5.3), (5.4)], it follows that
every solution of (5.1) near zois a finite linear combination of terms of the
form

(z — z0)"(log (z — 20))*p(2) (6.7

where 7 is a constant (in general, complex), k is a nonnegative integer
which cannot exceed n — 1, and p is analytic at 2o, p(zo) #~ 0.

If every solution of (5.1) can be expressed in a vicinity of zo &s a finite
linear combination of terms of the form (5.7), where r and p are as above,
then zo is said to be a regular singular point for (5.1). Thus the above
argument proves the following analogue of Theorem 2.1.

Theorem 6.1. Ij (5.1) has at most a singularity of the first kind at 2o,
then zo is a regular singular point for (5.1).

From the result of Sec. 1, it follows that in any case the solution of (5.1)
will be a finite linear combination of terms of the form (5.7) but with p
having a possible essential singularity at 2o, 50 that it is represented by a
Laurent series and not necessarily a power series. In case the » cannot
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all be chosen as analytic at zo, the equation (6.1) is said to have an srregu~
lar singularity at z,.
The converse of Theorem 5.1 also holds.

Theorem 6.2. If zo i a regular singular point for (5.1), then (5.1) has
at most a singularity of the first kind al zo. 7
Proof. Suppose the b, are related to the a in (5.1) via (5.2). Here
it is not assumed the b, are analytic a¢ zo, but it is true that the b, are
analytic and single-valued in a punctured vicinity of 2o. It is clear then
that the system (5.5), (5.6) meets the requirements of Theorem 1.1.
Since the element in the first row of any solution vector of (5.5) is a solu-
tion of (5.1), it follows from this theorem, and (1.10), (1.11), that there

exists a solution ¢; of (5.1) near z, of the form

e1(2) = (2 — 20)"p(2)

where p is single-valued and analytic in a punctured vicinity of ze. But
sgince zq is a regular singular point, this solution must be of the form

wi(z) = (z — 20)q(2) (5.8)

_where s is & constant and ¢ is analytic at zo, g(z0) # 0.
If ¢ is any solution of (5.1) near zo, and

, ¢ = o
(variation of parameters), then ¢ must be a solution of an equation

Y, conle)0® = 0 (5.9
me0
where
-1

+ (Z) o m=01...,n (510)
However, from (5.10),

Cn = Gy F Gaaey + ¢+ 0+ G1pl Y + o

which is gero, for ¢, satisfies (5.1). Hence (5.9) actually is a linear equa-
tion of order n — 1 for @’. Letting ¥ = #’, and dividing (5.9) through
by ¢, there results an equation

n—1
Y dams@u™ =0 (5.11)
mm=0
where
do =1
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=ﬂ= -— - i « o s n. Lib
dy e Gk'!' n—k+ 1)as—, ¢: + + n— k) o1
(k=1...,n—1) (5.12)

The proof will now proceed by induction. Consider the case n = 1,
v+ aZ)w =0 (5.18)

where a, is analytic and single-valued in a punctured vicinity of zo. If the
solution ¢, of the form (5.8) is substituted back into (5.13), one obtains
(z —20)a:1(2) = —8 — (2 — 20) %

Therefore (z —~ zo)a, is analytic at 2o, which proves the theorem forn = 1.

Assume the theorem for equations of ordern — 1. Since zyisa regular
singular point for (5.1), it is also one for (5.11), for (5.11) has as solutions
the functions (pi/e))’, (i =2, ..., n), where @l ..., @q AT N
linearly independent solutions of (5.1), ¢, being the function in (5.8). If
the functions (¢:/¢;)’ are dependent, then there are constants ¢; such that

n

Z ¢iei/e1)’ = 0. Integrating, there follows the linear dependence of
i=3
@iy $=1,2,...,n, which is impossible. Thus (¢;/¢;)’ are a funda-
mental set for (5.11). These derivatives (¢i/¢1)’ are, by hypothesis,
sums of expressions of the type
i L - b ﬁ_(ﬂ

(2 — 20)°(log (z — z0)) 2G)
where a is & constant, b an integer, p(z0) 5 0,  analytic at z,. By the
induction assumption, therefore, the coefficients d, in (5.11) have at 2,
at most a pole of order k. Putting k = 1 in (5.12), it follows that a, has
at most a pole of order 1. From (5.12) it follows by an induction, and
noting that /¢, has at most a pole of order k at 2o, that a, must have
at zo at most a pole of order k, thus proving the theorem. [The formula
(5.12) is valid for k = n if d, is defined as zero.]

If 2o is a regular singular point for (5.1), the actual calculation of a
fundamental set may be carried out by considering the corresponding
system (5.5), (5.6) and then applying Theorems 4.1 and 4.2, If (3.5) is
written in the form

w = [(z — zo)"'R + z (z — zo)"'A,,.] w

0

where R and the A,, are constant matrices, then R is the residue of A
at zo. If the b, in (6.2) are of the form
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: -

bi(z) = ) buem  (k=1,...,n)

then the characteristic equation of R, det (A\E — R) = 0, is calculated
to be '

AMA=-D A=+ D +bhAA -1 - A -n+2)
4+t baad +bao=0 (514)

This equation is called the tndicial equation for (5.1) relative to the regu-
lar singular point z,. As shown in Sec. 4, the nature of the roots of the
indicial equation determines the complexity of the solutions of (5.1).
If theroots Ay, . . . , Ms of (5.14) are distinct and do not differ by positive
intagers, then a set of n linearly independent solutions of (5.1) is given by

‘P‘=(z—z°)h?‘ (i=11°--1ﬂ')

where the p; can be expanded in power series convergent in a vicinity of
2o, 8nd pi(ze) = 0. In more complicated situations, where logarithms
are involved in the solutions, the actual labor can be lightened by using
methods such as that due to Frobenius, which is sketched in Sec. 8.

6. Singularities at Infinity

A function f is said to be analytic at = if it can be represented by a
power series

1@ = 2:—;

which converges for |z| sufficiently large. The function f has a gzero of
order m at « if ¢ # 0 and ¢; = 0, § < m, and has a pole of order m at =
if 2~*f is analytic at « for k¥ = m but not for ¥ < m. Thus fis analytic
at = if the function g given by g(z) = f(1/2) is analytic at 0, and has a
gzero or pole at « of a certain order if g has a zero or pole at 0 of the same
order.

In order to study the behavior of a system

v = A(z)w 6.1)

or an nth-order equation
n

Y a2 =0 (6.2)
mm=0
in the vicinity of an isolated singularity at z = «, one makes the sub-

stitution z = 1/{, and obtains a new syastem or equation, with solutions
functions of {, called the system or equation snduced by the substitution
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z = 1/t, The point z = « issaid to be a singularity of a given type for
(6.1) or (6.2), if { = 0is the same type of singularity for the corresponding
induced system or equation. For example, in the case of the system
8.1 if z=1/t, @) = w(l/t), AF) = A(1/¢), then the induced
qystem corresponding to (6.1) is

do _ —A@)

&- P

Theorem 68.1. In order that the system (6.1) have al most a singular
point of the first kind at z = o, it {s necessary and sufficient that A be ana-
lyticat 2 = = and A(») = 0.

Proof. 'The induced system (6.3) has at most a singularity of the first
kind at ¢ = 0 if and only if 4 is analytic at ¢ = 0 and 1(0) = 0. Since
A(1/¢) = A(2), this proves the theorem.

Theorem 8.2. Necessary and sufficient that z = « bea regular singular
point for the equalion

n
Anm(DW™ =0  (ao(z) =1)
mmQ

6.3)

18 that each ay be analytic at 2 = « and have a zero there of order at least k.

Proof. 1If bi(z) = z*ai(2), then the above condition on a, is equivalent
to the condition that the b, all be analytic at z = «. The differential
equation can be written as

z 2"bp_m ()™ = 0 bo(z) = 1) (6.4)
m=(

Letz = 1/¢, ®(¢) = w(1/%), baan(t) = ba—w(1/t). Then it is easily seen

by induction that .

m—1

E0rr = (—)%"0™E) + ) asudBOE)

j=1

where the a;, are constants. Therefore (6.4) is transformed by the
substitution z = 1/¢ into the equation

1)

Y eal®™ =0 (es) =1) (6.5)
m=0
where
(~D%m = (=B + ) 3 tnbay (m=01,...,n=1)
Jmmt

8.6)
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Now ¢ = 0 is a regular singular point for (6.5) if and only if every ¢ is
analytic at { = 0, and by (6.6) this is true if and only if every b, is
analytic at [ = 0. But the latter holds when and only when every b:
is analytic at z = o, which proves the theorem.

It is of interest to know the structure of A in (6.1) when the k + 1

distinct points 21,23, . . . , %, ® 8T isolated singularities of the first kind
for (6.1), and (6.1) has no further singular points. Such a system is said
to be of the Fuchsian type.

“Theorem 6.8. ' The system (6.1) has feolated singularities of the first
kind al the distinct points z,, . . . , Zi, ©, and no other singular points, if
and only if A 18 of the form

A@ = ) (&~ 2)"'Ra ©.7)
mel
where the R are constant malrices, Rn # 0 for any m.

Proof. First, it is clear that if A has the form (6.7) then (6.1) has
isolated singularities of the first kind at z), . . . , 2, and since A is
analytic at z = « and A(») = 0, it follows from Theorem 6.1 that (6.1)
has a singularity of the first kind at z = . Obviously, these are the
only singular points for (6.1) in this case.

Conversely, suppose (6.1) has isolated singularities of the first kind at
2y, « -« y 2 ©,andno other singular points. Thus 4 has a simple pole
at each of the points 23, . . . , 2} let R., denote the residue of A at za.
Then the matrix function F defined by

b
F) = A@ — ), (2 — z)"'En (8.8)
mel .

must be an entire function. Sincez = ® is also a singularity of the first
kind, by Theorem 6.1 4 is analytic at z = « and A(®») = 0. From
(6.8) it follows that F must be analytic at z = <. By Liouville’s
theorem F must be a constant, and since F() = 0, one has F(z) = 0.

This proves the theorem.
For the case k = 1, the system (6.1), where A isgiven by (6.7), becomes

w = (z— z21)"'Bw
which has a fundamental matrix & = (z — z1)®'. For the cases E#1,
the nonlocal problem is much more difficult, and will not be treated here.

The corresponding result for an equation of the nth order is given in the

following theorem. :
Theorem 6.4. In order that the equation

)

Gnm(Z)0"™ = 0 (ao(z) = 1) 6.9)
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have regular singular points at the distinct points zy, . . ., z, », and no
other singularities, it is necessary and sufficient that the coefficients ay be o/
the form

k

w@) =[] G—z)?a) (h=1,... , n) (6.10)
me=]
where by is a polynomial of degree at most h(k — 1).
Proof. From Theorems 5.1, 5.2, it follows that a necessary and suffi-
cient condition for 2y, . . . | 2 to be regular singular points for (6.9) is
k

that the a, be such that the b, = I[1 G — 2n)%as are analytic for all
me]

finite z. From Theorem 6.2, a necessary and sufficient condition that

z = = be a regular singular point is that @ = z*a, be analytic at z = o,

Therefore, z = o is a regular singular point for (6.9) if and only if

k
b =z [ (z = 2m)han (6.11)

m=1

where @, is analytic at 2z = «, and by analytic in the finite part of the
z plane. But (6.11) is equivalent to

k
2 h
by = zAG—D H ( Vi ?-) a
me=]
k
and since [[ (1 — z./2)%a, is analytic at z = «, this can hold if and only
moe= ]

if bs is & polynomial in z of degree less than or equal to h(k — 1). This
proves the theorem.

7. An Example: the Second-order Equation

The previous material will be illustrated by the case of the second-
order linear equation
w” + f2)w’ + g(z)w = 0 (7.1)
In order that the distinct points Zy . -+, 2y %, be regular singular
points for (7.1), by Theorem 6.4, it is necessary and sufficient that
k

f=1II - 2", where j is a polynomial of degree at most  — 1
, me=1

and g is as below. Hence, J may be expanded by partial fractions

k
1) = E (—z—%‘z—“) (@ constants) (7.2)
moe]
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Similarly,

3 k
ba Cen ’
o(e) = ,.Z. Tt ,.Z.;—_(" = (7.3)

‘where bo, ¢., are constants. It is eagily seen that in o:der for 2% to be

analytic at z = o, it is necessary and sufficient that Z em = 0.
. mwl
In the case that (7.1) has two regular singular points, say at z = 0,
8= o, then ¥ = 1, and (7.1) becomes

2" + ayzw’ + byw = 0

where a,, b, are constants. This is an Euler equation considered in the
introduction to Sec. 5.

Buppose (7.1) has exactly three regular singular points at 2,.= 0,
23=1,and at 2 = w. Then (7.1) has the form [see (7.2), (7.3)]

2z — D" + (62 + b)e(z — D' + (c2* + dz+ w =0 (7.4)

wherea, . . . , eare constants. It is usual to consider (7.4) in a normal-
ized form. The indicial equation for (7.4) relative to z = 0 is given by
[see (5.14)]

AMA—=1)—-N+e=0 (7.5)
and the indicial equation relative toz = 1 is
MA=D+Me+b)+(c+d+e)=0 (7.6)
Let r be a root of (7.5) such that (7.4) has a solution of the form
2ttt - - (7.7)

That there is always such a solution follows from Theorem 4.1 (or more
directly by the considerations at the beginning of Sec. 8). Let s be a
similar root of (7.8). Let .®% = wz—(z — 1)~. Then the differential
equation for @ obtained from (7.4) must have the same form as (7.4)
itself, since the substitution takes all analytic solutions into analytic solu-
tions, except possibly at z = 0, 1, or =, and preserves the regular singular
character of solutions at z = 0, 1, and . Moreover, since the # equa-
tion has corresponding to (7.7) a solution 1 + ¢,z + - - - , it follows that
gero is & root of the indicial equation at z = 0, which corresponds to
(7.5). Thus the constant corresponding to e must be zero in the » equa-
tion. A similar result holds for the constant corresponding to ¢ + d + ¢
in (7.6).

With the above substitution carried out, then the equation (7.4) will
have the form



132 ORDINARY DIFFERENTIAL EQUATIONS [CaaP. 4
2z—Dw' + (az+b)w +cv=0
and in terms of new constants «, 8, v, this has the form
z1—2w" +y—(a+8+ 1)z —afw =0 (7.8)

This is the hypergeomelric equation whose theory has been investigated in
detail. t

In (7.8) let § = Bz,0(}) = w(t/B). Then (7.8) is transformed into the
following equation for @:

((-Yorsfrmr-eg2eamo (<) oo

Now (7.'9) has regular singular points at { = 0, [9, o, and if 8 — o«
formally in (7.9), what results is

0" + (v =30 —a0® =0 (7.10)

Thishas { = 0 as a regular singular point, but now { = e is an irregular
gingular point. There are no other singular points for (7.10). The
equation (7.10) is one of the forms of an equation which for obvious
reasons is called the confluent hypergeomeliric equation.

8. The Frobenius Method

The generalization to arbitrary nth-order equations of the second
method of obtaining the solutions of the Euler equation (Sec. 5) is called
the Frobenius method. If the origin is taken as a regular singular point,
the nth-order equation assumes the form

zrw™ 4 2= 4 ¢+ ¢ o 4+ baw =0 8.1)
where the b, are analytic in a neighborhood of the origin. Let

L(w) = 20 + 21wt + - + - + b

I

and

bj(z)=zbjzz‘ G=1...,n

k=0
The indicial equation associated with (8.1) is

M- A=n+D)+bAA -1 - QA-—n+2)+ ---

FbaaA+b=0
Let f(\) denote the polynomial on the left of this equation. If for
'j=1,...,nitis true that

tE. T. Copson, An introduction to the theory of functions of a W.
New York, 1935, chap. 10. - )
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| be=0 (h=1,2...) (8.2)
then (8.1) becomes the Euler equation., It was seen in this case that
L(@) = j)2 ’

and 2* was a solution of L(w) = 0 if f(A) = 0. In the more general case
(8.1), one tries to find a formal series ‘

0@ =2 Y og!  (eo=1)
: i=0
such that
L(p) = f)2>

This is the basic idea behind the Frobenius method.
‘The formal series for ¢ substituted into L yields

L(g) = f)2 4+ [fA + ey — gu]+ + - - -
+ O+ e — gl + - - - (8.3)

where the g; are linear in ¢, ... . , ¢y with coefficients that are poly-
nomials in A. The equations

h+dg=90 (G=12..)) (8.4)

form a recursive s&stem which can be solved forc,, ¢s, . . . , a8 functions
of A, except possibly at the zeros of f(A + 7). Clearly the ¢; thus deter-
mined are rational functions of A, and (8.3) becomes

L(p) = f(\)2* - (8.5)

If -\ is & root of the indicial equation f(A) = 0 and f(A, + j) = 0, iz1,
then from (8.5) it follows that ¢ is a formal, and therefore an actual solu-
tion of L(w) = 0 which will be denoted by ¢,.

Consider the relation (8.5) near A; and differentiate both sides with
respect to A. This results in

% L(e) = (/) + (log 2)f(\))2*

and if one takes into account the formal commutativity

oL (¢) _ (asa)
a —L\ax
formally one obtains

L(%) = 0oy + Gog aoNe 36)
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If A, is a double root of f(A) = 0, then f(\;) = f/(\1) = 0, and (8.6) shows
that d¢/9\ evaluated at A = )\, is a formal, and hence an actual, solution
of L(w) = 0. This solution is

(log 2)¢1 + o2

pa(z) = 2M 2 (%‘;{)a-x. #

If A, is & root of multiplicity m, it is readily seen that m — 1 differentia-
tions with respect to A may be carried out to yield m solutions.

In case A is also a root of f(A) = 0and \; — A; = kis a positive integer,
then the above argument cannot be used for the root A; since f(Az + J)
vanishes when j = k. Let f(\s +j) = 0for 1 £j <k and forj > k.
Let m be the multiplicity of A, as a root of f(A) = 0. Consider now the
formal series

where

¢(z) = ()‘ — )\,)uzx + gt et} - - -
Then the same procedure which gave (8.5) now gives
L) = fN( — A)=2* 8.7

Moreover, the equations (8.4) now yield ¢, €3, . . . , €a—1 With (A — Ag)™
as a factor. However, for ¢, the equation is :

T +E)ew = gu

and not only is (A — As)™ a factor of g, but also of f(A + k). Thus ¢ is”
determined as a rational function of ), and it does not have A; as a pole.
The terms ¢;, j > k, are now readily cbtained and also will not have As
as & pole. _

The series for ¢ now has (A — A2)™ as a factor of its first k terms but not
necessarily of the later terms. If ) is taken as );, then (8.7) shows that ¢
is a solution. However, the first k terms of ¢ vanish so that ¢ can have
only 2™ as its leading term in z. Indeed, the solution found in this way is
merely a multiple of ¢, found above. '

To find a solution really associated with the indicial root A,, the mth
derivative of (8.7) with respect to \ is considered. This is

L (g%:) = mlY)? + I @9

where ] has A — )\; as a factor. Letting A = \,, there follows
L(pmst) =0
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where ¢m41 i8 9™@/0A™ at A = Ay, The leading term of pmy1 is mlz2 and
thus a solution different from any associated with the root A, has been
found. Note that in gn4s the powers 22, § 2 k, may occur multiplied
by powers of log z of order up to m.

If f(A) has A; as a multiple root, then higher derivatives of ¢ with respect
to A will clearly yield further solutions.

The procedure for the case of three roots \y, As, As differing by integers
is left as an exercise, as is the general formulation of the method.

PROBLEMS
1. Consider the system

22w 1B . . - - Baw =0

where the B; are m-by-m constant matrices and wis an m-dimensional vector. Caleu-
late a fundamental set for this system. :
2. Treat in detail the system

2oy - IBin= 4o . v« + Baw =0

where the B; are analytic (near the origin) m-by-m matrices and w i3 an m-dimensional
vector.

8. Suppose (5.1) has at most a singularity of the first kind at zo. Letz — 2o = ¢7,
and then find the system associated with the transformed equation. Show that it has
the form

(z — z)w' = A(@@w
where .
A@) = Ao+ —2)A  + (2 — 20)24s + - - -

Compute the characteristic equation of Ao and show that it is the same as the indicial
equation (5.14), '
4. Consider the second-order equation

*) w’ + f(@)w’ + g(z)w =0

What conditions on f and g must hold if = is to be an analytic point for (*)? Show
that if f and g are not both identically zero (and are analytic throughout the whol¢
plane minus the origin) and « is an analytic point, then the origin must be a singular
point for (*). Discuss the possible nature of the singularity at the origin.
6. Show that
e a*f | ale+1)8(6 +1)
F(alﬂl-).’lz) =1 +ITY=+ _‘—_'1_2'1(7 ¥ 2t 4

is a solution of the hypergeometric equation. Show from (7.8) that as a function of
2, P(a,8; v; 2) can have singularities only at z = 1 and =.
8. For appropriately restricted ranges of 8, v, and s show that

T@r(y ~ 8) weg) m [} B = HYB-3(1 — sf)~= df-—
OO = B) plapiv) = [ 831 = o0 — =
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7. In (7.10) let v = thre-3t.  Show that the equation for w is of the form
d*w 1 k, t-m
+['4+E+ T ]"’"0

where m = g(y — 1) and k = 4y — a. (See Prob. 17, Chap. 3.)
8. The Bessel equation is

w"+-§w'+(l—§)w=0

If w = z-}u, show that
1 _nt
u"+(l +.£—z’—"—)u =0

9. Show that, if w = 2°v, then the Bessel equation becomes
24+ Cn+ 10 +2v=0

10. Find two series solutions for the Bessel equation valid for small |¢] in the case
where n is not an integer.
11. Classify the singular points of the Legendre equation

(1 -2’ — 20 +n(n+Dw=0
and the associated Legendre equation
ms
(1 = = 200 + [t +1) = 2w =0
12. The regular singular point is related to the equation with ‘“nearly” constant

coefficients considered in Probs. 29 and 35, Chap. 3. Show this for the regular point
at £ == « by transforming

to
- % o (Ao + Aw ot - Y
18. Let A(2) = R/z + Ao + Aiz + - - - , where B, A,, . . . are constant square
matrices. Lot ¢ denote the formal series sez* + 82+t + - - -, where the s; are
vectors. Show that sy, 83, . . . can boe chosen as rational functions of A so that

[E«;; - A(z)] ¥ = OF — R)soP—

Asin the Frobenius treatment of the nth-order equation, show that, if M is a character-
jstic root of R and A1 + 7, 7 2 1, is not a characteristic root, then choosging A = A and
30 a8 Py, where p, is the characteristic vector

Rpy = M1

¥ becomes an actual solution, ¥4, of W’ — A(s)w = 0. If, in the above problem, A\, is
a multiple root and if

Rp; = Mps + Pi-uy i=23...,1
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a further solution can be obtained by considering
4 _ OV s, A= A=
[.lf. = A(z)] T (AE — R)soz*"!log z + so2*~!

If, in the above, s¢is taken as p, and A as A, and dy¢/d\ is then denoted by ¢y, it follows
that

[Ed% == A(z)] P1 = pyh}

(Note that ¢, contains a series with log z as a factor.) From the equation

[Ediz = A(z)] ¢ = OE — R)s>-1

it now follows on putting so = pz and A = A, and calling , s that
[E%' = A(z)] g1 = (ME — R)pszh~! = —pyzh—?

Thus ¢ + V1 is a solution of w’ — A(z)w = 0. Extend the above procedure to the
case where [ > 2,

Let A: be a characteristic root such that A\, — Ay = k is a positive integer and
M+J, 1 57 <kandj >k, is not a characteristic root of B. Show that, if A, is a
root of multiplicity m of det (\E — R) = 0, then replacing so by so(A — Ae)™ in ¢(2)
leads to the determination of a solution with leading term zMs,



CHAPTER 5§

LINEAR SYSTEMS WITH ISOLATED SINGULARITIES:
SINGULARITIES OF THE SECOND KIND -

(]

1, Introduction

According to the classification of singular points for linear systems
given in Chap. 4, the point z = 0 is a singularity of rank p if the system is
of the form

w = z—1B(z)w (1.1)

where B is analytic at z = 0, and B(0) = 0. This chapter will be con-
cerned with the study of the behavior of solutions of linear systems in the
neighborhood of a singularity of the second kind, that is, where p is a posi-
tive integer. It will be convenient to consider this singular point at
z = « instead of at the origin. In this case, the system to be considered
is the one induced by the substitution z = 1/¢ (see Chap. 4, Sec. 8), which
has the form, after relabeling,

v = 22 A(2)w (1.2)

where r is a nonnegative integer, and A is analytic at z = «, A() = 0.
It turns out that the study of (1.2) with r 2 0 is much more complicated
than the study of (1.2) with r = —1, the case of a singularity of the first
Xindatz = «. Although it is not easy to prove in general (only a special
case will be considered here), there do exist “formal’’ solutions of (1.2).
The real difficulty now enters because there is no analogue of Theorem
3.1, Chap. 4, This was demonstrated by a simple example in Chap. 4
which showed that a formal solution of (1.2) may actually be a divergent
geries. It was apparently Poincaré who first realized that even these
“formal” divergent expressions have a meaning. He showed, for the
case of an nth-order equation, that corresponding to the formal solutions
actual solutions of (1.2) exist which have the formal solutions as ‘“ asymp-
totic expansions.” These facts will be made more precise in what follows.
_ The following example will give some indication of the method to be
used in this chapter. The equation}

1 The first-order system associated with (1.3) is given by z* = A(t)z, where
138
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z”-}-(l —{-:-)z =0 (1.3)

where a is a constant and ¢ is real, behaves for large ¢ almost like the con-
stant coefficient case with @ = 0. This fact, combined with the results
in the case of the regular singular point, suggests trying as solutions for
large ¢ .
o) =e(t° + ettt et 4 - ¢ 7) (1.4)

and a similar expression with ¢ replaced by —i. The use of (1.4) in
(1.3) formally leads to ¢ = 0 and to

Crey = %(tﬁl%ﬂ> e (k=0,c=1) (1.5)

Unless a = m(m + 1) for some integer m, the ¢; form a nonterminating

"sequence with |cy41/cx] — @, k— «. Thus the series in (1.4) is diver-
gent for all £ % 0. However, since (1.4), with the ¢, given by (1.5),
formally satisfies (1.3), it will be called a formal solution of (1.3).

If two distinet formal solutions of (1.3) were truncated, that is, the
infinite series replaced by finite sums containing the early terms, it might
be expected that the second-order differential equation satisfied by these
truncated functions deviates from (1.3) only in terms involving large
powers of 1/t. In this way, an equation ‘“‘close” to (1.3) could be found
with the help of the formal solutions. For this example, however, this
refined procedure will be omitted. The equation z”” 4+ z = 0 is close
enough to (1.3) for the purpose of getting a representation of the actual
solutions of (1.3).

The equation (1.3) can be written as ‘

z”+z=;—liz - (1.6)
If (1.6) has a solution ¢ which acts like ¢* as { — oo, the variation of
constants suggests that

ot) = ¢ —a [ " &in (¢ — () dr n

Indeed, if ¢ is a continuous function which is uniformly bounded as
t{ — «, and satisfies (1.7), then a direct calculation shows ¢ must satisfy
(1.6), and (1.7) shows that

o) —e*—>0 (t— =)

40 = (ar'o- 1 (1))

and if this is considered for comples ¢, this system is of the type (1.2) for r = 0.




140 ORDINARY DIFFERENTIAL EQUATIONS [Cuap. 5

To show that (1.7) has a solution, the successive approximation
procedure
eo(t) =0

- 1.8
enpi(t) = e* — a ﬁ sin ({ — n)ea(r)r2dr (n = 0) \1.6)

can be used. Clearly
lei(t) — @o(®)] = 1

and an induction shows that each of the integrals on the nght of (1.8)
exists for 1 = ¢ < o, and

lent1(t) — ea(t)] = :L,L n20,15t< )

Thus the sequence {¢,} converges uniformly on 1 £ ¢ < « to a con-
tinuous limit function ¢. Since

) — \Pk(f))| iﬁik < elolt < glal

Pn(t)l ir=

for 1 St < «, it follows that ¢ is uniformly bounded, and
le@® S (1st< ) (1.9)

Now, letting n —  in (1.8), one obtains (1.7).
"This solution ¢ of (1.7), which has already been shown to be a solution
of (1.6), satisfies, by virtue of (1.9) and (1.7),

lo@) — o] < lale®

Used in the right side of (1.7) again, this yields

= |a|ze|a1

o(l) —e* +a sin (¢t — r)eir2dr| S
¢ 21

or, writing sin (¢ — 7) in terms of exponentials and integrating by parts,
there results

o(t) = e"‘(l + g) +0?)  (t— =) (1.10)

where 0(¢-?) represents a function g such that t?(¢) is bounded ast — .

Formula (1.10) shows that the sum of the first two terms of the formal
series (divergent) given by (1.4) and (1.5) is a better approximation to ¢
for large ¢ than is the first term. Use of (1.10) in the right side of (1.7)
shows that three terms of (1.4) give an even better approximation to ¢



8eo. 2] . SINGULARITIES OF THE SECOND KIND 141 -

for large & Indeed, although (1.4) diverges it yields information about
the' solution ¢ in the sense that for any integer n = 0,

o) = ¢ Y att +0(E>Y)  (t— w)

k=0

where the ¢, are given by (1.5). ‘

In what follows it will be seen that formal-series solutions of the type
just considered are typical for a singularity of the second kind and that’
by the variation-of-constants formula the formal series can be shown to
be related to actual solutions as in the case above.

Incidentally, (1.3) has as solutions £J.(t) and #Y,(¢), where

a=(a+Ht

and J.. and Y, are solutions of the Bessel equation
(zz')'+(z-§)z =0

In case « = m + } for any integer m 2 0, it follows from (1.5) that the
series (1.4) terminates, and in this case (1.4) yields an actual solution of
(1.3) in terms of elementary functions.

2. formal Solutions

The formal solutions for (1.2) involve exponentials of polynomials as
well as the formal logarithmic sums introduced in Chap. 4, Sec. 3. A
formal log-exponential sum, u, is defined to be a finite expression of the
form

k
U = z piert 2.1)
i=1

where the p; are formal logarithmic sums in powers of 1/z and the
u; are distinct polynomials in z and the u;(z) vanish at z = 0. It is
assumed that u is identified with the sum obtained by any rearrangement
of the terms in the sum' (2.1). If

m

is another formal log-exponential sum, then u is defined to be equal to v
if and only if £ = m and for some permutation 4, . . . , f of , ...,k
one has y; = »,and p; = g, forj =1, . .. , k.
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I wy, ..., wa are the distinct polynomials occurring in the set
By + o+ 3 B0 P1y - - -, Vm, then clearly u and v may be written as

u = ime"' v= iq:e“"

i=1 j=1

where some of the coefficients p; and ¢; may be zero. The sum u 4 vis
defined to be
utov= z (p; + g)e”
i=

If o1, . . ., or denotes the set of distinct polynomials obtained from all
sums i+ @G=1,...,k j=1, ..., m), then the product uv is

defined by
=3 (3 raye

kel uitrimay

The derivative, ', of the formal log-exponential sum (2.1) is defined to be
the formal log-exponential sum '

k&
W= Y (g} + pine

i=1

It is not difficult to verify that these definitions imply that the usual
algebraic and differentiation rules hold for sums of the type (2.1).

A formal log-ezponential matriz is defined to be a matrix, U, with
elements w; which are formal log-exponential sums. The sum and
products of two such matrices are defined to be the usual formal matrix
sum and product. The derivative, U’, of U is defined to be the matrix
with elements uy;. Clearly the set of formal log-exponential matrices, by
definition, are closed under addition, multiplication, and differentiation.
If V = (v;) is another formal log-exponential matrix, then V is defined
to be equal to U if and only if w;; = v, 6,5 =1, . .. ,n)

A formal-solution mairiz of the system (1.2) is defined to be a formal
log-exponential matrix whose columns satisfy (1.2) in the sense of equality
for such matrices. It is, of course, clear that in (1.2) z"A(z) can be con-
sidered as a formal log-exponential matrix; in fact, it can be represented
as a Laurent series in 1/z near z = o,

Theorem 2.1. For nonnegative integral r consider the linear system

v = rrA(z)w ‘ (22
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where A 18 a convergent power series in z—! in some neighborhood of =,
A@) = ) Ay (2.3)
k=0 :

Assume Ao # 0 has distinct characteristic rools Ay, . . . , Aa. Then
there exisls a formal solution mairix for (2.2) of the form

& = Pzme® (2.4)
where P i3 a formel power series in 27!,

P = z.z'*P;, det Po?éo
k=0

R 18 a diagonal malrix of complex constanis, and Q is a matriz polynomial
Q= Qo +Z Q: < 4 2Q, (2.5)

with complex diagonal matrices

)‘(l!') 0 R |
0 A -+ 0 .
e=1. T ... ¢=01,...,n (26
0 . e . M:’)
(M® = \)) as coefficients.
ReEMARK: The simplest case of a system with a smgulanty of the second

kind at e is the system
’ = Aw

where A is a constant matrix. A solution matrix ® is given by
| $ = e
Perhaps the next simplest case is the system '

w =z Aw

where r is a positive integer and A is a constant matrix. It is readily
verified that a solution matrix of this equation is given by

& = U /rina

which indicates that the lower-order terms in @ in (2.5), R, and the
formal power series P in (2.4) are completely due to the effect of the
terms z !4, + 22A; + - - - in the 4 of (2.3).

Proof of Theorem 2.1. First, it is clear that, if P, R, Q are matrices as
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described, the product P2z2¢? is a formal log-exponential matrix, for each
of the factors P, 22, % is one. Actually, there are no logarithmic terms
in this case since R is diagonal. Also, it may be assumed at the outset
that Ao is a diagonal matrix with elements A, . . . » An, for a simple
substitution % = Tw in (2.2) would effect this, if T is that constant
nonsingular matrix such that TAoT-! has the diagonal form with Ay
.+ + , An as diagonal elements. Note that when A, is assumed to be
diagonal, the assertion (2.6) says, in particular, that Q, = A,.

Suppose ¢ in (2.4) is a formal-solution matrix of (2.2), where P, Q, R
have the properties stated in the theorem. Then differentiation yields

$ = P'z%% + z-1PR2*® + P2(2'Qo + 2'Qy + - - + + Q)&
and hsing the fact that the Q: and z? are diagonal one obtains
§ =[P’ +2PR+ P@Qu+ Qi + + + - + Q))e%e?
But from (2.2) there results

&' = 27 APzReR
and hence

P'+z“PR+P(Z'Qo+Z'_lQl+ v 4 Q) =zAP
Using the power-series nature of P and 4, this gives

z z¥1P(R —~ kE) + (i Z“Pk) Qo+ 2@+ - - - + Q)
k=0

- =z (20 4, (3202-"?.)

Comparing coefficients of the various powers of z~! yields

PoQo - AoPo = O
k
PiQo— APr= ) (APiy—Poii) (1Sks1
| T 2.7)

Pryrs1Qo — AoPrpryr = E (A1Prrrprt = Prprng1—i@i)
x-1l>+r+!

+ ), APumia+PGE~-R) (k2 0)
Imrt1

Thus a necessary condition that & ih (2.4) be a formal solution matrix of
(1.2) is that the matrices P, Q, R satisfy the relations 2.7). Con-
versely, if a set of matrices Py, Qs, R exist which satisfy (2.7), then &
given by (2.4), (2.5), and (2.6) will be a formal-solution matrix of (1.2).
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This follows by a retracing of steps. Thus all that remains to be proved
is to show that the relations (2.7) can be solved for matrices P, Q,, R.
Since A, is assumed to be diagonal, a solution of the first equation in
(2.7) is given by
Q=4 Py=E (2.8)

where E is the identity matrix. .
The second equation in (2.7) fork = 1 is

, . P1Qo — AoP, = APy — PoQ,
or, using (2.8),
PiAg— APy = A, — @ (2.9)

Bince A, is diagonal, the diagonal terms of the left side of (2.9) are zero,
and thus the diagonal elements of @, must be identical with those of A,.
This determines the diagonal matrix @, uniquely. The nondiagonal
terms of P, are determined from (2.9) by

N = MNP =af (=) (210
(D

where p{’, af)’ are the elements in the ith row and jth column of the
matrices Py, A,, respectively. 8ince A 5 ); (& ), Eq. (2.10) deter-
mines the nondiagonal elements of P, uniquely. Let B, denote the
matrix with diagonal elements zero and p{}" in the ith row and jth column
(¢ # 7). Then a solution of (2.9) is '

Py =P, + D, = B, + P,D,

where D, is any diagonal matrix. Here use is made of the fact that
DyAq ~ AoD, = 0 since A, is diagonal. Note that B, satisfies

Ple—AoP1=A1P0‘—Ple=A1—Ql

Let 1 < k = r, and assume the existence of diagonal matrices Qo, Qs,

.y Q- and matrices Py, . . . , Py_; of the form
Pi=P,+ P Di+ - -+ + P,D; (2.11)
where D, . . ., Dy, are arbitrary diagonal matrices, the diagonal
elements of the P; are zero, and the B, satisfy ,
: BAo— APi=8 (G=1,...,k-1) (2.12)
where ‘

8; = Z (AP —PaQ) G=1,...,k=1;B,=E)
=1

Since A, is diagonal, it follows from (2.12) that the diagénal elements of
each S; are zero. Placing (2.11) into the second relation of (2.7) for k,
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one obtains, on collecting terms,

k=1

Pado— APy = ) (4Pr = PoiQ) + (As — Q1) + SenaDy
i=1 *
+ 8D+ - - - 4+ 81Dy (2.13)

Since the diagonal terms of P,Ay — AP, are zero, as is the case for
Sy, . . ., Si1, one sees that (2.13) determines the diagonal elements of
Qs uniquely, and thus the diagonal matrix @, uniquely. As in the
passage (2.9) and (2.10), a solution B, of

k

=1 . .
B — AP = ) (APiy —FiaQ) + (44— Q) -214)
‘ 2, A _

]

is determined uniquely as regards the elements off the main diagonal.
The elements of B, on the main diagonal are taken to be zero. Then the
- matrix

Pi=P. 4+ B D1+ - - - + P (2.15)
where D, is any diagonal matrix, will be a solution of (2.13), for

Pido — AoPy = BoAdo — APy + (BiyD1Ay — APy yD) + - - -
=+ (PoDrAo¢ — AoPoDy)
= Pdo — APy + (PicyAdo — ABe)D + - - -
+ (PoAo — AoPo) Dy

since Ao and the D; are diagonal. Using (2.12) and (2.14), one readily
sees P, given by (2.15) satisfies (2.13). By induction, corresponding
to the choice Qo = Ao, Po = E, this proves the existence of diagonal
matrices Qy, . . . , Q,, and matrices B,, . . . , B, with diagonal elements
all zero, satisfying (2.12) fori = 0,1, . . . , r, and such that the matrices
P; in (2.11) satisfy the second relation in (2.7) for k = 1.

For k = 0 in the third relation of (2.7) one obtains )

r
Prssdo — APy = ) (APriact — Praci@) + AryiPo — PR (2.16)
=1

and here is where R enters. If the P; as given by (2.11) are put in the
right side of (2.16), one gets

PoAqg = AgPpyy = z (AiPrpr — PrnQ) + (Ass2 — R)
1<t
+ 8D1+ Se4Dy + - - - + SiD, (217
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The diagonal elements of the left side of (2.17) are zero, as well as those
in 8D+ - - + SiD,. Therefore (2.17) determines uniquely the
diagonal matrix R, and as in (2.13) one obtains a solution of (2.17) of the
form

Pr+l = Lyl + PrDI + M " + POqu.l ’ (2.18)

where P, satisfies

Prido— APy = ) (APriss — Prai@) + A — R (2.19)

jml

and has diagonal elements zero, and D,,, is an arbitrary diagonal matrix.
The last relation in (2.7) for k& = 1 brings a change in that no new
terms involving @, or R enter. This equation is
r
Prisdo — AoPrys = ) (AiPriss — Priai@) + AriaPy + ArysPo
=1 :
+ P,(E — R) (2.20)

and, using the expressions (2.11), (2.18) for the P;, this yields

Peado = AoPras = ) (AiPriay — PrysiQ) + AviiPr + Aris
=1 .

+PuE - B) + [ ) (APt — Prtai@) + Avr — R D

=1
+ 8D+ - -+ + 81Dppy + Dy (22D

But by (2.19) the expression in the brackets [ ] has a diagonal consisting
of zeros, and since the diagonal terms of the left side of (2.21) are all zero,
it follows that the diagonal matrix D, is uniquely determined by (2.21).
Just as before, a solution P,.; of (2.20) can be found of the form

Pr+2 =Pr+2+Pr+lDl+ © +P0Dr+2

where B,,; is a solution of (2.20) with the P, replaced by P, everywhere
and D, added to the right side, and the diagonal elements of B,,, all zero,
and D,,; is an arbitrary diagonal matrix.

In the next step, D, is determined uniquely and a new diagonal matrix
D,,s1s8 introduced. Thus r + 1 matrices D, are always being carried in
the procedure. Using another induction, it follows that all B, and D,
are determined uniquely from the equations (2.7), and hence all the P;
are determined uniquely, once the initial choice Qo = Ay, Po = F is
made, This completes the proof of the theorem.
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3. Asymptotic Series
Recall that in Sec. 1 the series

1 + et~ et F - - ¥ (1.4)

was a formal solutiont of the equation
= + (1 - 2‘;) z=0 (1.3)

provided the ¢, were determined recursively by
tfa—kk+1
 an= 5("—ﬁ1+—) & (=0ec=1 (L5
If a is not of the form n(n + 1), the series in (1.4) diverges for all¢ 0.
However, it was seen that corresponding to this formal solution there
existed an actual solution ¢ of (1.3) such that
o) = e ) a4+ 04— (1 )
k=0
and in particular

I

i let) —e* ) et >0 (t— =) @.n

[0 -3 ar]
* The relation (3.1), which represents the usual situation as regards singular
points of the second kind, expresses the fact that the formal series (1.4)
is an asymplotic series for the solution ¢ of (1.3).

To be more precise, let S denote a connected set in the complex z plane
containing «, A formal power series in 2™,

p= ) pzt 3.2)

with partial sums

E
3k=zp:'z-i (k=0,1,...)
&
is said to be an asymptotic series (or expansion) in S for a function f (as
[z} = «) which is defined in S, if forevery k = 0, 1,2, . . .,

#f—a)—>0 (2| =)
uniformly for ze¢ S.

t 8trictly speaking, the notion of a formal solution of a second-order equation has
not been defined. It can be defined directly in an obvious manner, or it can be taken
ag the firat component of any vector formal solution of the first-order system asso-
ciated with (1.3).



Skc. 3] SINGULARITIES OF THE SBECOND KIND 149
If p is an asymptotic series for f in S, then this relation is written
f~pin S
Often S is a part of a sector of the z plane
S: e@Sargz=Se |g =7

For example, if the formal series p converges in this S, it represents in S
an analytic function f, and it is clear that f ~ p in S.

If f has an asymptotic expansion p in a set S, the expansion is unique,
for the coefficients p, in (3.2) are uniquely determined by the conditions

= po, 2(f — Do) = py, 22(f — Po — P1z™') — Py, ete.
However, different functions may have the same asymptotic series. For
example, the function g = e, defined for the set S: |z2| > 0, —a =
arg z < a, where a < v/2, has the identically zero formal power series
as an asymptotic series in S, that is, e ~ 0in S. Hence, if f is any func-
tion with an asymptotic series in S, f + e~ has the same asymptotic
expansion in S as f.
If f, g, h are three functions defined for ze S, b 5 0, and if

(f — Ot~ ) pe*in 8
E=0
then this is sometimes written as
f~g+h Z pz % in S
k=0
For example, it was shown for real ¢ > 0 (that is, S is the region |z| > 0,
arg z = 0), that there exists a solution ¢ of (1.3) such that
or~e*l et + e+ ¢+ »)in S
where the ¢, are defined by (1.5).

Theorem 3.1. Suppose f and g are functions defined in a connected set
S including =, and

Jeo o Z 7 N Rl E @k in 8
k=0 k=0

If «, B are any two complex numbers, then in S,

(a) of + By~ ap + Bg = z (aps + Bge)e™*
k=0
« k
(b) Jo ~ipa = Z Gt - Oa = E Pis—

k=0 j=0
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¢ H—
(c) f—l~%— (%E FE (p—l—?g?@)z"-!- ccr (P 0)

Proof. The proof follows easily from the definition of an asymptotic
series, and is left to the reader.

Corollary. If f; (. = 1, . . . , m), are m functions, f; ~ p;, z¢ S, and
gz, . . . , 2n) s a polynomial, then F(z) = g(f1(2), . . . , fu(z), has an
asymptlotic expansion in S, and this vs calculated as if all the expansions
were convergent series.

Proof. The proof follows by repeated application of (a), (b) in
Theorem 3.1.

Application. If A is a matrix of functions whose components have

asymptotic expansions, A ~ Z z*Ay in S, then det A has an asymp-
E=0

totic expansion there, and the first term in this expansion is det A,.
Thus if det 4o # 0, (det A)~! has an asymptotic expansion in S with
the first term (det A,)~!. Since the elements of A~! are composed of
(n — 1)-rowed minors of A (which have asymptotic expansions) divided
by det A, it follows that, if det A, # 0, A~! has an asymptotic expansion
in S.

Theorem 3.2. (a) If f~
K

pt~*, and f is continuous for t = i1,
=0
(t real), then

FO = [0 = o~ pety i~ 2%”“

(b) If, further, [’ exists and s conlinuous, and f' has an asymptotic

expansion, then f' ~ — E (b — 1)pr_it™,
k=2

Proof. (a) t*(f — po — pit™!) — ps, t— 4, and therefore F(t)
exists for t > to. Also, for fixed m = 1,

m41

1= (3 ) = o

where €({) — 0, t — + . Hence

e G| [

k=1

= ur(t)ﬁ 7w+ dr
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where ex(t) = §u<p le(r)|. But ex(t) = 0,1 — + «, and since
$8r<»

f‘ —mt+D de = l ™
¢ m

one has {» (F' - z B%ﬂ t‘*) — 0,¢— 4. This proves (a).

k=l

®) Let f/ ~ z gt™®. Then
E=0

f=[rea+ie = [ @+qrnar
+ [0 ~ 00— a0 dr + 5(t0)

or
F=gqt+ qlogt— j:” (f'@) —qgo—grNdr+¢

where ¢ is a constant. Since f has a unique asymptotic expansion, it
follows from (a) that go = g1 = 0 and g = — (k¥ — 1)ps—y, k = 2. This
proves (b). '

If f has an asymptotic expansion, f* need not have one. For example,
if f = ¢~ sin ¢, then f ~ 0, but f/ = —¢~* sin &' + cos ¢ does not have
an expansion, for lim cos ¢!, { > + o, does not exist.

4. Existence of Solutions Which Have the Formal Solutions as Asymp-
totic Expansions—the Real Ca/se

It will now be shown that comresponding to every formal-solution
vector of (2.2) there exists an actual solution with the formal solution as
an asymptotic expansion which is valid in some sector in the complex
2 plane, for z sufficiently large. In order to do this, certain appraisals
will have to be made. :

It isimportant to distinguish, in the following, between formal solutions
and actual solutions. An actual-solution matrix (or vector)‘ of the
system (2.2) will be denoted by @ (or ¢), whereas formal solutions will
always be denoted by ® (or ¢). In this section, unless otherwise stated,
it will always be assumed that the system under consideration is the one
considered in Theorem 2.1, namely

w = rfAw (r=0) (4.1)
whare Ao has distinct characterssiic roots.
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If P is a formal power series in 27!
p ’

k=0

denote by P, the polynomial in 27!,
P(m)= Ez—"Pk '(m=0, 1,2,...)
k=0

If & = Pz2¢? [(2.4)] is a formal-solution matrix of (4.1), denote by &, the
“truncated formal solution,”

‘i’(m; = P(,,.}z”e" (42)

Clearly &, can be regarded as a function of z also.
A sketch of the method to be used here will now be given. Since $ is
a formal solution of (4.1), it is clear that formally

-1 =2rA

For the truncated formal solutions it might be expected that, if Bm is
defined by the equation
B! ‘i’(_,:, = z'B(m)

im)

then the early terms in By, are identical with those of A. This will be
shown to be the case in Lemma 4.1 below.
Since ®(n), By, and @7} all exist as well-defined functions of z for all
z sufficiently large, &) is an actual- (and not only a formal-) solution
matrix of the system
w = 2’ Bmw (4.3)
If (4.1) is written as
w' = z’Bmw -+ z'(A - B(,,.))w (44)

then, since A — By, is small for large z, the equation (4.4) can be recast,
by treating the last term as though it were a given function of z and using
the variation-of-constants formula much as in (1.7), to get an integral-
equation formulation. Since a solution @) of the homogeneous equation
(4.3) corresponding to (4.4) is known, it will be shown that the integral
equation can be dealt with by using the method of successive approxima-
tions to obtain a solution of (4.4) [and hence of (4.1)] which behaves like
Bm for large z.
Lemma 4.1. The matrices &,,,, &) exist for z sufficiently large, and if
B 18 defined by
2B = Bmen

then
zZA = 2’By + Ew (4.5)
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where By, 2Ewm) are analytic for all z sufficiently large (including «),
andf .
y Ewm() = 0@zl (lef = +=) - - (4.6)
Proof. 1t is obvious that &, exists. Since Py, is a polynomial in
27!, -and det Py > 0, (det P(my)~! exists, for z sufficiently large, as & con-

vergent power series in z=!. Therefore Pg,), exists and is analytic for all 2
sufficiently large. From (4.2), it follows that :

, i A @.7)
exists for z sufficiently large. Also - o
& = (Piwy + 7' P)R + Pm)@')2%e? (4.8)
since B, Q are diagonal. From (4.7) and (4.8) one has ‘
FPim = (P + 2'PmR + Pey@) P34 (4.9

and since @’ is the polynomial matrix
' Q=2Q +z2"Q+ -+ - +@Q,

it is clear that By = z~®(,,$), is analytic for z sufficiently large.
Since det P, = 0, the formal power series P has a formal reciprocal
P-1, and hence ¢ has a formal reciprocal which is given by

§1 = g—0z;-Bp-1
Now & = (P’ 4+ z-'PR + PQ')z2¢%, and therefore
| &4 = (P’ + PR + PQ')P- (4.10)

But from (4.1), &' = 2rA, and since A is analytic for z sufficiently
large, 2—*®’$~! must be a convergent power series in 2! for z sufficient]
large, and hence analytic for large 2. '
It remains to compare the expressions (4.9) and (4.10). The formal -
series P may be written as '

P = Py + z=tOR,, (4.11)

where B, = Ry 4 z7'R; + - - - is another formal power series in z—!.
It will be useful to let J, denote any formal-matrix power series in z—!
having z~* as a factor, and thus J; is such that

’z*J,‘=.Tn+z“.71+ MR
for some constant matrices Jo, Ji, . . . . Using this notation, (4.11)
may be written as -
} P = P(m) + Jm+1 (4-12)

% By‘ (4.6) is meant IE;...)(z)I * 2|+ = 0(1), [s] = + w, where the bound depends
on m, :
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Now
det P = det P(m) + J"H-l
and this implies that

(det P)~! = (det Pm)™ + Jms1
If adj P is the formal matrix such that
P adj P = (det P)E

then, since the matrix adj P has as its elements the cofactors of the ele-
ments of P, it follows that

ad]. P = ﬂ.d] P(m) + Jm+1
Therefore
Pl= Pt 1 Jun (4.13)
From (4.12) one obtains
Plla P s (4.14)

and combining (4.12), (4.13), and (4.14) there results from (4.9) and
(4.10),
PPt = &,:m)&(‘:) 4+ Jmy1-r (4.15)

The r in the last term is due to the term PQ’P—!in (4.10). But (4.15)
implies that
z’A = 2"B(m) -}- Jw+1-r (4.16)

and since A and B, are both analytic for z sufficiently large, so is
2" ini1—r. Denoting J,yi— in (4.16) by E(,,, one sees that this E,,
satisfies the conditions of the lemma.

The asymptotic nature of the formal solutions will first be deduced for
the case when z = ¢ is real. Theorem 2.1 and Lemma 4.1 apply to this
particular case. In order to prove Lemma 4.2 below, some notation will
be required.

For fixed integral m = 0, let the column vectors of ®(., be denoted by
13(..;.' (‘l = 1, S ‘."t). Then

Bmyi = Dmyilre? - (4.17)

where
— t'+l (n v (r)t 4 18
Qi(t)"-)\ir_i_l*i*)\.' ;+ + Af (4.18)

Py 18 the ith column of Py, and p, is the element in the ith row and
column of R (see Theorem 2.1).

Consider, for the following, a fired i. Since g, is a polynomial, its
behavior as ¢t — « is determined by the term of highest power in t.
Divide the integers j = 1, . . . , n into two classes Iy, I; according to
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the following rule:

jeli i R(@-—-g)— += (t— + =)

jels if R(g: — ¢;) is bounded above t— +») (4.19)

Of course I,, I; depend on the ¢ chosen. Let, furt.her,>p = max Rp;.

2
Lemma 4.2. Let m be any posilive inleger such that m —r — p +
Ro; > 0, forallj =1, ... ,n Corresponding lo any column vector $imy
of &), there exists an actual solution veclor ¢y of the system

w = rA(tw (4.20)
such that
loemi(t)] = O(treRa®)  (t— + )

Proof. ‘The solution ¢ will be constructed using the method of
successive approximations, combined with a version of the variation-of-
constants formula.

Consider the two systems

w =tAw = t'Beyw + Emw (4.21)
w = 'Bmw (4.22)

From the definition of B(.), the matrix &¢.)(f) is 8 fundamental matrix for
(4.22), if ¢ is sufficiently large (de’t Py # 0). Thus if (4.21) is regarded
as a nonhomogeneous system with (4.22) as the corresponding homo- -
geneous system, the variation-of-constants formula can be applied to
express solutions of (4.21) in terms of a quadrature of solutions of (4.22).
In doing this, the limits of integration must be set correctly. Let ¢ be
80 large that &73(¢) exists for ¢ = to, and split &7, (¢) into two parts

1 _ -1 __ §» D
= €9 BP o = ‘I’(n) + ¥

where the jth row of {3 is identical with the jth row of &}, or identically

zero, according as je I, or je I54 similarly for ¥(7). Thus the nonzero
)

rows of ¥, consist of those rows of ¢}, which have as factor e~%® for
jely k=12
The integral equation to be considered is the following:

w(l) = @ilt) + j: K, (t,")w(r) dr + [: Ka(t,r)w(r) dr (to St < )

(4.23)
vrthere

Ki(tn) = dmO¥EDEm@),  Eity) = SO @ Em() (4.24)
By direct verification, it follows that if w = ¢(¢) satisfies (4.23), where the
integral [ : converges, then ¢ satisfies (4.21).
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In order to solve (1.23), define the successive approximations for
t = to by
: e'(t) =0 ‘
) = emi(l) + L Ki(tr)e*(z) dr + fm Ko(t7)*(7) dr, (4.25)
(Bi=i0y L0005

It is a matter of proof that each of the approximations exists. This will
be omitted since it is entirely similar to the proof which will be given
below concerning the magnitudes of the successive differences. 1In order
to appraise these, it is necessary to appraise the kernels K, and K.. Now

|Ky(t,0)] = [Py F (o) (7)] | By (7)] (4.26)
and from Lemma 4.1,
|Emy(7)] = 0(z—™"1) (r— 4+ =) (4.27)

The 7,jth element of the matrix &, () ¥{¥ (7) is given by

(B (O (1) = 2 (P () (PG (7)) (;)ﬁc?lm““-'("’ (4.28)
lely

Because of the convergence of P7} for large enough ¢,

|[Pa @], |Pos®] = 0(1)  (t— + ) (4.29)

From (4.26) through (4.29), and a similar consideration for K.(¢,r), it then
follows that there exists a constant ¢ = e(m) > 0 and a {, sufficiently
large [which can be taken to be the #; in (4.25)] such that

|K(tr)| £ ¢ }: (Mepprem=t=treRiai=a®) — (fr = by =1,2) (4.30)
lely

IPurther assume that {, is so large thatf

2[ Tr-{—p—m—l—-m.u;d-' {4—10 (431)
to
Jume]l

R(q. (1) — qu(t)) is increasing (leli, t = t)
N(q:(1) — qu(t)) is noninereasing (lelst Z 1)

From (4.25)

and that
(4.32)

Pl(t) = é(m).‘(i) = p{m"-(t)jpl-eq‘.(l)
and therefore
i’Pl(t) = ‘90(1)1 =< cfreRu®) (f. > fo)

1 All the integrals in (4.31) exist because of the assumption on m,
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Assume
[ () — @ O)| S 2-¢-DpeReu® (i = to) (4.33)
Then from (4.25)
lP#+1() — ¢ S T + Ty 4.34)
where

= [ 1K)l o) — o716 dr
o= [ Ko |e6) — 92 dr
On account of (4.30) and (4.33) one has

L, £ 22— k=1 gogRa (1) 2 j: ! grio—m=1=RpeR(,(r)—q (1) +q,)—a,(})) Jr
¢

and by virtue of (4.32), R(gi(r) — qu(r) + qi(t) — g«()) = 0 for & <
r St
Therefore,

'y £ c12-G—DireRe ) Z [ * prie—m—1-Rs, dy
= ta

and using (4.31)
T) S c2-*+DgegRe,®

A similar argument shows that I'; satisfies the same inequality as T',.
Thus (4.33) is true with k replaced by k + 1, and since (4.33) is true for
k = 1, (4.33) is established for all k¥ by induction,

Therefore the series

OO+ ) (O — )
k=1

is abselutely uniformly convergent to a vector function ¢ = @um)(t) on
every finite interval {o £t < T < . Also

lomi()] S ctre®a® 2 2-G-D = QoreRa® (L2 &) (4.35)
k=1

Using the standard argument for successive approximations, it now
follows that o) satisfies (4.23), and hence the differential system (4.21),
thus proving Lemma 4.2.
Lemma 4.3. For any sufficiently large m, the solution ¢(): of Lemma 4.2
salisfies
leemn(t) — @ei()] = O(ERets—meRa))  (t— o) (4.36)

where p 18 a posilive. integer independent of m and of 1.
Proof. Just how large m must be will be seen in the following. From
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(4.23),if t > 2o, and m >r+p — Rp;, (7 = 1, . . . , n), there exists
a solution ¢y such that

lmm).(t) — Bmi(®)] = Ax + A+ Al (4.37)
where

/2
A = ‘L [K (6] lem(r)] dr, A = _/;;2 K 1(&)] lewmilr)| dr
Ay = j; ® |Kst;)] owmir)| dr
Consider A, first. From (4.30), (4.32), and (4.35),

(4.38)

Az é 2catﬁeaq‘(‘) 2 '/;/: T"""‘_l""P_mP. dT
=1

Now

tr [ g Tt dr = O Re) = O (o )

where u is any positive integer exceeding r + 2p — 2 min Rp;.  Choose
1

m so large that g — m < 0.
Then
Az = Q(tr—tRo,eRa,()) t— +=) (4.39)

A gimilar argument shows that this also holds with A; replacing Aa.
Turning now to A,, apply (4.30), (4.31), (4.32), (4.35) to A.. What
results is

[

A f {re®a, Z eR(a (=g, ()4 g, (/) g 6/2)) . (440)

lehh

Let o;; denote the hlghest power of ¢ appearing in SR(q.(t) — qi(2)). Since
R(a; — ) is increasing for ¢ = l(le I,), the coefficient g of ¢** in
R(q:(t) — qi(?)) is such that Ba > 0. The coefficient of {* in

(00 - 0+ 0(3) (§))

23::, Bll = PBa (29‘ - 1) <0

for oq > 0. From (4.40), therefore, the term under the summation
sign is 0(e—") for some v > 0, and hence, in particular,

Ay = Q(p—+ReigRa, ) (t— +) (4.41)

is then given by
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Combining (4.37) through (4.41), one obtains (4.36), which proves the
lemma.
Lemma 4.4. If m is sufficiently large, then for any fixed inleger m’ > m,

lewni(t) — eemi(t)] = 0(eRa®=)  (1— 4 =) (4.42)

where a 18 a posilive conslant independent of m’ and m.
Proof. Choose m 8o large that Lemma 4.3 holds, and let m’ = m 4 1,
l a positive integer. From Lemma 4.3,

Peilt) = Bai(t) + O(tRetr—=eRe®) ({1 — + ) (4.43)

where m is such that g — m < 0, and hence, if ®(,) is the matrix with the
column vectors ¢, - « + , Pimn

By (D)e9OOLR = By ()9O + O(t)
= Pay(®) +0~") = Po+0(tY)  (t— =)

Since by Theorem 2.1 det Py # 0, this proves that det ®{f) ¥ 0 for all
t sufficiently large, and hence &, is a fundamental matrix for ' = trAw
for all sufficiently large &. °

But $(n4p is also a fundamental matrix, and hence

pwi(t) = z Ciipeani(t) (4.44)
j=1
where the c;; are constants. Recall that
Pei(t) = Dami(t)tre? (4.45)

where pm(t) is the ith column of P(m)(t) = t~*P,, and hence is of the

k

T

form

Peill) = 2 trpa (4.46)
¥

where the p. are constant vectors. Recall also that if A, is assumed to
be in diagonal form, then P, can be chosen to be the unit matrix E. This
is clearly no loss of generality, and so this will be assumed in the follow-
ing. Then py is & vector with 1 in the ith row, and 0 elsewhere. By
virtue of (4.43), (4.44) is equivalent to

' n n
bnt) + O(otrmeR0) = 3 copiasni® +0 (3 JogltBoto—erteRe, )
i= :

i=1
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and by (4.45), (4.46), this gives

teie%® (ci — 1)pemyi(t) + E Citieti OPmi(l) = O(Fetr—meRe )
I#

+ 0 ( i |c‘.j|£mp,.+;—mgm-r,.:n) (4.47)

Jj=1

Let, as before, I, denote the set of all integers &, (k =1, . . ., n),
such that N(g; — @) = + =, (t = + =), and 7, the complementary set
inl, 2, ...,n From the structure of the ¢; as polynomials with no
constant term, it follows that ke I, if and only if either Ng; = Rgx or
Rig: — qx) = — =, ({— + ). It will now be shown that ¢; = 1 and
if k21, kel, then e = 0in (4.44).

Let I, be the set of all k such that R(g; — qx) — — o, ({— +=).
Suppose I§; is the set of all k&’ I, such that RN(g — ) is bounded
above asf— 4o, forall ke I,;. TLet k" be any integer in I such that
Rowr = RNpw, for all B’ e I¥. Divide (4.47) by towrenn® and let t — + o,
If attention is confined to the k'’th row, what results is ¢y = 0. Con-
tinuing in this fashion, one shows ¢y = 0 for all ke 7,;.

Let I, be the set of all k& 5% 7 such that 9tg; = Ngx, and let k' = Ta, be
such that Rpw = Rpx, for all ke I, Divide (4.47) by treeso® and let
t— + oo, By observing the k'th row, in passing to the limit, it is found
that cir = 0, if Rpw > RNp;. It is true that for Npr = Rp; the k'th row
shows again that cr = 0. Then it follows easily that ¢; = 1, by dividing
by tre%® and letting { — +- . After that, the argument goes nicely
for Rpwr < Rp;, k' € I, Here m must be assumed so large that RNp; —
Row + 1 — m < 0 for all &' ¢ I such that RNpw < Rp:.

Therefore, from (4.44) one obtains

emi(l) = @enini(t) + Z Cijpm+-0i (1)

jeln
From this it follows, using (4.43) and (4.45), that

emi(t) = @mini(t) + 0(eRGWE(1))

where E () = 0(e~) for some constant a > 0, which does not depend on
m or m’. This proves the estimate (4.42).

It is now possible to prove the asymptotic nature of the formal solutions
in the real case.

Theorem 4.1. Let ¢; = pitrie be any column vector of the formal solution
matriz & = Pt®e® of (4.20), where A satisfies the condilions of Theorem
2.1 forz = 1. Then there exists jor all sufficiently large t an actual-solution
vector of this system, ¢;, such that

4
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lei(® — Pian(®)| = O(Re™=—1eRe®)  (t— + ) (4.48)

holds for all m = 0, 1,2, . . . . In particular, ¢; ~ &
Proof. From Lemma 4.3, for every m’ sufficiently large, say m’ 2 m,,
there exists a solution gm: such that

eeni() = Penill) + O(IRets—meRau®)  (t— + o)  (4.49)

where u is a positive integer independent of m’. The integer m, can be
chosen so that m; > u. By Lemma 4.4, for m sufficiently large, say
mz mg = m, and m' > m,

Pemill) = eenill) + 0(eRu®=)  (I— + =) {4.50)

where a is a positive constant. Combining (4.49) and (4.50), there
results for m = ms, and all m’ > m,,

‘ Pemi(l) = Pni(t) + O(Rete—meRe®)  (t— 4 »)  (4.51)
But, by the definition of @mni(f), it follows that
Bi(t) = Gtmr—p—1ill) + O(Re+s—='eRa ) (t— + =) (4.52)

Letting m = m’ — u — 1, and combining (4.51) and (4.52), one gets for
allm > mg — p— 1

Pmpil) = @mi(t) + O(Re—=1eR9M) (t— +=) (4.53)
It remains to prove (4.53) form = 0,1, . . . ,ms — p — 1. Since
Semill) = Bmenil) + O(@FomeRI®) (1 + <o)

it follows that (4.53) holds for m = ms — p — 1. Using an induction, it
is easy to see that (4.53) must be valid form =0, 1,2, . . . , thus proving
the theorem if ¢; is chosen to be the solution ¢(m,;.

6. The Asymptotic Nature of the Formal Solutions in the Complex Case

The result given in Theorem 4.1 holds not only for real z = ¢, but it is
also obviously valid on each radial line z = te®, for any fixed 6. How-
ever, the theorem does not relate the solutions along one radial line with
the solutions along another radial line. Here it will be shown that, with
the aid of certain theorems in (complex) function theory, the result of
Theorem 4.1 can be used to prove that a solution ¢; with the asymptotic
expansion ¢; along an appropriate radial direction actually has &; as an
asymptotic expansion in a sector of the z plane.

The results required from function theory are due to Phragmen and
Lindelsf, and are extensions of the maximum-modulus theorem.t A

t For prools of these theorems, see E. C. Titchmarsh, The theory of functions, Oxford,
1939, pp. 177—180.
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statement of the results needed here follows. With z = |z]¢'%, the nota-
tion arg z = 6 will be used.
Theorem A. Let f be an analytic function for

k|2l < »,0, Sargz = 0
where k, 61, 02 are real constants. Letl
J) =0 (lo] = )

uniformly in 6, £ arg z < 0., for some constants ¢ and m such that

m(ﬂg == 91) <m

If f is bounded as |zl — = on the lines arg z = 0, and arg z = 0,, then f is
bounded uniformly as |z| — « in 0; < argz < 0.

Theorem B. Let f be analytic and uniformly bounded for the region in
Theorem A. Moreover, suppose that there exist constants a and b such that
f(z) = aas|z| — = onarg z = ), and f(z) > b as || — = onarg z = .
Then a = b and f(z) — a uniformly in 6, < argz = 62 as |z| — «.

Recall that the system under consideration is

w = z7A(2)w (r=0) (6.1)
where
AR = ) =4y (5.2)
k=0

and the latter series converges for |2| > d, forsomed > 0. Animmediate
consequence of (5.1) is the existence of a constant ¢, > 0 such that any
solution ¢ of (5.1) satisfies [¢'| = eilz||¢| for large |2]. If ¢ = ¢i/(r + 1),
this implies

e(2) = 0(e™) (2| = =) (5.3)

uniformly in any fixed sector of the z plane bounded by two radial lines.
Let the integer 7 (1 = i < n) be chosen and kept fixed in the discussion

that follows. Since the characteristic roots \; (j = 1, . . ., n) of the
matrix A, are assumed to be distinct, it follows that the equation
R — Azt =0 (G =9) (5.4)

determines a finite number of directions in the z plane. These are the
directions arg z = 8 (mod 2x) for which

. cos [arg (\s — M) + (r + 6] =0
Let S; be a sector
Si: a=argz =8

such that all the directions determined by (5.4) are exterior to &;. The
following result will be proved.



8nc. 5] SINGULARITIES OF THE SECOND KIND 163

Theorem b6.1. If @ = piz*e% i8 any formal-solution vector of (5.1),
then there exisis tn the sector S;, determined above, an aclual solution ¢; of
(5.1) for all sufficiently large |2|, such that

i~ &
uniformly in S;.
An easy corollary to the above theorem is the following result.
Theorem 6.2. If a sector S in the z plane contains no direction for which

RIA: —MeH] =0 (Gji=1,...,nl)

then there exists a fundamental set of solutions ; (1 = 1, . . . , m) of (5.1)
in S for all z sufficiently large such that

lp.'N(?.‘ (i=l,...,n)
uniformly in S.
Proof of Theorem 5.1. For anyj =1...,n,

a2 — g(2) = N — M) + O M") 5 ot N = M)z

and it is clear that the behavior of R(¢; — ¢;) in S;, forj # 1, as || — o,
depends on the first term

® [(x.- - x,)z'“]

r+41
since [\; — A #¢ 0. It follows from the definition of S; that the integers
1 =1,2,...,t4—=1,141, ..., n fall into two classes I, and I,
where
R —g) = = Gel) (5.5)
umformly in S; a8 |z] — «, and
Rig—g)—>—o (el (5.6)

uniformly in S; as |z| — .
Theorem 4.1 gives the existence of a solution ¢; of (5.1) on the line
arg z = « for all sufficiently-large |2| having the property that

e~ & (argz = a) 6.7

By uniqueness, it follows that ¢; can be continued off the line arg z = «,
and hence it may be assumed that ¢; exists for all sufficiently large |z| and
satisfies (5.7) on arg 2 = a«. Now let v be chosen so that

a<ysf and T —a< ".—_—i_—i (5.8)

It can also be assumed that v is chosen so that on arg z = v one has, for
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any [ and j, such that [ = j, either

R(g — ¢j) — » (argz =)
or
R —g)— — (arg z = )

From Theorem 4.1 it follows that along the line arg z = v there exists for

sufficiently large |2| a fundamental set of solutions ¢y, . . . , ¥a of (5.1)
such that o
’ vi~e  (argz =) (5.9)
Thus, for some constants ¢y, . . . , €n,
n .
o= ) o (5.10)
i= ‘

for all sufficiently large |2|.
Assume that there exists k e I3 such that ¢ # 0 and such that for all
le I, with I # k and ¢; € 0, it is the case that

R —gqy—> o (argz =) (5.11)
as [z} — «. If m > 0is any fixed integer, then by (5.9) and (5.10) one
has in the notation of Theorem 4.1

@i = QP + 0([z|Re—m=1eRe ) (argz = 7)

and in particular, if
7@ = pilz)euzn
then
@ =a+0(z)  (lz| > =, argz =)
where a is a constant vector, not identically zero. On arg z = a it fol-
lows, since ke I,, and (5.7) holds, that ’

f@) =0(z[") (o]l > =, argz = a)
Recalling (5.3) and using Theorem A and then Theorem B for each com-
ponent of f, it follows that a = 0, which is impossible. Hence % does not
exist and the nonvanishing terms on the right of (5.10) are from j ¢ I, and
j = ‘i:
From (5.7) it follows that
0) = ei@)e o0z
is such that
gz)—>c (o]l > =, argz = a)
where ¢ is the constant vector given by -

¢ = lim @ i(2)e=o®zn
@
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From (5.9) and (5.10) one has also that
g(z) > e (2]l > =, argz = 7)
and by Theorem B this implies that ¢; = 1. Thus (5.10) gives
(pc = Pimi)e 9z Pz = 0(1) (| = =, argz =1v)

This relation is obviously valid for arg z = « by (5.7). Thus, by apply-
ing Theorem A, it is valid uniformly in the region « < arg z < 4. This
is equivalent to

e~ & (e Sargz =)

If ¥ < B, then repeating the above argument a finite number of times
in sectors with angle less than #/(r + 1) yields the theorem for the
sector S;.

The sector S; can usually be increased in size by observing the following
facts.e A curve along which M(¢; — ¢;) = 0 for some j # 7 serves quite
as well as a radial line in the hypothesis of Theorems A and B, More-
over, the results proved in Sec. 4 for z along a radial line will generally be
valid along such a curve. By minor variations of the preceding argu-
ment, asymptotic relations can be proved in a sector S; bounded by two
such curves, but containing none such in its interior. Generally such
relationships can be extended into an adjoining sector. This will be
shown by an example, The method is quite general in scope.

Consider the equation (1.3) with @ = —% and the variables complex
so that it becomes as a system

0 1
dw 1 o
dz \e— iy
: (1 + —lz’) 0
with roots Ay = 7 and X\ = —i. Taking the first component w, of the
vector w and denoting it by u,

%}:-i-(l +$) u=0 (5.12)

and the two formal solutions of (5.12), as already seen in (1.5), are

L 1 A

@1 =¢ (1 +@+ )
—ts _,]'_ . W@ Ce

f2=¢ (1 Siz+ )



166 ORDINARY DIFFERENTIAL EQUATIONS [Caar. 5

Consider now the solution of (5.12), ¢,, which by Theorem 5.1 satisfies
for & < argz S = — §, where § > 0,

o1~ G (5.18)

Let ¢, and ¢ be the solutions of (5.12) which on arg z = 0 are asymptotic
to ¢ and @., respectively. Then for some constants ¢; and ¢;

o1 = e + ey
Multiplying the above by e¥, it follows that
e*p1(2) = cie? +¢c3 + 0 (ﬁ) (5.14)

onargz = 0asz— +o. By (5.13) it follows that

eitpy(z) = et (1 +0 (]%[)) (5.15)

onargz ==x/2a8|z]— . Let

Fe =1 f e

where 2, is large and positive and the integral extends in the upper half

plane on the arc of the circle |s] = zo until arg s = arg z and then the

integral is taken along the radius arg s = arg 2. Clearly (5.14) and
(5.15) imply

: lim F(z) = ¢ (argz = 0)

2~ w0

Iim F(z) =0 (arg z= g)

Thus by Theorem A followed by Theorem B, ¢c; = 0. Considering next
e p1(z) on arg z = 0 and =/2, it follows that ¢; = 1. Thus

[e1(z) — Ben(2)letzmtt = 0(1)
on argz =0 and /2, from which follows ¢; ~ @: uniformly on 0 S
- argz S #/2. The argument can now be repeated for [v/2,7]. Moreover,
it can be repeated for [r, 2r — 8] and [—x + §, O] for any & > 0, so that
finally
o1~ @ (—r+ 58S argz s 2r — 8) (5.16)

[Indeed, z-}¢,(z) is, excopt for a constant factor, a Hankel function.]
Similar results hold for the solution ¢,

e~ P2 (—2x -+ oSargz=7 — @) (5.17)
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A solution of (5.12) is z4Jo(z), where J, is the Bessel function of zero
order. Since ¢, and ¢. are independent

zUn(z) = cip1(2) + Capa(2)

for some constants ¢, and ¢, [That ¢y = & = (2/7)le~*4 is readily
verifiable.] From (5.16) and (5.17) follows

2WJo(2) ~ €181(2) + c2¢2(2) (—r+o=argz=n—39)

Since J, is an entire function of z, it is single-valued. The formal series
on the right above is also single-valued. Because 2! occurs on the left,
the left side is multiple-valued so that the above asymptotic formula
cannot be valid on —7 = arg z < . Thus the result obtained is in a
sense the best possible. By using obvious generalizations of the method
of this example, asymptotic results can often be extended into sectors
larger than S; of Theorem 5.1.

6. The Case Where A, Has Multiple Characteristic Roots

This case is considerably more complicated than the simple situation
treated in Sec. 2. The proof of the existence of formal solutions involves
essential new difficulties. This can be illustrated in the real case z = { by
the example

w' +w +w=0 (6.1)
The system associated with (6.1) is

wy = w,

wy, = —twy, —

If w is the vector with components w,, w,, then

w = (Ao + t'4A)w (6.2)

W@ a-(2 e

Therefore A, has a double root A = 0, with nonsimple elementary
divisor. If ¢ = s* the equation (6.1) is transformed into

where

w’' +sw + 4w =0 (’ = %) (6.4)
with associated system
w = (By + s~'By)w (' = %) (6.5)

where

(39 m-( ) o
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Thus the characteristic roots of By are A = +2¢, and hence Theorem
2.1 can be applied to (6.5). An implication of Theorem 2.1 is that (6.4)
has a formal solution of the form

etiar (1 +24 ) 6.7)

By substituting (6.7) into (6.4), r is found to be —}. Since (6.4) is rea],
.the complex conjugate of (6.7) must also be a formal solution. Setting
8 = ¢}, this showa that (6.1) has formal solutions of the form

B = cypa(t)ttes + copy(th)tte—2id (6.8)

where ¢,, ¢ are constants, and p,, p; are formal power series in {~!. Thus
it is seen that fractional powers of ¢ can enter into the exponential term
and the formal series.

The following theorem can be shown to apply in the general case when
Ao has multiple characteristic roots, but because of the complexity of the
proof, the latter will be omitted.

Theorem 6.1. Consider the system

w = rA@w (6.9)
where r i3'a nonnegative integer,

A(e) = z e

k=0

and the lalter series converges for |z2] > a for somea > 0. Then there exisls
a formal-solution matriz of (6.9) of the form

® = Se? (6.10)

where Q t8 a diagonal malriz with diagonal elements q; which are poly-
nomials of the lype

q‘(z) == q..o(zl/h)'l + q..l(zl/h)h—l + s + q.. “_lzl/,l

l; and h being inlegers, and S 18 a matriz whose elements s,; are formal expres-
sions of the type
mif .
8 = 2% z dijn log™ 2z

m=0

Here the r;; are constants and the oy, are formal series

Oijm = z Oijmiz?
<0
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where the oimt are constants. Moreover, the formal determinant of S does not
vanish for large |z| < eo.

It can further be shown that there exist solutions of (6.9) which have
these formal solutions as asymptotic expansions valid in certain sectors
of the z plane. The proofs of Secs. 4 and 5 can be readily adapted to this
more general case.

7. Irregular Singular Points of an nth-order Equation
Consider the nth-order equation of the form

z (D)W =0 (aofz) = 1) (7.1)
m=0

where = 0 is an integer, and the coefficients a., are analytic in a neigh-
borhood of z = «, that is,

Gn(2) = ), Gme™

p=0

and the series are convergent for |z| > aforsomea > 0. If ¢ is any solu-
tion of (7.1), let the components ¢ of a vector be given by

or = V- (k=1 .., ,n) (7.2)
Then it is easy to check that
==k -+ Zan  (k=1,...,n—1)

Oh = —(n = Dreton — 2@upr + Gucrr + - -+ Grpa) O

Therefore, if ¢ is a solution of (7.1}, the vector with components ¢, given
by (7.2) is a solution of the system

w = A()w (7.4)
where
A(z) =
[0 1 0 e ] )
0 _rz—f—l l . .
. —2rz—1 ...
. . . . . . 0
0 . . v —=(n—=2rzt 1
U —8a(2) —aa_s(2) . ©c —ay(z) —(n— Drz-t — ay(2) )
(7.5)

Conversely, the first component of any solution vector of (7.4), (7.5) will
be a solution of (7.1). Therefore Theorems 2.1, 4.1, and 5.1 can be
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applied to (7.4), (7.5) to obtain the formal solutions and their asymptotic
character, and, observing the first components, one gets the corresponding
information for the equation (7.1).

If A is written as

A@) = z A,
3 k=0

where the A, are constant matrices, then

(0 10 --- 0 )
0 01 .
Ao = .
. . v s e e 0
o - - .00 1
[ —awo + + v —au)

The characteristic equation of Ao, as was shown in (6.19), Chap. 3, is
A+ a4 - am =0 (7.6)

and this can be immediately read off by replacing w® in (7.1) by N*, and
2*a,(2) by are, the constant term in the expansion of a;. ’

8. The Laplace Integral and Asymptotic Series

The Laplace integral can be made the basis for proving the existence
of actual solutions of (1.2) which are represented asymptotically by
formal log-exponential series.t

Here the special case

(aoz + bo)w™ + (@12 + b)wt0 4+ + « - + (anz + baw =0 (81)
will be treated. The ag; and b; are constants. Let

P(s) = ags" +ars"t + -+ - +an
Q(s) = bos" +byg" ' + -+ + ba

Let F be an analytic function and let
o(2) = f ¢ F(s)e** ds

where C is a path to be determined in the complex s plane. Buppose ¢ is
a solution of (8.1). Then, since formally

o) = [, F(s)sten ds

t See for example E. L. Ince, Ordinary diflerential equations, London, 1927, chap. 19.
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the equation (8.1) becomes

[ F@EPG) + Qe ds = 0
O:learly, integration by parts yields
[ FPzew ds = F(s)P(s)e"] - f 2 (FPyends
c c c
where FPe“] ¢ epresents the variation of the function on C. Thus
Jo1F@ — FP’' — F'Plen ds + FPen ], = 0

Choose F so that
FP+FP -Q =0

Thus
F= 1—£exp[ ggg da] 8.2)
The condition that ¢ satisfy (8.1) now becomes simply
= exp U Qo) du] ] =0 (8.3)
If the roots of P(s) = 0ares, ..., 8 and these are simple, then

[ gfcg ds = R(s) +’2 a; log (8 — 8)

where R(s) is a polynomial and the o; are constants. Thus

m
V=e+20]] (s - 8’)‘"]0
i=1

and C is chosen so that V = 0. This may require that z be restricted.
In case the degree of P(s) is n, then R(s) = as, where a is a constant and

Y p ]
Jm1

If far > 0, lot

a@ = [ e[l @~ g)1ds (8.4)
=1
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. where the integral is along a line from & = & to 8 = «, If the line of
integration makes an angle v with the positive real direction in the s
plane, then the integral for ¢, converges forz/2 < arg z + v < 35/2,and
o i8 & solution of (8.1). The range of validity of the representatlon may
be changed by varying ¥.

It is rather simple to show that such integrals (whxch are, in fact,
Laplace transforms) are represented by asymptotic series.
As an example, take the equation

2w+ (y—2)w —aw=20 - (8.5)
(considered in Qhap. 4). Here

P(s) =8*~8 Q@B)=v8—a
Thus
F(g) = g='(s — )™=t
and
V = s(s — 1)-:-«-3--] ¢

If Ra > 0 and R(y — «) > 0, then a solution is given by
L‘ g\g ~ 1)r=-lgnds
Another solution valid for iz < 0, R(y — «) > 0 is
|7 eie — 1yreten ds (8.6)

Solutions may also be represented by closed-loop integrals that make
a positive turn about 8 = 0, a negative one about 8 = 1, a negative one
- about & = 0, and a positive one about 8 = 1.
If 8 = ¢ + 1, then the solution (8.6) takes the form

e [° (1 + o) tarete= do @7
For all ¢ = 0 (indeed, for all o such that larg o| < = — 8),

(1+¢)¢—l=l+(a-—l)o’+-(—a—_—1;—(!g;2—2¢!+ . e

+(a— l) -k-l- (a—k)c‘, +F§(¢)d"’l

where Fi(o) is uniformly bounded.
Thus the solution (8.7) is given asymptotically by

MECEE N CETES
zre .
+(«—1)(a—2)r(—f—a+z) ]

2{zr—et2
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By changing the direction of the path of integration in the ¢ plane, the
range of validity of the asymptotic expansion may be increased to the
range —x/2 < arg z < 5v/2.

PROBLEMS

1. Suppose that 4 in (4.1) is analytic in some domain D of the complex z plane and
that .
A~Ag+ 27} Al 4+ .-

in D. Prove that Theorems 4.1, 5.1, and 5.2 are valid, with the added restriction
that ze D.

2. Carry out the analogue of the treatment (5.12), at the end of Bec. §, for the
equation

:—:'—:+[l+g+-z'—:]u=0

where a and b are real constanta.
8. Show the relationship between the problem above and (8.5) treated at the end
of Sec. 8. (See Prob. 7, Chap. 4.)

4. For large |z], let
f(z) = et (bo .;..b;‘ + .- )

where g(z) = goz™'/(z + 1) + : - - + gsz is a polynomial of degree = + 1, » isa
constant, and the b; are constant vectors. Let A(z) be as in (2.3). 8how that

w = ARw + f(2)
has a formal solution

veor[at2e ]

wherek = p —rifr S vand k = u — rif r > =, provided (1) no characteristic root
of Aqis equal to go if r = =, or (2) no characteristic root of Aqis zeroif r > .

8. Let g; be defined as in (4.18). Let S be a sector of the z plane where for each
i=12, ..., neither

(a) R(g —g)— =
or else
(b) Rgy—9)— —=

as)z] — » in 8. Show that the differential equation of Prob. 4 has a solution @ such
that ’

e~y (ze8)

HinT: Let $. be the truncated sum consisting of the firat m 4+ 1 terms of ¢. Let

% =w — Ja. Then
B = AT + falz)
where
€ tfm = O([z}!**="1) (I = max (=,r))

Show that there is a solution % = x(z,m), x(z,)e—¢ = O(lg[*=-1) along any fixed
radius in S by use of integral equations similar to (4.23) but with ¥{3), and ¥{3), deter- -
mined by (a) and (b) above rather than by (4.19). Then use the devices of 8esc. 8.



CHAPTER 6

ASYMPTOTIC BEHAVIOR OF LINEAR SYSTEMS
CONTAINING A LARGE PARAMETER

1. Introduction
Here will be considered the system of linear differential equations

g =pAlp)xr (@=is)h) (1.1)

where r 2 11is an integer, A is a matrix continuous in (¢,p) fora St S b
and |p| large, and analytic in p for large |p| so that

Ate) = ), Al (1.2)

k=0

for large |p| with A; continuous. Such systems arise in eigenvalue
problems, as will be seen in Chap. 7. (The results of this chapter will
not be required for Chap. 7.) These systems also arise in cases where
the highest derivative in an nth-order linear differential equation is
multiplied by a small parameter—boundary-layer theory, for example.
The relationship (1.2) can be asymptotic with the series divergent without
changing the results and methods of this chapter.

In some cases, the solutions of (1.1) are studied with ¢ real and p com-
plex and large. In other cases, p may be real and large while ¢ is complex,
or both may be complex. The method of this chapter has much in com-
mon with that of Chap. 6. The case of real ¢ and complex p will be con-
~gidered here. The modifications required to handle the other cases are

sufficiently close to the procedures of Chap. 5 and the present chapter
that they will not be dealt with.

A requirement here will be that the matrix Ao(¢) have distinct char-
acteristic roots for ¢ e {a,b], or at least that the number of distinct char-
acteristic roots of A(t) does not change as ¢ goes from a to b. This
eliminates from consideration here certain problems of great interest.
Such a problem arises in the case of the second-order equation

T+ [+ 0o + e+ - o =0 (13)
174
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in the neighborhood of ¢ = 0. If a system formulation were used by
setting w = w; and v’ = pw;, then (1.3) would have r = 1 and

wo=(3 )

Clearly Ao(t) has distinct characteristic roots except at £ = 0. To treat
(1.3), it is replaced by an integral equation based on the use of the
variation-of-constants formula and the solutions of

w’ + pMw =0

which are given explicitly by certain Bessel functions. In method this is
very similar to what has already been done in Chap. 5 and to what will
be done here. However, there is a more complicated asymptotic formula
here because of the appearance of the Bessel functions. The equation
(1.3) is said to have a transition pointatt = 0. The treatment of transi-
tion points will not be given here.

2. Formal Solutions

For the case that will first be treated it suffices to consider formal
(Laurent) series in p=! with continuous functions as coefficients, that is, a
series of the type

p= ) PO

ko —w

where the p; are continuous functions of £ on a S ¢ < b and all but a
finite number of the p, with negative indices are zeroona <t £ b. The
geries need not be convergent. If each of the p; is differentiable, then
the derivative p’ of p is defined as the formal series

L]
']

P = z A0

bw—w

Two formal series are said to be equal if the coefficients of like powers of
p~! are equal. Sums, products, ete., of formal series are defined in the
expected manner.

Let ¢ denote the polynomial in p

¢ =q)p" + @:1(D)pt + « - - + q.(t)

wherethegic Cona < ¢t £ b. Formal expressions pe? will be considered.
Two such expressions are equal if and only if the polynomials g are equal
for a 5 ¢ S b and the formal series p are equal. If p and ¢ are differen-
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tiable in ¢, then by definition

(pe?)’ = (p' + pg’)ec
Clearly (pe®)’ is an expression of the same type as pet.

Formal matrices Pe? will be considered where the elements of P are
formal series and @ is a diagonal matrix whose elements are polynomials
in p of the type ¢ above. Two such matrices are said to be equal if and
only if the series matrices P are equal and the diagonal pelynomial
matrices @ are equal. Since Q is diagonal, the derivative of 9 is Q’e9.

From (1.1) and (1.2) it is clear that p"A(l,p) can be considered as a
- formal series. The formal matrix Pe? is said to be a formal solution of

(1.1) if formally - - :
. (Ped)’ = (P’ + PQ')e® = p"A(t,p) Pe?
that is, if ‘
' P+ PQ = prA(t,0)P
Theorem 2.1, Let the A in (1.2) be tnfinitely differentiableona S ¢ S b,

and assume the characteristic roots N(t) (§ =1, ..., n) of At) are
distinctona St < b, 8o that - ‘
MO MO =0 (EHFj,asSt=DH) (2.1)

Then (1.1) has a formal mairiz solution Pe?, where

P=) o,*P(t)  Q=pQ®)+ - + Q0
E=0 :
Moreover, Po(t) 18 nonsingular on @ St £ b, Qy(t) = A(l), where A({) is
the diagonal matriz with diagonal elements \(t), £ =1, . . . , n.

Proof. The proof is similar to that of Theorem 2.1 of Chap. 5. From
(2.1) it follows easily that the existence of all derivatives of A, implies
the same for \;, and therefore for A. For each £in ¢ £{ < b a non-
singular matrix Bo(f) exists such that By(f)Ao(t)Be(t) = A(t). It is
important to observe that A¢Bo = BgA implies, with the use of (2.1), that
By can be chosen so that it has all derivatives on [a,b]. Indeed, each
column of By is unique except for a scalar factor. On the other hand, the
kth column of B, can be taken as a multiple of the cofactors of a row of
the matrix Ao — M:E. Since the roots ); are distinct by (2.1), it follows
that for any fixed ¢ the cofactors of every row cannot all vanish, If the
cofactors of a particular row of A — AE are not all zero at ¢, by con-
tinuity this is true for an interval containing {. Using the Heine-Borel
theorem, there are a finite number of intervals whose union is [a,b) such
that on each of the intervals the cofactors of some row of Ao — ME are
not all zero. Choosing one such row for each of the finite number of
intervals, it is clear that the cofactors are infinitely differentiable. Bv
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patching together the cofactors of these rows by use of infinitely differen-
tiable scalar factors, it is thus possible to find a kth column of By which
does not vanish over [a,b] and has all derivatives.

The transformation x = By yields a system for y of the same type as
(1.1) with Ao replaced by A. Thus, with no restriction, it can be assumed
Aois diagonal. The requirement that Pe? be a formal solution of (1.1) is

j‘,o P} + (,,Z, P G+ + Q)

= p (gZo P"'At) (gzo pEP) (2.2)

Thus, setting the coefficients of p* equal, there follows
P oQ") = AoPo

Assuming that the equation (1.1) has been transformed as indicated so
that A, is in diagonal form, it is clear that Q; = A = Agand Py = Eisa
solution.

_The coefficients of p™! in (2.2) yield

P1Qy + PoQy = AoPy + APy (2.3)

Smce Po = E and A, = Qg and Q] are diagonal, the elements P} of P,
with 7 = j satisfy
’ “(X! _ X) = (l)

where a} are the elements of A,. By (2.1) this determines p{, i » j,
uniquely. Let P, be the matrix with elements p{", ¢ = j, determined as
above and with diagonal elements zero. For ¢ = j, (2.3) yields -

(q( l))l = a( n

Thus Q) is umquely determined. The determination of Q;(t) from Q)(t)
may be made unique by requiring Q(a) = 0. Let P, = Py 4 PyD,,
where Dy(2) is an undetermined diagonal matrix. Then clearly (2.3) is
satisfied. ,

This procedure continues until the coefficients of o—! are equated and
the term P} enters. That P exists is clearly a consequence of the differ-
entiability of Ao and 4,. As the coefficients of later powers of p are con-
sidered, the existence of higher derivatives of the 4; will enter. From the
equation resulting from the p~! term, it also follows that D is determined.
The strong similarity with the proof of Theorem 2.1, Chap. 5, is evident
and further details are omitted.

ReMaRrk: In case the A, are of class C. but not of class Cy.1, then the
ahove process is valid only up to the point in the argument where the
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mth derivatives enter. Thus in this case the existence of the early terms
only of the formal series can be established.

3. Asymptotic Behavior of Solutions

The concept of asymptotic series has already been introduced in Chap.
5. There asymptotic expansions in the variable z were obtained. Here
the asymptotic expansions will be with respect to the parameter p. A
region in the p plane bounded by two ares each of which tends toward «
and which do not intersect except at their common initial point will be
denoted by S. A funetion f = f(t,p) is said to be represented asymp-
totically in S by the formal series below,

1te) ~ ) et~

i=0

for a =t = b if for every nonnegative integer m there exists a constant
K. such that

|7n) — E (0| 5 s
=)

for all sufficiently large |p|, p beingin S, and fora = ¢ < b. Let g be con-
tinuous in (¢,p) for ¢ in [a,b] and p in S. A function f will be said to be
represented asymptotically in S by the series below,

f(t,p) ~ e2t» z e(t)p—i
i=0

if for each m there exists a constant K,, such that

m

‘f (t)p) — estt 2 )| S

i=0

180( p)lK

W (3.1)

for pin S, |p| sufficiently large, and ¢ in [a,b]. Similarly, f is represented
asymptotically by

N “
z 20 (tp) z ck“(t)p—'}
k=1 i=0

if for each m

m N

| 1601 - i et ) a(p-i| < Ka ) K]

k=1 §=0 k=1
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If the relationship (3.1) is valid for m = M, where M is an integer, then
this is denoted by

J(t,p) Weat» Z i(t)p
It will be seen later that the two boundary arcs of S have the property
that, as |p| — « on each of them, arg p tends to a definite limiting value.
Let the element in the kth row and column of the diagonal matrix Q of
Theorem 2.1 be denoted by g.. Then gi(tp) = p"Na(t) + + - - .
Hypothesis H. Let there exist a region S of the complex p plane bounded
by two arcs lending lo © such that for each i and j, 1 < 1, j = n, one of the
inequalities
Rlgi(te) — gi(to)) 2 0 32
Rlgite) — gi(tp)] = 0 - 3.3)

is satisfied for all sufficiently large lol, pin S,anda S t £ .

It is not necessarily the case that § must exist. However, if the
intarval [a,l] is replaced by [a,c], where c is close enough to a, then S does
exist. Indeed, since Ai(t) — M(t) = 0, ¢ # j, it follows that

arg p(8) — N(D)] = 10 + @ii())
where arg p = 8 and ¢;;(¢) = arg [A(t) — N;(¢)]).  Clearly
RerA(t) — N1 <0 (3.4)

if cos [r0 + @i;(t)] 0. Thus if ¢ is near enough to a, ¢i(!) is near
enough to the constant ¢;;(a) so that a range of 6 can be found in which
cos [r0 + ¢;(0)] # O for all © = j. From this follows the existence of a
sector in the p plane in which (3.4) holds for all 7 £ j. Since p"(A, — ;)
is the dominant term of ¢} — g for large |p}, it follows readily now that §
exists. Thus, if the interval in £ is short enough, S always exists.

The fact that the boundary arcs of S tend to definite limitsin arg p = ¢
as |p| = « follows readily from the fact that S[g; — ¢}] is a polynomial
in p and thus for large |p| has its behavior determined mainly by the term
of highest power in p that appearsinit. Let the columns of P of Theorem
2.1 be denoted by p®,j = 1, . . . ,n. Then p®We% are each formal solu-
tionsof (1.1)forj=1,2,...,n

Theorem 8.1. If Hypothesis H holds, then for each fixed integer m > 0
and for cach integer k, 1 S k < n, there ezisisa solution o of (1.1) such that

| ¢ wpHen
forpinSanda St S b
Remanrk: In case the A are of class C¥ for some N > 0, then the
above theorem is valid form S N.
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Proof of Theorem 3.1. 'The proof has very much in common with that
of Theorem 4.1, Chap. 5. Tle truncated series P, as well as p%, are
defined as being identical in the terms up to p—™ with those of the matrix
P and the vector p®), respectively, and terminating with the terms of
power p~™. Thus

Pat) = ) 5P
i=0
Since Pe? is a formal solution of (1.1), it follows that
(P'+ PQYP = p'A

The existence of the formal series P—! follows easily with the same argu-
ment as in Lemma 4.1, Chap. 5. Consider now B (t,0) defined by

(P + PaQ)(Po)t = p'Ba

The identity of B, and A for terms up to and including those of order
p~*) follows easily. That is, there exists a constant C, depending on
m such that

|4(t6) — Balto)] < IF\CT+ 3.5)

for large || and @ S ¢ < b. Moreover, Pn¢? is actually a fundamental
solution of
7’ = p'Ba(l,p)z (8.6)

Let k, 1 = k < n, be fixed in this preof. Let p be in S and let
Bp=VP D

where V)’ has its column of index 7 equal to the same column of 2., if for
pinSanda =t b
R(gi(tp) — ailt,p)) 2 0 (3.7

The columns of index j in V¥ for which (3.7) does not hold are taken as
gero, This determines V' also.
Let (1.1) be written as

z = p'Buz + p'(A — Bn)x
Clearly p%% is a solution of (3.6). If the integral equation

o(tw) = Bu’(tp)ent”
- fV:’(t,p)eQ(l-p)‘[ e—o('.p)(Pm(f'p))—l(A(T’p) _ Bu(‘l',p))qp(‘r,p) dr

+ V() [ 0Pl ) (Air,p) ~ Bulr,)elris) dr (3.8)

has a continuous solution ¢, it follows easily that ¢ is a solution of (1.1).
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Because of the vanishing columns of V@, it is the case that the only
exponential terms appearing in the elements of V{Meet.»—atr.» are
e4)~4 o) where j satisfies (3.7). A similar result holds for

Vfﬂ”eﬂ(t.p)—O('.p)
Let
K:P(‘»':P) = Vg)(t,p)BQ“")-0("’)(P,,.(1',p))-l(.4(‘r,p) - B,..(T,p))

and let K¢ be defined similarly with V¢ replaced by V. Fort<r b
and p in S it follows for any j satisfying (3.7) that

lessor—syerataracn| = exp (= [ Rigi(ow) — gile,0) do} < 1

Thusfort < r = b, pin S and || large there exists a constant C;, depend-
ing on m, such that

lpl,.,.,,.“l Kg)(t,,,.,p)ew,(r.p)—v,(l.p)l £C, (3.9)
Similarly fora £ r < ¢,
lel+=+1K D Er p)ens=0e0] 5 Cy .10)

for some constant C,.
The integral equation (3.8) will be shown to have a solution by use of
a successive-approximations procedure. Let ¢ (f,0) = 0 and let for
lz0
)
varn(tp) = P’ (tp)en s — pr ]; K2 (trp)ew(r,e) dr

¢
+ o ]; K::)(t,f,p)(a(x)(‘r,p) dr
Clearly for large |g|, p ¢ S, it follows from (3.9) and (3.10) that

b — a)(C c
[(eusn — em)ea| = ( a|3)€m-:n+ 2 max | (e — eu-n)e~a|

where the max is taken over a S ¢ < b. If |p®(¢,0)| < Co and if |p| is
so large that (b — @)(C: + C3) = }|p|=*, then it follows easily that

leasn () — ewm(tp)] et g'?

From this follows the uniform convergence of {¢«)} to a limit which may
be denoted by ¢ and which is a solution of the integral equation. More-
over, it is also clear that

lem(t,p)e—atn| 5 2C,
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Yrom the integral equation follows readily that

2C(b — a)(C2 + C5)
|p1m+l

le(tp)e e — pib(tp)| =
which proves the theorem.

4. The Case of Equal Characteristic Roots

The case where two or more characteristic roots become equal at an
isolated point of [a,b] will not be considered here. However, o case of
great interest arises where several of the roots \;(¢) are identical over
[a,b]. That is, for any given 7 or j, either \;(t) = X;(t) over [a,b] or else
Ai(t) # N\;(t) for every ( in [a,b]. In this case it can be shown that, on
certain subintervals of [a,b], formal solutions exist, but now, instead of
involving polynomials in p and series in 1/p, the solutions involve p'*,
where k& is some positive integer. Thus the ¢.(¢,p) are polynomials in
p¥* and the series P(i,p) are in powers of p~/%,

The prooff that the formal solutions exist is much more complicated
than in the case considered in See. 2. However, the proof that there
exist actual solutions asymptotic to the formal solutions in appropriate
sectors is very similar to that given in Sec. 3.

A trivial example is given by

r )
&y = I I, = pIy

Here r = 1 and \; = X2 = 0. On the other hand, it is easily seen that
actual solutions ¢ = (¢1,¢2) are given by

e1(l,p) = cie?t + cpeolt
ea(t,p) = cipdelt — caple—rht

where ¢, and ¢, are constants.
6. The nth-order Equation
Consider the nth-order equation

w™ 4+ pray(t,p)u™ Y 4 « + « + prrau(tp)u = 0 (5.1)

overa =t = b, where

L\
a;(t,p) = }4 a;(t)p*
E=0
Ifu= 2z and if
Ty = Ty Ty = p e e g AL =g (5.2)

t H. L. Turritin, Asymptotic expansions of solutions of systems of ordinary linear
differential equations containing a parameter, Contributions to the theory of nonlinear
oscillations, vol. 2, Princeton, 1952,
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then
w = T, u’ = p":c., ey y— = p("""'z.

and (5.1) becomes
:B:. = - '[a,.(t,p)xl + -+ al(t)p)z'l] (5'3)

Thus (5.2) and (5.3) form a system of n first-order equations and the
theory of the earlier sections can be used.
The \(t) are the characteristic roots of the matrix

0 1 0
0 0 0
. . . (5.4)
0 0 1

—auoll) —Gnaolf) - —auo(d)

If the \(t) are all distinct, then Theorem 3.1 may be used. If the
hypothesis of Theorem 3.1 is fulfilled, then the system, (5.2) and (5.3),
has n formal solutions p%e%, and for any integer m > O there exist n
actual independent solutions of (5.1) ¢; = ¥i(l,p,m), s =1, . . . ,n,such
that
¢‘(tlp)m) f:p‘lﬁ(t,p)eq‘(t.;) @=1,..., n)

where the 1 denotes the first component of p?. The derivatives of ¥;
clearly satisfy

\":(t;l”m) ’;Jprp(;)(trp)eq‘("’) t=1,..., n)
4’;'(‘:9:"") ':P"P(aﬂ(‘:l’)cq“"’ ) G=1...,n)
ete.
As an example, the equation

v' +*+q®ly =0
will be considered over the interval 0 = ¢ £ 1 on which ¢ is assumed to
be C=. Setting y = 7, and y’ = pz; and using (5.4), there follows
M) = ¢, \(t) = —i. Thus a formal solution

e(eol®) + et + - ¢ )
is considered. This leads to
(5 +ctp 4+ + * *) + 2iplco + et + - - 9) .
+alcotept+-)=0
Taking co = 1, there follows, equating successive powers of p—! to zero,
2icy +q=0

e + 2icy +gor =0
eto.



184 ORDINARY DIFFERENTIAL EQUATIONS [CHaP. 6

The determination of ¢,(t), cu(t), etc., may be made unique by requiring
that they vanish at ¢ = 0.
REMARK: The formal series may also be obtained from the relationship

oltp) = ¢ + =1 [ sin p(t = )a@)e(r,p) dr (5.5)

which allows at the same time a rather easy direct proof that there is a
solution which it represents asymptotically, Here S may be taken as
the upper half plane 3p = 0.

Indeed, using successive approximations with ¢y = 0 and

: 1,
oy = et 4 5t [Vsin p(t = n)a()elre) dr

there follows easily, if [¢(¢)| £ M, that

Vet
— it ]
1’1914—1 '.911 = lpl;

Thus ¢, converges uniformly for large [p|in Jp = 0,0 = ¢ £ 1, to a solu-
tion ¢. Alsoif |p| = 2M/
I‘F"(LPH = 2"3‘.9‘1
inS,0=¢=1.Using (5.5), the above gives
2M |ei#!|
lol

lo — e =
If this is used in (5.5), there follows

: eire [} 10 il e"‘)
— pip e e ip(2r—t i
e(l,p) et - T j: q(r) dr %ip /: e lg(z) dr + 0 (IPP

Integration by parts used on the second integral yields

(t )—ew[1+f1@d +0(—1~)]
AT ¢ 20p pl?

This process may be continued indefinitely, thereby proving independ-
ently the asymptotic formula for ¢ in S.

PROBLEMS
1. Let
J,p) = e [ho(t) + M(t)p™ + - + 7]

for large |p| and @ =t = b, where
p=1

g(t,p) = p# E gi(t)p~d

i=0



CHAPTER 7

SELF-ADJOINT EIGENVALUE PROBLEMS
ON A FINITE INTERVAL

1. Introduction

The solution of boundary-value problems for linear partial differential
equations may sometimes be reduced to the solution of ordinary differen-
tial equations containing a parameter and subject to certain boundary
conditions.

A simple example of this situation is the problem of finding the solution

of
, _d
Lz = —2" =1z ('-m (1.1
z(0) = 2(1) =0

on the interval 0 < ¢ 5 1. Here ! is a complex parameter and z is a
scalar, Solutions of —z” = Iz satisfying x(0) = 0 are c sin 1%, wherecis
a constant. .Thus (1.1) can have a nontrivial solution, that is, one which
is not identically zero, if and only if sin I! = 0 or only if ! = =%?, where

k=1,2,.... These values of ! are called eigenvalues. Correspond- -
ing solutions are
xt() = V2sinkst (k=12 ... (1.2)
and are called eigenfunciions. It is readily seen that
1
/; xixx dt = 8y, (1.3)

where 8 is zeroif j = kand oneif = k. It is an important fact, which

will be proved in the general case later, that a wide class of functions can

be represented by a series in the x;,. Indeed, thisis the Fourier sine series.
An even simpler example is given by

Le =it =lz z(0) —z(1) = 0 (1.4)

Here it is easily seen that the eigenvalues are I = 2xk, k = 0, £1, +2,
. , and that x,(¢) = e~***. The analogue of (1.3) now is

1
o xxadt = 5 (15)
188
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The h; and g; are of class C= and g is a nonnegative integer. Let
Atp) = do(t) + 1)o7 + - - -

where the A; are C= on [a,b]. Show the differential equation =’ = prA(4,p)z + f(4p)
has & formal solution ¥(4,p) = p~*eeco(t) 4 er(t)p~ + - - *], where k = rif u < rand
k = uif p = r, provided (1) no characteristic root of Ao(t) vanishes on [a,b] if 4 <,
or (2) no characteristic root of Ao(t) is equal to go(t) for any ¢ on [a,b] if u = r, or (3)
golt) # 0 for any ton [a,b] if u > r.

2. Let the hypothesis of Theorem 2.1 be satisfied and let g;(t,0) be defined as in
Sce. 3 above (3.2). Let S be a region in the p plane, where foreachj =1, . . ., n
either

Rlg;tp) — ¢'(tp)) =0
or else
Rlg;(te) — 9'(tp)] S0

Show that the differential equation of Prob. 1 has for any fixed m > 0 a eolation
¢ = ol(t,p,m), where o(t,p,m) % ¢(tp) for te [a,b] and p e S.

HinT: Let ym(t,p) be the truncated sum of the first m + 1 terms of the sum in y.
lety =z — ym. Then y' = p"Ay + Fn(t,p), where

eFm(tp) = 0(lp[™*=1) 1 = max (r,s)

Lev Po(t,p) be as in the proof of Theorem 3.1 and let P = U + U"’, where a
column oceurs in U or Uf,f’, according to which inequality in Prob. 2 g; satisfies.
Show that there is a unique solution x = x({,p,m) of

b b
x(t,p,m) = f; Gnltyr,p)Fu(r,p) dr + o fa Gn(t;7,p)[Bm(r,p) — Alr,p)lx(ripym) dr

where Gul(tr,e) = UL (t,p)eQre=0rmPrl(rp) for a S+ St and G. satisfies a
similar equation for t < r < b except that US)’ is replaced by —UY’. Show thas
e x(t,pm) = 0(|PI_H_1}

and that ¢(t,p,m) = Yu(t,p) + x(t,p,m).
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where Z denotes the complex conjugate of 2. It is seen from (1.3) that
the functions (1.2) also satisfy (1.5). A sequence of functions {x:}
satisfying (1.5) is called orthonormal on [0,1].

The principal results concerning the problems (1.1) and (1.4) are valid
for all functions in £2(0,1), that is, the set of all complex-valued functions
fon0 = ¢t £ 1 which are Lebesgue-measurable there and for which

R < w

where the integral is the Lebesgue integral. Since this class of functions
includes all the continuous, or even piecewise continuous, functions on
0 St 5 1, the results naturally hold for these. Therefore the reader
unfamiliar with the Lebesgue integral can assume throughout that the
functions considered are continuous, or piecewise continuous.

If f,g e €2(0,1), let

Go) = [ fea Al = g
Then, if fe £2(0,1), it is the case for (1.2) that

'gﬂh12mwn"=o (1.6)

and the same is true for the x: associated with (1.4) if the sum in (1.6) is
from —m tom. The numbers (f,x:) are called the Fourier coefficients of
f with respect to the sequence {x.}. The series -

Y, G

kel

is said. to converge to f in the norm of £2(0,1) if (1.6) holds. The result
(1.6) is easily seen to be equivalent to

Il = 1ol %)
kol

with 1 replaced by — « for the case associated with (1.4). The equality
(1.7) is known as the Parseval equality. It is (1.6) and (1.7) which will be
proved under quite general conditions in this chapter.

Consider a slightly more general problem than (1.4), namely,

Lr=ir =lz  z(1) = az(0) (1.8)

where a is a constant. Let {)\;]} be the eigenvalues and {x;} be the cor-
responding eigenfunctions, which exist but which need not be computed
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explicitly for present purposes. Clearly

(Lxirxx) = N(xyxe)

Garlxa) = M)

and
Also by (1.8)

Lxi) — Gl =4 [ (s + xik) dt = ixixa ],
= {(ad — 1)x;(0)x:(0) (1.9)

& = X)) = 1(a@ — 1)x;(0)%(0)
and if ag = 1 it follows, if j = k, that \; is real and if j ¢ k that

Thus

(xix) = 0

Thus, if ad@ = 1, the eigenvalues are real and the eigenfunctions may be
taken as an orthonormal set. However, if ad@ # 1, it is readily seen that
the eigenvalues need not be real and that (x;,x:) # 0.
If the right side of (1.9) vanishes, then the eigenfunctions may be taken
as orthonormal. Thus, if the problem (1.8) is such that any two fune-
.tions u and v of class C! on [0,1] which satisfy the boundary conditions
also satisfy
(Lupy) — (u,lv) =0 (1.10)

then the eigenfunctions of (1.8) form an orthonormal set and the eigen-
values are real. The condition (1.10) is of central importance and is
known as the self-adjoininess condition.

It is readily verified that if u and v are of class C? on [0,1] and satisfy
the boundary conditions of (1.1), then (Lu,) = (u,Lv) so that (1.1) is
a self-adjoint problem, On the other hand, it is readily verified that
with the boundary conditions z(0) = z(l), z'(0) = 2z’ (l) the problem
—z'" = lz is not self-adjoint.

2. Self-adjoint Eigenvalue Problems
Let L be the nth-order operator given by

Lx = poz(’l) + plx(n"l) + .. + Pt

where the p; are complex-valued functions of class C*~/ on the closed
interval a S ¢ £ b and po(t) = 0 on [a,b). Let

Uz = ) (Mpat-9(a) + Naa®o@®) (G =1,...,n)
e}
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where the M and N are constants. Denote the relationships Uz = 0,
j=1...,n by Us =0. The problem

! Lz = Iz Uz =0
is called an eigenvalue problem. It is said to be self-adjoint if

(Luw) = (u,Lv) 2.1)
for all u,v e C" on [a,b] which satisfy the boundary conditions

Uu=Uv=0
Here, if f,g ¢ R2(a,b),

o = [fade 191 = g

The number (f,g) is called the tnner product of f with g, and ||f]| is the
norm of f in 8(a,b). If (f,g) = O, then f and g are said to be orthogonal.
It has already been seen from the examples of Sec. 1 that the class of
gelf-adjoint problems is not vacuous. Further examples of such problems
are given in Probs. 1, 2, and 3 at the end of the chapter.
It was shown in (6.13), Chap. 3, that to L there corresponds an adjoint
L*, where

Ltz = (=1)"(pox)™ + (—1)"(Bz)*D + - -+ - + Paz
such that for any u,v ¢ C* on [a,b] '
(Luyw) ~ (u,L*v) = [u](d) — [uv](a)
Clearly if L+ = L and U is such that Uu = Uv = 0 implies
[uv)(b) — [uv](a) = O

then = will be self-adjoint. The condition that U have this property is
given in Theorem 3.2, Chap. 11. )

The problem » always has the trivial solution of the identically zero
function. If I is such that = has a nontrivial solution, then { is called an
eigenvalue of » and the nontrivial solutions of = for that I are called eigen-
functions. It will be shown in the next section that eigenvalues always
exist for a self-adjoint problem.

Theorem 2.1. Let the problem = be self-adjoint. Then the eigenvalues
are real and conslitule an al most enumerable set with no finile cluster point.
Eigenfunctions corresponding to distinct eigenvalues are orthogonal.

Proof. Let! = X\ be an eigenvalue with x an eigenfunction of . Then
because Lx = Ax, the relation (2.1) gives (\ — X)(x,x) = 0. Because
(x,x) > 0, it follows that A = X and thus an eigenvalue must be real.
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If Ay and X, are distinet eigenvalues with eigenfunctions x, and xa,
respectively, then

(Lxyxa) — (xn,Lxe) = (M — Na)(x1,x2)
and by (2.1) this implies that (x1,x2) = 0.

Let ¢; = @i(t,1),j =1, . . ., n, be solutions of Lz = Iz which satisfy
the initial conditions

WD) =t Gok=1,...,n) 22)

for some ¢ in the interval [a,b]. By Theorem 8.4 (also Prob. 7), Chap. 1,

the functions ¢*~" are continuous in (t,1) for te[a,b] and all I, and for

fixed ¢ are entire functions of I.  Since the ¢; are linearly independent, the
problem r has [ as an eigenvalue if and only if there exist constants ¢;, not

all zero, such that z = Z cj¢; satisfies Uz = 0. This is the case if and
=1
only if
Y U =0 (k=1,...,n)
i=1

has a nontrivial solution. This system of n equations for the ¢; has a
nontrivial solution if and only if the determinant A of the matrix with
Usrg; in the kth row and jth column is zero. Because the "~ are entire
functions of / for fixed ¢, in particular at ¢t = a and ¢ = b, it follows that
A is an entire function of I. This function can have only real zeros
because = has no nonreal eigenvalues. Thus A is an entire function of !
which is not identically zero. Its zeros, which are the eigenvalues of =,
can therefore cluster only at [ = e. This completes the proof of the
theorem.
The nonhomogeneous problem

Lz =lz + f Uz =0 (2.3)

will now be considered, where fe €' on [a,b]. This problem can be solved
with the aid of the variation-of-constants formula, Theorem 6.4, Chap. 3
(see also Prob. 21, Chap. 3). Let the ¢; again be the solutions of Lz = Iz
which satisfy (2.2). Forr = ¢ let

e1(7,0) s e v oa(r,0)
1 EACH)! shep e Wi (7T

Po(M)Wiey, - . o, @a)7)

K(trl) = c e (2.4)
A2l e e (n,D)

¢'l(lrf) SERE 'Pﬂ(tri")
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and for ¢t <7 let K({,r,l) = 0. The Wronskian W(ey, . . . , ¢a) in the
denominator of K in (2.4) is a function of = only since

W(e, « « -, ¢a)(r) = exp [ f _?J;:(.S()s) ds]

as is clear from (6.5), Chap. 3. Clearly (¢’K/at’)(r + 0, 7,l) = 0 for
i=0,1, ... ,n — 2 since the determinant in (2.4) vanishes when any
two rows are identical, Thus ¢/K/ati, j =0, 1, ..., n — 2, is con-
tinuous in ({,7,0) for {,r on [a,b] and all [, and is an entire function of I for
fixed (¢,r). Moreover, for j = n — 1 and n, it is continuous in (¢,7,l) for
alllandfora =7 <{=<bandfora st =7 =b Also

an— 1
aﬂ"_'l (‘I‘ + 0 1’,!‘) !“ =L (1’ — 0, T,I) = m

As a function of ¢, K satisfies LK = IK if t # . From Theorem 6.4,
Chap. 3, or from the above remarks, it follows that the function u defined

by

ulll) = ] ® K(tr, D) dr. = f ‘K D) dr 2.5)

is of class C in ¢, entire in [, and Lu = lu + f.
The function K will now be modified so that the conditions Uz = 0 are

also satisfied. Let

Gtrl) = Kl + Z civi(t,0) (2.6)

J=1

where the ¢; are chosen so that for fixed 7 on (a,b), G as a function of ¢
satisfies UG = 0. That is,

UG =TK+ ) ¢Uiy=0 (k=1,...,n)
J=1
or, since U/, K can be extended to be continuous for a < r £ b,

Y oUips= UK (k=1,...,mas75b) (27

ji=1

The right member in (2.7) is continuous in (r,l) for a < 7 = b and all [,
and is an entire function of  for fixed . Since the determinant A is an
entire function of 1 with zeros at the eigenvalues of =, it follows that if
A does not vanish identically (which is the case for self-adjoint problems),
(2.7) determines the ¢; as functions of (7,l) continuous for r on [a,b] and
for all [ except the eigenvalues of =. Moreover, for fixed 7, the ¢; are
meromorphic functions of {. Thus G in (2.6) is determined except at
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eigenvalues of 7. TFrom the fact that (2.5) is a solution of Lz = lx -} f
it is clear from (2.6) that the function u defined by

w®) = [ G dr 2.8)

is a solution of (2.3) except at the eigenvalues of #. Indeed, the following
theorem is true. Note that in this theorem # is not required to be.
self-adjoint.

Theorem 2.2. [If for at least one value of | the problem « has no solution
except the irivial one (which is always true for the self-adjoint case), then
there exists a unique function G = G(t,r\l) defined for ({,r) on the square
a £ t,7 = band for all complex | except the eigenvalues of = and having the
following properties:

(i) o*G/at* (k =0, 1, . . . ,n — 2) exist and are continuous n (¢,r,l)
for (t,7) on the square a = t, v < b and | not al an eigenvalue of =. More-
over, 3"G/ot* for k = n — 1 and n are continuous in (I,7,l) for (i,7) on each
of the trianglesa <t <7 < banda = 7 £ t £ band lnot at an eigenvalue
of w. - For fized (t,7) these functions are all meromorphic functions of L.

an—‘lG an—lG‘

(ii) H"__—l- ('r -+ 0, T,E] == *(.]—E;—_'—l' (T = U, T,I) =

el
Po(7)

(iii) As a function of t, G satisfies Lz = lx if t 5 1.

(iv) As a function of t, G satisfies the boundary conditions Uz = 0 for
as<7t=<h

The solution of (2.3) 1s given by the function w defined by (2.8).

The function @ is known as Green's function for =. 'T'he theorem has
already been proved above except for the uniqueness. If there were two
Green’s functions, ¢ and G, for some [, not an eigenvalue, then as a func-
tion of ¢, @ — G is of class C*! and since G — @ also satisfies Lz = Iz,
t # 7, it must indeed be of class C*. However, since [ is not an eigenvalue,
the problem 7 has only the trivial solution and thus ¢ — G = 0.

Tt is readily verified that for (1.1)

gin B sin (1 — 7)

I} sin [} =r=ga?
G(t;'r;l) = sin [+ sin n(l = t)
It sin I} PEv ARy
and for (1.4)
{eitt—1
: 1 — et Ostsr=1)
G(tr,l) = felt(+r—0

= e
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Note that the latter G above is double-valued on ¢ = r. This is true in
general for 9"1G/at*~! since it is defined to be continuous in @ £ ¢ =
rSlanda S+ =151,

It will be assumed now that ! = 0 is not an eigenvalue of the self-
adjoint problem #. This is no restriction since there must, in any case,
exist a real constant ¢ which is not an eigenvalue; thus if L,z = Lz — cz,
the problem my: Lyx = Iz, Uz = 0, is again a self-adjoint problem because
(cup) = (u,cv). Moreover, if A is an eigenvalue of r;, then A 4 ¢ is one
of r, and conversely, and the eigenfunctions are the same for » and ..
Since ! = 0 is not an eigenvalue of 7, G(¢,7,0) exists. In the rest of this
chapter this Green’s function for ! = 0 will be denoted by G = G(¢,7) and
it will be assumed that = is self-adjoint.

Corresponding to this Green’s function @, let G be the linear integral
operator defined for all fe C on [a,b] by

| &) = [ Gunfe) dr
If f,9 ¢ C on [a,b], then (2.1) applied to u = Gf, v = Gy yields

(/,89) = (Sf\9) (2.9)

From (2.9) it follows easily that (Gf,f) is real. A further consequence
of (2.9) is that .
G(tr) = G(r,l)

which also is a sufficient condition that r be self-adjoint. Indeed, let
u,v e C7 on [a,b] and satisfy Uz = 0. Letf = Lu,g = Lv. Thenu — Gf
and v — Gg are solutions of Lz = 0, Uz = 0, and therefore are zero.
Thus 4 = Gf and v = Gg and (Lu,w) = (u,Lv) follows from (2.9).

The operator G is a type of inverse to the operator L in the sense that

Lgf =f GLu = u
are valid for all f¢ C on [a,b], and u ¢ C* on [a,b] for which Uu = 0.

3. The Existence of Eigenvaluest
With @ and g defined as above, it is clear that if \ is an eigenvalue and
¢ an eigenfunction of r corresponding to A, then
¢ = AGp (3.1)

Conversely, if ¢ ¢ C on [a,b], then Gy is of class C* and LGy = ¢ s0 that
(8.1) implies Ly = Ap. Moreover, Uy = 0 since UG = 0.

If there exists a nontrivial ¢ ¢ C on [a,b] and a complex number u such
that o = ue, then u is said to be an eigenvalue of § and ¢ an eigen-

t An alternative treatment is given in Probs. 8 and 9.
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function. What was proved above is that the eigenfunctions of Q are

identical with those of = and the eigenvalues of § are reciprocals of those of .
The equation (2.9) expresses the fact that g is self-adjoint. It will

be shown that such a self-adjoint operator must possess eigenvalues and in

this way the result will follow for . ' '
Use will be made of the Schwarz inequality

(0l S 151 ol

s + ol = 171 + llgh

Lemma 8.1. The set of all functions {GQu}, where ueC on [a,b] and
llull < 1, .48 a bounded set of equicontinuous functions.t
Proof. For n = 2, @ is uniformly continuous on the square ¢ < ¢
r S b. Hence, given any ¢ > 0, there exists a § > 0 such that
Gr) — Gl <« |t —to] < 8

From this it follows that if ue C and |t; — 5| < 3,

and its consequence

Igu(t) — Qut)l S ¢ [ It dr S 6 —aPu]  (32)

This proves the equicontinuity of the set {Qu}. If Gt,7)| S v for
aStr Sb, then

[Su(®)] S (b — a)i|ul 33)

which implies the uniform boundedness of the set {Gu}.

For n = 1 the equicontinuity is proved by a slightly different argu-
ment, since in this case G has a discontinuity at £ = r. On the right side
of (3.2) appears the added term 2v|t; — )|¥|ull. Indeed, let #; < #.
Then T

Gu(ts) — Gu(t) = ( Lt. + ﬁ ) (@(tayr) — G(t,7))ulr) dr
+ [ @) — Glm)ue) dr

The first term on the right is again less than the right side of (3.2). The
second term is less than 2v|t; — 4,|¥|u]|.
The norm of G, denoted by ||g||, is defined by

Il = sup ligull  (ueC on[ab)

From (3.3) it follows that [|Gull < v(b — a)[ul|, and hence ||g]| < =.
Clearly |Gull = ||gll lull for all ueC on [ab]. Because LGu = u,
flell > o. ' ‘

t This proves that @ is a completely continuous operator.,
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Lemma 3.2. The norm of G satisfics

ISl = sup |(Guu)|  (ueC on [a,b])
1

] -

Proof. By (2.9) (Gu,u) is real. If |lu| =1,
|(Gu,0)| = [|Gull [lul| = ISl

and hence 5 = sup |(Gu,u)| = [[G|l. To prove the reverse inequality,
note that

(g(u + v),u 4+ v) = (Qu,u) + (Guv,v) + 2N (Gu,w) = gllu + v|?
and similarly
(G(u — v)u — v) = (Su,u) + (Sv,v) — 2R(Su,w) = —nllu — v|?
Subtracting, it follows that
4R (Gu,v) = 2n(J|ull® + [lo]l*) (3.4)

Gu is not zero for u = € unless u = 0, for, if it were, LGu = u would be
zero. Letting v = Gu/||Gu|l in (3.4), where ||u| = 1, gives ||Gu| =< »,
which completes the proof.

Theorem 3.1. FEither |G|l or — |G|l 75 an eigenvalue for G.

ReMmark: This not only proves the existence of an eigenvalue for G, and
for w, but shows that an eigenfunction ¢ corresponding to this eigenvalue
is a solution of the extremal problem of firding a function ue C on [a,b]
such that

(Gua) = [ ([ Geoue) ar) a@ a

attains its least upper bound among functions with [Jul| = 1 or else its
greatest lower bound, depending on which of these is larger in magnitude.

Proof of Theorem 3.1. Suppose [[G]| = sup (Gu,u) for [|u|| = l,ueC
on [a,b]. Then there exists a sequence of functions u,eC on [a,b],
[[um|| = 1, such that

(Sttmyum) = ||

Let po = ||Gl|. Since {Gu.} is an equicontinuous, uniformly bounded
sequence, | there exists a subsequence, call it {GQu.} also, which is uni-
formly convergent on [a,b] to & continuous function ¢,. It will be proved
@o is an eigenfunction with eigenvalue puo,

Since
max [Gu,, — ¢ — 0 (m— w)
aStsh
it follows that
|Gum — ¢oll 0  (m— ) (3.5)

t A proof of the Ascoli theorem is given in Sec. 1, Chap. 1.
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Also ||Qun|| — |leoll. Now

IGum — noumll? = 1Guall* + uilluall? — 2u0(Gtimytim) (3.6)

and the right side tends to |of|2 — uj as m — . It follows that
leoll2 = ug > 0, and hence oo is not identically zero on [a,b). From
(3.6) it also follows that since ||Gun|l? S ug,

0 = [[Gun — pottnl|® S 267 — 2p0(Gtim,%n)

which tends to zero as m — «. Thus

|GUm ~ sotéal| — O 3.7
But

0 = [IGeo — nopoll = IS0 — G(Gum)ll + 11S(Sttn) — noGumll
+ l1oSQum — modoll

and using ||Gull < lIg |, (3.5), and (3.7), this yields [|Gpo — vl = 0,
which proves Gpo = uoo.

If —|Igll = inf (Gu,u), the proof is similar.

Let xo = ¢o/|ledl. Then Jlxo]l = 1 and xo is said to be normalized.
Let

Gi(t,7) = G(t,r) — poxo()Xolr)

and define G, for u e C on [a,b] by
gul) = [ Grtr)ue) dr

Then G, has the same properties as G was shown to have in Lemmas 3.1
and 3.2. In particular, if }|G|| # 0, and

sup |(Giu,u)| = |uil

where u ¢ C on [a,b], |u|| = 1, and g, real, then , is an eigenvalue for G,
and there exists a nontrivial ¢, e C on [a,b] satisfying Gip1 = mer. Let
x1 = ¢1/llerll. Since (Giu,xo) = O for any ue C on [a,b], it follows that
x1 is orthogonal to xo. Therefore

Sx1 = Gix1 = mxa

and hence x, is an eigenfunction of §. From the extremal property,

lal = ol
Letting

Gs(tr) = Gi(tr) — mxa(D%1(7) y
and proceeding as above, the existence of xs and us is established with
|us| S [ml, and xs orthogonal to x; and xo. In this way the existence of
an orthonormalt sequence {xi}, ¥ =0, 1,2, . . . , is established.

 The sequence |xa} is orthonormal if (x;,xa) = 8, the Kronecker delta.

S
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This process can terminate only if, for some m, ||G,.]| = 0. But for
any [ of class C

m—1
LGnf =f ~ ) wilf,x)Lx;
=0
With ||G.]| = 0, this implies i
m=1
f=3 Uxx (3.8)
i=0

Since the x; are of class C*! and f can be taken as |{ — ¥(a 4 b)|, which is
not (', (3.8) is impossible. Thus |[G.|| > 0 for all m and there are
therefore an infinite number of eigenvalues and ecigenfunctions.

4. The Expansion and Completeness Theorems

The expansion in terms of eigenfunctions of = of a function fe C» on
[a,b] satisfying the boundary conditions Uz = 0 will now be proved.
From this the Parseval equality and the extensions of these results to any
function fe @%*(a,b) will follow easily. First, an important inequality
will be deduced.

Lemma. If fe®(a,b) and {xi} 1s an orthonormal sequence for =, then
the series

,,Zo 1(yxe)?

18 convergent, and

Z |(fxa)|? = (I£1I2 (Bessel's inequality)
E=0

Proof. Tor any finite m = 0

0= f = ) Gl = A2 = Y [(fixn)l?
k=0 k=0

which proves the convergence of the series in question, and Bessel's
inequality.

The number (f,xs) is called the kth Fourier coefficient of f with respect
to the orthonormal set {x.}.

Theorem 4.1. Let fe C® on [a,b] and salisfy the boundary conditions
Uf = 0. Then on [a,b]

f= Z (fyxe) Xk (4.1)

k=0

where the series converges uniformly on [a,b].
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By multiplying (4.1) by f and integrating, there results the following:
Corollary. If f is as in Theorem 4.1,

172 = E [(f,xx)|?  (Parseval equality)
¥=0

This is also called the completeness relation.
Proof of Theorem 4.1. From

_Lb G“(zjr)ik(f) dr = 'uki*(t)

it follows that the kth Fourier coefficient of the function g of = given by
g(r) = G(t,7) = G(r,t) for fixed ¢ is uge(t). The Bessel inequality yields

) s = ] |G(7,0)|* dr
2 J

k=0

for all m. Integrating in ¢ and letting m — «,

Y ui = 7b—a)?
k=0

where v = sup |G(r,)] ona = t,7 = b. Inparticular, [g| —0ask— o
Consider for an integer m = 1 -

m—1
Gu(tr) = Gt) = ) mwx®3)
K0
From the extremal property of G, there follows [|G.|| = |um|. Thus for
any u e C on [a,b],
m—1
Ignull = [|gu = ) muxadxa || = luml llul
k=0
or since |pm| — 0 as m — o,
m=—1
lim [ gu— ) m@uxx | =0 (4.2)
b i k=0
For any ¢ > p,
q 9
E me(u,xe)xx = G (z (u,xk)xk)
Kep k= p

Since |Gu| = v(b — a)i|x], it follows that

|i Pk(u,Xk)Xkl < (b — a)t (i l(u,xk}P)'
k=p k=n
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By the Bessel inequality, the last sum tends to zero as p,g— «. Thus

z me (2, X)Xk

k=0

is uniformly convergent on [a,b], and therefore represents a continuous
function there. Since Gu is also continuous, (4.2) implies that

@

Gu = Z 1 (2, X0) Xk (4.3)

k=0

Given any f e C" on [a,b] satisfying Uz = 0, then u = Lf e C on [a,b] and
f = GQu. From (4.3) the expansion result (4.1) follows, since

m(yxe) = (uexe) = (14,8xx) = (Su,xx) = (fixx)

ReMark: The fact that [|G.]| — 0 as m — =« suggests the possibility
that, since px = 1/\,

=0

Gltr) = 2 xi(8) %e(7)

Ak
k=0

This is, in fact, correct but will not be proved here. It will follow from
results of Chap. 12 where much less restrictive results than Theorem 4.1
will be proved.

The expansion theorem and completeness relation will now be extended
to the whole space £*(a,b).

Theorem 4.2. If fe (a,b), then

=Y (fs)
,,Zo )

where the equality ts meant in the sense

lim \

m—+ «

f= Y Gxoxl =0 (4.4)
k=0
Further, Parseval’s equalily holds:

17112 = 20 1(fx0)]

Proof. The proof depends on the fact that the set of functions of class
C" on [a,b] which satisfy Uz = 0 is dense in the space 22(q,b), that is,
given any e > 0, there exists such a function [ satisfying

If =7l <e (4.5)
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Now

|7 - ,,Zo G || 5 15 =71+ ]|7 - ,,Zo Gl |

+ | 20 (- Do || 4.0)

and the last term is easily computed to be

(3 17 - paxatd)

k=0

which; by the Bessel inequality, is less than or equal to
7=l

Using Theorem 4.1 for f, there exists an integer M, depending ou ¢, such
that ’

”f - i (Fxe)xa " <e (ﬁ > M)

and hence (4.5), (4.6) yield

I - kio G| <3 m> M)

proving the expansion result (4.4).
Parseval’s equality follows directly from (4.4) since

|7 - ,,Zo G || = I = 2 Ul

The Parseval equality has the consequence that if (fxx) = 0 for
k=20,1,2 ... ,then fis zero almost everywhere, and in partieular, if
J is continuous, it is the zero function on [a,b]. A set of functions {y} is
said to be closed in 2(a,b) if, for every fe 22(a,b), (f¥) = O implies f is
zero almost everywhere. Thus the set {x:} is closed in 2*(a,b). This
implies that if fe 8(a,b) and (f,x2) =0fork =0,1,2, ..., then fis
zero almost everywhere; that is, the set {x:} 18 closed in 2(a,b), the set of
Lebesgue-integrable functions on (a,b). This can be seen in the following
way. Suppose fef(a,b) and (fxx) =0,k =0,1,2,.... Then there
exists a continuous function ¢ satisfying

Lo=f Up=0
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since zero is not an eigenvalue forx. The proof consists in verifying that,
for fe®(ab), ¢ = Gf is of class C*! for a = t = b and that oD is
absolutely continuous so that Ly = [ almost everywhere. Clearly

(‘p}xk) = 7\:‘(%5)&) = A;1([“r°:'xl-') = J\II(LX&) =0

which proves ¢ is orthogonal to all eigenfunctions. But since ¢ is con-
tinuous, ¢ is the zero function, and this implies, by Le = f, that f is zero
almost everywhere.

Corresponding to any f = ¥*(a,b) there is a unique sequence of complex
numbers ¢ = {e.}, where

Ck = (f)xk)

Define the norm of ¢, denoted by |lell, by

el = (2, feal2)?

Then the Parseval equality may be written as [|f]| = [l¢]. Itisanimpor-
tant fact that the correspondence f— ¢ actually uses up all sequences ¢
of complex numbers such that [¢/| < «. This is the Riesz-Fischer
theorem, the proof of which has nothing to do with differential equations,
and so will be omitted. T

Riesz-Fischer Theorem. Letc = [ci} be a sequence of complex numbers

such that |le|]| < «. Then there exists a funclion fe\*(a,b) for which
ex = (f,xx), and

17l = el

PROBLEMS

1. Let Lr = —(pz')’ + qx, where p is of class C! and q of class €' on [a,b] and p # 0
on [a,b]. Let Uz = 0 be given by

ar(a) 4 Bz'(a) =0 vx(b) + 8x'(b) = 0
Show the problem « is self-adjoint if and only if p and q are real, 4§ = 6 and off = ag,

which is equivalent to requiring that «, 8, v, and & all be real.
2. If Uz = 0 above is replaced by

z(b) — ar(a) — pzx'(a) =0 z'(h) — yx(a) — éz'(a) =0

show that the conditions for self-adjointness become a = c1e'f, g = caet?, v = cze'?
5 = cie*®, where ¢; and 0 are real and p(b)(cics — e:¢:) = p(a).
"
.l
8. Let Lz = } (pa—jz' )0, where pa_; € C*~7 and are real on [a,b] and po(t) 50
i=0
on [ab]. Let Uz = 0 be z!/(a) = z¥(b) =0,j=0,1,...,n—1. Proveris
self-adjoint.

t For a proof, see W. Rudin, Principles of mathematical analysis, New York, 1953.



202 ORDINARY DIFFERENTIAL EQUATIONS [Cuar. 7

4. Let = be a self-adjoint problem with orthonormal eigenfunctions |x:}. If the
norm [|F|| of a function F = F(t,r) of class C for ¢,7 ¢ [a,b] is defined by

= ([ [ eenn aar)

then it is possible to approximate F(f,r) in this norm by finite sums of the form
Zai;fi(V)g;(r), where f; and g; are of class C* and satisfy Uf; = Ug; = 0. Show that
the Parseval equality holds for F in the sense that if

b
Cipi—= fa L * FUnR(Oxi() dt dr
then
IFIt = ) leyl

=0
Show that this leads to

| =0

m— © -1

m
lim [l6rp — ) 2OUO
k=0

ReEmark: Actually the formula

_ T x®n6)
Genbi=') =T
k=0
ig valid, as will follow from considerations in Chap. 12.
6. Let [ab] be [0,1] and let Lz = —((1 — #*)z')’ and Uz = 0 be z(0) = 0 and
1 —t)z'(t)— 0ast— 1 — 0. Show that by taking

1 L+7r
2 l -~
1 1 41
Elogl—t Osts+s51)

log

O=srsts1)
Gty7) =

the reasoning of the chapter can be modified to obtain the existence of a complete
orthonormal family of eigenfunctions.

. Hint: Instead of Lemma 3.1, show that G is completely continuous in the norm of
€#(0,1). This is true for any G with

f Lb |G, |2 dtdr < =

6. Show that if x is self-adjoint the Green’s function G(¢,r,l) satisfies
Gl = Gl

thereby generalizing the result G(t,r,0) = G(r,,0) already shown when [ = 0 is not an
eigenvalue.
7. Show that if = is self-adjoint the poles of G(t,r,l) are simple poles.

b
Hint: Consider g(t,l) = .L G(t,r,l)f(r) dr for f of class C. Let g have u pole of
order m > 1at! = X, Then nearl = X

gnm(t) gm-1(t)
9(‘;1) - (l == ?\l)- + (l T ;i)-_‘ + e
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Since (L —M)g = (I —M)g +f and Ug =0, it follows that (L — M)gm =0,
(L — M)gm—s =gm -+ +,80d U(gy) =0,j=mym —1, . ... Since

(grgm) = (Gm)(L = M)gr-1) = (L — M)gm,Gm—1) = 0

it follows that gm = 0. Since this holds for all f, G has at most a simple pole at A
8. If = is self-adjoint and f e C on [a,b] and (f,xz) = O for all the cigenfunctions of
x, prove that f is zero by making use of g(4,l) of Prob. 7.
Hint: Using the method of Prob. 7, show that because (f,xs) = 0, g has no poles

and is therefore an entire function of [, z a;(0)li. Since Ug = 0 and Lg = Ig + /,
j=0

show Lao = f, Lay = ao, Laz = ay, . . . , Ua; = 0. Show (a;_1,a1) = (4;,ax-1) and

thus that Wi, = (a;ax) depends only on j + k. Show that

h(l) = (ga0) = Wo+ Wil + - - -
is an entire function of lasis I'(l) = Wo + Wal* 4+ Wt 4 - - - . Bhow

Wi = (@j-1,8541)* S Way_aWaya
Thus, if Wy # 0,

lylf < }_}:’w

Wiy = Wy

i=12,...

meaning T'is not entire. Thus W; = 0,andsoa; = 0. La; = ao = 0, Lag = f = 0.
REMARK: Note that Prob. 8 gives an independent proof of the closure of the eigen-
functions of .
9. Using the result of Prob. 8, prove Theorem 4.1.
Hint: Let u = Lf. Then, as was shown beginning just below (4.2),

g = Zu:‘{u.n)x;

0

is uniformly convergent on [a,b]. Clearly f — g is orthogonal to all x,. Thusf —g
is-zero by Prob. 8, which proves Theorem 4.1,
10. If Green’s function for (1.1) is expanded in the eigenfunctions, the series

2 sin kxt sin kxr

Glrl) = L

k=1

is obtained. From the nature of G((,7,l) as a function of ¢ and the convergence proper-
ties of Fourier sine series, show the series is convergent for 0 = ¢ = 1, for all , and [
not an eigenvalue, Show that the series for 4G /at also converges forall &.  (Note that
aG/at is of bounded variation as a function of £.)

11. Let L and U be such that = is self-adjoint. Consider now instead of = the
problem Lz = Irz, Uz = 0 on [a,b], where the function reC and r(¢) > 0 on [a,b].
Show that the eigenfunctions {¢s} can be chosen so that {riy,] form an orthonormal
sequence. Show that this sequence is complete.

Hinr: Let H(t,r) = ri()ri(r)G(4,7) and show that the operator 3C defined for all

feCon [a,b] by 5cf(t) = Lb H{(t,r)f(r) dr is seli-adjoint.
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12. Show that G'((,7,l) is given by

Glr) = g(t,nl)

a(l)

where A(l) = det (U e,

K(‘J";D alh) .- ea(tl)

g(t,r,l) = det UfK in Sl i Ut%

UnK Unpl 26 L’nwn
and K is the function defined by (2.4).

18. Let Lz = pz™ + « + + 4 puz on [a,b] and p; e C*~i[a,b] and be real. Then
L = L*if and only if n is even (n = 2r) and Lz can be written as

Lz = (qz@)® + (quztr=)=D + « -« + gz

where ¢; € Cmi[a,b] and is real.
HinT: Show that, if L = L* and po is real, then n = 2r and p; = rpe. Thus if
go = o then
Lz = (q“(r})(r) + le

where Ly must be of order n — 2. Show that L = L* now implies Ly = L and thus
establish the result by induction.

14. Let Lz be as above but now let p;(t) be complex-valued. Show that if L = L*
then

Lz = i*qo(- + + (golgex)’)’ + + ) +i"qu(c « + (pl@m))' - ) 4 - o
+ 1%n_2(gn-2(qn—2Z)")" + 1gn-1(gn-1Z)" + guz

where the q; ¢ (=7 and (g;)"*'~/ are real and i"gj*' = po.
Hint: Use induction. Show by direct consideration of

L 2 2ol + + (qalgets)’)! « + Yot

that the first term of L above is self-adjoint.

16. Show that if L = L* there exists at least one set of boundary conditions Uz = 0
which makes the problem Lz = Iz, Uz = 0, self-adjoint.

Hint: If n is even (n = 2r), then take

z(@) = z(b) = z'(a) = z'(b) = + + -+ = z"V(a) = z—V(b) =0
If nis odd (n = 2r + 1), take the above conditions and the added condition
Ciz(a) = Csz”(b)
where iC,Cy = p{(a), iC:Ca = p{ ().
16. Let A be a square matrix and f a vector both of which are continuous functions
of tfora =t = b. Consider the problem
' — A()z = f Uz = Mz(a) + Nz(b) = 0

where M and N are constant square matrices. Let the problem with f = 0 have only
the null solution. Show that there exists a matrix G({,r) continuous for @ = =
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r = band fora = v £ ¢ = b such that
b
L G(tr)f(z) dr
is the unique solution of the problem.
Hint: Let @ be a fundamental matrix for 2' = A({)z. TLet

PWIE) + dOIE) (<D
G(br) e {«pm.!(f} > 1)

where the matrix J € Cla,b]. To satisfy Uz =0

Mad(a)J(r) + NoB)d~ (1) + Ne(b)J(r) =0
s0 that
J(r) = —(M®(a) 4+ NOoB))INB(Db)P~ (1)

17. Let the r-by-r matrices Py and P, be continuous fora =t = b. Moreover, let
P, be continuous and det Po(t) # 0. Let z be a veetor with r components and let

Lz = Pex' + Pix
Let P* denote the adjoint of P, that is, the transposed conjugate, and let
Ltz = —(Psz)' + Piz
1f u and v are vectors with components uy, vy, let

uev =wbh + -+ 4+ ud,
Show that if u,v & C'fa,b]
Lu-v—u-L*t = (Pou-v)’

Let L = L* thatis, Po 4 P} =0, Py = P; — P}. Let M and N be r-by-r constant
matrices and let Uz = Mz(a) + Nz(b). Suppose M and N are such that for any
u,w € C'a,b) and satisfying Uu = Uv = 0

b b
Lth-vdt=fu-Lvdt

Prove the eigenfunctions {y; | of the self-adjoint problem

Lz = Iz Uz =0

b
form a complete orthonormal set. Thus if f u - v dt is denoted by (u - v) show that
a

for any vector f satisflying (f-f) < =

Un= ) 1wl
j--—-u

and in 2*(a,b)

-

Ji) = z (f - e )dn (@)

jm—=

ReMmark: The cases Py = 1F and, for even r,

0 E;r)
Poy (—E., 0

are of special interest.
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HinT: The Green’s function is an r-by-r matrix and the method of Sec. 4 or Prob. §
can be used.

18. Let = be a vector with r components and let P;, j =0, . .., n, be r-by-r
matrices of class C*~i[a,b] and let det Po(t) # 0. Lét

Lz = Pex™ - + « » -l:'P..::
and
Ltz = (—)MPlz)™ + (=1 Y(Pfz)=0 + « -« + Pz

Show that if u,v are vectors of class Cr[a,b]

Tu+v—-u-Lty = (—;—i[uu]
where
bl = ). (=11 - (Ph_ )=

mel j4k=met1
Let L = L+, Let

Uz = Miz9(@) + - - + + Maz(a) + Nz (@) + - - - + Nuz(t)

where M, N; are matrices of nr rows and r columns and suppose that for sll u,v of
class Cr[a,b] satisfying Uu = Uv =0

b b
f Lu-vd.".=-f - Lodt
a a

Show that the self-adjoint problem
Lz =z Uz =0

has a complete orthonormal set of eigenfunctions [y ].
Hint: Let £ be the vector with nr components (z, z/, . . . , z*™V). Then

Lz —lz =0

can be replaced by a first-order equation in § with nr independent solutions with
fundamental matrix = nr-by-nr. Let the first r rows of = be denoted by ¢. Then
L& — ¢ = 0 and any solution ¢ of Lz — Iz = 0 is given by ®¢, where ¢ is & constant
column vector with nr rows. The Green’s function G(¢,l), an r-by-r matrix, can be
constructed.

19. Let L be as in Prob. 13, that is,

Lz = (qox(r))(r) -+ {qlz(r-'l))(r—ll 4 s s + qre

where g; € C—i[a,b], ¢; real, and go(t) > 0on [a,b]. Let ¢ be a solution of Lz = 0 and
let ¢ be the vector with components ¢;, where ¢; = ™0 (j =1, . . ., 1),

eri = (=1 {(groje®) 4+ (GrojmrptV) o« 00 (qop®) D,
(G=1,...,r). Show that ¢ satisfies the formally self-adjoint system
Pop' + Pig =0

where Py = —P}, P, = P}, are the matrices

P=(% 5) m=(30)
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‘where O, E, are the zero and unit matrices of r dimensions, and 4, B, C are r-by-r
matrices given by

—-gr : 0

(—=1Dr/qs

the ‘elements not shown being zero.



CHAPTER 8

OSCILLATION AND COMPARISON THEOREMS FOR
SECOND-ORDER LINEAR EQUATIONS
AND APPLICATIONS

1. Comparison Theorems

The location of the zeros of the solutions of real second-order differential
equations will be considered here. The equation will be assumed to have
the form

Lz = (p()z') + g()z = 0 (a <t <b) (1.1)

Note that (1.1) is considered on the open interval (a,b) rather than on
(a,b]. The equation z'" + f(t)z’ -+ h(l)z = 0 can be put in the form of
(1.1) by multiplying it by exp (fl 1 dt). It will be assumed in what

follows that p(t) > 0 and that p, p’ and g are continuous on (a,b). (The
continuity requirement can be relaxed. Indeed, it suffices for g to be
integrable and p absolutely continuous.)

A zero of a nontrivial solution of (1.1) is isolated. Indeed, let the solu-
tion ¢ vanish at {,. Then ¢’(fy) # 0, for otherwise ¢(f) = 0. This proves
that ¢, is an isolated zero.

Theorem 1.1. Suppose ¢ 1s a real solution on (a,b) of

(pz) + gz =0 (1.2)
and ¥ a real solution on (a,b) of
(pz') 4+ g2z =0 (1.3)

Let go(t) > g1(1) on (a,b). If ty and t, are successive zeros of ¢ on (a,b), then
Y must vanish at some point of ({1,t2).

Proof. Suppose ¢ does not vanish in ({1,¢;). Then with no restriction
it can be assumed that () > 0 and also ¢(t) > 0 over ({1,tz). Multiply-
ing (1.2) by ¢ and (1.3) by ¢ and subtracting,

(P )Y — (P¥)'e — (92 — g1)ey = 0
Integrating the above,

[ 1oy — @w'yeldt >0
208
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Since the bracket above is the derivative of p(¢'y — ¢¢') and since ¢
vanishes at {, and i,

p(ta)¢’ (L)Y (L) — p(t)e’ (L)Y (ty) > 0 (1.4)

Since ¢(f2) = 0 and ¢({) > 0 immediately to the left of ), ¢'(f2) < 0.
Similarly ¢’(t;) > 0. Thus the first term on the left is nonpositive, as is
the second, which shows that (1.4) is impossible. Thus ¢ vanishes at a
point inside the open interval (¢;,,).

In case g, = g2 over (a,b), then ¢ and y are solutions of the same equa-
tion. If ¢ and ¢ are independent, then (1.4) is valid with the inequality
replaced by an equality, and the above argument shows that ¢ vanishes
between successive zeros of ¢. Since now ¢ and ¢ are interchangeable, it
also shows that ¢ vanishes between successive zeros of . Thus the zeros
of two real linearly independent solutions of a real second-order linear
differential equation separate one another.

The above method can be further exploited, but the following pro-
cedure is simpler:

Let p(t)z" = y. Thus (1.1) becomes

2= y = —g()z (1.5)
Let
r = rsinf Yy = rcos (1.6)

Differentiating the equations (1.6) with respect to ¢, replacing z’ and y
by use of (1.5), and then solving for 7 and ¢, there results

r = G} - ) r sin 0 cos 0 (1.7)
0 = %msg 0 + g sin® 6 (1.8)

For a solution ¢ of (1.1) there is the solution r = p(t) and 6 = w(t) of
(1.7), (1.8), where from (1.5) and (1.6)

P= (pe')? A p? w=tnn“‘(v‘£~)
p (pe") ¥ e

Since ¢ and ¢ do not vanish simultaneously, it follows that p%(t) > 0 on
(a,b) and thus with no restriction it can be assumed that p(t) > 0. A
consequence of this is that ¢(f) = p(f) sin w(f) can vanish only where
«(t) is an integer multiple of .

Since cos? 0 and sin?  are uniformly bounded, the equation (1.8) has
a solution over any interval on which » > 0 and p and g are piecewise con-
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tinuous. Indeed, it suffices for 1/p and g to be integrable. Because the
right side of (1.8) is differentiable in 8, it follows that the solution is
unique in the usual sense.

From (1.6) and (1.5) it follows that

z(t) cos 0 — p(O)x'(t) sin 6 = 0 (1.9)

In boundary-value problems a common condition at an end point of an
interval { = a is
z(a) cos & — p(a)z'(a) sinne = 0 (1.10)

From (1.9) it is clear that such a condition is equivalent to the simpler
condition 8(a) = a(mod 7). It is easy to see that (1.10) cannot hold for
a solution & = ¢(t) for two different values of « unless they differ by a
multiple of = or unless ¢*(a) + (p¢'(a))? = p*(a) = 0. The behavior of
the solutions for two equations of the form (1.1) will now be compared.
The subseripts 1 and 2 will be used to distinguish between the two equa-
tions, that is, Lix = (p2’)’ + g2 = 0,7 = 1, 2.
Theorem 1.2. Lel p; and g; be piecewise continuous on [a,b], and let
0 < p2(t) = m(D) ga(t) = g:1(t)

on [a,b). Let Ligy = 0 and Lag: = 0 and lel wi(a) = wi(a). Then

wt) 2 m(t) (ast=Dd) (1.11)
Moreover, if g: > g1 on (a,b), then

wt) > i) (@<tSDh) (1.12)

Proof. 'To prove (1.11), the equations

w] = %0032 w; + gi sin? w; (z = 1,:2) (1.13)
are subtracted to yield
()L (g, £ 51,) (eintitis — sin/on) SRR (1.14)
1
where
h= —1" — i) cos? wg + (g’: — g:) sin? w,
P2 251
Clearly h 2 0. If ws — w; = u, then (1.14) yields
w = fu-+h (1.15)
where

Sin wp — 8in w;
Wy — Wy

f= gl—%)(sinw:—!-sinm)(
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Thus f is piecewise continuous and uniformly bounded. Since h = 0,
(1.15) yields
U —fuz0
If F(t) = j:bf(s) ds, then multiplying the inequality above by ef there
results
efu' + Flefu = 0
Integrating this over (a,f) gives _
eFOu(l) = e*@y(a) = 0 (1.16)
which proves (1.11).
If (1.12) fails to hold, then there must be some ¢ > a such that
wil) =wi(t) (@ast=e) (1.17)

Indeed, suppose this is not the case. Then by (1.11) there must exist a
sequence of points {4} with a as a cluster point such that wa(;) > wi(t).
But if (1.16) is used with a replaced by ¢, it follows that for ¢ > ¢; there
results ws(f) > wi(f). With ¢ arbitrarily near a, this implies (1.12).
Thus (1.17) must hold.

Using (1.17), then (1.14) is possible with g, > g, only if

w; = wy = 0(mod =)
and if p; = py over (a,c). However, in (1.13) the case

wy = wp = 0(mod x)
over (a,c) is clearly impossible. This proves (1.12) if g, > 1.
2. Existence of Eigenvalues

Application will now be made to the equation
(pz)’ + \r — @)z = 0 (2.1)

where \ is a real parameter and p’, r, and ¢ are real and continuous (or
piecewise continuous) over [a,b] and p > 0,7 > 0 over[a,b]. [By modify-
ing the proofs that follow slightly it is possible for r to vanish at a and at
b as well as at isolated points ifN(a,b).]

Given real o and §, the values of A for which (2.1) has a solution not
identically zero and satisfying

z(a) cos @ — p(a)z’(a) sin a = 0 (2.2)
z(b) cos 8 — p(b)z'(h) sin g = 0 (2.3)

are called eigenvalues. Either one of the conditions (2.2) or (2.3) deter-
mines a solution of (2.1) uniquely except for a multiplicative constant.
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A nontrivial solution satisfying (2.1), (2.2), and (2.3) for an eigenvalue
is called an eigenfunction.

Theorem 2.1. There are an infinite number of eigenvalues \o, Ay, s, . . .
Jorming a monotone increasing sequence with A, — = asn— =. Moreover,
the eigenfunction corresponding lo A\, has exactly n zeros on (a,b).

Proof. There is no restriction in assuming that 0 £ a < r and that
0 < B8 =x The solution of (2.1) ¢ = ¢({,A) determined by

e(a,\) = sin a pla)e’'(a,\) = cos a

clearly satisfies (2.2). The eigenvalues are those values of A for which
¢ satisfies (2.3). Tor = = ¢({,\) it is clearly the case that w can be
determined so that 6 = w(f,\) satisfies w(a,\) = a.

By Theorem 1.2, 0 = w(t,)\) is, forfixed {,a < t = b, a monotone increas-
ing function of A\, Where o = 0(mod =), ¢ has a zero. From (1.8)

0 = %(:033 0 + (A\r — g) sin* 0 (2.4)

it is clear that when w = O(mod ), &' > 0. This means that » is an
increasing function of { when w = 0(mod 7). Thus if for some # on
(a,b), w(ly,\) = km, then «(t,\) > kx for ¢ > {, and w(t,\) < kx for
t < 1. Moreover, since w is monotone in ), it now follows that the zeros
of ¢, if any, move to the left toward { = a as X increases. Since w is con-
tinuousin f and A, and o’ > 0 when w = 0(mod =), it follows that the loca-
tion of the kth zero of ¢ on (a,b) at t, = t;(\) is a continuous and monotone
decreasing function of . Indeed

diy

o' (t,\) i\

dw
+ a (tklh) = 0

It is the case that for any fixed ¢ = ¢ in (a,b),

w(eA) — @ as A — «® (2.5)
and also
wleA) > 0as\— —x (2.6)

The proof of (2.5) will be given first. Since a = 0, it follows that
w(t,A) = 0 since o’ > 0 for w = 0(mod x). Thus it suffices to show
that for some fy, a <t <e¢, wle\) — w(to,)— © as A— «=. Let
to = (a+¢)/2. Let P, Q, and R be constants such that over (f,c¢)

pISPe pr(2 RS>0 q(ths @

Then the equation
Pz 4+ AR — Q)z =0 (2.7)
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with solution ¢ satisfying &(to,\) = ¢(to,\), P& (to,\) = p(lo)¢'(to,\) has
@(to,N) = w(to,A) and thus by Theorem 1.2

w(e) — w(to,)) = @(c,\) — a(to,\) (2.8)

The successive zeros of ¢ have spacing »[P/(AR — Q). This tends to
zero as A — «. Therefore @ = 0(mod =) for arbitrarily many values of
{, and since @ > 0 at @ = O0(mod 7), @ — «. Thus the right side of
(2.8) tends to infinity as A — =, which proves the left side must do the
same. This completes the proof of (2.5).

To prove (2.6) the equation (2.4) is used. Choose § > 0 small enough
sothat a <7 -6 Ifédw=wr—-—3dandA<0andif 0 <P = p,
0<R=rand Q = |g|

w’<}1—3—|)\|Rsin'-‘6+Q

Thus o' < 0 for w = & if —\ is large enough. Moreover,

—1
' < 0
c—a

for 3 £ w <7 — 8 Thus w(e,\) = § for —X large enough. Since § is
arbitrary, (2.6) follows.

As A\ — — =, w(bA) — 0. Since 8 > 0 and since w(b,\) is monotone
increasing in }, it follows there is a value of X, Xy, for which w(b,Xo) = B.
Since 0 £ @ < 7 and g = =, it follows that 0 < w(t,\y) < = in (a,b) so
that the solution ¢(f,\o) satisfies (2.3) and does not vanish in (a,b). Let-
ting A increase beyond X, there is a unique value A, for which

w(brhl} = ﬁ + L}

Clearly o(t,\;) satisfies (2.3) and has exactly one zero in (a,b). The nth
eigenvalue is determined by w(b,\,) = 8 + nw. This completes the
proof.

3. Periodic Boundary Conditions

The equation (2.1) is subject to the restrictions p > 0, » > 0, on
[a,b], and r, ', and q piecewise continuous. It will be assumed that
pla) = p(b). With no restriction, it can be assumed thata = 0, b = 1,
and p(0) = p(1) = 1. The boundary condition (see Prob. 4)

z(0) = =(1) z'(0) = z'(1) (3.1)
will be considered, as will the condition

z(0) = —=z(1) z'(0) = —2'(1) (3.2)
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Theorem 3.1. The eigenvalues for (2.1) with (3.1), \;, © = 0, and for
(2.1) with (3.2), X;, © = 1, form sequences such that

—o <A <h=ShL<hSha<hSL< SN (33)

For X = X\othere exists a unique eigenfunction, ¢o.  If Aaiy1 < Nsivs fOr some
1 = 0, then there is a unique eigenfunction sy at X = \giyy and a unique
eigenfunclion ¢giva al N = Xojyo.  If, however, Nojpy = Aopyn, then there are
lwo independent eigenfunctions oy, @aiea @l N = Aaip1 = Aaire.  Stmilar
resulls hold for the cases Naiyy < Xajya and RNappy = Xapya, where the eigen-
functions are denoted by @iy and @siva.  Furthermore, ¢o has no zeros in
[0,1]; @oiq1 and @oipe, © = 0, each have exactly 2i + 2 zevos in [0,1); and Gaipq
and @aipa each have exactly 27 - 1 zeros in [0,1).
Proof. Let ¢ and ¢ be the solutions of (2.1) satisfying

e(ON) =¢'0X) =1 &'(ON) =¢¥(0) =0 (3.4)
From (6.5), Chap. 3, [or from (2.1)]
PDleENY' (LX) — ¢ ENY(N)] = 1 (3.5)

For (3.1) to hold, it is necessary and sufficient that there exist constants
Cy and €. not both zero, such that Che + C'y satisfies (3.1), which yields

[e(1) — 1]C; + ¢y(AN)C2 = 0
' (LAC, + W' (1A — 1]C2 =0

A necessary and sufficient condition for two independent solutions to
satisfy (3.1) is

e(LA) =¢/(1A) =1  Y(I7) = ¢'(12) =0 (3.7

A necessary and sufficient condition for (3.6) to have a nontrivial solution
is that the determinant of the coeflicients should vanish, which yields, with
the use of (3.5) at ¢t = 1,

(3.6)

JA) =2 (3.8)

where
FQA) = (1)) + ¢/ (1,N) (3.9)

The corresponding condition for (3.2) is
o) = —2 (3.10)

The values of X satisfying (3.8) are the eigenvalues for (3.1) and similarly
(3.10) for (3.2). If (3.8), but not, (3.7), holds for a value of \, then there
is exactly one eigenfunction of (3.1) for this value of A, and X is called a
simple eigenvalue. Not only is f a continuous function of A but it is
actually an entire function, as may be seen from Theorem 8.4 (or Prob. 7),

Chap. 1.
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Let the eigenvalues of (2.1) with the boundary condition
z(0) = x(1) =0 (3.11)

be g, 1 =0,1,2, . . .. Then the following result will be proved after
the completion of the proof of Theorem 3.1.
Lemma 3.1. With u; the eigenvalues of (3.11), there exists a vg such that

Vo S o S,
and

) 22 f(pz) S =2 f(paia) = 2 (=0T, e w) e (8112)

If f(\) = 2 or —2 for some X\ # p;, then such a A is a simple eigenvalue for
(8.1) or (3.2) and for such a &,

g{ <0 (A< po); (—1)‘% >0 (<& <)

zZ=01...) (3.13)

If f(p2ipa) = 2 and df/d\ # 0 at X = paipa, then paisy 1s a simple eigenvalue
Jor B.1).  If f(pas) = 2 and if df/d\ = 0 al X\ = paiyy, then al payy, there
are two independent eigenfunctions for (3.1). Moreover, in this case,

B (uae) < 0 (3.1

A similar result holds for (3.2) if f(us) = =--2. In this case the sign of the
analogue of (3.14) is reversed.

An immediate consequence of this lemma is the existence of {A;} and
{5} satisfying (3.3) and the existence of the corresponding eigenfunctions.
Indeed, clearly

M<hSmwEh<mEmsha<hSpsh<nsS (3.15)

To show that the eigenfunctions have the specified number of zeros, the
oscillation result, Theorem 1.1, is used. By the condition (3.1) it follows
that the eigenfunctions ¢; have an even number of zeros in [0,1), and by
(3.2) the @; an odd number. The eigenfunctions of (3.11) are Y(¢,u;) with
7 zeros in (0,1) (by Theorem 2.1). Since Ao < po, it follows that g
cannot have two zerosin [0,1). Since ¢, has an even number of zeros, the
number must be zero. Since ps < Aoipr = Aaipz < paigs, © = 0, it follows
that ¢syy and @sa have more than 27 -+ 1 zeros in [0,1) and less than
27 4+ 4 and thus exactly 27 - 2.

Since X; = o < p, it follows that @, and &, have less than three zeros
in [0,1) and by (3.2) have at least one zero. Since the total number is
odd, there must be exactly one. For @ayy, @aips, 7 = 1, using pai—y <
Moix1 = Raigr < paig, it follows readily that there are exactly 27 + 1
zeros in [0,1). Thus there remains only the lemma to prove.
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Proof of Lemma 3.1. With g the eigenvalues of (2.1) with (3.11), it
follows that ¥(f,u) are the eigenfunctions, That is, ¥(1,;) = 0 and
Y(t,u) has? zerosin (0,1). Thusy/(1,1) > 0for7 odd and < 0 for Zeven.
From (3.5) follows ¢(1,u:)¢/(1,1:) = 1 so that

T e
Jr()ul'} o ';' (llpl) + '}”(I:FI')

Since for real 2 > 0, z + 1/z = 2, the results (3.12) for g; now follow.

If v, is the least eigenvalue of (2.1) with 2/(0) = z’(1) = 0, then ¢(t,»0)
is the eigenfunction and it has no zeros in [0,1]. Thus »; < uo and
e(l,v0) > 0. Since ¢'(1,#0) = 0 it follows from (3.5) that

e(Lvo)¢'(1,v0) = 1
Thus

)

J00) = oLve) + —o =

which completes the proof of (3.12).
In order to consider df/dX, where f = 2 or —2, the function u = 3¢/a\
is considered. Clearly «(0,\) = «/(0,A) = 0 and from (2.1)

()" + (\r — Qu = —r¢

Thus from the variation-of-constants formula (or as can be verified
directly),

u(t,\) = j; ‘ [eNY(TA) — (@AY EMN]r(7)e(r,N) dr
Thus
Sean = ﬁ [P NHEN) — WM o) dr - (3.16)

and in the same way

' 1
¥ an = f [ ANHEN) = oW NN dr
Thus, not indicating A explicitly,

1
Yo [ @@ + v e — ¥) = DI dr (17)
0

The bracket in (3.17) regarded as a quadratic form in Y(7), ¢(7) does
not change sign if (¢(1) — ¢'(1))? + 4¢'(1)¥(1) = 0. Using (3.5), this
becomes

[e(IN) + (AN = 4
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Thus, if —2 < f(A\) £ 2, the bracket in (3.17) has a fixed sign. If
J(A\) = 2 or —2 then, except possibly for a factor —1, the bracket is a
perfect square and df/d\ cannot vanish unless the bracket is identically
zéro in 7. Because y(r) and ¢(r) are independent, the bracket is identi-
cally zero if and only if all the coefficients vanish, which together with (3.5)
is the condition (3.7) if f = 2 and the corresponding one if f = —2.
Thus df/d\ = O,where f = 2 or —2, if and only if the eigenvalue is not
simple.

IfN < poorif gy <N < pyyy, then (1,0) 5 0 and thus, if f = 2 or —2,
the bracket in (3.17) is not identically zero. Being a perfect square,
df/d\ has the same sign as —y(1,\), which proves (3.13).

There remains only the proof of (3.14). At = sy then, f = 2 and
df/d\ = 0 so that (3.7) holds. Thus

Y(Lpsiq) = ¢ (L pain) = 0 ¥ (Luzig) = o(Lpain) =1 (3.18)
Using the notation

a=g@N  h=2ay

and similarly for ¢}, ¥, then

2
= on + ¥a (3.19)

From (3.5), differentiating with respect to A gives
. e’ + ¥er — Yae — Vo =0 (3.20)
Taking account of (3.18), there results
a(Lszir) = —en(1,p5i41) (3.21)
Differentiating (3.20) again and using (3.18) and (3.21),
2008 + 208 — i — o = 0 A = paita)
In (3.19) this yields

g;_j; (1,pn2i41) = 2['?3(1,#2.‘4-:) -+ 1&3(1,;;,,-_,_1)‘01(1,“,“_1)] (3.22)
Using (3.16) again, it follows from (3.16) that

on(1,u2i41) = /(;l V(7 usip) @t nap1)r(7) dr
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and in the same way

(L paip1) = j;l Y2 (7,204 (7) dr

’ i (3.23)
PALpzin) = = [, @Euss)r(z) dr

Since ¢ and ¢ are independent, the above relations and the Schwarz
inequality imply that the right member of (3.22) is negative, which
proves (3.14) and completes the proof of the lemma.

4. Stability Regions of Second-order Equations with Periodic Coefficients
Here the real equation

(p®)z") + [ar(®) + bg(D)x = 0 (4.1)

will be considered with a and b constant and with p > 0,7 > 0, and p,
p', r, and ¢ continuous over 0 = ¢ = 1 and also periodic of period 1.
That is, r(0) = r(1), ¢(0) = ¢(1) and, as can be assumed with no restric-
tion, p(0) = p(1) = 1. InSec. 5, Chap. 3, the existence of characteristic
exponents and multipliers was proved. If z = ¢(t,a,b) and z = ¢(l,a,b)
are solutions of (4.1) with

v(0,a) = ¢'(0,a,0) =0  ¢(0,ab) = ¢(0,a,0) = 1

then for fixed ¢, ¥, ¥/, ¢, and ¢’ are entire functions of (a,b) for all a and b.
To determine the multipliers, the solution z = Cyp + Cay is considered
which satisfies
Cyo(1,a,b) + Cap(1,a,b) = oC,y
Clvﬁ(l!a:b) + Cw'(1,0,b) = oCy

for some o. For a nontrivial solution (C;,Cs) to exist, the determinant
of the coefficients must vanish, which gives the characteristic equation

ot — G'[tp(].,a,b} -+ IJI"(I,&,!})] + 1=0 (42)
where use is made of (3.5). If
f(a,b) = ¢(1,a,b) + ¥/(1,a,b)

then the roots oy and os of (4.2) are distinct complex conjugates of mag-
nitude 1 if

fad) <4 (4.3)
while the roots are real and distinct if
fab) > 4 (4.4)

Because o107 = 1, in this latter case one root is always larger than 1 in
magnitude and the other less than 1.
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If the roots are distinct, two independent solutions exist, z = u,({)ea!
and z = ua(t)e™s', where u, and u; are periodic of period 1 and ™ = oy,
i = 1,2, Thus, in case (4.3) prevails, all solutions of (4.1) are uniformly
bounded over — @« < { < w. If (4.4) prevails, this is certainly not the
case, even over (— =,0) or over (0,«). Therefore, in this section the
values of (a,b) for which (4.3) holds will be called stable while those for
which (4.4) holds will be called unstable. From the continuity of f, it
follows that the stable regions and the unstable regions of the (a,b) plane
have their boundaries made up of points where f2(a,b) = 4 or, in other
words, of points where either

flah) =2 (4.5)
or
flab) = -2 (4.6)

For any fixed b the equation (4.1) is of the form (2.1) with a in place of
A. Thus the conditions (4.5) and (4.6) are precisely those already con-
sidered in connection with the eigenvalues of (3.1) and of (3.2). When
(4.5) is satisfied, the equation (4.1) has a solution of period 1 while (4.6)
corresponds to a solution which satisfies z(0) = —z(1), z'(0) = —2'(1)
and thus has period 2. It will be designated as having half-period 1.
From (3.15) it follows that for any fixed b the values of a, a;(b), i = 0, 1,
2, . . ., at which (4.5) is satisfied and a;(b),7 = 1,2, . . . , Where (4.6)
is satisfied, are related by

=@ <aod) <aib) = uib) = @) < ai(b) S ) = axd) < dy(d)
= p2(b) S aud) < as(d) £ - - - (4.7)

where u;(b) are the eigenvalues of (4.1) for fixed b with the conditions
2{0) = x(1) = 0. That the y; are continuous functions of b for each 7
follows from the fact that (ay/da)(1,a,b) = 0, where ¥(1,a,b) = 0, since,
much as in (3.23), under these conditions

1
W ab) = e [ rew an

It remains now to show that a; and @ are continuous single-valued
functions of b, — o < b < «w. Before showing this, the consequences of
this fact will be considered. For fixed b and all a satisfying asi;1(b) <
a < ax;2(b) it follows from (3.12) and (3.15) that fla,b) > 2 and thus
that (4.1) is unstable. In the same way, @iy < @ < dgyq i unstable,
The stable regions are given by ax(b) < a < @riy1(b), 7 2 0, and by @ay.(b)
<a < aypd), 7 = 0.

The a;(b) are the unique solutions of f(a.(b),b) = 2 and similarly for
@(b). Thus that a = a;(b) [or a = a;(b)] determines a continuous curve
(with @ as a function of b) in the (a,b) planc follows at once wherever
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of (ai(b),b)/da 5 0. Since f(a;(b),b) = 2, it follows from Lemma 3.1 that
- 9f/3a # O can fail only where ¢ is one of a pair 25 + 1, 2j + 2 which
satisfies ‘

a2i41(b) = paj41(b) .= agya(b) (4.8)

Let b = g denote a value of b, where (4.8) holds: Then a3.(8 — 0) and
ag+3(8 — 0) must both be us+.1(8), for if

py(B) = lim inf @sj1(b) = a < pai+1(B)
b—pf~-0

then by continuity f(e,8) = 2 80 that ug(8) S as411(8) = a < uzn(B),
which contradicts (4.8). A similar procedure works for as4. and for
8 + 0. Thusais a continuous function of b for all b. In the same way,
d; is a continuous function of b. .

Important familiar examples of (4.1) occur with p =r = 1. In the
Mathieu equation q(t) = cos 2! and in the Hill equation any g, aside from
being periodic, has average value zero. In the equation (Meissner)
where g(t) = 1, 0 <t < 3}, and ¢(f) = —1, ¥ < ¢ < 1, explicit caleula-
tions can readily be made for f(a,b).

PROBLEMS

1. If ¢ and ¢ are independent real solutions of (1.1), show by considering (e/¥)’
that the zeros of ¢ and ¢ separate each other.

2. Let the hypothesis of Theorem 1.1 be satisfied and let there exist some § > 0
such that ¢() > 0, ¢(t) > Oon (a, a + 5). Let

lim p)e'¥ — w1 =0
t—a10

Prove that if o(?;) = 0for some ¢ on (a,b) then there is a tson (a,4) such that ¢(3) = 0.
8. Consider (2.1), (2.2), and (2.3) over the interval [a,b) but now let ¢ < 0 on (a,b)
and suppose r changes its sign on (a,b) while, as before, p > Oon (a,b]. Show that the
eigenvalues have A = + = and A = — w as cluster points.
HinT: For the case A > 0 consider

(=) + (-9

Then as \ increases, p/\ decrcases and r — ¢/\ increases. Let o(a,)) = sin a,
pla)¢’(a,\) = cosa. Then let 6 = w(l,)) satisfy w(a\) = a. Clearly «(b,A) is an
increasing function of A, and w(b,0) is bounded. To show w(b\) — © as A— w,
consider an interval {1,{} on which r(¢) > R > 0, where 2 is a constant. Let p(t) <

Pon (its). Then for large ), the solutions of % Px" + % Rz = 0 have zeros spaced

r (g—;)‘ on [t,ts). Thus w(d) > cAl for some constant ¢. A similar argument

applies as A — -~ w,
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4. Consider (2.1) p’, g, and r continuous and p > 0, r > 0 on [0,1]. Develop the
conclusion analogous to that of Theorem 3.1 for the boundary conditions

z(0) = az(1) + bz'(1)
z'(0) = ex(1) + dz'(1)

where a, b, ¢, and d are real constants and where (ad — be)p(0) = p(1).
Hint: Show that the eigenvalues oceur at the roots of J(\) = 2, where

JO) = ap(1,)) + be'(1,N) + ep(1,\) + dy'(1,))

Show that if u; are the eigenvalues of z(0) = 0, az(1) + bz'(1) = 0, then f*(u;) = 4
and f(u;) has alternating signs.

6. In Theorem 3.1 let hyyy < Asise. Bhow that (2.1) with A = Aai41 has a solution
¥ai41 independent of ps4) such that

Yria(l) = paiaa(t) + lpziga(t)

where pay1 is a periodic function with period 1. Show that similar results hold for
Mg Azigr, and Naiga

6. Using the notation of Sec. 4, can an d;(h) and a;(b) ever intersect? What
iz the significance of Prob, 10, Chap. 3, in the terminology of Sec. 47 Sketch
possible configurations of a;(b) and @;(h) showing stable and unstable domains in the
(a,b) plane for (4.1) with p(t) = r(t) =

1
7. In (4.1)leta > Oand ﬁ} q(t) dt = 0. Show that if u is a real solution satisflying

u(t 4 1) = heu(t), where Ao is a constant, then u must vanish at at least one point in
the interval [0,1].
Hint: If not,

1 pu'? ri
ﬁ) —-——dt-}-ajo rdt =0

u?

Show that u vanishes at two points t,, s, where [t — 4] = 1.
8. Let f be real and of class C* on [a,b], and let f(a) = f(b) = 0 and f > 0 on (a,b).

Prove that
bf()]
(b —a)ﬁ T dt > 4

HinT: Let f attain its maximum at ¢. Then for some 71 and rq

1 o i 1 [f(c} —f(a) _ f(b) -—f(C)]

c—a'b—c J c—a RS
_Jm) — () | dt
o = f T 05 I

9. Let r be nonnegative, continuous, and of period 1. If

ﬁ’lr(t)dt =4

show that ¥ 4 r()z = 0 has stable solutions on (— o, ).
Hint: Use Probs. 7 and 8.



CHAPTER 9

SINGULAR SELF-ADJOINT BOUNDARY-VALUE PROBLEMS
FOR SECOND-ORDER EQUATIONS

1. Introduction

The treatment of Chap. 7 fails to apply in case the finite interval (a,b)
becomes infinite or in case the coefficients in the differential operator have
a sufficiently singular behavior at a or b. These cases are all regarded as
singular, and the second-order singular case will be treated in this chapter.

As a preliminary example, the problem

e y =4 5 d

for 0 < ¢ < =« will be considered as a limiting case of the problem on the
finite interval 0 < t < b with the condition

z(b) = 0

added, and then letting b— «. The finite interval problem of course
gives rise to the orthonormal system {4}, where

2

] i
Yil) = (g) Kitt 5})’-‘ =102, . ..)

Any function f which is continuous over 0 = ¢t = ¢ and vanishesfor ¢ = ¢
satisfies the completeness relationship

o S S Sy £
j;'f(t) dﬁ-bzi‘ﬁsm ; f{z.)d:l

in the event that b > ¢. If

q(s) = ﬁ: sin st f(¢) dit (1.1)

then the completeness relationship becomes

=

> 2
[Tuora=3Y

k=1
222

(1.2)




Skc. 1] SINGULAR SBELF-ADJOINT BECOND-ORDER PROBLEMS 223

where the ¢ in the left side has been replaced by = since J vanishes for
t > c. Let py be a nondecreasing step function of s which increases by
2/b when s passes through kxz/b, (k = 1, 2, . . .), and is otherwise con-
stant. Assume also that p, has been normalized so that py(0) = 0. Then
(1.2) can be written as

ko ord = [Clg@kdnt 13)

Clearly, as b— «, p,(8) — 2s/x. Thus, proceeding without rega.rd to
rigor, (1.3) yields as b — ,

[ vora=2 [ o a )

This is, of course, the Plancherel equation for the Fourier sine transform
for the restricted class of functions under consideration here. .

It is easy to give a rigorous proof of (1.4). Suppose that f(0) = 0, and
that f has a continuous first derivative on [0,]. Then from (1.1) it
follows by integrating by parts that

ol st [iroa-2 (5o

where M represents the integral. Thus for s 2 1,
M?
o@ir s X (1.5)

Since g is continuous, it is the case that for any fixed large u

. @ - 2 [*
2 . = % 2
Jim [ loo des) = 2 [ oo as 1)
From (1.5) and integrating by parts, it follows that

L " l0()]? dos(s) S M7 L T tda(s) S ‘%’3 f.. T atds = ii";-’ K

Similarly
o M’ .
/ lg(s)*ds = — (L.8)
[ 1
Thus using (1.6), (1.7), and (1.8) and letting ux — o, formula (1.4) is
validated for f restricted as indicated. Such f are dense in the space
£%(0, «), and, using standard theorems from Lebesgue integration, (1.4)

can be proved for any fe2%0,). Hence the analogue of the com-
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pleteness theorem of Chap. 7, Sec. 4, is valid in the case of the simple
example just considered. It might be of interest to the reader to parallel
the above argument for the problem

-z =lz z'(0) =0

and see how the cosine transform theorem is associated with the same
differential operator but with a different boundary condition.

The method of the above exampie, with necessary major elaborations,
provides a means of treating the general second-order problem in the
singular case. Throughout the remainder of this chapter I will denote
the formally self-adjoint differential operator defined by

Lz = —(p2') + qx

where it is assumed that p, p’, ¢ are real and continuous, p(f) > 0, on any
real { interval under consideration.f

Of fundamental importance in all that follows is Green’s formula which
states that if [£y,¢] is any interval over which L is defined and j and g are
any two functions for which Lf,Lg make sense, then

[ GLf — 1E8) dt = [fgl(ts) — [fg)(ts) (1.9)
where

[fol(®) = pOUOF O — ['(OFD)

In particular, if f and g are solutions of the same equation, Lxr = lr.
where [ is & complex number, then Green’s formula applied to f and
shows that [f7](¢) is a constant independent of ¢, and hence ean be denoted
by just [fg].

The case of the semi-infinite interval 0 £ ¢ < =« will be dealt with
first. followed by a treatment of the case of the interval — e < { < =,
In the case of a finite open interval (a,b) the treatments of the earlier
chapters remain valid if |p'/p|, |g/pl|, and |1/p| have finite integrals over
(a,b). If the behavior at one end, say b, is worse than this, the problem
may be treated over [a,0], a < b < b, and then the nature of the problem
as b—» b — 0 is considered. This is completely analogous to the treat-
ment of the problem on [0, =), and it will be seen that all results obtained
on [0, ) are valid in the case of an interval [a,b) where the coeflicients
in L have a singular behavior at b.  Similar remarks hold concerning the
case where the coefficients are singular at a and b, and the results are the
same as for the case (— e, =),

t Actually, it suffices for p to be absolutely continuous and ¢ integrable over cvery
finite subinterval.
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2. The Limit-point and Limit-circle Cases

~ Here-the interval under consideration is [0,). If for a particular
complex number /, every solution ¢ of the differential equation

Lz = lx

satisfies f ® |el2 dt < oo, that is, o8 £*(0, =), then L is said to be of

the limit-circle type at infinity ; otherwise L is said to be of the limit-point
type at infinity.t In order to justify this definition, it must be shown
that the classnﬁcatlon depends only on L and not on the particular
chosen.

Theorem 2.1. If every solution of Lz = lo is of class £3(0, eo) Jor some
complex number lo, then, for arbitrary complex 1, every solution of Lz = lz
i of class 8(0, ).

Proof. 1t is given that two linearly independent solutions ¢ and ¥ of
Lz = loz are of class 92(0,«). Let x be any solution of Lz ‘= lz, which
may be written as

Lr =l 4+ (I - L)z

By multiplying ¢ by a constant if necessary (to achieve {¢¥] = 1) the
‘variation-of-constants formula yields

X0 = ew® + cb® + @ = 1) [ (et ~ o WOIXE) dr (2.1)

where ¢, ¢, ¢; are constants. If the notation

liclle = ([ 1xle ae)?

is used, and if M is such that |l¢||. < M, ||¢|l £ M forall ¢ = ¢, then the
Schwarz inequality gives

[ @ — o e)xe) drl = M(le®] + WDl
Using this in (2.1), the Minkowski inequality yields
lixle S Gl + led)M + 24t - L2l
If c is chosen large enough so that [l — l|M? < 1, then
lIxlle = 2(les| + lesl) M

Since the right side of this inequality is mdependent of ¢, it follows that
x ¢ $2(0, ) and the theorem is proved,

1 The geometric significance of the terms limit circle and limil point will be made
apparent shortly.
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In the limit-point case, clearly, at most c.e linearly independent solu-
tion of Lz = lv is of class €*(0,=). It will be shown presently that in
this case there is exactly one solution of Lz = Iz of class £*(0,« ) for any
[ such that 1 = 0.

Let ¢, ¥ be two solutions of Lz = [z satisfying

¢(0,l) = sin « Y (0,l) = cos &
p(0)e’(0,0) = — cos a p(0)'(0,l) = sin « (2.2)

where 0 < a < x. Then clearly ¢, ¢ are linearly independent solutions,
“and from Theorem 8.4 or Prob. 7, Chap. 1, ¢, ¢/, ¢, ¥’ are entire functions
of I and continuous in (¢,l). Moreover, since [¢¥](0) = 1, one has
[e@](t) = 1 for all {. These solutions are real for real | and satisfy the
following boundary conditions at 0

cos a ¢(0,1) + sin a p(0)¢'(0,0) = 0
sin a y(0,l) — cos a p(0)Y'(0,1) = 0

Every solution x of Lz = lr except ¢ is, up to a constant multiple, of the
form
X=g¢+my (2.3)

for some m which will depend on [,
Consider now a real boundary condition at some point b, 0 < b < =,
S8y,
cos B x(b) + sin 8 p(b)z'(b) = 0 0=Bg<m (2.4)

and ask what must m be like in order that the solution x, (2.3), satisfy
(2.4). Clearly m must satisfy

_ cot (b)) + p(b)e’(b,) (2.5)
cot By(b,l) + p(b)¢'(b,) ;

As I, b, B vary, m becomes a function of these arguments m = m(l,b,8),
and since ¢, ¢, ¥, ¢/ are entire in [ it follows that m is meromorphie in [
and real for real I. If z = cot § and if (/,b) are held fixed, (2.5) may be
written as

m =

s Az + B

& S (2.6)

with 4, B, C, D fixed while z varies over the real line as 8 varies from 0
tow. From well-known properties of the mapping (2.6), the real axis of
the z plane has as its image a circle ', in the m plane. Thus x will satisfy
(2.4) if and only if m lies on C}.

From

B 4 Dm
T A+ 0m
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the equation of the image of the real axis, 3z = 0, becomes

(A + Cm)(B + Dm) — (4 + Cm)(B + D) = 0
which is the equation for Cs. It follows easily that the center-of C) is

. AD-BC
My = =————=
CD-CD
and the radius is
_ |AD — BC|
|CD — CD|

From the fact that

A =90l B=pbebl
C =yl - D=pbWki

it is readily seen that the equation of C} is
[xx}(®) =0 2.7

and that .
AD — BC = [¢¥](b)
CD — CD = —[y](®)
AD — BC = [¢@](b) =1
80 that

) L _ 1 |
P T T WO 28

Since the coefficient of mm in (2.7) is [y¥](b), it follows that the interior
of C» in the m plane is given by '

[xx](b)
wi® <° @9
By Green’s formula {(1.9)},

W) = 263 [ Ivieat
and
| [od®) = 2381 [ 1xI?dt + [xx1(0)
Since [xx](0) = —2i3m, (2.9) becomes
b . sm
ﬁ Ix*dt <57 (81 = 0) (2.10)

which determines the interior of C;. Points m are on C; if and only if

b B Sm
L Ixl*dt = 57 (31 = 0) (2.11)
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The radius r; in (2.8) is given for 31 > 0 by

= 291 L” I|? dt (2.12)

Now let 0 < a < b < ., Then if m is inside or on C,

[t < [ s S

and therefore m is inside €,. This means C, contains €, in its interior
if a < b. Thus for a given [, (31 > 0), asb— = the circles C;y converge
either to a circle C_ or to a point m_. If the €, converge to a cirele, then
its radius r,, = lim r, is positive, and from (2.12) this implies y ¢ £2(0, ).
If v, is any point on C, then i, is inside any C, for b > 0. Hence

[ o4 1 o,

RY/

and letting b — « one sees that ¢ 4 e €%(0,). The same argu-
ment holds if 71, reduces to the point m_. Therefore, if 31 0, there
always exists a solution of Lz = lr of class €2(0,%). In the case C, — C_,
all solutions are of class ¥2(0,=) for 31 # 0, since both ¢ and ¢ + My
are, and this identifies the limit-circle case with existence of the circle
C,. Correspondingly, the limit-point case is identified with the existence
of the point m_. In the case €y, — m,, there results lim r, = 0, and from
(2.12) this implies that ¢ is not of class ¥2(0,=<). Therefore in this
situation there is only one linearly independent solution of class £2(0, «)
for &1 = 0.

In the limit-cirele case m is on )y if and only if (2.11) holds. Since
x = e(t,l) + my(t,l), it follows that m is on C_ if and only if

3t [} Ixl2de = gm

Since [xx](0) = —2iJm, it follows from the formula above [(2.10)] that m
is on the limit circle if and only if [xx](=) = 0. The following theorem
has been proved.

Theorem 2.2. If 8l # 0 and ¢,  are the linearly independent solutions
of Lz = lzx satisfying (2.2), then the solution x = ¢ + my satisfies the real
boundary condition (2.4) if and only if m lies on a circle Cy in the complex
plane whose equation is

[xx](b) = 0

As b— o either Cy — C, a limit circle, or Cy, — m, a limit point.  All
solutions of Lz = lz are ¥*(0,=) in the former case, and if 1 = 0 exactly
one linearly independent solution is L*(0,) in the latter case. Moreover,
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in the limit-circle case, a point is on the limit circle C,(l) if and only if
[xx](=) = 0.

In the limit-point case, if m is any point on C, then m — m,, the limit
point, and this holds independent of the choice of 8 in the boundary
condition (2.4). In particular, this will hold when g = 0, and thus the
limit point is given by

g el ;
m_(l) = b]_l.nl V) (2.13)
The Green’s function (7 associated with the boundary-value problem
Lz =z
sin a x(0) — cos a p(0)x'(0) = 0
cos B z(b) + sin g p(0)z'(b) = 0

is clearly given by

Garly = [HEDIeED +m@b¥ED) ¢ S0
D = g led) + mGbeWED) > 1)

It follows directly from Theorem 2.2 that in the limit-point case Green’s
function tends to a unique limit as b — <« given by the same formula but
with m replaced by m,. In the limit-circle case there are an infinite
number of limit functions to which Green’s function may tend, depending
on how # varies as b increases. In any case, the limit function to which
@ tends is of class £%(0, =) as a function of £.

Theorem 2.3. In the limit-point case the limit point ma is an analytic
function of L for 31 > 0 (and L < 0). Jm, > 0 for J1 > 0 and if m, has
zeros or poles on the real axis they are all simple.

Proof. From (2.8) it follows that the center and radius of the circle €'
are continuous functions of I for 31 > 0. Thus, since () is interior to €,
for b > 1, it follows that if [ is restricted to a closed bounded subset A of
Sl > 0, then the points m = m(l,b,8) on C, are uniformly bounded as
b— =, The functions ms, where my(1,8) = m(l,b,8), being meromorphic
and bounded on A, are analytic there. Hence, by Cauchy’s theorem, the
functions ms, constitute an equicontinuous set on A, and m, converges
uniformly to m,. Being the uniform limit of analytic functions, m,
itself is analytic on A, and hence on 31 > 0.

Since m,, is inside of C, it follows from (2.10) that Im, > 0 for J7 > 0.
"This proves that if m,_ has zeros or poles on the real axis they are simple
and that the poles have negative residue. These remarks apply also, of
course, to the meromorphic function of [, m.

It is important to know whether a given operator L is in the limit-point
or limit-circle case. A useful sufficient condition for L to be in the limit-
point case is the following:

Theorem 2.4. Let M be a positive differentiable function, and k, and fq
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two positive constants such that for large ¢

q(t) =2 —kM(t) ﬁ i {p.n-f)“idz; o
[PHOM' (OM(1)| < ks (2.14)

Then L is in the imit-point case at infinity.

Proof. Tt will be shown that Lz = 0 does not have two linearly inde-
pendent solutions of class £20, <), Suppose x is a real solution of
Lr = 0, and assume x e ¥(0,=). From (px’) = gx follows for some

c>0
3 [/ [}
(XDl g 1 :
l "T di = : M X dl = )"LI j X dt

Integrating by parts and using the fact that x & £2(0,) there exists a
constant ks such that

' ] A% ] ¢ s ¥ i
Bxix +/ OO g _ [, ks (2.15)
e

M A

M
Let

HQ) = fl’%‘gda

Then using (2.14) and then the Schwarz inequality

£t arey 2 e 2 ¢
J f 7__’%‘7;;” dzl gk;([ E“—.‘ffax[ dt) = K3H(0) / X* dt

Thus by (2.14) and (2.15) there exists a constant % such that

- 7’—’%" + H — kJD < ks (2.16)
If H(t) > «,ast— «, then (2.16) implies that for all large ¢, pxX'x/ M >
H/2. This means x and x’ have the same sign for all large ¢, which con-
tradicts x e 2(0,). Thus H remains finite so that

“p(x)? :
ﬁ A< @ (2.17)
Now suppose ¢ and ¢ are two linearly independent solutions of Lz = 0

which are of class £2(0, ), that is, suppose L is in the limit-circle case.
It can be assumed that these solutions are real and

[¢¥] = p(ey' — ¥o') =1
This implies
DA o it 2 2]
¥ ﬂf} ';) i
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By (2.17) and the Schwarz inequality, the left side of the above equation
is integrable over (¢,%). By hypothesis (2.14), the right side is not.
Thus the limit-circle case is ruled out.
In the case M(t) = 1 for 0 =t < = the following corollary results,
Corollary 1. If q(t) = —Fk, where k is a positive constant, and

fﬂ pidl = »

then L is in the limit-point case at infinity.

Many second-order differential operators of praetical interest have
p() =1 for 0 =t < =« (in fact, a simple transformation can always
effect this), and in this situation Theorem 2.4 implies the following
simple criterion,

Corollary 2. If p(t) = 1 for 0 =t < = and ¢(t) = —kt* for some
posttive constant k, then L is in the limil-poinl case al infinity.

3. The Completeness and Expansion Theorems in the Limit-point Case
at Infinity

As a necessary preliminary, the results for the finite interval 0 £ t =
b < = will be given a slightly different formulation. Consider the
problem
Lr = —(pz') + gz ==z
sin o x(0) — cos ap(0)z'(0) =0 (3.1)
cos B x(b) + sin 8 p(b)x'(b) = 0

where 0 £ o, 8 < #. This is a self-udjoint boundary-value problem on
0 <t <b and consequently there exists a sequence {Aaf, n =1, 2,

., of real eigenvalues and a corresponding complete orthonormal set
{fy.} of eigenfunctions. Asin Sec. 2, let ¢, ¢ be the solutions of Lx = lz
satisfying the conditions (2.2). Then ¢ satisfies the first boundary
condition of (3.1) and no solution of Lx = lr independent of ¢ can satisfy
this condition. Therefore

Bhn(l') = rhn\r’(t:hhn)

where r, is a constant, independent of {. The completeness theorem
applied to any continuous funetion on 0 = ¢ < e« which vanishes outside
0 <t=c¢c where 0 < ¢ < b, yields

fa

J@rdae =Y na2| [ 10wen d (3.2)

ne=l

Let
o) = " FOueN) dt (3.3)

and let p, be & monotone nondecreasing step function of X having a jump
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of [ry,|* at each eigenvalue N, and otherwise constant. Assume further
that ps(A + 0) = py(\) and pu(0) = 0. Then the Parseval equality (3.2)
may be written as

fT oz = 2 g0 dno) (3.4)

The function p, will be called the spectral function for the problem (3.1).

The fundamental idea behind generalizing the formula (3.4) to the
interval 0 < ¢{ < « is to show that as b — « the function p» tends to a
monotone nondecreasing function p (which need not be a step function)
in such a way that (3.4) still remains valid in some sense when p, is
replaced by p.

If ¢ is any monotone nondecreasing function on — = < ) < », let
(o) denote the set of all functions & which are measurable with respect
to the Lebesgue-Stieltjes measure defined by ¢ and such that

[_: [h()\)!gda()\) < o

Theorem 3.1. Let L be in the limit-point case at =. Then
(i) There exists a monotone nondecreasing function pon —w <\ < =
such that

PN — p(r) = lim (p(\) — ps(n)) (3.5)
Dy

at points of continuity \u of p.
(i) If f e 2%(0,=) there exists a function g e L%(p) such that

Jim [7_ o) = [ s aeff ap) = 0 (3.6)
and
LT lora = [ 1g0 don) (3.7)
(iii) The integral

. a0 dotny

converges in ¢3(0,«) to f, that 1s,

lim j;“'j,r(z) = [Tomweny dpyfar=0 38

(.¥)=+(— =, =)

(v) Ij m, is the limit point, considered as a funclion of 1,

A
p0) ~ p(s) = lim % [ Smo(v + ie) dv (3.9)
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at points of continuity \,u of p and inversely

m® = ma = [ (i - i) ) + et - 1) 310)

wheret ¢ is a nonnegative constant, and Jls #~ 0.
The function p is called the spectral function for the problem

Lz =z sin a z(0) — cos a p(0)x'(0) = 0

By
7 rwe d
will be meant the value at \ of the function g defined by (3.6). Thus
o) = [T soweN (3.11)

and g may be regarded as a transform of f by means of the function y.
The relationship (3.7) is the analogue of (3.4) and is called the complete-
ness theorem, or Parseval equality. It follows that

50 = [, g0 do) (3.12)

where the equality is meant in the sense of (3.8), and (3.12) is called the
expansion theorem. 1If f, for example, is continuous and vanishes for all
large ¢, then the integral in (3.11) exists in the ordinary sense.

The correspondence f — g maps the space £3(0,») into £2(p), and it is
an important additional fact that this mapping is onto, that is, all of
L%(p) is used up in the process.i

Theorem 3.2. If ge %(p), there exists an fe2%*(0,) satisfying (3.8),
and by means of this f the function g may be represented in the form (3.11).

Before proving Theorem 3.1, the following results required in the
proof will be stated. The first is a form of the Helly theorem on sequences
of monotone functions adapted to the infinite interval, whereas the second
is an integration theorem.

Selection Theorem. Let {h.}, n =1, 2, ..., be a sequence of real
nondecreasing functions on —» < A\ < =, and let H be a conlinuous
nonnegative function on the same interval. If

B S HQN) (=12 ...;—®o <A< »)

t By appraising p;(A) more precisely than will be done here it can be shown that
¢ = 0 in (3.10). N

{ The spaces 93(0, ) and £3(p) are Hilbert spaces and the content of Theorems 3.1
and 3.2 may be summed up by saying that the correspondence f «— g is a one-to-one
norm preserving mapping of £(0, =) onto 83(s), that is, a unitary mapping.



234 ORDINARY DIFFERENTIAL EQUATIONS [CraPp. 9

then there exist a subsequence {h,,} and a nondecreasing function h such that

[h()\)] H(\) (—wo <\ < ©)
and
klim hai(N) = h(\)

Integration Theorem. Suppose {(h.} is a redl, uniformly bounded,
sequence of nondecreasing functions on a finite interval a = \ = ¢, and
assume

lim A.(\) = h(A) (a=Xx=0)

n— w@

If f is any continuous function on a £ \ = ¢, then
lim [ 7(0) dha(n) = [0 dny)

Proof of Theorem 3.1. Let my(l) be a point on the circle ', where
31> 0. Then the completeness theorem (3.2) applied to the solution
= ¢ -+ myy of Lx = lx yields

P i@ a = ,,}j] ral? | [ 000N deff (3.13)

Green’s formula applied to x, and ¢ results in
pp

(= Mn) [ 2000 dt = [xtanl (B) — [xien] 0)

where ¥4.(t) = ¥(t,\sn). A simple calculation shows that [xetenl () = 0
since both x, and ¢, satisfy the same boundary condition at b, and
(xe¥s:](0) = 1. Therefore (3.13) implies

/;‘ @] dt = f_l ];:’pa_(?\)l

taking into account the definition of the monotone function ps. The fact
that my is on ( yields, by (2.11),

f lxe(0)]? dt = C’m‘”“)

From these equations follows the important equality

Let? =7 in (3.14). Since ¢} isin C;forb > 1 there exists a constant
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k such that Smy(?) is less than k for b > 1. Thus (3.14) yields
f N . (3.15)

1 4+ A2
or, for v > 0,

/j dpp(N) < EQ(1 + »?)

This, together with p,(0) = 0, gives
IO S EQEX)  (—w <A <)

Choosing a sequence b, — =, and choosing a 8, 0 = 8 < =, for each b,
it follows from the selection theorem that a subsequence of the sequence
{ps.} exists, converging to a limit funetion p which is monotone non-
decreasing and satisfies

)| = k(1 +2?)

Now let f have a continuous second derivative on 0 < ¢ < », and
vanish near { = 0 and for all large £. Then applying (3.4) to Lf for large
enough b results in

-] ‘\ -]
Lo lan@ira = [

Using Green’s formula for f and ¢,

L anoeen af dney @16

i~ an@ean) dt = 20

and hence (3.16) becomes

[ 1@norra = [ 3l da)
I'rom this it follows that for u > 0,

[ lgz ) = w2 [ Ng0)[2 dnh)
<t [T 1@ d (3.17)

where A = (— o ,®) — (—u,u]. Applying the completeness relationship
to f itself

[ i@pae = ([ + [[) o1z dmey)

Letting b tend to infinity through the subsequence found above, it follows,
using (3.17) and the integration theorem, that

| [ 1@l ae— [ 1o de) | 5 w2 [7 @) at
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Now allowing u — «, there results the Parseval equality

L@k = [ 100 dpth) (3.18)

for any f restricted as above.

Rather standard arguments now suffice to show that the Parseval
equality holds for any f« 22(0,%). First suppose f = 22(0, = ) and vanishes
for large ¢ > 0. Then there exists a sequence of functions f, ¢ £%(0, )
possessing continuous second derivatives and vanishing near ¢ = 0 and
for all large ¢ such that

mnﬁﬂg~ﬂWh=o (3.19)
and from (3.18) applied to f, — /.

Jo T Ve = Fal2dt = [ 1gad) = gu2 dp (V) (3.20)
where

70 = [ 0w dt (3.21)

Since the left side of (3.20) tends to zero as n, m — o, it follows that the
sequence {g.} converges in the mean in 2(p), and since the latter space is
complete there exists a ge 2*(p) which is the limit in the mean of this
sequence. From (3.21) it is clear that ¢ is the continuous function
given by

o) = [[7 70w dt
Using (3.18) again

Il

ﬂ,“ |f(0)]* dt ,,]ifri ];m If-()]2 dt = .}i“l f“”_, lga(\)[2 dp(N)

TSI

Il

which proves the Parseval relation for any fe €2(0, <) vanishing for all
large ¢ > 0. Suppose f is any function of class £2(0, ) and define

fu) =f() (0 =t=a)
=0 (a <)
and

00 = [," f0pN) dt = [ o) dt

Since

[ 100 = 2o = [Fls0rdt (@ < a)
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the set {g.] converges (as a — «) in the mean in €*(p) to a function
ge%(p). From letting a — = in

[ ey = [l at

there now follows the Parseval equality (3.7) for any fe 22(0, =),
The proof of the expansion theorem (3.12) [in the sense of (3.8)] will
now be given. Let A = (g,\] and

fa® = [ aM¥N) do(d) (3.22)

where g is the function appearing in (3.6). The relation (3.7) implies
that, if f1,f2 ¢ €2(0,%) and g,,g: are the corresponding transforms, thent

J” fidadt = f_',, g:02 dp(N) (3.23)

Let P e @0, ) and vanish for £ > a > 0, and let the transform of P be
Q. Then from (3.22) follows, on multiplying by P and integrating,

Jy rs@P@ae = [ (f, 00w doh)) Py a
= [io0) ([ Powen) dr) dpy)
= [ oA dp()

From (3.23) for fy = fand f, = P,
[T B = [ 0@ dp)

Subtracting the above and letting A° = (— ®,®) — A

LG = gPa = [ g0)@0) )

and using the Schwarz inequality

=P al s [ et [ 1001 dey)
= [, lo0)dpn) [, 1P[2 at
Applying this inequality to the function P given by

P(t) = f(t) — fa(t) 0=t=a)
= () (a <)

tanfe = |fv + f2? = Ifs — fal* +ilfy + ifa]* = ilfi — ifaf?
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one obtains
[l = salzde s [, 1o do(h) . (329)

Since the right side does not depend on a, the above holds with a — «.
Letting A — (— =, =) yields the expansion result (3.8).

Clearly the uniqueness relation (3.5) is an immediate consequence of
(3.9). Thus it remains to prove the relations (3.9) and (3.10). From
(3.14) it follows that, for any fixed !, §I > 0, there exists a constant k

such that
a0
f SRS

for b> 1 and all p = 0. Letting b— « through the subsequence
chosen below (3.15), it follows that the above is true with p in place of p,.

Since it holds for all g,
® dp(\)
o K==~

T'rom (3.15), for g > 1, there exists a constant & such that

PNk
< e
j; A N

for b > 1 and similarly over (— o, —pu). If 1 # 0, Sy 5 0 and

[- . (IA l T 'pT—l ru;-») dpy(N) (3.25)

is considered over (— @, —u), (—pu,u) and (g, <), it follows that, if b — «
through a chosen subsequence and if then g — e, (3.25) must tend to

f..: (Il i TERY ._1 10]2) dp(N)

Smy(®) _ Imy(lo)
RV RN

which tends, as b — =, to

But (3.25) is just

Im (1) _ JIm(lo)

¥ R7P
Therefore
Im, ) _ [T dp(\)

where ¢ is a constant independent of I, provided I > 0 (or 81 < 0).
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From Theorem 2.3 Im (1)/31 > 0. TFrom (3.26), letting Rl = 0,
il — o, it readily follows that ¢ = 0.f IFrom (3.26) results

3m® —m) =8 ([ (2 - ;;’—!) dpm) + (1 — L)
(3.27)

Since m,, is analytic in I for 31 > 0 (or §! < 0), 3m,_ determines fm_ to
within an additive constant. The imaginary part of the analytic function
of I (for fixed 1,31y # 0) defined by the right side of (3.10) is S(m_(l) —
m,(lo)) by virtue of (3.27). Thus, this must be m () — m_(ls), which
proves (3.10).

Let A, x be points of continuity for p. Then from (3.26)

b € dp(d)
llm f Im,(v + ie)dv = }—I-Tnf f_ oo —v)? + el

lim f [tan'l ()\—E) — tan? ("f- :—?)] dp(a)
e—v 40 J—m| € €

= w(p(N\) — p(u))

vielding (3.9), and thus completing the proof of Theorem 3.1.
In proving Theorem 3.2 the following will be required.
Lemma 3.1. Let gz ¥*(p) and

5@ = [, oA do(n)

wherc A is a finite N~interval.  Then, as A — (— @), fa is convergent in
£2(0, ), and thus tends in the mean to a function fe 2*(0, ).

Proof. Let Ay D A. and let P e ¥*(0,«) be a function vanishing for
large t. Then if () is the transform of P,

ST G =gt = [, g@O) do()
Using the Schwarz inequality much as above (3.21), and letting

? = f.\, = f.s,

for0 =t = a, and P = 0 fort > a, there follows

Jo s = palrae = [, la®I dp(h)

Since the right side does not depend on a, this inequality holds with
a = «,. Letting A, and Ay — (— =, ), the proof is completed.

Remark: At this point the self-adjointness of L in the limit-point case
can be proved. This is done in Prob. 13,

t As has already been remarked by appraising p, it can be shown that, in fact, ¢ = 0.
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Proof of Theorem 3.2. In view of Lemma 3.1, it remains to show that
g comes from f by (3.11), that is,

o) = [[7f0w) d (3.11)

where the equality is meant in the mean in €%(p). From Theorem 3.1
there exists a §j ¢ ¢*(p) such that (3.11) holds with g replaced by j. There-
fore the problem reduces to showing

[ 160 = g2 de) = 0

Let r = g — g; clearly ne 2(p). Using the fact that f is the limit in the
mean of fi, where

1O = [0 dole) - A = (u]

it follows that the function hy = fi — fa,

hs(®) = [ rO)EN) do)

tends in the mean to zero, that is,

im [ ha@[2dt = 0 (3.28)

A—t(=m, =)

It will be shown that hs is the zero function.
Let I be a complex number with 3/ > 0, and put

Hy(tl) = ﬁ 1) Y(EN) dp(N) (3.29)

A=
Then, since Ly = Ay,
LHy = [Hy + ha (3.30)

From (3.29) follows easily that s satisfies the same boundary condition
at zero as does ¥, namely,

sin a Ha(0,1) — cos a p(0)HL(0,)) = 0

By the variation-of-constants formula, (3.30) yields

Ha(tl) = ﬁ le@DY(rl) — o(r,D¥tD]halr) dr + eap(t]) (3.31)

where ¢, is a constant (which may depend on A). From the fact that
re®(p), r/(A — 1) e %(p) and hence H,, as a function of ¢ for fixed
l, 31 > 0, converges in the mean in £2(0,«) to a function H as A —
(—=,=). Using thisin (3.31), it follows from (3.28) that there exists a
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constant ¢ so that
H() = ey(t,)

Since y is not of class £2(0, =) for §1 > 0, the constant ¢ must be zero, and
hence H(t,l) = 0 for 31 > 0. Thus Ha tends to the zero function in
£3(0,=) for 31 > 0.

Let

2
Lo = [N d
that is, T', is the transform of the function which is onefor0 = ¢t £ sand

zero fort > s. ThusT, e ®(p). Integrating (3.29) with respect to ¢ and
using iy — 0 in £%(0, ) there results

f_: ;(E): I\ do(A) = 0 (3.32)

Since T, £ ¥%(p) the Schwarz inequality shows that the integral on the left
of (3.32) is absolutely convergent. Indeed

[ rOT ) dey) < (3:33)
Formula (3.32) can be inverted much as in the proof of (3.9) for p. For
this purpose it will be assumed that g, and hence r, is real. This is no

restriction since every g is a sum g, + 7g.. where g, and g¢. are real.
Taking the imaginary part of (3.32) and integrating, one obtains

,ETO f : [_: m r(0)T.(c) dp(o) dv
i f_: r@)To) lim [tan"l ("—-:-i‘) — tan-1 (“—:E)] dp(o)
= [ : r(0)T.(0) dp(e) = 0 (3.34)
Since for A = ()],

L@ o) = [,r@) [ vo) dtdnto) = [ ([, r)tto) dow)) a

it follows that the function / given by

k(s) = [, r(@)1(o) dp(e)

has a continuous derivative, and from (3.34) this must vanish, Thus

hs© = [, rW(EN) do() = 0 (3.35)
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Since ¢(0,\) = cos q, it follows from (3.35) with ¢ = 0 that if cos a # 0

[, ) dor) = @ (3.36)

If cos @ = 0, then sin « = 0 and, by differentiating (3.35) with respect to
¢ first and then setting ¢ = 0, (3.36) follows. Thus (3.36) is always valid.
Because of the arbitrary nature of A, (3.36) implies that for any a > 0

f_“a y(\)r(\) dp(N) = 0 (3.37)

for any step function y. The step functions are dense in £2(p). and since
re(p) it follows that vy can be chosen so that the left side of (3.37) is
arbitrarily close to

[ 1 doh)

which must therefore vanish, Since this holds for all a, the theorem is
proved.

4, The Limit-circle Case at Infinity

If L is in the limit-cirele case at infinity, the eircles Cy(l) converge to
C.(1) as b — = for each I, 31 # 0. Bach circle Cy(l) is traced by points
m = m(l,b,8) as B ranges over 0 £ 8 < « for fixed b and I. [In-ecase
1 = 0, the circle Cy(l) becomes a straight line.] Let Iy be fized, 1y #
0. A point 1 (lp) on the circle C_(lo) is the limit point of a sequence
m(le,b;,8;),7=1,2, ..., withb— o asj— o,

Let m; denote the function of I given by m;(l) = m(l,b;,8;). These are
meromorphic functions of [, real for real l and, as was seen from JSm/3J1 >
0 for 81 # 0, the poles and zeros of these functions can lie on the real axis
only and are simple. Let p; denote the step function p, associated with
the condition 8; at b;.  Then the following theorem will be proved.

Theorem 4.1. Let 1t _(l) be a point on C(1y) and (b;,8;) a sequence such
that m(Lo,b;,35) = m;(lo) tends to mw(ly) asj— . Then for all l

lim m;(l) = 1, (l) 4.1)
J‘—. L)

and [in the sense of (3.5)]
lim p;(A) = p(\) (4.2)
J—. L]

where 1, 18 a meromorphic function of 1, real for real 1, and with poles and
zeros that are real and simple. Moreover, p is a step function disconlinuous
at the poles, | = A\, k = 1,2, . . ., of 1, only and with a jump at A, equal
to minus the residue of My at \i. The functions Y, where Yu() = (4N,
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Jorm a complete orthogonal family in 940,%). If R. is the function
defined by R.(t) = o(t,lo) + ha(loy(t,lo), then

WiRel() = 0 (4.3)
for all k. On the other hand, for i, where Yi(t) = Y(t,0),
[YiRl(=) =0  (@#M k=12 ...

The condition (4.3) is actually a boundary condition satisfied by the
yiatl = o, With each point on the limit circle C_(lo) is associated such
a houndary condition. In the course of proving Theorem 4.1, two other
theorems will be proved which will make clearer the nature of this
boundary condition,

Proof of Theorem 4.1. Let

xi(LD) = el + my(tl) (4.4)
Apply Green’s formula to x;(¢,]) and ,(t,l0). Since both functions satisfy
the same condition at b, it follows that
mi) = myle) = (L — 1) [ x(Dxs(blo) dt (4.5)
Using (4.4) in (4.5),
mile) + (0 — 1) [[" o(tDxs(to) dt

m;(l) = = (4.6)
L= (=) [["vthxtl) d

In the limit-circle case all solutions of Lz = lz are £%(0, ). Therefore,
as j — =, the entire function of [ whose value at [ is given by

L ewhxio) de = [ ohlele) + m@owlol d

which appears in the numerator of (4.6), tends to the limit

7 e@dle(tlo) + v .10 de @7)

If 1 is restricted to some finite part A of the I plane, then it was shown in
the course of the proof of Theorem 2.1 that ¢ and ¢ have norms in 220, =)
which are uniformly bounded in A. Thus, by the Schwarz inequality,
the integrals in (4.7) are uniformly convergent in I over any finite part
of the ! plane. This implies that (4.7) defines an entire function of L.
The/same is true for the integral in the denominator of (4.6). Thus, as
j— «, the meromorphic function m; tends to a limit s_ which is also a
meromorphic function, and this proves (4.1). The properties of M,
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follow from Jm_(1)/31 > 0 for 1 == 0. It follows from (4.6) that

ol) + @ = 1) )7 etDR(D) dt
L= (=) [ ¢tDRa(b1) dt

Mmu(l) = (4.8)

As in the proof of Theorem 3.1, the Helly selection theorem shows that
a subsequence of {p;} exists which converges to a limit 5. Since (3.14) is
valid, the argument of Theorem 3.1 then shows that (3.9) is valid with p
replaced by 5 and m_ by s,. This proves that  is independent of the
choice of sequence and thus that (4.2) is valid. Since . is real on the
real axis, (3.9) also proves that 3 is a step function discontinuous only at
the A\x and with a jump at A, equal to minus the residue of the pole of i,
there.

The completeness of the set |y} follows from (3.6), (3.7), and (3.8)
with p replaced by 5. The orthogonality will be proved after Theorems
4.2 and 4.3.

From (4.8) it follows that at any pole A\; of 2, the denominator must
vanish, that is,

O = 1) [,7 ¥R 1) dt = 1 (4.9)

By Green'’s formula it is easily seen, since (f,\;) is real, that
b
e = 1) [} $UEMIRa (b1 dl = 1 = [R44](0)

Using (4.9) and letting b — <, it follows that (4.3) is valid.
Let D denote the set of all functions u such that

(i)  wuis differentiable and «’ is absolutely continuous on 0 = ¢ < b for
allb < =,
(i) wand Lue £*0,=),
(iii) sin a u(0) — cos a p(0)u'(0) = 0,
(iv) [uR.](=) =0
Let

G(‘,‘r,lo) _ ¢(f,la)ﬁm(r,h) (z é T)

Y(rlo)Ra(tlo) (> 1) (4.10)

and for any fe 2%(0,«) let
§U©) = [,” Gltrlof(r) dr
The integral is absolutely convergent since f and %_ are both of class

©(0,=).
Theorem 4.2. For any fe®(0,=) the function v = G(lo)fe D and
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(L — loyu = f. Conversely, if ue®d, then f = (L — loue0,=) and

u = §(lo)f.1
Proof. It has been shown in Theorem 2.2 that

[Refel() =0 (4.11)

Let ¢,¢ denote the functions given by ¢(t) = ¢(t,l), ¥() = ¢(tlo).
Trom (2.8) it follows easily that, if #i_ is the center of the circle C(lo),
then

[e¥](=) + A [yyl(=) =0 (4.12)

and the reciprocal of the radius of C(lo) is
|ly¥](=)| > 0
Clearly, since £, = ¢ + 1y, (4.12) yields
YR() = (i, — Fi)WW](=)
[YR.1(=) =0 (4.13)

The proof of the first half of the theorem follows from the use of (4.10).
Indeed, if u = G(lo)f, then

so that

WO = 200 [} vrlof@) dr + ¢l [ 2105 dr

From this it follows that (i) is satisfied, and

t w -
u''(t) = R4t 1) ﬁ] Y(r,lo)f(r) dr +¢" (1,1o) ﬁ R(m,l0)f(7) dr + %@
Since [YR.J1) = [¥R.)(0) = —1, one sees easily that Lu = lou + f.
That u ¢ £2(0, %) follows from the fact that ¥ and g, are £2(0, =) and the
use of the Schwarz and Minkowski inequalities. Since Lu = lou + f,
Lue2*0,=), and (ii) holds. Condition (iii) is valid since y satisfies
(iii), and (iv) follows with the aid of (4.11).

The second half of the theorem will now be proved. Letf = Lu — L.
Then f e £2(0,%) and, from the first part of the theorem, §(lo)f is of class
D. Thus w =u — G(lo)f is of class D and satisfies Lw — low = 0.
Hence w = ¢ + ¢2%., for some constants ¢, ca.  Used in (iii) and (iv),
it follows that ¢, and e,, respectively, must be zero because £, cannot
satisfy (iii) and, by (4.13), ¢ cannot satisfy (iv). This completes the
proof.

This result can now be used to prove the following theorem.

t The statement of Theorem 4.2 is just the statement that G(lo) is the inverse of the
aperator L — [o with domain D.
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Theorem 4.3. The boundary-value problem
Lr =lr  sin ax(0) — cos a p(0)z'(0) = 0 [zR.](=) = 0 (4.14)
18 self-adjoint; that s, for all u and v of class D

J,” s ar = [ (@) at (4.15)

Proof. From Green’s formula and the fact that [uv](0) = 0, (4.15) is
equivalent to
[uv](=) =0 (4.16)

From Theorem 4.2 there exist f,ge 2%(0,) such that u = &(lo)f and
v = §(lo)g. Expressing [ur](b) in terms of the integrals involving the
Green’s function (4.10) and f and g and letting b — «, (4.16) follows from
(4.11), and the theorem is proved.

It is a consequence of (4.3) that yx is of class &. From (4.15) the
orthogonality of the y, is immediate. No yy, I > A, for all k, can satisfy
[z8.](=) = 0, for if it did y; would be of class © and thus would be
orthogonal to all y,. This is impossible since the y, are complete.

6. Singular Behavior at Both Ends of an Interval

The cases where the coefficients in L have singular behavior at both
ends of an interval, or singular behavior at one end and a semi-infinite
interval, or an interval extending over the whole ¢ axis, are all handled
similarly, Here the case where L is defined over — o <t < « will be
treated. Recall that

Lz = —(pz')’ + gz

where now it is assumed that p, p’, ¢ are real and continuous, p(t) > 0,
on —«w <t < w. (These restrictions on p,g can be relaxed somewhat.)
Let ¢1,02 be solutions of Lz = Iz, real for real I, satisfying the initial
conditions
e1(0,0) =1 #2(0,0)
P(0)¢3(0,1) = 0 2(0)¢4(0,1)
Then ¢4,¢» are entire functions of I for fixed ¢.

Let 6: @ = ¢ = b be any finite interval containing zero, and consider
the self-adjoint boundary-value problem on §:

0
1

Lz = Iz
cos a x(a) + sin a p(a)z’(a) = 0 (5.1)
cos g z(b) + sin g p(b)z'(b) = 0

where 0 = «, @ < x. There exists a sequence of real eigenvalues {\.},
n=1,2 ..., anda complete orthonormal set of eigenfunctions {hy.}.
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In terms of these, the Parseval equality holds for any f ¢ 22(3),

[iora =3 | [0k a i (5.2)
ne=l
If f1,f2e €2(8), then

[ 10RO =Y [A@ka®a [0ROd (63

Since ¢1,¢: form a basis for the solutions of Lz = Iz, it follows that

hin(t) = rimei(t,Aan) + Tinaoa(t,Asn) (5.4)

where 74, and 7y, are complex constants. Placing (5.4) into (5.2), the
latter may be rewritten as

2
flsora = [T auMgnt) dot) (5.5)
Jk=1

where

) = [, 70eN) de

and the matrix p; = (py;i), called the spectral matriz associated with the
self-adjoint problem (5.1), consists of step functions with jumps at the
eigenvalues )\, given by

psik(Nan + 0) — pgz(Aan — 0) = Z TemiTdmb:
where the sum is taken over all m such that A;,, = As.. Let
p(\ 4+ 0) = ps(N)
and ps(0) be the zero matrix. Clearly p; possesses the properties:

(i)  ppis Hermitian  (psje = pusy)
(i)  ps(A) = ps(N\) — pa(w) is positive semidefinite if A > u (A = (g,\])
(iii) The total variation of ps; is finite on every finite \ interval.

Any matrix p; satisfying (ii) is said to be nondecreasing. The matrix p;
is the counterpart on § of the nondecreasing spectral function p, for the
problem (3.1).

Applying the Parseval equality (5.5) to any continuous function i
on —«w <t < » which vanishes outside some interval 8§, contained
properly in 5, one obtains

[ ke = [

5

T

Fi(N)gx(X) dpsje(N) (5.6)

1
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where

a0 = [ 10e) dt

As 5 — (— », ) (that is, a~> — b — «), it can be shown that, if L
is in the limit-point case at — = and =, there exists a matrix p having the
properties (i) through (iii) such that py — p, and (5.6) is valid for any
fe@(—,»). IfLisinthelimit-circle case at one, or both, of the points
— ® or «, limiting matrices p still exist such that (5.6) holds, but there
is the usual nonuniqueness.

The key to proving the existence of a limiting matrix p is an equality
for ps which replaces the equality (3.14) for pp. Let xa = ¢1 + map2 be a
solution of Lz = lz (3l # 0) satisfying the boundary condition

cos a x(a) + sin a p(a)z'(a) = 0

and similarly let x» = ¢1 + mup2 be a solution of the same equation
satisfying

cos B z(b) + sin g p(b)z’(b) = 0

Then, as has been shown in Theorem 2.2, m, and m, lie on circles (s and
(O in the complex m plane whose equations are, respectively,

[xaxal(@) =0  [oxe](b) =0 (5.7)

Tt is easily seen that Green’s function G for the problem (5.1) exists,
provided &I # 0, and is given by

Xa(t,D)xs(r,]) t=7)
Gi(t,r,D) = ma(l) — my(l) %
s(lym)l xa(T, 1) x5(4,1) t>7)

ma(l) — my(l)

The completeness relationship in the form (5.3) is now applied to the
functions

Hilt) =
yielding

BGl a'Gl

oY, ) =ZxWoOH G k=01

BGa GG
f (¢,0,1) S (tOZ)dﬂ

EIGG‘ (t,0,]) han(t) d:faG' (4,0,) hsn(t) dt  (5.8)
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From the definition of Gy it follows that

Ga(t,0,1) = ,T%(%m (¢ <0)
= ”m‘ﬁ% (>0 (5.9)
and
0D = sty ¢SO
B p(O)E::sz)x ag'i,,(;)) (t>0) (5.10)

Using (5.9) and (5.10) and Green’s formula, the integrals in (5.8) can be
evaluated. For example,

231 [, 1Gi(t0D* dt = 203Uma(®) — m®I* { [ [xalt)|? at

+ [ el at}

= |ma(l) — my(1)|~*{[xaxa](0) — [xexs](0)}
= 2{J(m(l) — ma(1))|ma(l) — my(D)|~?

making use of (5.7). Therefore

f 1G4(£,0,D)|* dt = J(ma(l) gl my(l)) ! (5.11)
&

Similarly,

(ma) — M) — M) [, Ga(t0.DFiua()

= [xehsn)(b) — [x6hsnl(0) + [xchsn)(0) — [xahenl(a)
— [(Xa < Xb)hh](o)
= (ma(l) — my(l))[¢2hsn)(0)
= (my(l) — ma(l))7am
and hence

I his Tint
fa GLODR(Y) dt = Ty (5.12)

Here use has been made of the fact that [xshi.](b) = 0 which follows since
both x, and h;, satisfy the same boundary condition at b; similarly
[xahsal(a) = 0. Now (5.8), (5.11), and (5.12) yield forj = k = 0,

f- dpsn(N) _ IMn(l)

P E 3

where
M (D) = (ma(l) — mp(l))? (5.13)
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Further similar calculation shows that

© dp(N) _ SMa(l)
J e - 2 P

where My, is given by (5.13), and

Mya(l) = Myas(l) = $(ma(l) + my(D)) (ma(l) — my(1))~
Myzs(l) = ma(Dmy(l) (ma(l) — ma(l))?

Formula (5.14) replaces (3.14) for ps.
Since

3 [ a@hrdt = —Sma®) 1 [ DI dt = Smu()

for a fixed I, 31 ¢ 0, mq(1) and my(1) are in opposite half planes. Suppose
l = 7in (5.14). Then points m,(7) lie on a circle C, which is in C_, for
a < —1, whereas points my(7) lie on C; which isin C, for b'> 1. Thus
there is a constant ¢ > 0 such that |m.(i) — my(?)| > ¢ for a < —1,
b > 1. Since mq(7)and ms(7) are uniformly bounded fora < —1,b > 1,
it follows from (5.14), and the definition of the M;. (1), that

f__%{rz(_’;} <K (j=1,2

for some constant K. Since

2|raniFank] = |rani]? + |ran/?

“ |dpsi (V)|
f..,,—-__l O

it follows that

holds for 7 # k also.

Using the Helly selection theorem, which applies equally well to func-
tions with dominated total variation, much as in the proof of Theorem
3.1, it follows that there exists a sequence of intervals &, = [an,b,), 6, —
(— =,%), and corresponding boundary conditions prescribed by an, 8a,
such that p;,x(A) tends to a limit pi(N) asn— «. The matrix p = (p;)
possesses the same properties (i) through (iii) as p;.

If L is in the limit-point case at — « and «, p is unique since in this
situation both m, and m, tend to points m_., m., respectively, and as in
the proof of Theorem 3.1 the formula

A
PR = pn ()= lingt v [RlaarYct 1oy ay
0T Ju
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can be proved. Here M;(l) is the limit (which exists) of M;y(l) as
6— (_ ®, co),

There is also a corresponding expansion and completeness theorem, the
proof of which parallels that of Theorem 3.1, and will be omitted.

Theorem b.1. Let L be tn the limit-point case at — © and . There
exisls a nondecreasing Hermitian malriz p = (pi) whose elements are of
bounded varialion on every jimte A tnlerval, and which is essentially unique
in the sense that

prix(N) — pan(e) = pi(A) — pin(n) (6> (— w,»))

at points of conlinuity \u of pp. Further

A
pa() = pule) = lim - f IMu(v +i)dv - (5.15)

where .
M”(l) = (m—w(l) - mw(l))—! h
Mu() = Mu(l) = 3(m_ (1) + m, D)) (m_, () — m, (1)) (5.16)
May(l) = m_ (Om D) (m-,(1) — m,(1)™*

Analogous results hold if L is in the limit-circle case at either or both
of the end points of the interval. In order to obtain a unique spectral
matrix, boundary conditions must be added at the end point where L is
in the limit-circle case, as was done in Sec. 4. If both ends are in the
limit-circle case, then m, and m__, are meromorphic and thus so are M,
.‘[u, and J‘[n.

For any limiting matrix p let 22(p) denote the set of all vectors g with
components g,,g2 functions of A such that

2

loliz = [, Y, 508 den(®) <

=

The nondecreasing nature of p guarantees that the integral above is
nonnegative.

Theorem 6.2. Let p be any limit malriz of the set {pa} If feQ?(~ 0, 0)
the veclor g = (g1,92), where

a® = [, st a

~onverges in L3(p), thal is, there exists a g ¢ 8%(p) such that

lg — geal =0 (= —,d— »)
where

gV = [ fOEN . (o <c<d < @)
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In terms of this g, the Parseval equality

2
[orora = [7 ) 6000 daty
and the expansion .

2
5O = [2. ) e\ doatn)

k=1

are valid, the latter integral converging in the mean in (— oo, o),

The spectrum associated with a problem for which p is uniquely. deter-
mined is the set of nonconstancy points of p, that, is, the set of all non-
constancy points of all elements pj of p. Since p is Hermitian and
nondecreasing, it follows that

lpie(A)|* = pji(A) pax(A)
where

pi(A) = pu(N) — pie() A = (u,\]

Hence the set of nonconstancy points of all elements of p is the same as
the set of nonconstaricy points of all diagonal elements pij of p.  Clearly
the spectrum is a closed set. The point spectrum s the set of all discon-
tinuity points of p, and the continuous spectrum is the set of continuity
points of p which are in the spectrum. Points in the point spectrum are
also called eigenvalues and solutions of the problem for such points are
called eigenfunctions.t
Example 1. Perhaps the simplest case is where

Lx = —z"

Here

ert,) = cos VIt ea(tl) = ‘.'i"\/‘?/.g...’

and it is obvious that L is in the limit-point case at both — «© and e,
For 31 > 0 the solution e~V ¢ ¢*(— = ,0) and hence

cos VIt + m__(l) sgi\}.{—!—t = c¢(cos V1t — 1 sin \/E t)

for some constant ¢. Putting { = 0, there results ¢ = 1, and therefore

m—m(l) = —1 \//E
m () = i1

t Every eigenfunction is of cluss #*(~ =, w). See Probs, 6 and 7.

Similarly
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Thus

My = \/' Ma(D) = %ﬂ M) = Mu@® =0
and consequently, from (5.15),
dpu(A) = 2 \/)\ aA>0
=0 (A <0)
dou) == VA (A > 0)
= 0 A<O0)

dPu()\) = dpa(A) = 0

The expansion theorem becomes for any fe £2(— «, o)

f@~—ﬁwﬁxamma+%ﬁsmvama

where

gi(A) = /_: f(t) cos /Xt dt

N sin VA ¢
g2(\) = [_ A v dt

and the interpretation on the integrals is the same as in Theorem 5.2.
This is precisely the Fourier integral formula for functions f ¢ 22(~ o« , @),
(The spectrum of the problem Lz = —z’’ =lron — o < { < o is the
86t 0 S\ < ».)

Example 2. Another interesting case is the Hermite opcrator I, given by

Lz = —2" + 2z (o <l < =)

From Corollary 2 of Theorem 2.4 it follows that since g(t) = {2 — « as
t— £ e the limit-point case prevails at —  and . Considered over
—® <t 20 and 0 <t < », the spectrum of any boundary-value
problem with a boundary condmon at zero is discrete; sce Prob. 1. This
implies that the functions m_, m,, are meromorphic with simple poles on
the real axis. For 3 = 0, m_,,(l) and m_(l) are in opposite half planes;
this implies m__(!) — m_(I) has only isolated zeros. From (5.15) and
(5.16) it then follows that the p;: are step functions with discontinuities
at an enumerable set {A\.}, n = 1, 2, . . The orthonormal set of
eigenfunctions {h.} which are solutions of Lz = Az of class £2(— o, )
are, except for constant factors, e="H (), where the H, are the Hermm.
polynomials. Indeed, let z = e‘i‘ y. Then Lz = lx becomes

-y +ey +y=1y
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Ifu= z ax® is a solution of this equation, then
E=0

LH.g:_ 2k+l‘-‘l
ax (k+ 1)(k + 2)

Thus there are two solutions, «; even, and u, odd, and if ! is not an odd
positive integer, (5.17) implies that

Jim % =1 (=12
= o

80 that (cyu; + csus)ed" is unbounded for all ¢;,¢; not 0. Thus ue3* is
{¥(— 0, =) if and only if /is an odd positive integer and u is a polynomial
in ¢,

(5.17)

PROBLEMS

1. Let Lz = ~z'" 4 gz, where ¢ is real and continuous on [0, ) and ¢(!) — « as’
t— . Show that L is in the limit-point caze. Show the spectral function p of
Lz = Iz, sin « 2(0) — cos a 2’(0) = 0, is a step function with discontinuities at {Xs],
k=0,1,...,where \o <\ < - - .. Bhow that the eigenfunction ¢\, where

() = v(,N)

has exactly ¥ zeros on 0 < £ < oo,

HinT: Make use of Probs. 1(a), (b), (¢), (d), and (e).

(a) Forany glven real A show that ¥, where ya(¢) = ¢(¢,A), does one of three things
ast— w:¢pand ¢y — ®, —,or0.

HiINT: Let £y = to(A) be chosen so that g(t) — A > lfort > t,. Use \bx = (g — N¥a
and show y», and ¢, can have at most one zero for ¢ > t,. .

(b) Show that there exists a monotone increasing sequence Ao, Ay, . . . wWithA, — o
as n— « such that Y, has exactly n zeros on 0 < ¢ < @« for Aoy < A S N, where
Ao = — @,

HinT: By Prob. 1(a), ¢, has a finite number of zeros on (0,«). By the proof of
Theorera 2.1, Chap. 8, ya and ¥, are of the same sign as » —» — » for any given { > 0
and thus by Prob l(a), ¥ has no zeros for A near — = [and |y ({,\)| = = as{— « g0
that L is in limit-point case]. By the same theorem, ¢, has zeros on (0, ) if A is large
enough and the zeros move continuously to the left as X increases and to the right as
A decreases. Thus there exists a A, such that for A < \,, ¥, has at most n zeros on
(0, ») and for A > \, at least n + 1 zeros on (0, ). If e is small enough, then ya, .
has exactly n + 1 zeros, for if it has n 4 7, then as ¢ — 40 the last j zeros must move
toward ¢ = w, Thus, when the (n + 1)st zero is large enough, the method of Prob.
1(a) shows there are no further zeros and also that the nth zero is not to the right of
to(As). Thus ¢, has at least n zeros.  On the other hand, if y» has exactly k zeros, so
does y¥a.— for small enough e. Thus ¢, has exactly i zeros,

(c) The spectral function p is a step function which can be discontinuous only at
Moy Ay o oo s
_ Hint: Consider the problem on (0,b) with z(b) = 0 and eigenvalues A;;. Then
sinos yy;, where y2;(t) = ¥(i,\s;), has exactly j + 1 zeros on (0,b), it ‘oliows that
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Avj > Aj. On the other hand, given any e > 0 and n, Ma < M\, + ¢ for b large enough
since ¥ ,+¢ hasn + 1 zeros on (0,=<). Use pi(A) — p(A\) as b— <=,

(d) Show that the ¢x are €2(0, =) and orthogonal.

Hint: By Prob. 1(a), yx — 0 ast — « since, if |[{4] — =, the number of zeros of y»
on (0,=) cannot change with a small change of X from ). Since ¥ and y, — 0

monotonically, show that fu ¢ | dt < e« and thercfore f [¢x] dt < = and thus

Y1 €920, =). Fororthogonality, use Green's formula and \l'zﬂ{.': — w:\h — Dast— o=,
(e) The spectral function is discontinuous at all Ay, k = 0.
Hint: If p does not have a jump at A, then since ¢, is orthogonal to all y;, j # n, the
Parseval equality fails.
2. Let p = 1 and ¢ be real and continuous on [0, =) and

lim inf q(t) = u

I— =
forsome p, — @ < pu £ «. The spectral function p of Lz = lz,
8in a z(0) — cos a p(0)z’(0) = 0

is a step function for X < u with jumps only on an increasing sequence Xo < Ay <
+ < p. The number of A; (if finite) is the number of zeros of Yaon 0 <t < »,
If the sequence is not empty, then ¢, has exactly n zeroson 0 < { < o,
Hixr: See Prob. 1.
8. Show that if n is the number of zceros of the solution of —z” + gz = 0, 2(0) = 0,
on (0, =), where g is real, then

n < L“th(:)[d:

Hinr: Let [g(t)] = k(). Tf a and 8 are successive zeros of a solution ¢ of

' +hzx =0
then

o) =al = a) = [* — Ihe)o(e) ds

Hence show that [¢(t)] = la|(t — «) fora S ¢t = B and
| fﬂ(s — a)h(s) ds
a

4. Let g be real and integrable on (0, ), that is,

ﬁ] lg0)| dt < e

Let Lz = —z" 4 gz and consider Lz = lz, 2(0) = 0. Show that L is in the limit-
point case and that for A > 0, the spectral function is of class €', Indeed, show that
if I = 82, ¥(t,8), where ¢(0,8) = 0, ¢'(0,s) = 1, satisfies
w(t) = 22 gin (ot — as)) = 0

as t — =, where A is continuous and positive, and « is continuous and real. Prove
that for A > 0

dp A

= (R) - —

dx ( A0
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Hint: For s > 0 show, by successive approximations, that

wille) = e — [ "800 gy, r0) ar

has a bounded solution and hence that ¢.(t,s) — e — 0ast— «w. Bhow Lg; = sl
(Note that ¢ exists for 35 = 0.) Show similarly there is a ¢; related to e~%. Neither
#1 NOr @3 is 82(0, =), Show, by Prob. 1, Chap. 1, from

v = S0y [P0 g g(r) dr

that |¢| is bounded as t — « and from this that as { — e

V0 - A

= sin (st — a(8)) — 0

where

Afg)e's = 1 + L ® eirq(r)y(n,e) dr

and the integral converges uniformly. Since = ci¢1 -+ €12, show by letting t —
that ¢; = Ae~%*/(2is) and ¢; = &. Hence A(8) = 0 implies that ¢(4,d) = 0 for all ¢.
Consider the problem Lz = Iz, z(0) = z(b) = 0. Then the eigenvalues occur at
those values of s for which ¢(b,s) = 0. For b large there occur (s3 — 3:)b/x + ¢
eigenvalues in (s1,82), where |¢| < 4 and

1 [b A(s)
E]; vidi= o

where e — 0 ag b— =. Thus for large b

+ e

2(sy — 8,)8?
Bu(82) — Pu(s1) = r(A* F 2a7)
where g is in (5,,8:). Asb— w
A _ 2(s: — 81)8?
Bs2) — 3(s1) TxAGE)
for some § in (s,,52). Thus
dp 281
& @ =)
where p(s) = p(s?).
6. In Prob. 4 let s be complex and show that the function F defined by

F(s) = A(s)eiatd

is analytic in sfor §s > 0. Show that F can vanish for 3s > O only if Rs = 0. Show
that where F(s) = 0, ¢(t,8) = 0(¢”"*) and hence an eigenvalue occurs.

8. In the case of a boundary-value problem on 0 £t < = which has a spectral
function p show that if X is in the point spectrum then ¢, where J(t) = ¢(t,%), is of
class 22(0, = ).

Hint: Let f = Jfor{ <aandf=0fort >a. Let

[ s09 0 dt = 9,00
Then

[ e = [ lg0or decn)
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Let p(X +0) — p(X — 0) = 7. Show

e 1
[ 1w ae <

7. For Lz = Iz, — o <t < w, prove that a discontinuity in the matrix p at A = X
implies that at least one solution of Lz = Xz is of class 23(— =, = ).

Hint: Let the discontinuities of g1, pi1s, and pss at X be ryy, 714, and ras, respectively.
If fe (- =, =) and is real,

[oraczn ([ rea) +on: ([ rod) ([° serad) +ra ([° s0nat),

Taking f = rider + bes, where b = ria/rid, prove fe @(— =, =). If ryy = 0, prove
prEe P (— =, =)

Remank: If i, < rurs, there are two independent solutions in £3(— =, =),

8. For a boundary-value problem on 0 = { < = which is in the limit-point case at
o, the spectrum depends on « in the boundary condition at ¢t = 0 and will be denoted
by S(a). Let the set of cluster points of S(a) be denoted by S'(«). Prove that S'(a)
does not depend on a.

Hixt: Let 8*(a) denote the complement of S'(a) on — =« <X < w, On S*(a),
p is constant except for isolated jumps so that, from (3.10) and (3.9), m,, where
m_(l) = m(l,a), is a meromorphic function of ! and real on §*(a). For a = a, then,
Mar, Where mai(l) = m_(l,a1), is meromorphic on S*(ay). If v = a1 — a,

1 + cot v ma(l,a1) :

Molla) = cot v — mu(lai)

Thus m_ is meromorphic and real on S*(ay). This proves S*(a) 2 S*(a;). Since
the roles of « and o, are interchangeable, the theorem is proved.

9. S*, the complement of 8', defined above, is open and thus consists of the union
of intervals,  From the formula for m_(l,a) above, it is clear that each point A of an
interval is a pole of m_ for some choice of a, namely, cot (@ — a) = m_(\a;). Thus
each point of an interval is in the point spectrum P(a) of the boundary-value problem
for some a.  On each interval, then, a may be regarded as a funetion of A with value
a(M) being such that X 2 P(a). Prove that this function of X is regular on an interval
of S* and is monotone increasing.

Hint: From (3.10), (dm_/d\)(Aa) > 0. From cot (a; — a) = m_()\a;) follows

da 1 dm,,

dn =Sy m (N a1) dx (Aa1)

10. Let Lx = —2" + q(t)z on 0 = ¢t < =, where q is real, continuous, and periodic
of period 1. Prove that 8’ is the union of the closure of the intervalson — « < A <
= on which =" 4 (A — gq)xr = 0 is stable; that is, prove, in the notation of Sec. 3,
Chap. 8, that 8’ consists of those points for which f2(3) < 4,

Hint: L is in the limit-point case [by Theorem 2.4 or from the fact that on a stable
interval no solution is €*(0, =)]. Thus for 3/ # 0 one characteristic multiplier (1)
satisfies |y(l)] < 1. Multipliers are roots of ¢* — af(l) + 1 = 0, where

JO = ' (LD +¥(L])

in the notation of Chap. 8, and +(I) is one of the roots (f + -\/f' — 4)/2. For the
problem with z(0) = 0, ¢ + m_ ¢ € €*(0, =) and is therefore a solution with multiplier
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v. Thus ¢(Ll) + mo(¥ (L) = v and therefore mo{) = (v — (L,))/¢(L]). On
the interior of stable intervals f* < 4, and v(l) tends to a nonreal number of magnitude
1 a3 §I— 0. Thus §m, # O on stable intervals. On unstable intervals Jme— 0
except at points where the entire function y(1,l) = 0.

11, Let L be as above but now take the interval — » < ¢ < «, Show that here
the spectrum § is identical with S’ of Prob. 10 and 8 is continuous.

Hint: My = $(L1)/(4~! — v) and M1 = (1 — of + ¢")/((+™! ~ ¥)¢). 8ince no
golution of Lz = Az is €¥(— », =), it follows from Prob. 7 that S is continuous.

12. Let f & 2%(0, «) and let L be in the limit-point caseon 0 S ¢ < = a3 in Theorem
3.1. If lis not in the spectrum (in particular, if 3l # 0), the problem Lz = Iz +§,
gin a z(0) — cos a p(0)z'(0) = 0, has a unique solution A in 23(0, ), If

50 = [[° g0wien) doth
then NG(EN) doh)
o [ aEN) de(n
where the integral converges in £2(0, ). (Thus L — ! has an inverse if / is not in the
spectrum.)
Hint: Lot by = [:a gvdp/(\ — ). By Lemma 3.1 (or by Theorem 3.2), Aa con-
verges in 23(0, =) to a limit h as a — «. Clearly A, satisfies the boundary condition

atl =0, Also Lhs = lha + fo, where f, = f:., g¥ dp and from this

b= [ oDOGD) = EDODIr) dr + clale

where c(a) is a constant. Thus, as a— o,
b [ lewbunD = pEDeDIE) dr + ()b

where ¢ ©) must exist because ko — h, fo — f. Thus Lh = lh - f, and & satisfies the
condition at ¢ = 0. It remains to prove k is unique. For 3! 3 0 this follows from
the fact that ¢ is not £2(0, =) for 3! = 0. For I = 0,let I = X. Clearly ¢, where
$(0) = ¢(,X), is.an eigenfunction corresponding to some p; for some condition g at b
gince Jisreal. If ¥ e 22(0, »), the jump of p; at X does not tend to zeroas b — w, and
% is in the spectrum of p. ‘Thus, if X is not in the spectrum, ¥ is not £*(0, ») and so A
is unique.

18. Let D denote the class of functions satisfying (i), (i), and (iii) below (4.9). The
boundary-value problem Lz = [z, sin a 2(0) — cos a p(O)z (0) = 0, is said to be aelf-
adjoind if for any u,ve D

G = [|7 wrwar = [° ulle) e = -l
Show that if L is in the limit-point case the problem ia self-adjoint.
HiNT: Let 31 0, Lu —lu =/, and Iv — lv = p. Then f,pe @40, »). - Let
g= L J¢ dt and ¢ be snmlla.rly related to p. Let ua = f:n vgdp/(» — ). Then,
by Prqb. 12, 4o — u in 23(0, »). Let v, be similarly defined.

frra [o 2o [0 30 e



ProBS.] SINGULAR SELF-ADJOINT SECOND-ORDEE PROBLEMS 259

(fwe) = /‘;'ﬁ.dt = ffﬂr"_-ilep

But (u,,p) ia also given by the integral on the right. Thus (f,va) = (ua,p). Letting
a— o, (Luy) = (u,Lv). .

14. It is shown in Theorem 3.1 that p is unique in the sense that all p» ~ pasb — .
Prove the following stronger result: If (3.6) and (3.8) hold with o replaced by some
7, then 3 must be p given by (3.9).

HinT: Let f¢ 21(0, ). Then the unique solution 4 of Prob. 12 can be represented
two ways, so that for 31 > 0

Letting u— »

[a a(:w_(__';” de — AN = Fa(t))

-a
converges in §3(0,) to 0 as a — ». Let '(A8) = L. v(t,\) di. Clearly T g 22(p)

and £1(3), being of the form (3.11). Taking L * F. dt and letting a — «
[ 8, i o
The same holds with I replaced by I. If { = 4 + i», then
2iv
N — 1
@ _gr(ne — -
o [ 2RI 4 — m) = 0
Integrating with respect to u from u; to us and letting » — 0,

=D = =D =
Thus

[ sorine dle — HO) = 0
for all y, and ps. Differentiate the above with respect to s. Then
2 sowisnr dto - HO) = 0

Let f(t) = 1 for 0 <t <rand j:(t) = 0 for ¢t > r. Then g(}) is T'(A,r) and differen-
tiating with respect to =

j” “ b6 dlo — ) = 0

If a /2, let s =+ =0 and use ¥(0\) = cos a. If @ = x/2, differentiate with
respect to  and s and then let r = 5 = 0. In any case, :

[2 4t = moy =0
M

proving the result.

16. In the limit-circle case, Theorem 4.1, show that X'\ < «, where the prime
denotes omission of a vanishing eigenvalue.

Hint: ¢a = (M — Lo)§Uo)¢s.  Thus, by the Bessel inequality applied to G(,r,l) tox

fixed 7, .
7 Berona 2 le';f_(:%)g"
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for all N, where r; is the normalizing factor. Integrating in r, the result follows.

18. At zero, Lz = —z'" + [(rt — $)/8z, 0 < r < 1, is in the limit-circle case. If
I = s golutions of Lz = Iz are given by t4,(st) and h_,(st), where J, and J_, are
Bessel functions. Let z'(1) = 0 and consider a boundary condition at { = g < 1.
Determine m,(l) and show that
1cs™Ji(s) — s7J_,(s)
scsJ(s) — anJ (s)

mo(l) = —

for any real choice of the constant c.
17. If L is in the limit-point case at « and — «, show that the problem Lz = [z is
self-adjoint in the sense that

f-‘., (Lu)o dt = f_"_ﬂ u(Lw) dt

for all functions u,v g £3(— e, @) which have absolutely continuous first derivatives in
every closed subinterval of (— e, «) and such that Lu, Lve 2} (— =, =),

Hint: Modify the method of Prob. 13.

18. State and prove the analogue of Theorem 3.2 for the case (—w,=), where L is
in the limit-point case at both — = and =,

19. Expand on the remark below (5.16) and formulate and prove precise theorems.

20. Let z be a vector with components z, and z;. Let Lz be the vector with
components

Liz = pd(pizz)’ + rzs + i1y (’ = %

Lz = —pi(pizy)’ -+ rz;, + qazs

where p and p' are continuous, p > 0, and T, q1, and g: real and continuous for 0 <
t < =. Let uandvbe vectors of class C' on 0 S ¢ < . Let u-v denote i +
usfy. Show that

ﬁ :’ (Lu v — u' Lv) dt = [un](ts) — [ue](ts)

where [uv](t) = p(t) (wa()5:(t) — 11 (0)d=(2)).
Let ¢ and ¥ be solutions of Lz = Iz which satisfy

p¥(0)¢41(0,!) = sin & p(0)¢1(0,l) = cos a
p4(0)e1(0,]) = —cos a p(0)e2(0,l) = gin &

(a) ]jevelop the theory of Sec. 2 for Lz = Iz, z,(0) cos a — z2(0) sin «@ = 0.
(b) Develop the theory of Sec. 3 for the above problem in the limit-point case
(define the latter notion). In particular, show that if the vector S is £2(0, =), that

is, L-f—fdt < =, there exists a p such that

o0 = 710 v a
exists and

10 = [ wengm) doy

(¢) Develop the theory of Sec. 4 for this system.
(d) Formulate the results of Sec. 5 for this problem.



CHAPTER 10

SINGULAR SELF-ADJOINT BOUNDARY-VALUE PROBLEMS
FOR nTH-ORDER EQUATIONS

1. Introduction

In this chapter the theory of Chap. 9 will be extended to the nth-order
case. Here the formal differential operator L is defined by

e = poz(n) + plz(ﬂ-l) + PRI + p'z

It is assumed that the p; are complex-valued functions with n — k con-
tinuous derivatives on an open interval @ <t < b, where the cases
a= —®,b = «,orboth areallowed. Further, po(f) #¢ Oona <i¢ < b,
and L coincides with its Lagrange adjoint L* given by

Ltz = (= 1)"(@2)® + (=1)*1Hir)0 + - - - + Pax

Notice that n may be odd and that for n = 2 complex-valued coefficients
mAaYy NOw occur.

First, a general expansion result and Parseval equality will be proved, -
and then the inverse transform theorem will be demonstrated for two
important cases. The existence of Green’s functions and the relationship
of these with the spectral matrices will then be considered.

The simplest example of the present theory occurs with Lz = 1z’ on the
interval —®@-< t < ©. Here iz’ = Iz has e~ as a solution and the
expansion theorem for this case is just the Plancherel theorem.

As before, the method used will depend on setting up self-adjoint
boundary-value problems on closed intervals §: @ £ ¢ < b, where a <
i <b <b Thuson § it is assumed that n linearly independent bound-
ary conditions

U= Y (Muct-0@ + Nug® @) =0 G=1,...,m @D

k=1

which are self-adjoint are given. (That such conditions always exist

when L = L* is shown in Prob. 15, Chap. 7.) The conditions (1.1),

determined by the matrices M; = (M) and N; = (Nyu), are abbre-
261
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viated by Uiz = 0. The boundary-value problem on é§ ‘
Lz =l Uz =0 (1.2)

'is self-adjoint, and therefore there exists a complete orthonormal set of
eigenfunctions {xs:} and corresponding eigenvalues {A;}.

For functions u,v in the space £3(8) the inner product and norm are
defined by

oy = [iupdt  ulls = (uu)t
For functions in 22(a,b) these will be denoted by (u,v) and ||ul|, that is,
b
@) = [wd  Jull = Gu)

2. The Expansion Theorem and Parseval Equality
The Parseval equality for the self-adjoint problem (1.2) is

Belld = Y 1Cuxasl? @.1)
kml ’

where u e £3(8). Lety; = oi(t,l), (=1, . . . ,n), besolutionsof Lz = Iz
which for some fixed ¢, a < ¢ < b, satisfy

el =8 @, k=1, ...,n) (2.2)
where 5; is the Kronecker delta.- The {*~" are entire functions of 7 for
fixed ¢. Since the ¢; are independent solutions

xn(®) = ) et (23)

Jj=1

where the rs; are complex constants. Using (2.3) in (2. 1), the Parseval
equation can be wnt.ten as

lullz = f_: z Fas(N)gsx(N) dpspu(N) (2.4)
fikwl
where
o) = [, 2tA)u(0) de (2.5)

and the matrix ps = (psn) consists of step functions with discontinuities
at the eigenvalues. The jumps at the eigenvalues are given by

Ay + 0 — pa(dp — 0) = z TamfTamb 7 2.6)
where the sum is taken over all m such that A\;m = A\i, (note that several
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xin can correspond to one eigenvalue As;). Clearly the matrix has the
properties:

(i) ps is Hermitian
(i) ps(d) = ps(A) — ps(u) is positive semidefinite if A > u, A = (u,A]
(iii) The total varigtion of pix is finite on every finite A interval.

It is further assumed that p;(0) is the zero matrix and ps(A + 0) = ps(A).
Because of (ii), ps is said to be nondecreasing. The matrix p; is called the
spectral matriz. Note that it depends not only on the problem (1.2) but
also on the choice of the independent solutions of Lz = lr.

In this section it will be shown that the relation (2.4) is valid with &
replaced everywhere by (a,b). The following theorem gives the existence
of at least one limiting matrix p as § — (a,b).

Theorem 2.1. Let {3} be a set of intervals tending to (a,b) and {Usx = 0}
a corresponding set of self-adjoint boundary conditions. Then {8} contains
a sequence {8;} tending to (a,b) as j — = such thal

p() = 51_i.n: p(2) (2.7)

exisls on —© < A < . Moreover, the limit matriz p satisfies (i), (ii),
and (iii) above.

Proof. The proof is an immediate consequence of the Helly selection
theorem and the following fact: given any u > O there existsan M(u) < o,
not depending on & or U, such that for |\| < u

lpsie(M)| = M (u) (2.8)
To prove (2.8) it is sufficient to take j = k, since from (2.6)
2 [_“,‘ ldpsn(\)| < f_““ dpsi(\) + [_‘_‘“ dps(N)

The functions ¢{*" are continuous in (¢,\) and at ¢ = ¢ are equal to 3u.
Thus, given g, there is an b > 0 such that

1
oD (EN) — 8l < 55 : (2.9)
forc <t <c+ hand 7| £ x. Let f be a nonnegative function of class
C® on (a,b) vanishing along with its first n — 1 derivatives, outside of

(¢, ¢ + k) and normalized so that

fc Py d =1 (2.10)

The Bessel inequality applied to (— 1)1 for some fixed m, (m = 1,
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., n), gives

[ eoraz [*0) 40000 dony) 2.11)
Jok=1

where here i :
a) = (=11 [T panfen () d

= [ e a

By (2.9) and (2.10),

1
[ge(N) — bim| < B

which, with (2.11), yields

ety 1 [* 1 [*\
L U(m—-ulz dl = 5 [_"dpl,,,,,,()\) ke f_“ 2 dps;i(N)
J=1

Summing the above from m = 1 tom = n, the result follows, and hence
Theorem 2.1.

For any such limiting p, the space *(p) is defined as the set of all vector
functionsg = (g;),7 = 1, . . . , n, which are measurable with respect to
p and such that

n

loll? = [7. Y a0a0) dea) <

Ik =

Theorem 2.2. Let p be any limit matriz given by Theorem 2.1. If
f e 8%(a,b) there exists a vector g e ¥2(p) such that if

) = [[aNO A (6 C @b) (2.12)
then
lg —gsll =0 (56— (ab)) (2.13)

In terms of this g, the Parseval equality

111l = loll (2.14)
and expansion
10 = [7 ) atNg) doxh) (2.15)
Jk=1

are valid, where the latter integral converges to f in the norm of *(a,b).
Proof. The proof follows the same development as that of Theorem
3.1, Chap. 9, Eqs. (3.16) to (3.24).
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As in Chap. 9, by

b (3
[aenvma G=1,...
will be meant the jth component of the vector g whose existence is proved
in Theorem 2.2,
The analogues of the remaining parts of Theorems 3.1 and 3.2 in Chap.
9 will be proved in Secs. 3 and 4 below. '

3. The Inverse-transform Theorem and the Uniqueness of the Spectral
Matrix

The inverse-transform theorem states that every vector g e £2(p) arises
from a function f ¢ 22(a,b), as in Theorem 2.2, This is true under certain
additional assumptions on L, which correspond in the case n = 2 of Chap.
9 to the situation where L is in the limit-point case at b, as in Sec. 3, or in
the limit-point case at both a and b, as in Sec. 5. In principle, the proof
is like that of Theorem 3.2, Chap. 9. As in that proof, ‘the following
lemma is required.

Lemma 3.1. Let ge 2%(p) and

Jat) = /A‘ z 2i(t,N)ge(N) dpi()
Jk=1

where A i3 a finite \ inlerval, Then, as A — (~— w, ), fa converges in
. 8(a,d) to a function f e 22(a,b).

Proof. 'The proof is the same as for Lemma 3.1, Chap. 9.

Another fact used in the proof is the explicit representation of the
inverse of the operator L — [ for 3= 0.

Lemma 3.2. Suppose for some l, 31 %5 0, that Lz = Iz has no nontrivial
solution in 2%(a,b). If fe 2%(a,b) and g 18 any vector in R2(p) such that

5O = 7Y atNae) dum)
k=1

-
I

where the integral converges in 2 (a,b) to f, then the equation L-lDz=f
has a unique solution F in 9*(a,b) given by

Fo) = [

D, O = Dl ENg() don(h)
ko]

‘.
3

where the latler integral converges in (a,b) o F.
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Proof. 1If for any finite X interval A,

n

Il
—
I~

fa(®) 2i(t,\)ge(N) dps(N)
1

R

and

i ] 1

Fa) = [, ) O = D 'Ng0) don(N)
o=

then (L — I)Fy = fa. By Lemma 3.1 there exists an F' e ¥*(a,b) such that
|[Fs — F|| — 0 as A— (— =, ). Also, by hypothesis, |[fsa — fl| = 0 as
A— (—=»,»). From the variation-of-constants formula there exist
continuous functions 6; such that

P = 3 wtd) [ 46 dr + 2 &(A)ei(bD)

i=1 J=1

where the ¢;(A) are constants, and @ < ¢ < b. Because 4 and /4 con-
verge in ¥¥(a,b) and because the ¢; are independent, it follows that
ci(=) = lim  ¢i(A)

A—r(— =, =)

exists (where the limit is taken through a suitable sequence A;) and

FO) = Y ) [ 0016 dr+ ) o(=)et)
i=1 i=1
This is the variation-of-constants formula and shows that I is a solution
of (L — Dz = f. Since F = ¥¥(a,b) and since Lr = lz has no nontrivial
solution in ¢*(a,b), I is unique.
Theorem 3.1. Suppose neither equation (L + 7)x = 0 has a nonlrivial
solution in ©(a,b). If g ¥%(p), there exists an f e *(a,b) such that

10 = [ atMa®) dau)
=1

J

where the integral converges lo f in ¥*(a,b), and
b -
a®) = [ 2N d 3.1)

Remarks: If n = 2and the p; are real, the condition on the solutions of
(L + 1)z = 0 is equivalent to the statement that L is in the limit-point
case nt a and b, Tt ean be shown that if neither (L # 7)z = 0 has a non-
trivial solution in €%(a,b), then (L — Dz = 0 has no nontrivial solution in
¥ (a,b) for any I, 31 # 0; sce Sec. 4. ;
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The interpretation to be put on (3.1) is the usual one, namely, if
wm®) = [[aeNiOd (6 C (ab)

then |lg — gs]| — 0 as 5 — (a,b).
Proof of Theorem 3.1. 'The existence of f is provided by Lemma 3.1.
Using this f, there exists by Theorem 2.2 a § e £%(p) such that

a0 = [ eutNr dt
and if

L

Ja® = [ Y eNa®) doah) (3.2)
¥

k=
then ||f — fa]| > 0 as A— (—®,). The problem is to show
lg —all =0
If fa is defined as in (3.2) with § replaced by g, then ||f — fa|| = 0 as

A— (—=,»). Using Lemma 3.2, it follows that the unique solution F
of (I — 7)xz = f which is in £*(a,b) is given by

FO = [7, ) O = ') a) dea)

k=1

= [ &= 9GO da)

Jk=1

Similarly, the unique solution of (I — 7)z = F which is in 2*(a,b) is

(A = )%t N)ge(N) dpj(N)
1

Fy(t) = f:

o
I

= [7) O = 0%tNE0) death)

Jk=1

=

This may be repeated to obtain forp = 1,2, . . .,

[7. ) O = en) deay) =0 (33)
jk=1
where r = g — §.
Let T' be the transform of the function which is one on (¢, ¢ + s) and
zero elsewhere, that is,

e = [ g at
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Integrating (3.3) with respect to ¢ from ¢ to ¢ + s, one obtains

J2. Y &= )7 euan) dea®) = 0 3.4)

-
Fk=1

Since I' and r are in £2(p), the function H of I defined by

H) = [7 ) O =D T0n®) doa(d)

Jik=1

is analytic for 31 > 0. By (3.4) H and all its derivatives vanish for
l =1 Thus H(l) = 0 for §I > 0. A similar result holds for the lower
half plane, that is, with [ replaced by I. If I = u + i», then

Ll S 2iv
A=1 A=1 (A—ui+»

Thus, using H(l) — H(l) = 0,

= TR0 doa(d)
’f—- 2 M= L (3.5)

Jikm1

If )\, and A, are points of continuity of p and (3.5) integrated with respect
to u from A; to A, holding » fixed, and then letting » — 0, it follows that

j:: i (7, 8)rx(\) dpjx(N) = 0

Jik=1

If this is differentiated with respect to s,

];Tl Z ‘Pj(ﬂ + 8, k)rk(h} dﬁ;k(k) = ()

Jik=1

and if derivatives are taken with respect to s and evaluated at s = 0,
there follows by (2.2)

j:l 2 re(A) dpp(X) = 0 G=1 ) (3.6)

k=1

Because of the arbitrary character of A; and A., if ; are any step functions
which vanish for large |A|, then

[ E BN dp()) = 0

Jik=1

This implies ||r|| = 0, which was to be proved.
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Theorem 3.2. Let neither equation (L + i)r = 0 have a nontrivial
solution in %(a,b). Then the malriz p is unique in the sense that if p s any
other matriz for which Theorem 2.2 1s valid then

p(N) — Au) = p(A)-— p(u)

at points of continuily \, p of p and p.
REMARK. An immediate consequence of Theorem 3.2 is that for any
\, p which are points of continuity of p

p(\) — pa(u) = p(N) — p(w)

as § — (a,b), irrespective of how U varies with 6. Thus if neither equa-
tion (L + 7)z = 0 has a solution (#0) in ¥(a,b), p is called the spectral
mairiz of the problem Lz = lzr on (a,b). The spectrum, point spectrum,
and continuous spectrum for this problem are defined in terms of p, as.in
Sec. 5, Chap. 9.

Proof of Theorem 3.2. Let f(t) = 1,¢ £t < ¢ + 7 and f() = 0 other-
wise, and let

a(\1) = _LHH' (L)) dt

Then, much as in the proof of Theorem 3.1, I, the unique solution of
Lz = iz + f, is given by

[ 0 = D tNa ) dosN)

F(t) =
12
e Z (= D e (EN) g ) ()
Also, e == b —2pn, i
HY = [, \ O = D'T5(0,8)ge (A7) doja(N)

t

Jk=1

must vanish for 3¢ > 0 and this leads to

,L?' :21 gx(\7) dajs(N) = 0

in place of (3.6). Taking the derivative with respect to = of the left side
above, there results

fl E Z(c + 7) dop@) = 0
kw1
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Differentiating m — 1 times with respect to r and setting 7 = 0, there
results

S dagm) = 0
which proves the theorem.

The other case where the inverse-transform theorem, and also the
uniqueness of p, will be proved is one for which the open interval (a,b) is
replaced by [a,b), — = < a <t < b, and where the interval § = [a,b] is
now [a,b]. It is assumed that p,e C** on [a,b) and po(t) = 0 on [a,b).
The boundary conditions Usz = 0 are assumed to contain m linearly
independent conditions of the form

Z Mai2@) =0 (=1, ..,m) 3.7)

J=1

where the M;; are constants not depending on 5, that is, on 5. The condi-
tions (3.7) will be denoted by UMz = 0 and the remaining conditions of
Uz = 0, which may depend on §, will be denoted by Uz = 0. The
case n = 2m will be considered and it will be assumed that U® is such
that U}” can be determined so that Uz = 0 are self-adjoint conditions.

In this case it is convenient to take ¢ = a. Since the rank of the
matrix M = (M) is m, there exist exactly n — m = m linearly inde-
pendent solutions ¥y, . . . , Y of Lz = Iz satisfying (3.7). Let Vi1,
-+« ; ¥n be m solutions of Lz = Iz such that ¢y, . . . , ¢, form a funda-
mental set with initial conditions at a independent of I. The eigenfunc-
tions {xs} of the problem Lz = Iz, Ujz = 0 are of the form

xa(t) = E Tyt Aax)

i=1
since only ¢y, . . ., ¥, satisfy the conditions (3.7), and in terms of
Y1, . . . , ¥n the Parseval equality becomes for u e £2(3)

)3 = f: 2 Fai(N)gse(N) dpsj(N)
Tt

-
Jik=1

where
) = [ BNu) dt
Since
Wf-__zchﬁbk (j'—"l,...,n)
k=1

for some constant nonsingular matrix C = (eu), it follows that p; is related
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to the matrix s by s = Cp;C*. Here ps = (ps;x) is such that gy = 0 for
J,k > m, and p; has all the properties that p; has. If p is any limit matrix
obtained by letting & — [a,b) through a sequence of intervals, then
clearly 5 = CpC* is a matrix with elements having row or column index
exceeding m equal to zero. In terms of p, the Parseval equality and
expansion theorem become for any f ¢ £%(a,b)

Iz = [, E iGN () (3.8)
where
b
a® = [ weN d (3.9)
and
10 = [ wtNa®) ds) (3.10)
k=1

where the integral on the right of (3.9) converges in the norm of £2(3) and
that of (3.10) in £2(a,b).

The analogue of Lemma 3.1 is now valid, that is, if g ¢ 22(p) there exists
an f e (a,b) for which (3.10) is valid. Similarly, the representation of f
in terms of p gives the analogue of Lemma 3.2 as follows:

Lemma 3.3. Suppose for some 1, 31 0, that the problem

Lr=1lz U®z=0 (3.11)

has no nonirivial solution in ¥*(a,b). If fe(a,b) and g is any vector in
£2(p) such that (3.10) holds, then the problem

L—-—Nz=F UMz =0

has a unique solution F & £%(a,b) given by

FO) = [7) O = D Na0) da®)

=1

3

"'Ma

where the latter integral converges in *(a,b) to F.
Proof. The proof is the same as for Lemma 3.2 if it is observed that,
for any finite A interval A, the function F's defined by

Fa@) = [, ) O = D7%M)g0) daud)

k=1

satisfies (L — I)Fs = fa, and UMF, = 0 since the y; satisfy the condition
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U®z = 0. Thus for some constants ¢;(A) and continuous functions 6,

Fa) = ), 0D [ 66 dr + ), c@Wit)
i=1 j=1

The analogues of Theorems 3.1 and 3.2 are now immediate.
Theorem 3.3. Suppose neither problem

(L +4x=0 Uz =0

has a nontrivial solution tn R(a,b). If ge2(p), there exists an f e (a,b)
given by (3.10), and in terms of this f the vector g is represented by (3.9).
Moreover, the matriz p is unique in the sense that if s s any other matriz for
which (3.8) through (3.10) s valid, then

AN — plw) = p(N) — pw)

at cantinuity poinis \,u of p and p.
Thus if A\, are continuity points of 3, then

BN — Balw) = AAN) — Aw)

as & = [a,b] — [a,b), irrespective of how U§” varies with §. The matrix
5 is called the spectral matriz of the problem (3.11) with respect to the
set (Y]

The two cases, that of Theorem 3.1 and that of Theorem 3.3, will be
referred to as Cases I and II, respectively.

The inverse-transform theorem and the uniqueness of the spectral
matrix hold for other cases also f boundary conditions are added in the
manner shown in Chap. 9 for the limit-circle case, but this will not be
considered here.

Let © represent the set of all functions u e 2*(a,b) which are of class
C™1 on (a,b), u» " is absolutely continuous on every closed subinterval,
and Lu e $(a,b). If a is finite, let D represent the set of all u e D such
that we C*! on [a,b) and UMy = 0. In Case I the problem Lz = lz on
(a,b), and in Case II the problem Lz = lz, UVz = 0 on [a,b), are self-
adjoint, in the sense that in Case I (Lu,p) = (u,Lv) for all ,v ¢ D, and in
Case 11 this is valid for all u,v e D. The proof in each case can be made
to follow that of Prob. 13, Chap. 9.

4. Green’s Function

In the treatment of Chap. 9 for n = 2, the existence of Green’s function
in the limit-point and limit-circle cases was an immediate by-product of
the method, Here a somewhat different approach will be followed. The
existence of Green’s function G; for the self-adjoint problem Lz = lz,
Ust = 0 on & was proved in Chap. 7. Tt will be shown that there exists
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a sequence of intervals 3, — (a,b) such that the corresponding Green’s
functions Gy_ tend to a function G which is a Green's function in the Cases
I and II discussed in Sec. 3. The relation of Green's function to the
spectral matrix shown in Sec. 5, Chap. 9, will be shown to hold in general
in the section that follows.

Use will be made of the existence of a function K = K({,7) defined for
a < t,7 < bwhich serves as a kernel in the variation-of-constants formula
for the solution of Lz = f. This function is such that

[, K(tn)s(r) dr

is a solution of Lz = f on any subinterval é of (a,b), and K has the same
differentiability properties as any Green's function associated with L.
In particular, "—'K/dt"—! has the same discontinuity at ¢ = 7 as the
(Gireen’s funetions. There are many such K, and the existence of one
such is given in (2.4) of Chap. 7 for the case Lz = lz + f; see also Prob.
22, Chap. 3.

In the following it will be convenient to denote functions such as K,
considered as a function of ¢ for fixed =, as K( ,7), and similarly if con-
gidered as a function of r alone it will be denoted by K({, ).

Lemma 4.1. The set of functions {Gs} is uniformly bounded and (for
n > 1) equicontinuous on every compact (t,r,l) region where Jl = 0. (If
n = 1,t =1 1s excepled.)

Proof. Let the closed interval &, be contained properly in the closed
interval &,, which in turn is properly contained in (a,b). Let x be any
real-valued function of class C* on (a,b) such that u(f) = 1 on some open
interval 8o, 80c80cdy, and p(t) = O for ¢t outside §,. Then define J by

J(tr) = p(O)K(tr)

Let 5 D 6, and 7¢ 6. The function u = Gu( ,7,l) — J( ,7) is of class
(' on & and satisfies the boundary conditions Usu = 0. Therefore, since
(L — )u = — (L, — 1)J, where L, denotes L applied to J considered as a
funetion of ¢,

Giltrd) = J) — [ Gilta DLl (57) — W(slds (A1)
Applying the Schwarz inequality to (4.1), there results

Gitr| S WA+ 16 DI ILIC ) =W Dl @2)

The uniform boundedness of the G; for {,r e §, and I ranging over some

compact set A with &I # 0 will follow from (4.2) once it has been shown
that ||Gs(¢, .15 is bounded uniformly for ¢ e &, L e A.
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However, this follows from the fact that if « = G())f, where

SO = LGa(l,r,l)f(r) dr.
and fe £3(8), then .
Arulls = 19Ul | (4.3)

Indeed, u satisfies (L — D)u = f and Uu = 0. Using Green’s formula,
Ji@waa— [u@nya=o

or .
28Mul} = [ (u — fa) e

and using the Schwarz inequality, this yields (4.3).
.Applying (4.3) to u = Gs( ,nl) = J( ,7) for re & results in

16 Dl S W Dl + IBIILIC 1) — ¢ b, (84)

Thus ||Gs(  ,7,2)||s is uniformly bounded for r do,leA,and 6 D 5,. From
the symmetry relation Gi(¢,,l) = Gy(r,t,]) it follows that [|Gs(t, D], is
also uniformly bounded, and hence by (4.2) so is {Gs} for ¢, edo,le A, and
S D 81. :

From (4.1) follows (for n > 1) :

3 bnd = )~ [ Guad Zittn - wmnae 4s)

and, using the Schwarz inequality on the integral, the uniform bounded-
ness of the set (6Gs/dr} for ¢,r e 8, and L g A results. {If n = 1, the inte-
gral in (4.1) is taken as a sum of an integral from @, to r and an integral
from r to by, where 8, = [a),b)].] The symmetry of G, implies the uniform
boundedness of {3G,/3t} also. The uniform boundedness of {8Gy/al)
follows from the analyticity of G; in I and the uniform boundedness of
"{Gs}. The uniform boundedness of all first partial derivatives of G;
implies the equicontinuity of the set {Gs}). (Ifn =1, theset {G; — J }
is equicontinuous.) This completes the proof of the lemma.

This lemma, together with the Ascoli lemma, proves that there exists
& sequence of intervals 5, C (a,b) (m = 2, 3, . . .), where 3, — (a,b) as
m— w, such that the corresponding Green’s functions G,, = Gs. tend
uniformly on any fixed compact subset A, of a < Lt<b,3l#0toa
limit function. A subsequence will tend to a limit function uniformly
on a compact subset A; D Ay~ By taking a sequence {A:} tending to the
set a < r <b, 30, and using the diagonal process, there exists a ~
sequence of Green’s functions which tend uniformly on any compact
subset of @ < ¢, 7 < b, 31 = 0, to a limit function . This ¢ is defined
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fora <t 7 <b 3I'>0, and being the uniform limit of continuous
functions, is continuous. Since the G, are analytic in ! for 3! # 0,
the same holds for @. The relation Ga(t,7,)) = Ga(r,t,l) implies that
Q) = G(rtl).

Theorem 4.1. Let G be the limit of any converguni sequence (Gn} of the
set {Gh) of Green's functions associaled with given self-adjoint boundary-
value problems

Lz =lz U =0

on closed bounded subtnlervals & of (a,b). Then G is continuous for a < {,
r<b, (t #rforn =1), I = 0, ecnalytlic tn !, and possesses the properties:

@) oG/*(k=0,1,...,n — 2)exist, arecontinuousona < {,r <
b, and o"—'G/dt!, 3*G/At* are conlinuous on each of the regions
t S 1', rsSi

W T +romd -5 —0n) = - ( ;  (@<r<d)

(ili) As a function of t, G saligfies Lz = lx if | = 1.
. oG, 6"‘”’G .

(iv) 3vart 8!"61-" G, k=0,1,...,n—1)
uniformly on any compact (t,7,l) region, where Il # 0, and ¢ == r ¢f
jorkizn — 1, : .

v) G@rl) = G(T)t;l)

(vi) G, ,De(ab) (a<t<b)

(vii) If fe ®%(a,b) the funclion v defined by

o) = [ dr (31 0)

18 an element of D and
| Io=1lv+f

Proof. The representation (4.1) gives for {,re 8, 3! % 0, and 5,C
61 C 5:

2 1) = 9K (1) + [ Gultad) W o) — Ll () ds (4.9)

forj=0,1...,n—1. Recall that since *~'G3/9r"! and "~1K/
dr"~! have the same discontinuity at ¢ = 7 their difference is continuous
there. Moreover, from (4.6), if ¢ # 7,

"Gh (=DmG(t,1])

+ j; ) G.(t,s,l) % [U(B,‘r) — LJ(87)] ds (4'7)

b)) =

-~
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Observing (4.1) with 6§ = 8., and letting m — =, yields
Gl = K(t,r) + LIG‘(i,s,l)[U(s,r) — L,J(s,)] ds (4.8)

and therefore the partial derivatives d’G//dr" exist and
%g trl) = 8 A (t ) + f G(t,s I) [IJ(? r) — LJ(s7)]ds (4.9)

forj=0,1,...,n—1 a0 = 7 = by, J1 # 0. Moreover,

_ K (= D"G (D)
(z nh) = e

i L G,s,]) ;T:[U(s,r) —Tl(eD]ds (4.10)

for t ¢ 7. Since (v) has been proved, the relations (4.9) and (4.10)
prove (i).

Clearly 8"'G/at*! has the same jump at ¢{ = 7 as 9"~'K/di* ", proving
(). From (4.8) it follows that, as a function of ¢, G satisfies Lz = Iz,
provided ¢ # 7, proving (iii). Since the right sides of (4.6) and (4.7)
with 6 = &, tend, as m — =, to the right sides in (4.9) and (1.10), it is
seen that

4 J
aa(;,. gf (il ONT5e st 5 41) (4.11)
uniformly on any compact ({,7,l) region, where 31 # 0, and provided
t # 7 whenj = n — lL,n. The symmetry relations imply that

G, G :
_B_IT_)—&E (Jzo,l,...,ﬂ)

under the same conditions that (4.11) is valid. Returning to (4.6)
through (4.10), it is easy to see that the mixed derivatives o7G//atior*
(j,k=0,1,...,n— 1) exist and satisfy (iv). Relation (v) has been
proved.

The proof of (vi) is based on (4.4). From that inequality there exists
a constant ¢, (depending on &, and &, only) such that

G 7 Dlls = el UMY + 1) + 61 (redo)

But [|Gi( 7D = [|G( 7D]s for § C 6, and letting first § — (a,b)
through the sequence §,,, and then § — (a,b), it follows that, for any fixed
(r,D), 8L %0, G( ,7,l) e(a,b). This also gives for fixed (£,1), 31 # 0,
G, D) e¥(ab).
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It remains to prove (vii). If fe 22(a,b), then the integral
[*Gurpfmar (@<t <b, 3 =0)

converges absolutely by (vi) [and uniformly for ¢ in any finite subinterval
of (a,b)]. It defines a function », and, using the properties developed
above for @, it is not difficult to see that v has continuous derivatives up
to order n — 1, vV js absolutely continuous on every closed subinterval
of (a,b), and

=l+4f

For example, to prove the existence and continuity of v/, one first shows
by means of

w(l) = f G (, + Df(r) dr

and a treatment of (4.5) similar to that of (4.1) in deriving (4.4) that
|aG(t, ,1)/ét| is bounded for fixed I, §! > 0, uniformly for ¢ on any finite
subinterval of (a,b). Thus the integral

T
j; =7 D7) dr

converges uniformly for ¢ on any finite subinterval of (a,b), and hence
represents a continuous function on (a,b) which is easily verified to be v'.
From (4.3) for § = 4, letting m — o, it follows that

llell = 197-|£1l (4.12)
which proves v e @*(a,b). Since Lv = lv + f,

e s (1 + 2 ) 15

yielding Lv ¢ €*(a,b), and completing the proof that ve D.

For any fe *(a,b) let G(I)f denote the function given by (vii) in Theo-
rem 4.1,

The functions G arising in Cases I and IT will now be considered, In
Case IT suppose @ is obtained by taking for &, &, and all § the interval
closed at @. Thus ¢ = [a,b]. The boundary conditions Usz = 0 which
determine G; are assumed in this case to include U™z = 0. Thusin Case
I1 Gy as a function of ¢ satisfies UMz = 0. All the convergence properties
of Theorem 4.1 can be shown to hold uniformly over a < ¢, r < b, for
any bo < b. Thus the limiting @ also satisfies U®z = (0 and thus for
such @, v of (vii) is an element of D.

It will now be shown that in Cases I and II the hypothesis that

Lz + iz =0
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has no nontrivial solutions of class D and D, respectively, implies that for
any [, 8l # 0, Lz — lx = 0 has no nontrivial solution of class D or D,
respectively. The argument is essentially the same for both cases and
will be proved for Case I.

Suppose for some ly, 3lo > 0, that (L — ly)z = 0 has only the trivial
solution in ¥3(a,b). Let |l — ly| < Jloand supposeve D and (L — l)v = 0.
If

u=yv— (I —1l)G{l)v (4.13)

then ue®. Clearly (L — lo)u = (L — l)v = 0. Thus % = 0 and (4.13)
implies, with the use of (4.12), that

ol = Lzt 1ol < ol

if [|v]l # 0. Thusv = 0 and the result is proved for [l — lo| < 31, which
implies the result for &1 > 0. 1t is proved similarly for 31 < 0.

Now suppose @ for 31 £ 0 is not unique in Cases I and II and let
G have the same properties as G. Then as a function of ¢, ¢ — @ is of
class C7(a,b) and is thus of class D or D, respectively, and a solution of
(L — Dz = 0. This is impossible, proving the following theorem:

Theorem 4.2. In Cases I and 11

G— G [6 — (a,b) in Case I]

G— G [6 — [a,b) in Case IT and UNG,y = 0]
uniformly on any compact ({,r,l) region where 31 £ 0 independent of the
choice of boundary conditions Us in Case I and U§? in Case II.  The func-
tion G is unique in that it is the only function with the propertics listed in
Theorem 4.1 (and in Case 11 satisfying UMz = 0).

The function @ is called Green's function for the problem Lz = [z on

(a,b) in Case I, and for the problem Lz = lz, UMz = 0 on [a,b) in Case
‘II. Ineither case, let G(1) denote the operator defined for all f ¢ ¥2(a,b) by

SO = [ G dr (3 0)

Then Theorem 4.2 yields the following: The operator G(l) is the inverse
of L — 1 with domain D in Case I and with domain D in Case I1.

6. Representation of the Spectral Matrix by Green’s Function

Here the existence of the spectral matrix p will be established, inde-
pendent of the treatment of Sec. 2, using methods related to those of
Chap. 9. In particular, the spectral matrix and Green’s functions will be
related by formulas analogous to (3.9), (3.10), Chap. 9.

Tirst, the nonsingular case is treated. Let G5 be Green’s function
associated with the self-adjoint boundary-value problem Lz = lr,
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Uz =0on 6.~ Let
H‘(‘)T’l) = G‘(tfr:l) - Gﬁ(trfli)

Theorem 6.1. The spectral malriz py described by (2.68) satisfies

. ® dp(N) _ 31,
2¥ | p=m = e

where Sl # 0andjk =1, ... ,n.
Proof. If Im = 0, &l ¢ 0, then

XA (5.1)

@ —m) [ GaltaGs(s;r,m) de = Galtir)) — Galtrym)  (5.2)

To show this, let u be the solution of

L =Du=G( ,rm) Usu = 0
Then clearly

u(t) = [,Gut,a))Gsar,m) ds
Let v=G( ,7)) — Go( ,ry;m). Then veC(3) and Uw = 0. More-

over, clearly Lv = lv + (I — m)Gy( ,r,m). Thusv = (I — m)u and this
proves (5.2). In (5.2) takem = I. Then it becomes

231 [, Gi(taDGi(am D ds = Hiltir)

Since Qs(s,7,]) = Gi(r,s,l), this yields

2i5 [ 291 e D2 b ds = Sl (6.3)

fofj,k=0,1, e e o,n—1
Letting {xs:} and {A;} be the eigenfunctions and eigenvalues for the
problem Lz = Iz, Uz = 0, it follows from

Lm = lxam + (Alm - l)x&u
that

xinl) = Qam, = D) [, Git8Dx10(s) de
and thusfork =0, ... ,n—1

X0 = Oum = D [, 59 @00 x0n(0) o

“Thus the mth Fourier coefficient of 3*@4(¢, ,1)/a* with respect to xam i8
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X2/ (Nom — I). Using the Parseval equation on the left side of (56.3)
yields

- [ 9Ghs 3Gy o xPOxE() _ @ HH,
2131 Lﬁ (t,8,0) o (7,8,0) ds = 211 2 Do — IF 9007 (t,r,D)

mm=1

Using the definition of the matrix ps, this can be rewritten as

; “ \ EH,
291 PN DN = U doipe®) = gz (67D

rg=1

Setting ¢ = r = ¢ and using (2.2), (5.1) is proved.
Let G be the limit of a convergent sequence {Gn} of {Gs}, and let

H(t,rl) = GQ(ml) — Gt

Further, let

Pul) = 2ot (@)
and

Palh) = ety (o)
forj, k=1,...,n

Theorem 6.2. Lel |Gy} be any convergent sequence of the sel {G)) and
let pm = (pmj) be the spectral malriz assoctated with G,.. Then there exists
an Hermitian, nondecreasing malriz p = (ps) whose elements are of
bounded varialion on every finite \ interval, such that

pm(X) — pm(w) = p(\) — p(k) (m— ®) (5.4)

if \,ue are conlinuily poinis of p. Further, at such points \,u

A
pn(N) — palh) = g lim | Pa(y + ie) dv (5.5)
—+0 Ju
RemArks: Although Theorem 5.2 gives an alternate existence proof for
p, the new result is given by (5.5). It is clear that in Cases I and II it is
not necessary to take a sequence of {5} but suffices for & — (a,b) and
5 — [a,b), respectively, for ps— p. In these cases, @, H, and therefore
the Pj are unique, and by (5.5) so is any limiting p.
Proof of Theorem 5.2. The proof is much like that of Theorem 3.1,
Chap. 9, and will be sketched briefly. From (5.1)

:  dpmie(\) s
213£ f_ = W o Pm‘t(l)
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and forl = ¢

" dpni(N) . Prii(7)
S St

(5.6)

gince p.;; i8 monotone. The right side of (5.6) is bounded, since by
Theorem 4.1 (iv) P,.;(7) — Py(z). Thus

= Do (A :
__{"—_%%<A G=1,...,n

where A is a constant and

lpmiiA)] < A1 +A?)
Since
|p..,1(-’3)13 g pmJ‘i(A)Pmlk(A)

with pmji(A) = pmit(\) — pmix(p), A = (u,\], iv iollows that the total
variation of p,; on any finite A interval is bounded independent of m.
The Helly selection theorem implies the existence of a subsequence of
{pn] tending to a p having the properties stated in the theorem. More-
over, the argument of (3.25) and (3.26), Chap. 9, leads readily to the fact
that

Pul) - f " dps(\)
2131 S ey

is a constant independent of [ for 3/ £ 0. An inversion results in (5.5),
Since P, — Pj, the relation (5.4) follows from (5.5),

PROBLEMS

1..Let L be the differential operator defined for vectors z of r components by
Lz = Pex™ + PizvV 4 . -+ 4+ Pz

where the P are r-by-r matrices of complex-valued functions of class ("% on an open
interval (a,b). Assume det Pq(t) # 0 for a <t < b and that L is formally self-
adjoint in that it coincides with its Lagrange adjoint L* given by

Ltz = (—1)8(Piz)™ 4 (=1)»Y(P{z)*D 4 « « « 4 P’z

Formulate and prove the analogues of the expansion theorem, Parseval equality, and
the inverse-transform theorem in Cases I and II. Also, prove the existence of a
Green’s matrix in the two cases, and prove the analogue of Theorem 5.2,

2. Prove that the problem Lz = iz’ + a(t)z = Iz is self-adjointon — = <t < =,
where a is a real continuous function on this interval. Show that the spectrum is the
Aaxis, —w <\ < «. Give the expansion theorem for this case.

8. Consider the operator L defined for vector functions with r components

Lz = iz’ + A(f)z
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where A is an r-by-r matrix of continuous functions on — « <t < « such that
A*(t) = A(t). Then L is formally self-adjoint. Prove that the problem Lz = Iz is
self-adjoint on (— =, «), no boundary conditions required.

HinT: Prove that every solution ¢ of Lz = [z is of the form ¢({,l) = e~""y(t), where ¢

is a solution of the equation 2’ = —fA(t)z. Let f-g = E fid; for vectors f,g.
i=1
Show that (¢ - ¢)’ = 0 so that ¢(t) - ¢(t) = ¢, a constant, and
el - e(tl) = e FY(e) - () = ce?n
Therefore there are no nontrivial solutions of Lz = lx for any complex [ which are of
class '@¥(— e, «), that is, for which f__ LPrpdl < =,

Compute the spectral matrix p in this case and prove that the spectrum is the entire
A axis, —= < A < «. This problem is the generalization to systems of Prob. 2.
4. Let L be the operator defined for vector functions of r = 2s (s = 1) components

by
Lz = Iz' 4+ Az
where I is the skew-symmetric matrix [ = —J° = — I~ given by
0‘ E'
B (~E. 0,

-

E,, 0, being the identity and zero s-by-s matrices, respectively, and A is a real constant
matrix such that A = A . Thus L is formally self-adjoint. Prove that there are no
nontrivial solutions of the equation Lz = I for any complex [ which are of class
gi(— =,w). Prove that there are exactly s linearly independent solutions of class
22(0, =) for 31 = 0.

Hint: The equation Lz = lx is one with constant coefficients, and a fundamental
matrix is given by

(1) = exp [tI(A — IE)]

which shows there are no solutions €3(— =, =), The nature of the solutions depends
on the characteristic roots of the matrix 7(4 — [E). The characteristic polynomial
of this matrix is

fluw) = det (uE — I(4 — LE))

so that (i) = f(a]). Bince
JGul) = det (I-'(uE — I(A — IE)])

show f(u,l) = f(—pul). Because A + pl is Hermitian if Np = 0, it follows that for
31 5 0 none of the characteristic roots of /(A — [E) can have a zero real part.

The problem Iz’ 4+ Az = Iz on (— =,=) is thus self-adjoint. Prove that for
0 =t < « the problem Iz’ + Az = Iz, together with an appropriate set of s homo-
geneous boundary conditions at ¢ = 0, yiclds a self-adjoint problem. Investigate the
nature of the speetrum in these two cases.

b. Show that an alternative way to obtain a self-adjoint problem in Prob. 4 on
0 =! < o= is by use of

(p*le) = (I — De*e

for any solution ¢ of Iz’ + Az = [z.

HinT: Adjoin s conditions U¥z = 0 at { = 0so that for any ¢ satisfying UV¢ = 0
it is the case that ¢*lp = 0at ¢ = (.
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8. Let L be the operator given by Lz = Iz' + A(t)z, where I is the matrix aefined
in Prob. 4 and A is an r-by-r (r = 23, s Z 1) matrix of continuous real functions on
— @ < { < » which are periodic of period 1, ie., A¢ 4+ 1) = A(t), and 4 = A’
Prove that the problem Lz =lzon — @ <! < = is self-adjoint with no boundary
conditions required. Consider self-adjoint problems on [0, =).

HinT: From Sec. 5, Chap. 3, the fundamental matrix & of Lz = Iz satisfying
#(0,) = E, the identity matrix, is of the form (1) = P, l)eth®, where ’

Pt +1,10) = Pt

and R(}) is a constant matrix for fixed . This shows that there are no solutions
§}(— «, ) and no point spectrum. The problem on [0, «) can be treated by the
device of Prob. 5. .

7. If (a,b) is an open real interval, the space 2*(a,b) is a Hilbert space with inner
product

{uw) = L b ub dt

Let D be the set of all u e £2(a,b) of class C*~! on (a,b), u=D absolutely continuous on
every closed subinterval of (a,b), and Lu & 23(e,b), where L is the formally self-adjoint
differentinl operator defined in Sec. 1. Let T be the operator in £3(a,b) with domain D
and Ty = Lu for ue®. Let Ds denote the set of all u & D such that ¥ = 0 outside
some closed bounded subinterval of (a,b), the interval may depend on u, and let S be
the operator in €2(a,b) with domain Ds defined by Su = Lu for u e Ds. Prove that S
is a symmetric operator and that its closure 8 is the adjoint T* of T

Hint: Use the variation-of-constants formula.

8. Suppose T = T*, that is, T is self-adjoint. Let, for any closed subinterval 5 of
(a,b), the set Dj be all u & 2(a,b) such that u e C~ on 3, u~" is absolutely con-
tinuous on 8, and Lu € 92(8), and u satisfies a sct of self-adjoint boundary conditions
Usu = 0. Define Ts to be the operatoi with domain D; given by Tsu(t) = Lu(t),
tes, and Tau(t) = O for ¢ not in &. Show that T is self-adjoint. Let the spectral
resolutions of T and T3 be given by -

T = f_'n NIEQ) Ts = [_: X dE5(A)

respectively. Prove that |Es(\u — EQ\)ul— 0, as § — (a,b), for every ue *(a,b)
if \ is not an cigenvalue of 7' :

Hint: Let T be the pointwise limit of T3. Prove that the closure T of T, is Sust
T. Apply a result due to Rellich [sec B. v. Sz. Nagy, Spektraldarstellung linearer
Transformationen des Hilbertschen Rawmes, Ergeb. Math. vol. 5 (1942) p. 56.)

9. Using the result of Prob. 8 and Theorem 2.1, prove that

n
EQ® = [, Y oMo donh)
i jk=1
where fe2(ab), A = (s}, E(a) = E(\) — E(u), and the ¢;, g are as defined in
Theorem 2.2. From this, prove the Parseval equality and expansion theorem.

10. Formulate and prove results corresponding to Probs. 8 and 9 which are ana-
logues of Case II, Chap. 10.



CHAPTER 11

ALGEBRAIC PROPERTIES OF LINEAR BOUNDARY-VALUE
PROBLEMS ON A FINITE INTERVAL

1, Introductiont

Let @ = ¢t < b be a closed bounded interval and let L be the linear
differential operator of order n (n =2 1) defined by

Lz = pox™ + pig=D f -+ 4 5 2 poz

where the p, are complex-valued functions of class C"=* on (a,b], and
Po() = 0 on [a,b]. The principal concern of this chapter will be with
boundary-value problems such as investigating the solutions of Lz =
on [a,b] which satisfy a set of homoggmeot_ls boundary conditions of the
type

Y, (Mt0@) + NaghD®) =0 (G=1,...,m (LY
kel

where the M; and N are complex constants. Corresponding to any
homogeneous boundary-value problem iz a well-defined “adjoint”
problem which is associated with the Lagrange adjoint L* of I, given by

Ltr = (_l)n(ﬁoz)(ﬂ) + (_l)n—l(zjlx)(n—l) + - + Pox

and a set of boundary conditions ““complementary” in a sense to those
for the problem associated with L. It will be shown that many properties
of the original problem are mirrored into ‘““complementary’’ properties of
the adjoint problem. This chapter is largely algebraic.

The fundamental results follow from two important formulas, that of
Green and the boundary-form formula. The latter will be discussed in
Sec. 2. Recall that Green’s formula says that if, for example, u,v < C* on
g StSb, then '

ﬁ :' (Lu)o dt — | _[ :' w(Fv) dt = [uv] (té) — {uv] (&) (1.2)

t Only 8ec. 5 of Chap. 12 requires Chap. ll,. and for this purpose Theorems 3.1.
3.2, and 4.1 can be omitted. )
284
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wherea = &) < £» £ b, and [w)(t) is the form in (u, ¥/, . . . , u®-V) and
(v, v, ..., oD} given by

]

[ur)(t) = E Z (= 1)7 u® (£) (Paemd) P (2)

m=l jtk=m=—1

If the form [uv]({) is written as

[w](t) = z Bir()u—n(0)gti-n(1)

jk=1
then it is clear that B () = 0forj + k> n 4 1, and
B(t) = (—1)""po(t)

forj 4+ k =n 4 1. Therefore the matrix B({) with elements B () is a
triangular one of the form

By, By - . Po(t)
. : —-m() 0
B() = : :
(=D pe®) 0 - - 0 0

Thus det B() = (po(!))" and hence B(t) is nonsingular fora = £ < b.

It will be convenient now to introduce the notion of a semibilinear form.
Such a form is a complex-valued function § defined for pairs of vectors
f,g with k components satisfying

S(of + Ba,k) = aS(fh) + BS(gh)
S(frag + Bh) = a8(f,g) + BS(/,h)

for ziny complex numbers a, 8, and vectors f,g,h. If.f =(fy, ..., M)
and g = (g1, - - . , g) the product f - g is defined as

R
fro=) I
i=1
If S is a k-by-k matrix, with elements s, Sf - g is a semibilinear form

k
SUD) =S 9= ) sufig (1.3)

=1

It is clear that [uv](f) is a semibilinear form with matrix B(t). The
right side of Green’s formula (1.2) may also be considered as a form in
(u(tr), w'(t), . . ., w=0(t), uts), . . . , u™V(ty)) and (v(t), v'(tr),
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oy VD), u(t), . . ., v0(L)).  The 2n-by-2n matrix B corre-
sponding for this form is given by

B = (—g..(m B(z;,)) (1.4)

where 0, is the zero matrix. Clearly det B = (—1)" det B(t,) det B(ts).
Consequently B is nonsingular for all ¢y, ¢; in [a,b].

2. The Boundary-form Formula

Given any set of 2mn complex constants M;;, N;; ¢ =1, ..., m;
J=1,...,n), define m boundary operators U,, . . . , Un for functions
zona ¢ £ b, forwhichz® (j=1,,..,n — 1)exists at a and b, by

Uiz = 2 (Mzi-9(a) + Niz-20) (G =1,...,m) (2.I)

j=1

Clearly, if « and 8 are complex numbers and z,,7:¢ C*! on [a,b], then
Uilaz, + Bx:) = alUixy + Uz, that is, the U; are linear operators.
The operators U; will also be called boundary forms. They are said to be
linearly independent if the only set of complex constants ey, . . . , ¢ for
which

m

z cUix =0

i=1
forallzeC*'on[ab]istheset e, =¢c3 = + + + = ¢4 = 0. .

The forms (2.1) may be described more briefly if £ is defined to be the
vector associated with z with components z, 2/, . . . , 2z 9 and M, N
are the m-by-n matrices with elements M;, N;;, respectively, Also, let U
denote the vector boundary form with components Uy, . .., Un.. In
these notations (2.1) becomes simply

Uz = ME(a) + NEO) (2.2)
If (M :N) denotes the matrix with m rows and 2n columns

My - - ﬁlln Nu c++ N
(M:N) =

]‘.’[mj e Mo le tt Nm’l

then it is casy to see that U,, . . . , Un are linearly independent if and
only if rank (M:N) = m.  If the latter condition holds in (2.2), U will
be said to have rank m. It will always be assumed that for any vector
form U the number of components is equal to its rank.
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To any m linearly independent boundary forms Uy, . . ., Un'it is
always possible (in many ways) to adjoin 2n — m linearly independent
forms Ums1, - « - » Usa such that the combined system Uy, . . ., Usn
constitute 2n linearly independent boundary forms. This is equivalent
to imbedding the matrix (M :N) in a 2n-by-2n nonsingular matrix. Let
U, be the vector form with the components Unyt, . . . , Usn. IfUis
any form of rank m and U, any form of rank 2n — m such that the vector
form with components Uy, . . . , Us, has rank 2n, then U and U, are
said to be complementary boundary forms.

Remark. The only application of the results of this chapter will be
for the case m = n and therefore the reader may restrict himself to this
case in what follows, if he desires.

The boundary-form formula will show how the form on the right side
of Green’s formula (1.2) may be considered as a linear combination of a
boundary form and a complementary form. In order to prove this, two
remarks concerning the semibilinear form (1.3) will be required. It will
be recalled that the adjoint of a matrix A = (a;) is the transposed com-
plex conjugate matrix A* = (dx). Thus

Sf-g=17/-S%

Now let § be the semibilinear form associated with a nonsingular
matrix S, and suppose f = Ff, where F is a nonsingular matrix. There
exisls a unique nonsingular matriz G such that if § = Gg, then sUhe) =77
for all fand g. To see this, note that §(f,g) = Sf - g = SF-f-g. Hence
the matrix @ = (SF-1)*, which is clearly nonsingular, will satisfy the
requirement and is uniquely determined.

Suppose § has the unit matrix E; i.e., §(f,9) = f-¢g. Let F be a non-
singular matrix such that the first j (1 < j < k) components ‘of f=Ff
are the same as those of f. Then the unique nonsingular matrix G such
that j = Ggand J - § = f - g is such that the last k — j componenis of § are
linear combinations of the last k — j components of g with nonsingular
coefficient matriz. ‘To'prove this, note that F must have the form

_(E 0O+ )
F = (F+ Fi, (2.3)
where 0, is the zero matrix with j rows and ¥ — j columns. Let
(G G-
o=(& ) @.4)

where G; is & matrix with j rows and columns. Clearly

J-9g=Ff-Gg=Q%f-9g
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must be an identity in f and 9. Thus G*F = E,, and this means from
(2.3) and (2.4) that G*F,_; = 0,, and since det Fro; =det F 0,
GZ = 0, orG.. = 0., the (k¥ — j)-by-j zero matrix. = From this follows that
G is nonsingular because G is nonsingular, and this completes the proof.

Theorem 2.1 (Boundary-form Formula). Given any boundary form U
of rank m, and any complementary form U., there exist unigue boundary -
Jorms Uf, U+ of rank m and 2n — m, respectively, such that

[=41(®) ~ [zyl(a) = Uz - Uty + Uz - Uty (2.5)

It 0, s any other complementary form to U, and U , U+ the corresponding
Jorms of rank m and 2n — m, then “

Uty = C*Uy

Jor some nonsingular matriz C.

Proof. The left side of (2.5) may be considered as a semibilinear form
§ for vectors f with components (z(a), . . ., z"~9(a), z(b), . . . ,
z=1(b)), and g with components (¥(a), . . ., ¥y (), y®), ...,
y=1(b)) with nonsingular matrix 8. Thus if

Uz = ME(a) + NE(b)
then Uz = (M:N)f.. Also Uz = (M:N)f for two appropriate matrices

M,N for which
M N
H= (1!7 zv)

o) =1

and, by the sentence in italics in the middle of page 287, therc exists
a unique 2n-by-2n nonsingular matrix J such that S(fg) = Hf-Jg. If

_(Uly '
Jo = (U*z/)
then (2.5) holds.

The second statement in the theorem follows from the remark in italics
made on page 287 above (2.3), but here H f and Jg correspond to f and g
in that remark.

is of rank 2n. Thus

‘8. Homogeneous Boundary-value Problems and Adjoint Problems
For any boundary form U of rank m there is associated the homogeneous
boundary condition
Uz =0 _ 3.1)
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for functions z ¢ C*! on [a,b}, and if U* is any boundary form of rank
2n — m determined as in Theorem 2.1, then the homogeneous boundary
condition

Utz =0 3.2)

is called an adjoint boundary condition to (3.1). It follows frgm Green’s
formula and the boundary-form formula that with (u,v) = L ub dt,

(Lu,w) = (u,Lty)

forall u e C" on [a,b] satisfying (3.1), and all v e C™ on [a,b) satisfying (3.2).

Let D and D+ be the linear subsets of the set of all functions ue C»
which satisfy (3.1) and (3.2), respectively. Then Theorem 2.1 shows
that D+ is uniquely determined by U, although U+ isnot. If the theorem
is applied to U instead of U, it follows that (3.1) is an adjoint boundary
condition to (3.2) and D is uniquely determined by U+.

Associated with U* are two matrices of complex constants P and @,
each with n rows and 2n — m columns, such that (P*:Q*) has rank
2n — m and

Utz = P*(a) + Q*¢(b)

It is of interest to characterize the adjoint condition (3.2) directly in
terms of the matrices M, N, P, Q.
Theorem 8.1. The boundary condition U*z = 0 {3 adjoint to Uz = 0
if and only if
MB-\(a)P = NB-'(b)Q 3.3)

where B(t) 18 the matriz associated with the form [zy](t).
Proof. Let n be the vector with components (y, ¢/, . . . , y©=D).
Then [zy](t) = B(t)£(t) - n(t). .
First, suppose Utz = 0 is an adjoint boundary condition to Uz = 0.
From Theorem 2.1 there exist forms U., U} of rank 2n — m and m,
respectively, such that the boundary-form formula holds. Put

Uz = M.t@) + N&i()  rank (M.:N) =20 —m
Uty = Pin(a) + @Mn(b)  rank (P*:Q%) = m

Writing out the boundary-form formula, there results the followmg
identity in £(a), G(b), 1(a), 7(b):

(PM + PM.)&(a) - n(a) + (QM + QM.)¢(a) - 5(b)
+ (PN + PN)E(D) - n(a) + (Q-N + QN.)E(b) - n(b)
= B(b)£(b) - n(b) — B(a)¢(a) - n(a)

\

Thus
. P,M + PM. = —B(a) PN 4+ PN, =0,
QM+ QM. =0, Q.N 4+ @QN,. = B(b)
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and, since B(a), B(b) are nonsingular, this implies that

(—B-‘(a)Pc —B-(a)P\ (M N)=(E.. o..)

B-(b)Q. B-(1)Q)\M, N. . E, (3.4)

The matrix involving M, . . . , N, is nonsingular, and hence so is the
matrix on the left. Since the latter is a left reciprocal for the matrix
involving M, . . . , N, it is also a right reciprocal. Thus

M N)(-—B—l(a)P, —B-'(a)P _(E... 0,
M. NJ\ B'()Q  B'(»Q/

where 0., 0 are matrices with all elements zero. Therefore
—MB-(a)P + NB-'\(v)Q = 0,

which is the relation (3.3).
Conversely, suppose U7 is a form of rank 2n — m, where

Uty = Pin(a) + Qta(b)

— E M-

and the relation
‘MB-'(a)P, = NB-'(b)Q, (3.5)

holds. Since rank (M:N) = m, it follows that there exist exactly
2n — m linearly independent 2n-rowed vector solutions of the linear
system (M:N)u = 0. From (3.5) one sees that the 2n — m columns of

the matrix
_ B-Y(a)P,
Hl - (_B_l(b) Ql) ) (3»6)

are soluﬁom of this system. Since rank (P¥:Q}) = 2n — m,

P,
rank (Q;) 2n —m

and because B(a), B(b) are nonsingular, the rank of the matrix H, in (3.6)
is2n — m. :

I U*z = P*(a) + Q*¢(d) = 0 is a boundary condition adjoint to
Uz = 0, then it follows that the matrix on the left in (3.4) is nonsingular,
and this implies that if

H = ( B-'(a)P @.7)

-~ B-'(b)Q

then the rank of H must be 2n — m. Therefore by (3.3) the columns of
H also form 2n — m linearly independent solutions of (M:N)u = 0.
Hence there exists a nonsingular (2n — m)-by-(2n — m) matrix A such
that H; = HA, implying that B-(a)P, = B-'(a)PA, B-'(b)Q, =
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B-(b)QA, or P, = PA, Q. = QA. Consequently Uy = A*U+y and
this proves Uty = 0 is an adjoint boundary condition to Uz = 0.
If U is a boundary form of rank m, the problem of finding solutions of

Tm' Lx=0 Uz =0

on [a,b] is called a homogeneous boundary-value problem of rank m. The
. problem
7 .t Ltz =0 Utz =0

on [a,b] is defined to be the adjoint boundary-value problem to wm. Clearly
ma is the adjoint problem to r3_m The identically zero funection on
[a,b] is a solution of both 7, and #¢,_., and this will be referred to as the
trivial solution.
An immediate consequence of Theorem 3.1 is the following:
Theorem 3.2. If m = n, the boundary condition Uz = 0 is adjoint to
ttself if and only if
: MB-'(a)M* = NB-'(b)N*

Thus if the above holds and L* = L, the boundary problem m, is self-adjoinl;
that is, if u,v e C* on [a,b] and satisfy Uz = 0, then

(Lu,v) = (u)Lv)
This last equation follows from Green’s formula and the boundary-form

formula. -
If i, . . . , ¢n is a fundamental set for Lz = 0, let & denote the non-

singular matrix

@1 st Pa
/ ’

o=\ .7
¢(‘n—l) « . e ‘P:n—l)

Tt is called a fundamental matriz associaled with Lz = 0. Similarly, if
¥1, - - . ,¥nis a fundamental set for L¥z = 0, let ¥ denote the matrix

<¢1 v e P )
¥ =|- . e e .
’ 4](10—1) . .. :‘n—l)

The meanings of U and U+ are extended to matrices by defining
Ud = Md(a) + N&(b)
U+y = P*¥(a) + Q*¥(b)

Theorem 3.8. The problem .. has ezactly k (0 < k < n) linearly
independent solutions if and only if U has rank n — k, where & 18 any
fundamental malriz associated with Lz = 0.
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Proof. The function ¢ satisfies Lz = 0if and only if the corresponding
vector @ with components ¢, ¢’, . . ., ¢ D ig of the form @ = &,
where ¢ is a constant vector. Thus Uy = 0 if and only if

U(de) = (Ud)e = 0

The number of linearly independent vectors ¢ satisfying (U®)c = 0 is
n — rank (U®). -

If ®, is any other fundamental matrix associated with Lz = 0, then
®, = ®C, where C is a nonsingular constant matrix. Therefore

rank (U®,) = rank (U®)
completing the proof. '
If . has exactly k linearly independent solutions, say ¢, . . . » Phy
. ?
then any linear combination 2 ¢wi,.where the ¢; are complex numbers, is
t=1] ) N
again a solution. Moreover, if ¢ is any solution of Tm, then ¢ = 2 Cipi
i=1
for some constants ¢c;. Thus the solutions of =, form a vector space over
the complex numbers of dimension k. :
There exists a certain duality between the number of nontrivial solu-
tions of 7., and 7§, _,..
Theorem 3.4. If r, has exactly k linearly independent solutions, then
T m has ezactly k +m — n linearly independent solutions.
Proof. Let ¢y, . . ., ¢ be k linearly independent solutions of .
Suppose U.,, where

Uz = M.t(a) + N.&(b)

is & boundary form of rank 2n — m complementary to U. It will first
be proved that the vectors U (=1, . . . » k) are linearly inde-
pendent. Suppose they arenot. Then for some constants, ay, . . . , ey,

not all zero,
k

.Zla,vgm =0
and this implies
U, @lam) =0 3.8)
However,
R (i ap) =0 3.9)
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k
for each of the ¢ satisfies Uz = 0. Thus if ¢ = za«p; and the corre-

i=h
sponding £ vector is £, then (3.8) and (3.9) together give

ME@) + NE() =0
M.E(a) + N.E(D) =0

(M N
rank(Me N, = 2n

it follows that £(a) = £(b) = 0. But Lg = 0, and thus by uniqueness
¢() =0fora =t =b. This contradicts the definition of ¢ as a non-

Since

trivial linear combination of ¢,, . . . , ¢a. Hence
ax=a2=~- .. =a.=0
1 Let ¢1, . . . , ¥» be n linearly independent solutions of L*z = 0, and

suppose ¥ is the corresponding fundamental matrix. Green’s formula
gives

0 = (Lea¥s) — (wil*¥s) = o) — [edil(a)

fori=1,...,%k j=1,..., n By the boundary-form formula
this is equal to v
Ugi - Uy + Ui - Uty
and since Up; =0 (¢ =1, . . . , k) there results
Ucm ¢ U*‘% =0

or, since f - g = g*f for any column vectors f and g,
(Ut *U.es = 0 (t=1...,k

Hence the system (U+¥)*v = 0 has the % linearly independent 2n — m
dimensional vectors Uypy, . . . , Ucps as solutions. Therefore

rank (UH¥) = rank (UH)* £ 2n — m) — &k

Suppose rank (Ut¥) = r < (2n — m) — k. Then it can be shown by
similar reasoning that, if & is any fundamental matrix associated with
Lz = 0, rank (U®) £ m — (n — r) < n — k, which is a contradiction.
Therefore rank (U+¥) = 2n — m — k, and this implies that there exist
exactly k¥ 4 m — = linearly independent solutions of =3,_,,, by Theorem
33.

In particular, x, and =} have the same number of tndependent solutions.
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4. Nonhomogeneous Boundary-value Problems and Green’s Function

A nonhomogeneous boundary-value problem associated with =, is a
problem of the form
Lz = f Uz = v (4.1)

on a =t = b, where f is a complex-valued continuous function on [a,b]
and v is a complex constant vector such that either f is not the zero fune-
tion or ¥ 5 0. Here it will be assumed that U is a boundary form of
rank m. Clearly if ¢ and ¢ are two solutions of (4.1), the difference
¢ — ¢ is a solution of m,. Hence, if 7., has k linearly independent solu-

tions ¢y, . . . , ¢, then ¢ = & cip; for some constants ey, . . . , Cp.

-}-
inar

The problem (4.1) does not always possess solutions; the theorem below
gives a necessary and sufficient condition for the existence of a solution.
The following result will be used. Let A be a matrix and b a vector.
Then Az = b has a solution if and only if b - u = 0 for every solution u
of A*x = 0.

Theorem 4.1. The nonhomogeneous problem (4.1) has a solution if and
only f

(f¥) = v- Uy (4.2)

holds for every solution y of the adjoint homogeneous problem =, _,..

If v = 0, then the condition (4.2) says that f must be orthogonal to all
solutions ¢ of =,

Proof of Theorem 4.1. If ¢ is a solution of (4.1) and ¢ satisfies =¥, .,
then Green’s formula and the boundary-form formula yield

(Ley) — (oY) = Up - UlY + U.p - Uty
and (4.2) results immediately.
Conversely, suppose (4.2) holds for all ¢ satisfying 3, ... Every solu-
tion ¢ of Lz = fis of the form

n

¢ = Z cpi + @
i=1
where ¢1, . . . , pais a fundamental set for Lz = 0, ¢; are constants, and
¢ a particular solution of Lz = f. Thus (4.1) has a solution if and only
if there exist constants ¢, . . . , ¢, such that
n
cUpi + Up = v
i=1

or
(Ud)e =y — Us (4.3)
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where @ is the fundamental matrix corresponding to ¢,, . . . , ¢a, and ¢
is the constant vector with components ¢, . . . , ¢n. Now (4.3) has a
solution ¢ if and only if ¥ — Ug is orthogonal to every solution u of the
corresponding adjoint homogeneous system

(Ud)*u =0 (4.4)
that is,
v—-Up)-u=0 (4.5)

Let #%,_,, have exactly k* linearly independent solutions, ¢,, . . . , i+
- By precisely the same argument used in the proof of Theorem 3.4, it can
be shown that the k* vectors Uty,, . . . , UM+ are linearly independent
m-dimensional vectors which are solutions of (4.4). The number of
linearly independent solutions of (4.4) ism — rank (U®) = m — (n — k),
where k is the number of linearly independent solutions of #,,. But from
Theorem 3.4, k* = m — n + k, and hence (4.5) holds for every u satisfy-
ing (4.4) if and only if .

(ry=Up) - Ui =0 (i=1,...,k) (4.6)

Applying Green’s and the boundary-form formulas to ¢ and ¥, one
obtains

() = Up- Ul 4.7)

and together with (4.2) this yields (4.68). Therefore there exists a con-
stant vector ¢ such that (4.3) obtains, proving the existence of a solution
of (4.1).

Corollary. The problem (4.1) has a unique solution if m = n and the
only solution of =, 18 the trivial one.

Proof. By Theorem 3.4, =} has only the trivial solution so that only
¢ = 0 enters (4.2). A more direct proof is that U® must have rank n in
(4.3) which leads to the above at once.

Suppose m = n. By Theorem 3.4 this implies that =, and =} have the-
same number & of linearly independent solutions. If & = 0, it is possible
to solve the nonhomogeneous problem (4.1) with 4 = 0 explicitly in
terms of the Green’s function.

The existence of the Green’s function G(¢,7,l) for the problem

Lz —-lz={ Uz =0

was established in Chap. 7. It was there shown that, if the homo-
geneous problem had no solution at I, then @ existed. (It was also shown
that, if for one value of ! the homogeneous problem had no solution, then
it would have solutions only for a set of I which are the zeros of an entire
function.) Here ! will be taken as zero and it will be assumed x, has only
the trivial solution. G(¢,r,0) will be denoted by G(¢,7). . The unique
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solution of (4.1) with v = 0 is given by gf, where '

&0 = [ G ar

If 7, has only the trivial solution, then clearly =* has only the trivial
solution, and hence Green’s function G+ for r? exists and is unique.
Theorem 4.2, If w, has only the trivial solution, Green’s Sunction G+ for
wF 18 given by
GH(t,r) = G(,0) 4.8)

Proof. Let @ <11 <73 <b and consider the functions @; and Gy
given by G.\(t) = Q(t,), GF(t) = G*(t,rs). Then applying Green’s
formula to each of the intervals [a, 7y — 0], [ry + O, 75 — 0], [rs + 0, b),
there results

[91G¢1(11 - 0) - [1G3)(a) + [FF)(r: — 0) — [G:GF])(r, + 0)
+ [G\G31(b) — [G:GE)(rs + 0) =0 (4.9)

By the boundary-form formula
(@:G71(b) — [G:GF)(a) =0 (4.10)

From the form of [zy](t) it follows that the only terms of interest in (4.9)
are those involving the (n — 1)st derivatives, and these are

Po()[(—1)™'z(O)g "1 () + 2= ()F(¥)] (411)
Now @ satisfies
%’(1+o,f)—%;-?(r—o,r)=po—}ﬁ (4.12)

and similarly for G+

oGt on-IGt 1
T CFON -G =00 = s (43)

It follows casily from (4.9) through (4.13) that G*(ry,rs) — G(ry,r)) = 0.
Similar reasoning shows this is true for r, > 73, proving the theorem.

To consider G(t,7,]), the differential operation (L — l) is considered
instead of L. Let L, = L — I and consider the problem

Liz=0 Uz =0 (4.14)

The adjoint problem is given in terms of L} = L+ — Jand U+. Applying
Theorem 4.2 to (4.14), it follows that .

GHtrl) = G(’l",t,l) (4.15)
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For the self-adjoint problem where L+ = L and U and U+ are equivalent,

it follows that ‘
G(t;"'rl) = G(T,l,z)
which was proved in Chap. 7.

PROBLEMS

1, Let Lz = —(px’) + gz, where p is positive and p’ is absolutely continuous on
[a,b] and ¢ is continuous and real. Let

o (M ma (:(a) (ﬂu ,,) (x'(
| vz = (o ) '@/t \a ®)
Show that U is its own adjoint if and only if

Mumis — Myamy, o Muniy = Mny

p(a) p(b)

1 Maimss — Mmafflyy _ Aiuns — naflsn
r(a) p(d)

Mumes — muffag o Mt — naths
p(a) p(®)

If M and N are real, notice that only the last condition is required.
2, Prove (4.15) using (Lu,») = (u,L*v) for u,ve C*a,b] and satisfying Uu = 0,
Utv = 0,

Hinr: For f,geClabl, let u(t) = / Gt D)f(r) ds, v(t) = f a+(t,r,l)g(r) dr.

Then Lu = lu + f, L*v = lv + g, Uu = 0. Uty = 0,
8. Let the adjoint of L be L*; let the boundary form U have rank n and adjoint U+
Suppose for all u,v ¢ C(a,b) nnd satisfying Uz = 0

(Lu,w) = (u,Lv)

Then show that L* = L and that U is its own adjoint, that is, U*z = 0 is equivalent
to Uz = 0.

Hyn: For all u,v e C°[a,b] and vanishing identically near a and b, (u,Lv) = (u,L*v).
This implies (' — L*)» = 0for all such v and thus L = L*, since a homogeneous linear
differential équation cannot have solutions vanishing over an interval and not identi-
cally zero. If U+ is adjoint to U,

(Luyg) — (uLv) s Uu-Utv 4+ Uu - Uty

so that for all uw satisfying Uz = 0, U - Uty = 0. From this it follows that
Utv = 0 for all v satisfying Uv = 0. Since the ranks of the matrices associated with
U and U* are both n, this implies the result.

4. Let L, U, and L* be defined as in Prob. 18, Chap. 7, but now it is no longer
assumed that self-adjointness prevails. Show that U+ is determined and an adjoint
problem associated with Lz = Iz, Uz = 0.

B. Bince U is assumed to have nr components above, show that the problem above
and its adjoint have the same number of lincarly independent solutions.

6. Show that if L and U are as in Prob. 4, and U has nr components, if the r-by-r
matrix G(,r,!) is the Green's function for solving Lz = Iz + f, Uz = 0 and G*(},7,]) is
that associated with the adjoint problem, then

GH(t,r,l) = @*(r,0,])



CHAPTER 12

NON-SELF-ADJOINT BOUNDARY-VALUE PROBLEMS

1. Introduction

In the case where a boundary-value problem on a finite interval is not
necessarily self-adjoint, the methods of Chap. 7 are no longer adequate,
and a new approach is required in order to obtain an expansion theorem.
Such an approach is furnished by the Cauchy integral method. The
method is valid for the self-adjoint problem already treated in Chap. 7
and yields complete information about the convergence of the expansion
for any integrable function.

The essence of this method can be easily seen by looking at the expan-
sion theorem in the self-adjoint case in a slightly different light. Let L
denote an nth-order ordinary differential operator which is formally self-
adjoint, and consider a self-adjoint boundary-value problem

x: Ly = Iz Uc=0

on a closed bounded interval a < ¢t < b. Then there exists a complete
orthonormal set of eigenfunctions {x:}, and a Green’s function

G = G0
for the equation Lz = Iz, provided ! is not one of the eigenvalues Ay,
k=12 .... Theexpansion theorem of Chap. 7 states that for any
function f ¢ £*(a,b)
I= 2 (fixx)xx
k=1
where

() = [ 100 ¢
and the series.converges in the mean to f. Let
SO = [} Gerbitr) dr
Then since Lxx = MAixe = ba + (A — Dxu, it follows that
(SO = (180 = O = D™Uoxe)
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and hence the Fourier series for G(l)f is given by

SOf = ) (= D'
b=

1

Using the residue theorem with C,, a simple closed curve in the [ plane
which encircles each of the poles A, . . . , A exactly once in the counter-
clockwise direction, this leads formally to

2 G = = g im [ gora

k=1

the Cauchy integral formula for the series expansion of f.

In the non-self-adjoint case it is possible, as was shown in Chap. 7, to
define Green’s function G(4,r,l) whenever the entire function A = A(f) does
not vanish identically. Further, it makes sense to speak of the integral

Jo.sfar

where C., is a simple closed curve encircling eigenvalues Ay, . . . , An,
which may be complex. Then the expansion theorem results by showing
that for suitably restricted functions f,

f= =g lim /c _gofdl (L1)

Thus f is represented as minus the sum of the residues of g(})f.
In this chapter the second-order problem

Lz = —2" 4+ q(t)z = Iz (1.2)
Uz = auz(0) + aiz’(0) + asz(x) + aiz’(x) =0 (1=1,2)

will be first considered. Here g is a continuoust complex-valued function
on 0 St < and the a;; are complex constants. By a transformation
of the form I = af 4 8, any closed bounded interval a < ¢ < b can be A
carried into 0 S ¢ £ =, so that it is no restriction to limit attention to the
latter interval. The generalization to the case where L is of the nth order
is straightforward, and will be outlined in Sec. 4.

The matrix A = (a;) of two rows and four columns specifies the
boundary conditions. It will be assumed that it has rank 2; otherwise
there would exist only one linearly independent boundary condition.

. 1 It will be seen from the proofs that the continuity restriction on q can be relaxed
greatly. In fact, all results hold if ¢ is only required to be integrabloon 0 S ¢ € =.
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Let ¢1, @2 be linearly independent solutions of Lz = Iz satisfying
o P(0,0) = 5

forj,’k = 1,2. These functions are continuous in (¢,l) for0 < ¢ < 7 and
all /, and for fixed ¢ are entire functions of I. A nontrivial solution of
(1.2) will exist for a given [ if and only if the determinant

Al Ultpl Ul‘PnI
Uisﬂl Ua@n
vanishes. As a function of [, A is entire, and its zeros are the eigenvalues

for (1.2).

In the self-adjoint case it was seen that A could not vanish identically,
for the eigenvalues are all real. Moreover, A had to vanish at an enumer-
able set of points on the real axis. For the non-self-adjoint case the
situation can be quite different. For example, if ¢ is the zero function

on0 ={¢=mand
1 0 1 0
A_(O Ics 40 —1)

then elementary calculations show that A vanishes for alll. On the other

hand, if
158 s Otz 24 40
A (0 1 0 ~2)

for the same ¢, then A is a constant, not zero, and therefore there are no
eigenvalues. Clearly it is then necessary to give sufficient conditions
which will insure that these degenerate cases will not oceur.

The method of this chapter will be to show that in a large number of
cases the general problem (1.2) can be reduced to the study of the same
problem when g(¢) = 0for0 < ¢ < x. In the latter case, the function A
of I can be given explicitly, as can the Green’s function.

Where the above method fails, the problem (1.2) is handled by dealing
directly with (1.2) and by using the results of Chap. 6 to get the asymp-
totic behavior of its Green’s function as |l| — «, as is indicated at the
end of Sec. 3.

2. Green’s Function and the Expansion Theorem for the Case Lz = —z'’

Since later interest will center on the problem (1.2) with the correspond-
ing Green’s function @, it will be convenient to denote by A the special
operator given by

Az = —z"

and by I', Green’s function for the problem on 0 < ¢ < ,
Az = Iz Uiz =0 Uz =0 (2.1)
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when it exists. Setting ! = p?, it follows that, except when p = 0, ¢'** and
e~ are independent solutions of Az = p?z. The zeros of the function
w of p defined by

Ulel'pl Ule—ipl

W(P) o 1 U2ci'“ Uze_{” (2'2)

are those values of p for which (2.1) has a nontrivial solution for I = p?
except at p = 0. The Green’s function for (2.1) exists for those p for
which w(p) # 0, and is given for p # 0 by

il M(!sT:P)

I(trp?) = (2.3)
w(p)
where M is defined by
7(‘:7:9) et e—iet
M(trp) =| Uy Uy U™ (2.4)
Uw [ et Uzﬂ_""

and the function 7 is a fundamental solution of the equation Az = p*z.
It can be defined as that solution of this equation [when considered as a
function of ¢ for fixed 7(0 <7 <w)] on 0 < r <t = = which satisfies
yir+0, 7, p) =0, (@y/a)(r +0, 7, p) = —1, and v({7,p) = 0 for
0<t<r With this definition of v, a solution ¢ of Az = p%z + f,
where f is integrable on 0 = ¢ < =, is given by

o) = [ v(trp)f) dr

Formula (2.3) may be verified directly from the definition of T' or by
reference to Prob. 12, Chap. 7. Since I' is a meromorphic function of 1
and therefore of p, it must be given by (2.3) for p = 0 also.

The explicit nature of I' will now be examined. From the definition of
w it follows that

ayy — ipGy2  Gy3 + 1pG1s

w(p) = —e'rr ! :
31 — 1p@ia Qa3 -+ tpaay
4 eier any + ipain a1z — ipGiy an G| %p a1z G
@z + ipGae Gz — 1pQag Az Qs @z G

Using the notation

this can be written as

w(p) = —P(p)err + P(—p)e~*r" — 2i(A1s + As)p (2.5)
where
P(p) = Asp® + i(A1i — An)p + Ana (2.6)
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Another form for (2.5) is

r.u(p) = “"2?:(.*12492 + Au) Bin o -} 22(4‘1-_-3 — Au)p COs mp
o gl(A 17 + 4’1 aq)p (2.7)

from which it is obvious that w is an entire Junction with an infinite number
Of zeros unless Au = 0, Au = 0, and A:; = Au.
The function v is readily seen to be

v(tmp) = —p~lsinpt — 1)  (r < ¥
=0 (t=1)

After a little tedious calculation, M is found to satisfy for ¢t < r:

—2ipM (t,7,0) = P(p)etetr—r+t 4. P(— p)g—intr—rtn 4. Q(p)etetx—r—0
+ Q(=p)e == + 2 A ypleirt—n — g—irt-n] (2.8)

where P is given by (2.6) and

Q(p) = ANPz = i("i 14 + Ag;)p —_— A:a
Forit > i

—20pM(t7,p) = P(p)er=t49  P(—p)eiste=tin 4. Q(p)gitrion
+ Q(_p)g—iﬂ[r—-l-—r} + 2£-412p[el'p(r-l) L) ﬂ—t’p(r—l)] :2_9)

In terms of trigonometric functions, (2.8) becomes fort < r

—ipM (L7,p) = (Aasp® + Ay;) cos p(m — 7 + t)
— (A — Asg)p sin p(x — 7 + 1) + (Aaip? — Ays) cos p(r — 7 — ©)
+ (Au+ Aas)p sin p(r — 7 — {) — 2p A4, sin plt — 1) (2.10)

A similar formula for —ipM ({,7,p) results fort > = by interchanging ¢ and
7, and replacing A3, by Ay, in the right side of (2.10).

If A2y # 0, it follows easily from (2.7) that the zeros of w, for large |p|,
are close to p = +m, where m goes through the positive integers. Let
each integer +m be enclosed by a circle of radius 1 and with that integer
as center. Denote the points interior to these circles by E. Then the
circles €, with equations [p| = m + 4 do not intersect E (and thus do
not intersect any zeros of w) for large integer m. Hence they may be
taken as simple closed curves surrounding the zeros of w. Since l = p?
the circles (', go into circles C,,: [} = (m + 4)? in the l-plane.

Let ¢, be given for integrable functions f on 0 < ¢ < = by

—1 5
Gn(t) = 2—11_- o .(ﬁ I‘(t,r,l)f(r) d‘r) d‘
1 ¥ o
=il ( ﬁ I'(t,r,08)f(r) df)p dp (2.11)

where each circle is traversed once in the positive direction. It will be
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shown, in the case A, 0, that the difference between o,, and the mth
partial sum of the Fourier cosine development of f tends to zero as
m— o, uniformly on 0 £t = x. The cosine partial sums s, are given
by

8,.(t) = E ¢ cos kt
k=0
where

c°=}r[f(f)dr i

Theorem 2.1. If Ay # 0, the difference om — sn lends to zero as
m— o, uniformly on 0 = { = .

Remark: The sequence {g,}| is said to be eguiconvergent with the
sequence {s.} on an interval if ¢, — 8» — 0 uniformly on the interval
asm-— w,

Proof of Theorem 2.1. Let p = u + iv, where u,p are real. From
(2.7) it follows that

E R ]

choskrj(r)dr k=12 ...

w(p) = —2iAzp? sinxp + 0'-lem) (o] > =)

and, if p is outside the set E defined above, [sin 7p| > const e”'*'. Thus
if pis not in E,

1 1 c—:lrl
w(p) —2iAup? sin 7p + 0( Pk ) (el — =)

Since I'(¢,7,p?) = M(t,r,p)/w(p), it then follows from (2.10) that for large
|p|, p outside E,

lcosp(x — 7+ 1) +cosp(m —7 — 1) &Pl

BY i ik

I'(t7,0%) 5 7 i +0 FE
e—lol(e—(r—1)
S U e e e t=1)
ol

or

» _ _ €0Sp(r — 1) cos pt ({f"_j g=ivl(r=0=1)
Ttmp?) p 8in mp uiL [p]* L [p]?

t=7r (212)

For ¢ > 7 a similar estimate holds for I', the only change being that ¢ and
r are interchanged in (2.12). Thus from (2.11) o,, may be thought of as
consisting of the sum of two terms ¢! and ¢, where

m

s (f) = %f U: cos p(m — 1) cos p‘rf(f) b

sin wp
it [' cos p(x — 7) cos _p_tf(T) cell )8

sin mp
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Interchanging the order of integration and using the residue theorem,
there results

o(t) = }r[ (1 =19 z cos kt cos kr) f(z) dr
0

k=1
= 8u(l)

the mth partial sum of the Fourier cosine expansion of I
It only remains to show that ¢ (¢) tends to zero uniformlyin0 £ ¢t < =
asm— «, TFrom (2.12) one is led to estimate

T g—lel(r—1)
j;,_]; o @)l dr |dpl (2.13)

If 6 > 0, then this term is
t+3
)‘5'0(‘/‘. If('r)]dr)

o],

A simple calculation shows that, since C,, has radius r,, = m +

[ e-inl ldfl o (2.14)

0Tm

dp
p

By making ¢ small enough f“ [f(r)| dr can be made arbitrarily small,

independent of ¢, since E |f(z)| dr is uniformly continuous on 0 < ¢ < .

Having chosen 4, the integer m can be made large enough so that the
integral in (2.14) is made arbitrarily small. Thus (2.13) tends to zero
uniformly in ¢ as m — «. Entirely similar considerations apply to the
last term in (2.12) except that the integral of |f(r)| over (x — 6, ) enters
instead of over (¢, ¢ + 8). The terms for¢ > 7 are handled similarly, and
this proves the theorem. -

The case Az # 0 is not the only one for which a theorem of the type
Theorem 2.1 holds. For example, if Az = 0, and Ayx — Ag; 5 0, then
(2.7) and (2.10) imply the existence of circles Cy, and a set E asbefore,
where C,. does not intersect E for large m. Similar estimates to (2.12)
hold. It would be of value to the student to formulate and prove the
analogue of Theorem 2.1 for this case and also the case where A 13 #=0
and all other 4 = 0.

It can be shown directly that if f is differentiable on 0 < ¢ < , then
om given by (2.11) converges to f as m — = except possibly at 0 and 7.
Briefly, what is involved is to observe that M is a linear sum of exponen-
tials in . Thus

|7 M) dr
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is a sum of terms of which
j; 2 eipr—r+01(7) dr
is typical. This term can be integrated by parts, yielding
f@eer _ fme | 1

ip ip ip

f cip(t—r‘i-ﬁf’(-r) dT
¢

The integration in p then gives f(¢) from terms like the first one above.
The second and third terms are disposed of much as in the arguments
used to prove Theorem 2.1,

3. Green’s Function and the Expansion Theorem for the Case Lz =
—z'" 4 q()z

Let @ denote Green’s function for the problem
Ly = —2'"" + q(t)z = Iz Ui =0 U =0 (3.1)

where Ui, U, are given in (1.2), and ¢ is a continuous complex-valued
function on 0 < ¢ < x. As in Sec. 2, let I' be Green’s function for the
problem

Az = —3!' =1z U =0 U =0 (3.2)

Since dG/dt and aT'/at have the same discontinuity at ¢ = 7, it follows
that @ — T, considered as a function of ¢ is of class C', and, except
possibly at ¢ = 7, is of class C®. However, since G satisfies Lz = Iz
(except at ¢ = 7) and T satisfies Az = Iz (except at ¢ = 7), G — TI' is, in
fact, of class C* because

AG—T) = U@ —-T) = —qO)G

It follows from this equation and UG — T') = 0, 7 = 1, 2, that, except
at the poles of G and T',

Gltr) — Tr) = — [ D(tsDa()6 (s ds (3.3)

1t will be seen that the integral equation (3.3) determines the essential
behavior of @ in terms of the known behavior of I'. It will be shown
below that when I' meets certain requirements for large |/, (3.3) has a
golution @, and it follows at once from (3.3) that this G has all the desired
properties of Green’s function for large |I| and therefore must be Green’s
function. Thus, under these conditions, it will be the case that for any
continuous ¢ the function G exists and is meromorphic because if @ exists
for even one value of [, A # 0.
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Under the assumption A 5 0, it follows from (2.12), and a similar
relation for £ > 7, that for large |o|, p outside E,

IT(ty7,0%)| = klo|~ha(t,7) (3.4)
where k is a constant dependent only on the boundary conditions, and
ho(tr) = etotii=n - g=tviGr—it—r)

The existence of a solution G of (3.3) will be proved under the assumption
that I' satisfies (3.4). '

Clearly the case Ay 5 0 1s not the only situation where (3.4) holds. If
Az = 0and Ay — Ay 5 0, then (2.7) and (2.10) imply the existence of a
set I outside of which (3.4) is valid, and again there is a Sfamily of circles C,,
of radii increasing by 1 when m increases by 1, and C,, does not intersect E
Jor large m. Another case in which (3.4) holds is when Ays 3 0 and all
other A.‘,‘ = 0.

Theorem 3.1.  If Green’s function T for the problem (3.2) salisfies (3.4)
Jor all sufficiently large |p|, there exists a solution G of the integral equation
(3.3) for all sufficiently large |p|, p outside E.

Proof. The method of successive approximations can be used. Let
Go(t,7,0) be the zero function, and define Gy, p = 0, 1,2, . . . , by

@raltim) = Tr) — [ TsDaG(6mD ds (3.5)

for all |p| sufficiently large, where | = p2. Let
max [@pi1(6r,0?) — Gp(tyr,0?)|(he(t,7)) | = ks (3.6)

where the maximum is taken over 0 < ¢ < = for fixed 7 and o| large, p
outside £. By (3.4) and (3.5) it is clear that (3.6) holds for p = 0 with
ko = k. Suppose now that it has been shown that

k : =
ki§§ (J=0J11"'Pp) 3.7

Then it will be proved that (3.7) holds for 7 = p + 1 as well. Indeed,
from (3.5),

ki S Flylal* max [ ()l (t8)has,7) (holyr)) " ds
0stsx

Using |s—tf+|r—s| 2|t =7, 7= |t —s|+|lr—s| 27— |t -],
x—|r—s/+|t—s 27— |t—7|,and 2r — lt —sf —|r—s 2|t =1,
there results
ho(t,8)h:(s,7) = 2h.(t,7)
Thus
ko S 2kklol=t [ la()lds @8)
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and if |p| is large enough
2klel= [ la(a)| ds < #

Used in (3.8), this yields (3.7) forj = p 4 1, and hence establishes (3.7)
for all § by induction.

The uniform convergence of the sequence {G,} to a limit function @
now follows readily. This @ satisfies (3.3) for all sufficiently large 11,
proving the theorem,

From (3.7) it also follows that |G) satisfies the same inequality (3.4) as
T, with k replaced by 2k. Using this in (3.3) again, there results

@tr) — Tro)| S Slpl-httr) [ lota)|de  (3.9)
Let f be an integrable function on 0 S¢S andlet

o so==L [ ([t a)oa

and recall that o, is the corresponding sum for f using I,

= =gz [ ([ rersso ar) o
If I eatisfies (3.4), it is possible to prove that {8} is equiconvergent with
{ew}, which means S, — ¢, — 0 as m — «, uniformly in¢, 0 S ¢ < «.
This reduces the study of the convergence of {S.} to the simple cases
considered in Sec. 2.
Theorem 8.2. If T salisfies (3.4), then (8.} s equiconvergent with {o,,}.
Proof. From (3.9) it follows that for small § > 0

dp

271Sa(t) — enl)] S 2, ( ﬁ Ty [ :) 1)) dr fc e[ &
+ark ([ 4 [T+ / ") ar @.10)

ky = 4k /; " la)| ds

where

and where obvious changes in the limits are made ft<dort>nxr—a.
Givenany ¢ > 0, § can be chosen small enough so that the last term on the
right of (3.10) can be made less than ¢/2, independent of ¢ on 0 Stsr
Having so chosen 5, then by taking m large enough it is possible to make
the first term on the right of (3.10) less than ¢/2, by making use of (2.14),
This proves the equiconvergence of {S,.] with {on}.
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A particular case where Theorem 3.2 is valid is when A ¢ 0. Cou-
pling this with Theorem 2.1, it follows that {S.} is equiconvergent with
the Fourier cosine expansion of f on 0 S ¢ S r in this case.

In case (3.4) does not hold, the construction of G from I' becomes more
complirated. The behavior of G(¢,r,l) as || = « can be found by using
the results of Theorem 3.1, Chap. 6. For an nth-order equation, Sec. 5,
Chap. 5, is relevant and Lz = Iz of (3.1) is considered in-the example at
the end of Sec. 5. With I = p?, Lz = Ir has for Jp = 0 two solutions
¢ and ¢; with

ei(t.p) ~ et [1 +‘§t-—,, /‘ f(‘) ds +0 (]%I’)] (3.11)
pa(t,p) ~ =it [1 - %ﬁ 9(e) ds + 0 (];ll_’)]
Moreover, l
stoenfosifwoass(@)] o

and similarly for ;.

Expressing A, K(¢,7,]) of Chap. 7, and G(t,7,!) in terms of ¢, and ¢; and
using (3.11) and (3.12), the behavior of A and @ for large |p| is found (for
Sp = 0). Sincel = p?, this determines the behavior of G for large |I| and
thus the convergence of

- % e ( [,' G(t,Df(r) dr) dl

a3 m— « may be considered.

4, The nth-order Case

The generalization of the method exploited in Secs. 2 and 3 to the case
of the nth-order linear differential operator is straightforward. Consider
the operator L, where

Lz = z» 4 pl(t)z(n—l) R + pu(t)x

and the p; are continuous complex-valued functions on some closed
bounded finite interval which, with no real restriction, may be assumed
tobe0 S¢S« Let U be a boundary operator with components U,,
U
LI ) "

2

Uz = ) (a@g2(0) +bat"(x)) (E=1,...,n)
=1

the ay, by being constants: The boundary-value problem of interest is
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Lz = Iz, Uz = 0. A slightly more general problem
L =lr(®)z Uz=0

where r = 0 on 0 £ ¢ < = and of class C» there, can be reduced to the
case where r(¢) = 1 on 0 S ¢ < = by the substitution' dg = ()~ dt.
It is also possible to assume that P{) =0on 0S¢t <m, if py is of
class C*1, because the substitution z = qy, where ¢ is a solution of
n¢’ + pig = 0, effects this. Thus it will be assumed that the boundary-
value problem is of the form

Lz = 2™ + po(t)zt»=d 4 . . . 4 Pa(t)z = Iz Uz =0 (4.1)

where ps, . . . , p. are continuous functions on 0 St=sr
The associated simpler problem
Az = gz = g Uz =0 (4.2)
is considered. If the nth roots of 1 are @i, . . . ,ans, then aset of linearly
independent solutions of Az = Iz for I 0 is en’, en, | | | | e%# where

I = p". Using these solutions, the explicit nature of Green’s function I
for (4.2) can be analyzed as in Sec. 2, and analogous expansion results
considered. ‘

The relationship between Green’s function @ for (4.1) and I' is obtained
as follows. Since, as a function of ¢, G and T are of class C~~? and since
they have the same discontinuity in the (n — 1)st derivative at ¢ = T, it
follows that @ — I is of class C>'in¢. From the differential equations
in (4.1) and (4.2) it follows that the nth derivative of @ — T'is continuous
at ¢ = 7 80 that, in fact, @ ~ TF'eC"inton0 <t 5 r Clearly, except
att =1,

AG-T)-lG-T1) = —sz‘"f” — s = p@ “4.3)
where G® denotes the kth derivative of G with respect to {. Since
U@ - T) = 0, (4.3) implies that

G — TrD = [T Tt f(a,r,]) de (4.9)
where
Janl) = —ps(8)G(s7l) — -+ + — pu(a)G(s,7,])
From (4.4) follows
GO (r,l) — TW(rl) = /;' r® (¢80 f(s,7,0) ds (4.5)
For cases where I' has reasonably smooth behavior, (4.4) and (4.5) can be

used for large |o| (! = p*) as defining G. Asin Sec. 3, (4.4) and (4.5) can
be dealt with by a successive-approximation procedure. This also yields
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a bound on |@ — T| which can be used as in Sec. 3 to get an equicon-
vergence theorem for the representations of a function by @ and by T.

Where I has complicated behavior, the behavior of G for large |i| can be
obtained directly by using the result of Chap. 6, as was indicated at the
end of Sec. 3 for the case n = 2.

8. The Form of the Expansion

Before proving the expansion theorem, the nature of the expansion
will be considered. The orthogonality of the eigenfunctions which holds
when = is self-adjoint need not hold when = is no longer self-adjoint. It
is replaced by a biorthogonality relationship involving the eigenfunctions
of x and those of the adjoint problem x+ defined in Chap. 11.

Let I = A be an eigenvalue for x, which means that

Z-Nz=0 Uz=0 (6.1)

has k& independent solutions, k¥ = 1. By Theorem 3.4, Chap. 11, this
implies that
' L*—-Xz=0 Urz =0 (56.2)

also has k independent solutions. Let A\, and A, be eigenvalues of = and
let x, be an eigenfunction of x for ! = \,. Let ¥, be an eigenfunction of
=zt forl = X,. That

5
Geoba) = [ xobedt = 0 (53)

follows at once from the adjointness relationship
(Lxp¥a) — (XmL""ﬁc) =0 (5.4)

stated below (3.2), Chap. 11, if A, » A,
In case A, = 1, the relationship between x and y is treated, in an
important case, in the following theorem.
Theorem B.1. If G = G(,,l), the Green’s function for x, has a simple
pole atl = ), then the residue of G at the pole is
ny

= Y %Ok (5.5)

Jmmy

whers the x; and y; are eigenfunctions of = for | = A, and of =+ for | = Xp)
respectively. Moreover,

G} = 8y mpy=s4j5= np)

tmdlhex;,m,§j§n,,arcacompletesetofeigenfundz’omofwatl=>‘,
and simslarly the y; for x* at | = X,.
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From this and (5.3) it follows now that x; with eigenvalue A, is orthog-
onal to all except one of the eigenfunctions of x*+. The exception is
¥ with eigenvalue X;, and (x;0) = 1. Asa corollary there is the follow-
ing theorem:

Theorem 6.2. If all the poles of G are simple and if the etgenfunctions
of w are {x;}, then the eigenfunctions of x* can be arranged ¢n a sequence {y;}
so that

(i) = 8y

If x: has eigenvalue ), then y; has eigenvalue Xy
In this case, the expansion (1.1) becomes, because (5.5) is valid at all
poles,

5O = Y %0 [ 1000 ar (5.6)

=1

which, in the self-adjoint case, of course becomes the familiar orthogonal-
function expansion theorem with y; = x;. The expansion (1.1) does not
take the simple form (5.6) if G has poles of order higher than 1.

Proof of Theorem 5.1. Let the residue of G at the simple pole ! = )\, be
Go(t,r). Let x; be an eigenfunction of x at | = Ap. Then

@ = Dx; = O\ = Dxg
80 that
b
x50 = 0 = D [ Glrx(r) dr
Letting I — X,, (I — X\,;)G(t,r,]) = Go(t,7). Thus

x® = = [ Gotr)x() dr (5.7)

From (2.6), Chap. 7, it follows that G(¢,r,l) — K(t,rl) is of class C"[a,b]
as a function of {. Moreover, K({,r,l) is an entire function of I Thus
Go(t,7) is also the residue of @ — K at | = A, and therefore

Golir)m %1 [ @) — K(tr,l) dl

where the integral is over a small circle with the center at Ap. Thus
G = Go(t,7) is of class C as a function of . From LZ-=0DG@=0,t57,
where L operates on @ as a function of ¢, follows

(L —X\)G = (I — )G UG =0

and, expanding G as a Laurent series in the neighborhood of I = As, there
follows for ¢ = 7

(L= X)Go =0 UG, = 0 (5.8)
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Since Goe C™ as a function of ¢, (5.8) is valid at ¢ =  also and therefore

Goltr) = ) Cixl) (5.9)

j=m,

where the x;, m, < j < n,, are the independent eigenfunctions of  at
l = \; and the C; are functions of .
Since G+(4,r,l) = G(r,t,]), it follows that Go(r,t), the residue of G+ at
I = X, is also of class C" as a function of ¢, so that for x+ the analogue of
(5.8) is
(L+ — Xp)] G‘o(f,l) = 0 U; G’o(f,t) o 0 (510)

Thus since the x; are independent, each C;(¢) in (5.9) must be an eigen-
function of #* at I = X,. Denoting these eigenfunctions C;(¢) by —y;(1),
the result (5.5) follows.

Using (5.5) in (5.7)

fip

6O = Y x® [ W) dr

1=my

Since the x; are independent, the relation (x;¥:) = d;; follows at once.
This shows that no ¢; = 0 and thus all the eigenfunctions y; of » at
I = Xy occur in (5.5). If the y; were not independent, the relationship
(xis¥s) = b5 would be impossible. This completes the proof of Theorem
5.1.

The Green’s function need not have simple poles. The problem

—z" = Iz z(0) =0 z'(0) + z'(x) =0
has double poles at all its eigenvalues, \, = (2k 4+ 1)2. Indeed, here
0 (t <7)

sin [}t —
___gl__fl (g = 'r)

sin I3 cos l(xr — 1)

G o e i)

PROBLEMS

1. Discuss the nature of the residue of G(4,r,l) at a multiple pole of G.
2. Consider the system
Lz =z' — A(t)x = IR(l)z

on an interval @ S ¢ 5 b, where z is a vector and where A and R are continuous
n-by-n matrices and the characteristic roots of R are distinct on a =t=b LetM
and N be constant matrices and Uz = Mz(a) + Nz(b) = 0 be a boundary condition
for solutions of Lz = IR(t)z. There exists a continuous nonsingular matrix T on
a =t S bsuch that T'RT = D, a disgonal matrix, Setting £ = Ty, one obtains

Yy — (I''AT — T17")y = IDy
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provided T" exists. Thus assume that R is diagonai. Let A = A, 4 A, where 4,
is the diagonal matrix consisting of the diagonal of A4, and let

t
Py(t) = exp [L Ai(s) ds]
g0 that Py = A,P;. Suppose P, is the unique matrix with diagonal terms zero
satisflying P \R — RP, = A.P,. Let

¥(tl) = (Po(t) + P1(t)I71) exp [1A(D)]
where

AQ) = L‘ R(s) ds

Show that ¥ is a fundamental matrix for a system
' — A(t)z = IR()z + B(,) 'z

where |B(4,1)] is bounded for a = ¢t = b and for || large. Since ¥ is known, Green’s
matrix function T for the problem

(1) Lz = IR(t)z + B({t,DHI'z Uz =0
can be explicitly determined; do this. (See Prob. 16, Chap. 7.) Let @ be Green's
matrix for Lz = [R(t)z, Uz = 0. Prove that
b
Gl =107l — 17! fa I'(t,s,1)B(s,1)G(s,r,0) ds

and develop results for (*) analogous to those given in Secs. 2 and 3.
3. In Prob. 4, Chap. 9, the solution ¢; can be used to construct a Green’s function
G(tr,s*)on 0 ¢ < » for §s > 0. Indeed, if Ae*® = F, as in Prob. 5, Chap. 9,

¥(t,8) 1 (r,s)

: <
F(s)
G(t,s?) =
¥(r,)e1(Ls)
Yo o ()

Now [G dl corresponds to 2fG@s ds. For a function f of class C' and vanishing for i
small and for ¢ large let

J() = fcsds j; ® Gy, dr

where C is the path consisting of the line from — R 4 ie to R - e and the semicircle
ie + Re'®, 0 < 6 < =, in the s plane. If g is restricted so that for some 5 > 0,

Ln elt|g(t)| dt < = (very much less will do), show that F is analytic for 3s > —&and

that F — 1 as |s] — «. Thus F has a finite number of zeros for 3s = 0. Consider
Jase— 0and R — «. That part of J which is in the semicircle can be computed as
R— ». Note that ¢(f,s) ~ (sin ts)/s as |s| — «=. Proceed similarly for Js < 0.
Combine and get the expansion theorem of Prob. 4. Relax the conditions on f. The
problem z'(0) + az(0) = O for real a can also be solved as above.

The interest of the method here is that, as a little consideration will show, it is valid
for complex-valued g(t) and complex a. Carry out the case (0) = 0 with ¢ complex-
valued and obtain the expansion theorem for that case. Note that the problem is no
longer self-adjoint and thus F can have zeros off the imaginary axis. The eigenfunc-
tions are no longer necessarily orthogonal.



CHAPTER 13

ASYMPTOTIC BEHAVIOR OF NONLINEAR SYSTEMS;
STABILITY

1. Asymptotic Stability

The treatment of nonlinear systems presented here will be restricted to
local behavior, that is, to the behavior of solutions starting near a known
solution of a system.

A solution ¢ of a system

# = Pt2) (' - gz‘)

whichisdeﬁnedfortgoissaidtobestableif,givenanye>0,there
ezist.sa&>Osuchthatmysolution¢ofthesystemaatinfying

le(0) — ¥(0)] < &

le@® — ¥l <e (20

Note that this requires solutions starting nearby ¥(0) to exist for all
¢ 2 0. The solution y is said to be asymplotically stable if, in addition to
being stable,

satisfies

lel®) =¥ >0 (> =)

The following result of Perron is the simplest example of asymptotic
stability. ' -
Theorem 1.1. Let
¥ = Az + f(,z) (1.1)

where A {2 a real constant matriz with the characterisisc roots all having nega-
tive real parts. Lel f be real, continuous for small |z] and t = 0, and

fz) = o(lzl)  (jz| — 0)

uniformly int,t 2 0. Then the identically zero solution 13 asymptotically
stable.
The conditions that 4 and J be real or that f be continuous ecan be
replaced by any other conditions which assure the local existence of a solu-
tion for (1.1) for small |z and ¢ 2 0. :

314
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" The fact that the characteristic roots of 4 have negative real parts
assures that the linear system y’ = Ay has the trivial solution as an
asymptotically stable solution.

Proof of Theorem 1.1. The solution ¢ of (1.1) with |¢(0)| small can be
continued for increasing ¢ so long as |¢(¢)| remaing small. So long as ¢(t)
exists, it follows from (1.1) that

o) = e4o(0) + [} e“41(s,0(s)) ds (1.2)

Because the real parts of the characteristic roots of A are negative, there
exist positive constants K and ¢ such that

[et4] = Ke— (t=0) (1.3)
Using (1.3), (1.2) yields

lo®)| S Klp©)]e + K [ e=0=" | f(s,0(s))| ds

Given e > 0, there exists a & such that |f(t,z)| = ¢lz|/K for |z| = 5.
Thus, so long as |¢(t)] = §, it follows that

- t
ele()] = Klo(0)] + ¢ [ elo(s)] ds
This inequality yields, by Prob. 1, Chap. 1,

elo(t)] < Klo(0)]e*
or

lo(®)] £ Klp(O)le=0* (¢ = 0) (1.4)

If e is chosen so that € < o, then (1.4) shows that |¢({)| = K|¢(0)| so long
as ()] £ 6. Thus, if |¢(0)] < §/K, it follows that (1.4) is valid for all
t = 0, which completes the proof of Theorem 1.1,

Let the characteristic roots of A be A,, k= 1,2, . . ., n, and let

max (RN) = —p < 0 (1.5)

Then any solution ¢ of (1.1) which tends to zero as t — = salisfies

lim sup -_____ﬁlog e ()] < —u

f—+ = t v

(1.6)

Thus, by Theorem 1.1, all solutions with |¢(0)| sufficiently small satisfy
(1.6).

To prove (1.6), it is noted that ¢ in (1.3) can be taken as p — e for
any given ¢ > 0. This may necessitate taking K = K, large. Since
¢(t) — 0, it is the case that |¢(¢)| can be made as small as is required by
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taking ¢, large enough. Thus, applying Theorem 1.1 for ¢ = ¢, it follows
as in (1.4) that
el = 0(1)  (t— )

Since ¢ = u — ¢, it follows that

lim suplo—g%‘-”-(t—)-—] = —u+ 2
=+ =
Since € > 0 is arbitrary, (1.6) follows.
A more general statement of Theorem 1.1 weakens the requirement
\f| = o(Jz]). It is sufficient to assume that, for some k > 0,

@) sklsl (2 0) (1.7)

for all small |z|, and that, given any e > 0, there exist & and T such that

lf@2)| < elz] (2] = 5,t 2 T) (1.8)

To show that (1.7) and (1.8) suffice, observe that, with (1.7), (1.1) yields
lel” = dlAll + Enh)]lel

where [¢|| is the Euclidean length of ¢. Here use is made of the fact that
nHz| = [lz|| = |z|, where & has n components. Thus, so long as [|e()|
is small,

le@Il = [lp(0)[let!41+xnbe
or

, le()] = nilp@etaismbe (¢ = 0) (1.9)
so long as |¢(¢)| is small. In the same way,
[e(0)] = n¥p(t)[et4trnde (¢ 2 0)

Having chosen ¢ (1.8) is used for ¢ = 7, and Theorem 1.1 is applied to
the interval ¢ = 7', assuming |¢(7)| to be small. But by (1.9) it is the
case that [o(7")| is small if |¢(0)| is small enough. This proves that (1.7)
and (1.8) can replace |f| = o(|z|) in Theorem 1.1. It is also the case that
(1.6) is valid here.

The inequality (1.9) and that below (1.9) show that stability over
[0,%) and [T, ) are equivalent.

A special case of some interest where (1.7) and (1.8) hold is the ease
where f(¢,z) in (1.1) is replaced by B(t)x 4 g(t,x), where the matrix
B(t) — 0 as t— » and |g(¢,x)| = o(|z]) uniformly in ¢ = 0 for small |z|.
In this case, (1.1) would be written as

' = Az -+ B(t)z + g(t,2) (1.10)
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For Theorem 1.1 to be true for £ = T, it suffices for (1.8) to hold not for
arbitrarily small e but merely for e < /K, where ¢ and K are from (1.3).
With this less restrictive hypothesis, (1.6) need not hold.

In case the matrix 4 in (1.1) has one or more characteristic roots with
positive real parts, then it is not possible for the solution ¢ = 0 to be
stable. In this sense Theorem 1.1 and the results following it are the best
possible.

Theorem 1.2. Let at least one characteristic root of A in (1.1) have its
real part positive. Let f(t,z) satisfy (1.8). Then the solution ¢ = 0 of
(1.1) s not stable.

‘ReMARk: With a slightly more restricted hypothesis the result is a
consequence of Theorem 4.1 of this chapter.

Proof of Theorem 1.2. To prove the theorem, a transformation
z = Py, P a constant matrix, is made, resulting in an equation of
the form

y' = By + g(t,y) (1.11)

where B = P~'AP. It will be shown that the zero solution of (1.11) is
not stable, and this clearly implies that ¢ = 0 is not stable for (1.1). By
proper choice of P, the matrix B can be put in the form

B = (OB‘ %2) (1.12)

where B, is a canonical matrix of % rows and columns with its character-
istic roots all having positive real parts, while B; is a canonical matrix
with characteristic roots all having nonpositivereal parts. Thecharacter-
istic roots are in the main diagonal. Those elements off the main diagonal
which are not zero can be assumed to be ¥ > 0, where y can be made as
small as any assigned positive quantity by proper choice of P. While y
corresponding to real  may be complex, Py will be real. Thus

g(t,y) = P~Y(t,Py)
is defined.
Let the components of ¢ be ¢; and let

k
R?* = 21 lgd> and  p? = ‘__2:“ il

Let the real parts of the characteristic roots of B, exceed somea > 0.
Choose € < ¢/10 and choose n and 7' so that '

lgt.)| = elyll ¢ =T) (1.13)
for [lyll <.
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Suppose the zero solution of (1.11) is stable. Thus for n and T as
chosen above there exists a § > 0such that, if ¢ is a solution of (1.11) with
o(T) + R(T) < 4, p(t) + R(t) <'n for { = T. Choose such a solution
o with R(T) = 2p(T) > 0.

With ¢ defined as above, it follows from the use of (1.11), (1.12), and
(1.13) that, fort = T

k
=

(pi2i + ¢i@l) = 2RR’ = 20R* — 2yR? — 2¢(p + R)R

g -

Or, since v can be chosen smaller than ¢/20 and since e is chosen less than
a/10, it follows that

R' = 30R — ¢ (1.14)
In the same way,

o S elp+ R) + 550 (1.15)

From (1.14) and (1.15) follows

(B —p) = 1a(R — p)
Thus
R(t) — p(t) = (R(T) — p(T))estt—11/4

Since R(T) = 2p(7), it follows that R(t) = p(T)e“=/%, This is impos-
sible, since under the hypotheses of stability p(t) + R(f) < n for t = /£
and thus the theorem is proved.

Let f(t,x) consist of a linear term B(f)z and & term that for small || is
0(|z|™**), @ > 0. An assumption of this kind about f leads to the possi-
bility that, as a function of ¢, for fixed z, f(4,z) can grow large as £t — o«
without affecting asymptotic stability. This case is treated in the follow-
‘ing theorem.

Theorem 1.3. In Theorem 1.1 lei the condition |f(t,x)| = o(|z|) be
replaced by the conditions that for small |z| and all t = 0

[f(t,2)| = klz| + |z|t e (1.16)

where a > 0, b, and k are constants, and that, given any e > 0, there exist
6> 0and T = 0 such that for || < sandt = T

ft2)| < €| + [z|tHoee (1.17)

Then the solution ¢ = 0 of (1.1) is asymptotically stable.

Proof. With K and o determined as in (1.3), choose 7 < o. Choose €
in (1.17) so that eK < 47. The choice of e determines 8 and 7. From
(1.16) for [z| < land 0 =t = T,

l7t2)| = (k + T%)|z| (1.18)
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Using (1.18) much as (1.7) is used in deriving (1.9), it follows that
l¢(T)| can be made arbitrarily small by taking |¢(0)| small enough. Let
|¢(0)| be small enough so that

]

le(T)] < 55 (1.19)

and so that fort = T _
K| o(T)|re—ste—n-pp < 1, (1.20)

The requirement certainly can be fulfilled since ¢ > 5. From (1.3)
applied for { = T, and (1.17),

le(®)] S Klo(De=" + K [ e-et-g(s)] ds
+ K [y e eolp(s) e ds (1.21)

as long as |e(t)| = 6. From (1.3) fort = 0, K = 1. So long as

afh m
le@)*¢ = 5% (1.22)

it follows from (1.16), using eK < 4n, that
¢
le@let = Klo(D)ler™ + 1 [ elo(s)] ds

where this inequality and the following are valid as long as |¢({)| = & and
(1.22) holds. Applying Prob. 1, Chap. 1, the above inequality yields

ele()| = K|o(T)|eTertt-"
or "
|'|°(£)| = K[q:(T)lg—'h—v)(l-r] (123)

Since (1.19) is satisfied, (1.23) implies that |¢(f)] < 6 for ¢ = 7. From
(1.20) and (1.23) it follows that (1.22) is also satisfied for all ¢ = T and
thus (1.23) holds for all ¢ = 7', proving the theorem.

It is easy to show that (1.6) is valid, with the hypothesis of Theorem
1.3, for all solutions of (1.1) which tend to zero ast— oo,

For the result of Theorem 1.3 it is evident from the proof that it is not
necessary for ein (1.17) to be arbitrarily small. Tt is enough if ¢ < ¢/K.

An important case where Theorem 1.3 applies is the system

=

% = (s’ Z 3"":1...) z + g(s,z) (1.24)

m=()

where the A, are constant matrices, r is a constant and » > —1, and
g(s,x) is a power series in the z; for small |z|, beginning with at least
second-degree terms, with coefficients which are 0(s*) for large s with b
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constant. The change of variables ¢ = s7*1/(r + 1) is made, and (1.24)
assumes the required form for Theorem 1.3 with Ao = A. The system
(1.24) is a generalization to the nonlinear case of the irregular singular
point at infinity. The treatment of (1.24) for complex s, in case g is
analytic, requires little modification.

The results obtained for (1.1) can be easily extended to the case

7’ = Az + f(t,z,z") (1.25)
In Theorem 1.1 it is only necessary to require that f(t,x,w) satisfy
J(t,zw) = o(|z| + [wl) (1.26)

uniformly in ¢ = 0 for small |z| + |w|. The conclusion is that, if [¢(0)]
and |¢'(0)] are small enough, then ¢(t) =0 as {— «. The various
extensions which apply to (1.1) also apply to (1.25).

To prove these statements, « and 8 < 1 are determined so that, with
K and ¢ as in (1.3),

U<’y=a—1-t—_"~a%}’(<a (1.27)

From (1.26) it follows that there exists a 8 > 0 such that for [z + |w| =
l7(tzw)| = alz| + Blwl

Let |¢(0)| and |¢'(0)| be small. Then so long as [¢(t)| and |¢'(¢)| are small,
(1.25) implies

le'| = |4] lel + Ifl £ (4] + a)le| + Bl¢'|
or
|A] + «
=Y el

Thus |¢’(t)| remains small so long as [¢(¢)| is small. From (1.3)
le(®)| = Kle(0)|e™* + K ﬁ, e (a|e(s)| + Ble'(s)]) ds

Using (1.28) and (1.27),

l¢'| = (1.28)

lo®)] = Kle©]e + v [} et=2lo(s)| ds
But this implies
le@®)] = Klp@)|e=—" (¢ = 0)

Thus, if |¢(0)| and |¢’(0)| are small enough, |¢()| and |¢’(¢)| remain small,
and the result is proved.



SEc. 2] ASYMPTOTIC BEHAVIOR OF NONLINEAR SYSTEMS 321

Theorem 1.4, Theorems 1.1, 1.2, and 1.3 all apply equally well in case
the constant matriz A is replaced by a real periodic matriz P(t) and

v = Py (1.29)

has all n characteristic exponents with negative real parts.
Proof. A fundamental matrix solution ® of (1.29) is given by (Theorem
5.1, Chap. 3)

B(t) = Z(D)e®

where Z is a periodic nonsingular matrix and B is a constant matrix with
all its characteristic roots having negative real parts. Let z = Z()w in

' = P()x + f({,x) (1.30)
Then

w' = Bw + Z'(1)f(t,Z()w) (1.31)

so that all the theorems apply to (1.31) and hence also to solutions
of (1.30). Indeed, a real solution ¢ of (1.30) gives r.e to a solution
¥ = Z7'¢ of (1.31) which can be shown to go to zero as in Theorem 1.1
or 1.3. It then follows that ¢ itself goes to zero.

The conditions that P and f be real in (1.30) are used only to get the
local existence of a solution and can be replaced by any other conditions
that assure local existence of solutions, such as f analytic in z, for example.

2. First Variation : Orbital Stability

Let p be a real solution of

2 = F(4z) (' = gi) /2.1)

for 0 = ¢ < =, where F is real, continuous, and has continuous first-
order partial derivatives with respect toz;, 7 = 1, . . . , n, in a region of
(t,x) space which contains the solution curve (¢,p(t)),0 < ¢ < =, [The
requirement that p and F be real can be replaced by any other condition
that assures the local existence of solutions of (2.1). Thus it would suffice
for F to be analytic in = for each &.] Let z = ¢ — p, where ¢ satisfies
(2.1), and let the matrix with columns (aF/dz;)(¢,p(t)) be denoted by
F.(t,p(t)). Then

2 = F(t! 21 P(‘)} . F(!,p(t))
= F:(t,p(1)z + f(t,2) (2.2)

where, by the theorem of the mean,

f(t,2) = o(lz]) (2.3)
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for small |z| uniformly in ¢ over any finite ¢ interval. If f is omitted from
(2.2), there occurs the linear system

y = Fdtp)y (2.4)

which is called the first variation of (2.1) with respect to the solution p(l).
The first variation determines in some cases the nature of the stability of
the solution p of (2.1).

An important case arises when F is periodic in £. Let the solution p be -
periodic of least period w and lgt ' be periodic of period win¢.  [Note that
@ need not be the least period of /. If the smallest period of F in ¢ is
w/m, where m is an integer and m > 1, then p is called a subharmonic
solution of (2.1).] The equation (2.4) now has a periodic coefficient
matrix of period w. The appraisal (2.3) holds uniformly in#,0 < ¢ < .
The equation (2.2) is of the form considered in Theorem 1.4. Indeed, the
following result is an immediate consequence of Theorem 1.4:

Theorem 2.1. If the characteristic exponents associated with the equation
of first variation (2.4) all have negative real parts, then the periodic solution
p of (2.1) 75 asyrsplotically stable as t — =

A much more subtle case arises when the right member of (2.1) does
not depend on &. In this case,

2 = F() @.5)

The system (2.5) arises in classical mechanics as Hamilton’s equations,
for example.

It is assumed that p is a periodic solution of (2.5) of period 7' and that
Fis real and of class C'! in some region of x space which contains the closed
curve z = p(f),0 < ¢ = T. The case where F is analytic (and thus need
not be real) is of special interest and will be mentioned later.

Since p is a solution of (2.5), p'(t) = F(p(t)). On differentiating this
equation, there results the fact that p’(¢) is a solution of the equation of
first variation

¥y = F:(p)y (2.6)

Clearly p’ has period T and thus the characteristic exponent associated
with it as a solution of the linear system (2.6) may be taken as zero. In
this case, the equation (2.6) can have at most n — 1 characteristic expo-
nents with negative real parts and thus the hypothesis of Theorem 2.1
cannot be satisfied. Indeed, the conclusion of Theorem 2.1 does not hold
in this case. To see this, note that ps, where py(t) = p(t + &),is a solution
of (2.5) for any constant 5. By taking 6 small enough, p and p; can be
made arbitrarily closeatt = 0. Nevertheless, it is obvious that |p(t + )
— p()| does not tend to zero as ¢ — w, so that asymptotic stability does
not prevail,



Sge. 2] ASYMPTOTIC BEHAVIOR OF NONLINEAR SYSTEMS 323

It is possible, however, for a type of asymptotic stability to prevail
which is of great importance. The solution z = p() may be regarded as
a closed curve or orbit in = space with ¢ as a parameter. If n — 1 char-
acteristic exponents of (2.6) have negative real parts, then the closed
orbit is asymptotically stable in the sense that any solution of (2.5) which
comes near a point of the orbit tends to the orbit as t — =. This is called
asymptotic orbital stability. Indeed, the following theorem is true:

Theorem 2.2. Let n — 1 characteristic exponents of (2.6) have negative
real parts. Then there exists an € > 0 such that if a solution ¢ of (2.5)
salisfies |o(t) — p(to)| < e for some 1o and by, there exists a constant ¢ such
that L

lim |e(t) — pt+¢) =0 ’ (2.7)
{— =

Thus not only is there asymptotic orbital stability but each solution
near the orbit possesses an asymptotic phase c.

In the proof that follows it will be shown that there is a surface S in
z space which has dimension n — 1 such that all solutions of (2.5) which
start on S at ¢ = 0 tend to the curve z = p(t) as t — «. From this the
result will follow readily.

Proof of Theorem 2.2. It will be assumed that the coordinates have '
been translated and rotated so that p(0) = 0 and p’(0) is a vector with
all components zero except the first. Thus p’(0) is a multiple of the unit

vector e, with components (1, 0,0, . . . , 0).
The equation (2.2) now has the form
2 = F:(p(1)z + f(t,2) (2.8)
Since .
f(t,2) = Fi(z + p(1)) — F=(p(®) *
it follows from the continuity of /- that
fo=001)  (lz[—0) (2.9)

uniformly in £.
Any real fundamental solution W of (2.6) satisfies

I+ T) = ¥@)C

where (' is a real nonsingular matrix. Since p’ is a solution of (2.6) of
period T, one characteristic root of C is one. All other characteristic
roots are less than one in magnitude, since it was assumed that n — 1
characteristic exponents of (2.6) have negative real parts. Thus there
exists a real constant nonsingular matrix M such that

(1,0
M’CM—(O c,
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where C; is a square matrix with n — 1 rows and with all characteristic
roots less than one in magnitude. The matrix ¥ = ¥/ is also a funda-
mental matrix for (2.6) and it satisfies

W+ T) = () (é %l) (2.10)

Let ¢, be the first column of ¥, Then (2.10) implies ¢1(T) = ¢1(0) so
that ¢, has period 7. Because n — 1 characteristic exponents have
negative real parts, there cannot be two independent solutions of (2.6) of
period T. Therefore ¢; = kp’ for some constant k. Thus, with no
restriction, the first column of ¥(0) can be taken as e;, where ¢, is the
vector with the first component one and all other components zero.

The solution matrix ¥ ean be expressed as

() = Z@)e” @.11)
where Z has period T, e™ = M~'CM, so that

0 0
B=(0 Bl)

where B, = log Cy/T, and B, has all its characteristic roots with negative
real parts. Therefore

30 =70 (5 )

Let

Us(ts) = 2() (g e{,ﬂwl) Z-1(s)
and

Ua(t,s) = Z(0) ((1] g) Z-1(s)
Clearly

Ui(t,s) + Ua(t,s) = ¥(O)¥(s) (2.12)

is real and as a function of ¢ for fixed s is a solution of (2.6). Since the
first column of

Z(t) [1] g) (2.13)

is the first column of ¥(¢), this matrix is real and is a solution of (2.6).
The first row of the matrix
N o >
(0 0) Z-Y(s) 2.14)

is the first row of ¥—(s) and hence is real. Since U.(t,s) is the product
of the matrices in (2.13) and (2.14), it follows that Ua(t,s) is a real matrix
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which is a solution of (2.6) for fixed 5. Since by (2.12) Uy + U,is a real
solution, U, is also a solution of (2.6) for fixed s, and is real.

Let the real parts of the characteristic roots of B, all be less than —o,
where ¢ > 0. Then there is a constant K such that

|U1(t,8)] = Ke*\—* (t = s) (2.15)
|Us(t,8)| < K (2.16)

Consider the integral equation
00 = ¥(a + [} Ui(t9)f(5,0(9) ds — [" Uat9)i,06) ds - (2.17)

where a is a constant vector with the first component zero. Fort¢ 2 0, it
follows from (2.11) that there exists a K, such that

[¥(t)a] < Klale (2.18)

It is readily verified, with the use of*(2.12) and the fact that the U; are
solutions of (2.6), that if the integral on the right of (2.17) and its deriva-
tive converge, then 6 is a solution of (2.8). By (2.9) there exists a § such
that

@) - @ S ggle—d (2l <8 (2.19)

It will be shown by successive approximations that if |a| < 8/(2K)),
then (2.17) has a solution 8 = 6(4,a) for ¢ = 0 and

|0(t,a)| = 2K|aled (2.20)

Let 60y (t,a) = 0 and let 8u41y(t,a) be given by replacing 6(t) on the right
of (2.17) by 0u(t,a). Clearly, by (2.18),

IBU)(tla) o e(ol(t:a)l = K;la[e“l“
for¢ = 0. It follows readily that if forz = 0

Kila|e ¥t

|8(,‘)(£,G) = GU—i)(tjﬂ')I = 9i-1

(2.21)

for j < k, then |0 (t,a)| < 2Kila] < 6 forj = k. Using (2.15), (2.16),
and (2.19),

[]
[0w+n(ta) — Bw(ta)| = Kf (e Sa;( |0 (s,0) — Be—1y(s,a)| ds

L0

s .’: 8"%(. |0y (8,8) — Ba—n(s,a)| ds
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Using (2.21) with j = £,

- K ]ﬂ" g —a ¢ o
[0sny (t,a) — Oy (t,a)| = 2,:_, g[e ‘/;gl ds
AL f g los ds:l =< _ﬁ.__glkal ¢—iat
t

which proves (2.21) by induction. TFrom (2.21) it follows that the
sequence {6(,} converges uniformly for 0 < ¢ < « and la] < 6/2K, to a
limit 0 = 0(t,a) which satisfies (2.20). Because of the uniformity of
convergence, 6 is a continuous function of (f,a) for 0 < ¢ < © and |al
small. This and (2.20) in (2.17) show that 6 is a solution of (2.8) which
tends to zero uniformly in a as ¢ — oo,

By (2.11) Z(0) = ¥(0) so that the first column of Z(0) is e;. Putting
t = 01in (2.17) and using the definition of U,

6(0,a) = ¥(0)a — ((’] g) ﬁ TS 0a) ds (2.22)

The integral in (2.22) contributes nothing to the last n — 1 components
of the vector equation. Taking the last n — 1 components of the equa-
tion (2.22) and observing that the cofactor of the first element of the first
column of ¥(0) must be nonvanishing, it follows that the components
0;(0,a), j = 2, . . ., n, are linear combinations of the a,i=2 ...,
n, and conversely. If the initial values 0(0,a) are represented as points
in z space, then 6(0,a) is taken as z in (2.22). Taking the first component
of (2.22), it is seen that the initial values z; = 0:(0,a) satisfy an equation

7+ Z baf LB (@i e i) =0 (2.23)

i=2

where the b; are constants and I is the first component of the integral
on the right of (2.22). By (2.9) and (2.20),

H(as, . . ., a.) = o(la]) (la| — 0) (2.24)
Since the a; are linear homogeneous in 2, = 2, it follows that
i .lq(ﬂz, T ,Gn) == II(ZQ, S T ,Zﬂ)
Thus (2.23) becomes _
21 + E b+ Hzay . . . ,2z2) =0 (2.25)
j=2

where H = o(|zs| + - - - + |z]). The equation (2.25) is the equation
of a surface S in z space from which solutions 0 of (2.8) emanate at ¢ = 0
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which tend to zero as { — =, The surface is only defined near z = 0.
Clearly the tangent plane to S at the origin is given by (2.25) with H
replaced by zero. Since z = z + p(t), it follows because p(0) = 0 that
the initial manifold in @ space, which will also be denoted by S, has the
same equation as in z space; that is,

;o + ) by + H@s, . .oy 20) = 0

j=2

Because p(0) is parallel to the z, axis, it follows that the curve z = p(t)
erosses 8 at z = 0 and is not tangent to S.

If a solution ¢ of (2.5) satisfies |@(t:) — p(to)| < e for some {; and f,,
then because ¥(t) = o(t — to + t1) is also a solution, |[¥(ts) — p(to)| < e
Because p has period 7' and because ¢ and p are both solutions of (2.5), it
follows that |¢(f) — p({)| remains small for |t — to| < 27 if € is small.
Thus the solution y crosses the surface S for some I, where |I — ¢| < 27T.
But the solution ¥ of (2.5), where §(t) = ¥(¢{ + ), which has ¥(0) on S
satisfies ¥(f) — p(t) = 0. Thus ¢(t — to + &1 + ) — p(t) — 0 so that if
¢ =ty — t1 — I, Theorem 2.2 is proved.

If I is analytic in z, then it follows readily from the uniform con-
vergence of [0 ] that the surface S is an analytic surface because 6(0,a)
is analytic in (as, . . . , @.), from which it follows that H is analytic in
(Tay = oty TH):

3. Asymptotic Behavior of a System
Theorem 3.1. In the system

' = Az + f(t,x) + g(t,x) 3.1)
let f and g be continuous for small |x| and t = 0. For small |x| let
g(t,w) — 0 ast— o (3.2)

uniformly in x. Let the characteristic roots of A have negative real parts,
and given any € > 0, let there exist 6 and (. so that |f| = €|x| for x| < & and
t = t.. Then there exists a T such that any solution ¢o(t) — 0 ast— « if
lo(T)| 2s small enough.

Remark: Even though ¢(f) — 0 as {— o« it is not the case that
¢ = 0 is a solution of (3.1) unless ¢(¢,0) = 0. In particular, ¢ may be
independent of =.

Proof of Theorem 3.1. To prove the above result, the constants K and
o of (1.3) are required. Let 6 and 7' be chosen so that for |z| = §

alz|

lft2)] S ezl < sg ¢z D)
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and let 7' be increased if necessary so that for { = 7' there is ana > 0
such that

WGo) S a < T8

=< 7 ) (3.3)

Much as in Theorem 1.1, if ¢ is a solution of (3.1)

le(®)] = Kle(T)|e=*“" + Ke f; e~ (s)| ds
K f'; e |g(s,0(s))| ds  (3.4)

so long as |¢(t)| = 6. Let max |¢(s)| for T = s < { be denoted by M (t).
Then

M) £ Klo(T)| -FE%{EQ i %:
or
MO 5 Zo% Dl + 3.5)

Clearly, since Ka/(oc — Ke) < 8, it follows that if [¢(7")| is small enough
M(t) < sforallt = T.
Let
v = lim sup [¢(t)]

Clearly 0 £ v £ § < o, and there exists a sequence {4},7 = 1,2, . . .,
such that as j — o, {; — «, and |¢(#;)] — v. From (3.4) it follows that

|¢p(!,')| = Kltp(T)!ﬁ"“""n + Ke f:ﬂ e“{""'"frp(s” ds .
+ Ke f“ et |p(s)| ds + K f”'f" e~?ti=0|g(s,(s))| ds
/2 T

7]
+ K [ eetmolg(s,pe)] ds

Given any % > 0, there exists an integer J, such that for all j = J,,
le(t)| > v — n, and |e(t)| < ¥ + nfort = /2. Thus, forj = J,,

Ke(y + 2) Ka
a

y = 1 < Klo(D)|e-on + !%38“"' o e =

)
iisasty
Letting j— «, it follows that y — 9 = (Ke/o)(y 4+ 5); and since
Ke/o < %, v < 35, which implies y = 0.

REmark: If g does not necessarily satisfy (3.2) but does satisfy (3.3),
it follows from (3.5) that ¢ exists and is bounded over (7', =) if |(T)] is
small enough, '
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Theorem 3.1 may be applied to the case of a first-order equation of
classical interest. Let y and s be scalars and let

%% = s"[ay + bs + h(s,y)] 3.9)

for small s = 0 and small y. Let a > 0 and b be constants and let
h(s,y) be a power series in s and y involving terms of the second and higher
powers. (Much less restrictive hypotheses on h suffice, as will be clear
from the proof.) Suppose m > 1 and let (m — 1)s™1 = 1/t. Then
(3.6) becomes

% = —ay + g(t) + f(t,2)

for large ¢ and small y, where g and f (scalars) satisfy the hypotheses for
(3.1) fort > 0. Indeed, g(¢) comes from —bs — h(s,0) while f(¢,y) comes
from —h(s,y) + h(s,0). Thus any solution ¢ of (3.6), with 1p{su)| suffi-
ciently small for some so > 0, satisfies ¢(s) — 0 as s — 0.

The case m = 1 is handled by setting s = e~*. (The case m < 1is not
singular at the origin, the equation being, in fact, Lip (s), and thus the
existence theorem of Prob. 4, Chap. 1, is applicable in this case.)

It is clear that s™ in (3.6) can be replaced by a positive function of
s,p(s), defined, for s > 0 and with

' ds
ﬁm(w (8>0)

but with
Lds
o p(s)

1 ;
The substitution j: ds/p(s) = t can be made here. The term bs in the
numerator of (3.6) can also be replaced by more general terms.

4. Conditional Stability

If some but not all of the characteristic roots of A have negative real
parts, then some but not all of the solutions ¢ of

' = Az + f(I,z) (4.1)

with |¢(0)| small tend to zero as t — @, providing f is suitably restricted.

It will be assumed here that f is continuous in (¢,z) for small |z| and
t = 0; moreover, given any e > 0, there exists a § and 7' such that for
i

|f(t,2) — f(t,2)| S €| — z| (4.2)
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for || = 5, |2 = 6. A sufficient condition for (4.2) is that the matrix f.
exist and that as |z| — 0
f: " 0(1)

uniformly in ¢ = 0. It will be assumed that f(¢,0) = 0. It will also be
assumed that A and f are real-valued but, as in previous results of this
chapter, this requirement can be omitted if f is, for example, analytiec.

Theorem 4.1. Let the above assumptions hold and let ki characteristic
roots ¢ A have negative real par s and n — k have positive real parts. Then
for any large to there exists in x space a real k-dimensional manifold S con-
taining the origin such that any solution ¢ of (4.1) with ¢(to) on the manifold
S satisfies ¢(t) — 0 as t — «. Moreover, there exists an y such that any
solution ¢ near the origin but not on S at t = t, cannot satisfy |e(t)| < »,
t 2 t. If f is analytic in x for each t = 0 and |x| small, then S is an
analytic manifold.t

More precisely, it will be shown that there exists a real nonsingular
constant matrix P such that if y = Pz then there are n — / real con-
tinuous functions ¥; = ¥;(y1, . . . , y:) defined for small |y,|, 7 < k, such
that

Vi =¥y, - - ., u) @=k =1 , 1) (4.3)

define a k-dimensional manifold Sin y space. The manifold S in z space
is obtained from S by applying P! to y so that

4}
1
z=pP1| U
Vi1
¥n
defines S in terms of k curvilinear coordinates yy, . . . , .

If there is a constant ¢ such that for each fixed ¢ = ¢, f is analytic in z
for x| < ¢, where z is a vector with complex components, then it will be
shown that the y; are analytic in (yy, . . . , ).

Proof of Theorem 4.1. There exists a real nonsingular constant matrix

P such that
SoaWl(B1350: e
PAPl = (ﬂ B») = 131

where B, is a matrix of k rows and columns having all its characteristic
roots with negative real parts and B, is a matrix of n — k rows and
columns having all its characteristic roots with positive real parts.
Letting y = Pz, (4.1) becomes

Yy = By +g(ty) (4.9)
t See also Prob. 11,
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where g = Pf(t,P~'y). Thus from (4.2) it follows that, given any e,
there exist a § and T, not necessarily equal to those of (4.2), such that

|g(t:g) 7 g(tsy)l = f]g = yl (4°5)
for|j| =6, lyl <6,t=T. Let
e 0
v = (% 5) (4.6)
and
0 0
U!(t) = (0 em,) (47]
Then e = U,(t) + U,(t) and
U; = BU; G=12) (4.8)

Let @ > 0 be chosen so that the real parts of the characteristic roots of
B, are less than —a. Then there exist positive constants K and ¢ such
that

|Us(®)| < Ke~t (¢ 2 0) (4.9)
|Us(t)| = Ket (t =0) (4.10)

Consider the integral equation

0ba) = Us(t — toa + [ Us(t — 9)g(s,0(5,0)) ds
= [T U - g0 ds @z (a11)

where a is a constant vector. Let ein (4.5) be chosen so that 2¢K /o < %
and let |a| satisfy 2K|a| < 8. Using successive approximations to solve
(4.11) with 60 (t,a) = 0, it follows readily that

Klale—a(l-h)

[0y (t,a) — O (t,a)| = ol

which leads to the existence of a solution 6 of (4.11) which satisfies
|0(¢,a)| < 2K|a|e—at—w (4.12)

From (4.11) it is clear that the last n — k components of the vector a do

not enter into the solution and may be taken as zero, That 0 is a solution

of (4.4) is immediate for small |a|, since by (4.10) the integral in (4.11)

converges. Itisalso clear from theuniform convergence of the successive

approximations that 6 is continuous in (t,a) for ¢ = ¢, and |a| small.
From (4.11) it follows that the first k¥ components of 6;(¢o,a) are

Bl‘(ula) = aj (j T 1: v 0 ey k)
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and the later combonent.s are given by

0(toa) = = ([.” Ustts — a)gle0ea) ds), G=k+1,...,n)
where ( ); denotes the jth component. If the functions y; are defined by

Wiay . ya) = = (f7 Ustto — a)g(s,0(s,0)) ds),

forj =k 41, ... ,mn, then clearly the initial values y; = 6,(t,,a) satisfy
the equations

yl=‘h'(yh---’yk) (j=k+ls"-’n)

in y space, which define a manifold S in y space. The condition (4.5)
implies the uniqueness of solutions of (4.4) which start near the origin.
Therefore, if p is any solution of (4.4) with |p(ts)| small and p(t) on §,
then p(t) = 6(t,a) for some a, where 8 is the solution of (4.11) satisfying
6(t0,8) = p(to), and p(t) >0 ast— oo, -

It will be shown next that no solution p of (4.4) with |p(to)| small and
p(to) not on § can satisfy |[p(!)] S 8 for ¢ = ¢, where § is the same as
below (4.5). Indeed, suppose |p(t)| < 6 for ¢ = t. Then it follows
readily from (4.4) that

p() = ev-3p(es) + [ eu-02(s,p(s)) da

Using (4.6) and (4.7), this can be written as

PO = Ut = 199 + Us = o+ [T~ alo(ap(e) d
- ﬁ " Us(t — 9)g(s,p(s)) ds  (4.13)

where ¢ is the constant vector

¢ =, Ustto = ulop(e) ds + p(t

'and the integral above converges because of (4.10) and the fact that by
(4.5) |g(s,p(8))] is bounded for |p(s)| = 5 and s = ¢o.

Clearly all the terms on the right of (4.13) are bounded ag t — «
except possibly the term Ut — &)c. Unless all the components ¢,
J > k, of ¢ vanish, it will be shown that this term is unbounded as t —» .
Each component of Us(t — t)c is the sum of polynomials multiplied by
exponential terms of increasing magnitude. Thus by Prob. 26, Chap. 3,
each component is unbounded unless it vanishes identically. By (4.7)
all components can vanish only if all ¢; are zero forj > k. Since the left
side of (4.13) is bounded as ¢ — o, it follows that the right side must be
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bounded and thus that all components ¢;, § > k, of ¢ vanish so that »
satisfies (4.11).

It will now be shown that, if 6 is a solution of (4.11) satisfying |6(¢,a)| =
s for ¢ = o, then it is unique. This will prove that if p is any solution of
(4.4) for which |p(t)] < 8, ¢ = ¢, then p(l) is 6(¢,a) for some a, where 6 is
the solution of (4.11) constructed above by successive approximations.
Thus p(t) is on S, contradicting the fact that p(fo) is not on S.

To prove the uniqueness of solutions of (4.11), let 8 and 8 be solutions
for the same a and let |6(t,a)] S & and |§(¢,a)| < 6. Then (4.11) yields,
with (4.5),

|8t,0) — 6(t,0)| S Kee ™ [ e|8(s,0) — 0(s,0)| ds

+ Kee*t ﬁ ® e*|6(s,a) — 0(s,a)| ds
If sup |4(t,e) — 6(t,a)] = M (t 2 &), then M = 2KeM /o so that, since
~¢ < a/2K, it follows that M = 0, proving the uniqueness.

In case f is analytic in z for each ¢ 2 0 and |z| small, it follows in the
usual way as a consequence of the uniform convergence of the successive
approximations procedure for (4.11) that 8 is analytic in a for fixed ¢ and
therefore that S is an analytic manifold. This completes the proof of
Theorem 4.1.

In the case where f has continuous first derivatives with respect to the
z;, the manifold S is of class C?, as the following theorem shows.

Theorem 4.2. The manifold S of Theorem 4.1 is differentiable if 6f/dx;
exisis and is conlinuous for ¢ = 1, . . . , n, and l is sufficiently large. To
be more precise, the funclions ¢y, j = k + 1, . . . , n, are of class C* for
| sufficiently small, 1 £ k. Moreover, o¥;/3ys =0 at 1= - - - =
=0

Proof. The proof is equivalent to proving that (86/0a;)(le,a), ¢ = 1,
. « « , k, exist and are continuous for small |a].

Let & be a scalar and j be fixed and let a 4 A be used to denote a + Re;.
Let p(t) = |6(t,a + B) — 68(t,@)|]. Then, using (4.5) in (4.11), it follows
for small |i| that

p(t) = KIh| + Ke [ e~9p(s) da + Ke [," e==0p(s) ds

Let M = sup p(¢) for ¢t = &,. Then the above yields

M s Kinl + KM

Since 2Ke/o < 3}, it follows that M < 2K|h| or that |p(t)] S 2K|h|. Let
g(t,a,h) = [6(t,a + k) ~ 6(t,a)]/h. Then the above result shows that

' ll s 2K
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From (4.11) follows

atbah) = Ut = te; + [ Us(t = 9lgu(s,0(5,0)a(s,0,) + Al de
~ 7 Ut - 9lauts, 06N a(eah) + Alds (414

where g, is the matrix (dg;/dy;) and
A= %[g(s,ﬂ(s,a + 1) — g(s,0(s,a))] — g,(s,0(s,a))q(s,a,h)

Given any n > 0, || can be taken so small that by the theorem of the
mean and the continuity of g, for small s and by (4.5) and (4.12) for
large s it follows that

JA| s WIQ(saa:h)l
and since |g| £ 2K
A] < 2Ky (4.15)

If |a| is small, it follows from (4.5) and (4.12) that
lgv(8,0(8,0))| = en (4.16)
Let ¢ be small enough so that 2Ken/oc < 4. Let

V(ba) = Ut — to)es + [ Us(t — 0)gu(s,0(8,0))¥(5,3) ds
— |7 Ust = 9)gu(s,0(s,0)9(s5,0) ds (4.17)

That a continuous solution ¢ of the linear system (4.17) exists follows
from the use of successive approximations. Subtracting (4.17) from
(4.14), denoting sup |g — ¢| fort = ¢ by m(h), it follows, using (4.16), that

m(h) S Kewm(h) 2 + 2K 2

where the last term results from the use of (4.15). Since 2Ken/o < 4, it
follows that

m(h) < &f—ﬁ'

Since n — 0 as h — 0, it follows that m(k) = 0 as h— 0. Thus g—yas
h— 0. This means that 96/da; exists and is the solution ¥ of (4.17).
From (4.12) and (4.11) it follows that

n

[6;(to,@)| = 2K’{a{e[ -1 dg < 2K:r|'-'1|e
te

F=k+1
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Since ¢ can be made arbitrarily small by taking |a| small enough, it follows
that under the hypothesis of Theorem 4.1 (3¢;/9y)(, . . ., 0) =0,
J > k. This is, of course, also true under the stricter hypothesis of
Theorem 4.2. This completes the proof of Theorem 4.2.

In the next theorem, (4.2) can be replaced by a weaker condition which
is (4.2) with £ = 0. In that case, solutions of (4.1) need no longer be
unique.

Theorem 4.8. Let ¢ be a solution of (4.1) and let

lim sup '8 lel N <o (4.18)

- o

Given any e > 0, let there exist a & > 0 and T such that
|f(t!x)| s ‘le

for |x| < 6andt = T. Letk of the characteristic roots M, £ = 1, . . . , k,
of A have negative real paris and the remaining n — k roots have nonnegative
real parts. Let RN = and let py S pa S * - S ux <0. Then
b = uy for somej < k or else o(t) = 0.

Proof. Suppose pn < b < pmys for some m S k — 1. Let B; have
the characteristic roots A;, . . . , \» and let B; have the remainingn — m
characteristic roots with real parts all exceeding un.. Much as in the
proof of Theorem 4.1, there is a P such that

(B, 0
PAP-1=B—(0 Bs)

Let @ > 0 and ¢ > 0 be chosen so that

o < —a =0 < —a+0 < pap ' (4.19)
and also

—a—40<b< —a (4.20)

With B, and B; defined as above, let U, and U, be given by (4.6) and
(4.7). Then (4.8) holds but, instead of (4.9) and (4.10),

U] < Ke-t=+n (1 2 0) (4.21)
|Us(t)] S Ke~=—» (1 50) (4.22)

Setting y = Pz, the analogue of (4.4) is obtained and, corresponding to
the solution ¢ of (4.1), there is Pp = ¢ of the analogue of (4.4). Choose
¢ 50 that 2Ke/e < }. This fixes 5. The variation-of-constants formula
shows that for any fixed & 2 T there are vectors ¢V and ¢/®, ¢® having
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its last n — m components all zero and ¢® its first m, such that
#) = Ur(t = 6)e + Us(t — t)e® + [*Us(t — 5)g(s,5(s)) ds
~ 7 Uit = g ds (123

An easy appraisal of the terms in (4.23) shows that all terms except
Ua(t — t))e® are of exponential growth at most e~ while the term
Us(t — &) is of growth at least e~ Thus the equation (4.23) cannot
hold unless ¢ = Q.

Using (4.23) and recalling that ¢® = 0 and denoting [¢™| by ¢,

[@(3” =< cKe(ata)(i—t) + Ke L‘ e-—(a+e}(l—sl|é(s” ds

+ Ke [ " eteo6-0|g(e)| ds  (4.24)

Let
max e*¢="|o(s)| = M(t)
=l

Then by (4.20) M(t) exists and is monotone nonincreasing. For each ¢
there exists a { = ¢ such that

M) = e=|(0)| = M(D)
Thus (4.24) yields, with ¢ = 7,
M) = cKe*@+ 4 Ke Ll e M(s) ds + M()Ke f;. e—ol— dg

Since .M(s) = ﬂ.'f(t) = ﬁf(f) for ¢ =3 = L this gi\res
t
M(t) < cKeot-t .Ke/ e~ M (s) ds + QKZMG)
i

Since 2Ke/o < 3,
M(0)e" S 2Kes + 2Ke [ e (s) s
Using the inequality in Prob. 1, Chap. 1,
Af(t)evl =< 2cKertigrEeti—t)
Since 2Ke < 4o, this gives

M(l) < 2cKetett-n)
or
[@(t)] = 2cKe(=ti) =

which by (4.18) implies b S — (a + 40) contrary to (4.20). This proves
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then that b < um, and thus contradicts the assumption gn < b < pmi1.
Therefore, if gy < b < m, then b = p; for some j < k.
In case b < 0, it follows easily that

bsm <0 (4.25)

and in case b < p it follows easily that ¢ = 0.

The following generalization of Theorem 4.1 is proved with only minor
changes.

Theorem 4.4. Let the real parts of the characteristic roois \i of A be
denoted by u; and let p; S piyr. Suppose m 18 such that

o < pmp1 <0 (4.26)

and otherwise let the hypothesis of Theorem 4.1 hold. Then for any large
to there exists a real m-dimensional open manifold S., containing the origin
such that any solution ¢ of (4.1) with o(ts) on the manifold S. salisfies

lim sup ‘—°3—|ti’-(‘—)| S ua <0 4.27)

Moreover, there exists an n > 0 such that any solution satisfying |e(t)] < 7
for t = to but not on S at t = 1o salisfies

lim sup log 1@l 5 4oy > i (4.28)

If for each i, 8f/dx; exists and is continuous in (t,z) for t = to and |z| small,
then the analogue of Theorem 4.2 is true for Sm.  If for eacht, f 18 analylic in
1 for small |z}, then S, 18 an analytic surface.

Proof. The proof of Theorem 4.1 is modified by defining B, and B; as
in the proof of Theorem 4.3. It is also assumed that (4.19) holds. With
U, and U, defined as before, (4.21) and (4.22) also hold. The equation
(4.11) is now considered with U, and U, defined as above and with the
vector a having its last n — m components all zero. As before, successive
approximations lead easily to a solution 6 = 6(3,6). The analogue of
(4.12) is

[6(t,0)] S 2K|gle—a¢—t (4.29)

where |a| is small enough so that 2Kla| < 8. The existence of S, and
consequently S,, follows as before.

Since —a < pim41, it follows from Theorem 4.3 that (4.29) implies (4.27)
for 6. A solution of (4.4) starting from S, at ¢ = fo coincides with 6(t,a)
for some choice of a by the uniqueness theorem for (4.4). This completes
the proof of (4.27).

Suppose a solution ¢ of (4.1) is not on Sa at ¢t = to and that (4.28) does
not hold. Then by Theorem 4.8, (4.27) must hold and therefore the solu-
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tion § = Py of (4.4) must satisfy (4.23) with ¢ = 0 as proved below
(4.23). Let{;in (4.23) be taken asf,. Thus & is a solution of the integral
equation (4.11), (with U,, U, and a modified as above). Since |p(t)| <
7, 7 can be chosen small enough so that

2K|a(t)| < 8 and le@)| < & (t = tp)

Let the first components of a in (4.11) be those of 3({). Suppose now
the integral equation (4.11) has two solutions 6 and 4 for the same a with
both (6| and |d] less than éfor¢ = ¢. Then subtracting the two equations
and using (4.21) and (4.22),

[6 — e < Ke j:: e =90 — flex ds + Ke ]:., e 0| — fle* ds

Letting sup [# — fle**, s = t), be denoted by M, there follows M <
2KeM /o which implies M = 0 because 2Ke/o < 1. Thus @(¢) coincides
with 6(t,a) and therefore lies on S,, at ¢ = ¢, This proves (4.28).

The proof of the analogue of Theorem 4.2 is immediate. The remarks
on analyticity follow in the same way as at the end of the proof of Theorem
4.1.

Theorem 4.5. Lel the hypothesis of Theorem 4.3 be satisfied and let there
be a A > 0 such that for small |z|

flt,x) = 0(|z|*2) (4.30)

uniformly int 2 0. By Theorem 4.3 there exist integers p and q, 1 = p =
q = k such that

Mo <INy =My =+ + + = Me=Db < RNhosa

There exists a 6 > 0 and a solution ¥ of x' = Az,

WO = ) Qe (4.31)

i=p

where the Q;(t) are column vectors not all zero which are polynomials in ,
such that

e(t) = Y(t) + 0(e®¥) (4.32)

as t— «. Conversely, if (4.2) holds, then corresponding to any solution
Y of ¢’ = Ax which is of the form (4.31) there is a solution ¢ of (4.1) which
salisfies (4.32). Furthermore, if p = 1, then ¢ is uniquely determined by .

Thus (4.32) shows that solutions of (4.1) which go to zero as¢— ¢ are
equal to solutions of ' = Az to within an error term of exponentially
smaller order.
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Proof of Theorem 4.5, There exists a real nonsingular matrix P such

that
B, 0 0
PAP!'=10 B; 0 |]=1RB

0 0 B,

where B, has characteristic roots with real parts less than b, B, has char-
acteristic roots with real parts equal to b, and B, has characteristic roots
with real parts greater than b.

Let z = Pz. Then (4.1) becomes

2’ = Bz 4+ g(t,2) (4.33)
where g(t,2) = Pf(t,P~'2). By (4.30)
g(t,z) = 0(|z|*+2) (4.34)

Let 3 = Pe. Then ¢ is a solution of (4.33) and

lim sup!o—g—li"?(L)I =b =y, (4.35)

{— o

where u, = f\,. By (4.34) and (4.35) there exists an y > 0 such that, for
large ¢ R

g(t,#(t)) = O(e®) (4.36)

e 0 0
Uty =1 0 0 0
0 00

: 0 0 0O
Ust) =[0 e> 0
0 0 O

and similarly for Us(f) so that ¢® = U, 4+ U, + U,, and moreover
U; = BU; (G=1223

Let

It follows from the definitions of Bj;, B;, and B; that there exists a 3,
0 <é<m such that

Ust) = 0(e®®) (&> 0) (4.37)
Uit) = 0(e®™) (<0, =2, 3) (4.38)

Because ¢ is a solution of (4.33), it follows readily that

5(t) = o9y + [ -93(s,5(s)) ds
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where ¢, is the constant e=##3(f,). This can be written as
@(f) “e Ul(i)Cn + Uz(ﬁ)c + Jl + Jz + Ja (439)

where ¢ is a constant vector and
J1 = Ui(t)e
!
o= [ U — 99(s,6() ds

Jo= = [T U = 8) + Ut — 5) ] gls,3() ds

]

From (4.36) and (4.37) it follows easily that
Ja = 0(e®91)
as t— «, and from (4.36) and (4.38)
Ja = 0(e1)
The term Jy on the right of (4.39) is either identically zero or else

log |/,
t

lim sup > b

==

Because of the size of ali other terms in (4.39), the above is impossible so
that J, is identically zero. Thus by (4.37) and the appraisals for J,
and J;

é(t) = Ua(t)c + 0(e®¥9) (4.40)

as{— . Since ¢ = P~!3, the result (4.32) follows. That not all the
Q;(t) can be zero is a consequence of Theorem 4.3,

Given any ¢, then Py(t) is Uai(t)c for some choice of the vector c.
There is a solution of (4.39), with J; = 0, just as in the proof of the
existence of a solution of (4.11), and (4.40) follows much as before. This
proves that there is at least one ¢ corresponding to a given ¥

Finally, in case p = 1, then U, = 0. Any solution of (4.1) satisfying
(4.32) must satisfy the integral equation (4.39) with J, = 0. The impos-
sibility of the integral equation having two distinct solutions now follows,
much as in the uniqueness proof at the end of Theorem 4.4.

b. Behavior of Solutions off the Stable Manifold

In this section it is necessary to introduce a real canonical form of the
real matrix A. A real nonsingular matrix P exists so that

PAP! = B
where
' Dy 0 + we ()
O DL a0

B = (6.1)

0 0 LSS, Dm

L}
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the D; being real square matrices and all other elements of B being zero.
Each D; is either of the form

N 00 0
U 0N R0
0 N w0 (5.2)
0 HOIL O it o N

where v may be taken as any real number not zero, or else D; is of the form

S 0 (13 Sl 0
IS 0 st 0
0 "(Ez Sj he t- 0 (5'3)
0 0 0 © vl S

where S; is real and
Sii= @5 _ﬁ:)
3 j ay
and F; is the unit matrix of two rows and columns.
The matrix (5.2) may contain a single row and column. It is asso-
ciated, of course, with the characteristic root \;, while (5.3) is associated

with the conjugate characteristic roots o; + #8;. In the simplest case,
(5.3) is S; itself,

Clearly
ety () S |
tD3 T
otf = 0 (’ =hH 0 (5.4)
0 0 » el chn
For the form (5.2)
1 D= a5t see A ()
L S R
etDi = ghit -(T?—?‘- pasral 0 (5.9)
. vt 1
while for (5.3)
e!Si 0 0 vy 0
7!6'31’ etSi 0 . s 0
2
&Pl = (vt) eisi !t gtsi . .. (5.6\

21
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where
- 185 — qay (€08 Bt — sin Byt
s : (E‘in Bit cos Gt (5.7

The proof of (5.6) is an easy consequence of

SJ 0 L 0 0 0 0 0

0 SJ' SRS 0 Ez 0 0 0

I): = . . o ey r + ‘Y 0 E2 0 0
(NS o, o R SRS SR

and the fact that the two matrices above commute, together with the fact
that

0 0 0 0\ * 0 0 0
E, 0 0 0 (1)) 0
0 E, (1§ )| E, 0 0
: 5 5 A 0 B, 0
0 0 Ba:0 . : s bW i
0 0 kel -

ete.

A case of great interest occurs when f(,z) of (4.1) becomes a function of
z only. In this case the k-dimensional manifold of initial values shown
to exist in Theorem 4.1 is clearly invariant under ¢ and, moreover, any
point on the manifold and close enbugh to the origin remains on the
manifold as ¢ increases. In case f is a function of z only, the system is
called autonomous and the solutions may be regarded as curves in z space
with ¢ as a parameter. Through each point of z space there passes a
unique solution curve. In the autonomous case, by changing the sign of
¢, it follows under the hypothesis of Theorem 4.1 that there exists an
(n — k)-dimensional manifold containing the origin such that any point
on the manifold near the origin tends to the origin as { — — « and any
solution starting off this manifold cannot remain arbitrarily close to the
origin as { — — «. This result can be made more precise. This will be
shown for the autonomous case but can be generalized also to the case
where f depends on { as well as z.

It will be assumed that the transformation y = Pz has been made and
that the system is in the form

y' = By + g(y) (5.8)

- 2)

and Bisin the form (5.1). The k characteristic roots of B, have negative

where
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real parts and the n — k roots of B; have positive real parts. The con-
stant v will be specified later.
It is convenient to set

y=ymn + Yo

where y( is a vector with its first & components equal to those of ¥ and
the last n — k all zero and y(s) = ¥ — ¥ The stable manifold intro-
duced in the proof of Theorem 4.1 may be given by the vector equation

Yo = ¥(ym) : " (6.9)

since it does not depend on #,. Note that the first & components of ¥ are
gzero. Consider now any solution ¢ of (5.8) with |p(0)| small. Let
¢ = o + o and let

£2) = e (t) — ¥lem(t) (5.10)

Theorem B6.1. Let f of (4.1) be a function of = only and let the hypotheses
of Theorems 4.1 and 4.2 be satisfied. Let |¢(0)| be small, and suppose ¢ does
not start on the manifold (5.9) at t = 0. Then so long as |¢(t)| remains
small, the Euclidean length of (t), as given by (5.10), is an exponentially

. tncreasing funclion of L.

This theorem shows that the distance of the solution ¢(¢) from the
stable manifold, if taken normal to y¢s = 0, is an exponentially increasing
function of .

Proof of Theorem 5.1. Clearly !

E@) = em(t) — bulem®)em(®)

where ¢, is the n-by-n matrix with columns 8¢/dy;, Note that the last
n — kcolumns of y, are zero. If g = gy + gea, it follows from (5.8) that

e = Beoa + 9 (e) G=12
Thus

¢ = Bow + ga(e) — ¥wlew)(Beo + gmle)) (6.11)

For solutions on the stable manifold, ¢ is identically zero. For such a
solution 8, (5.11) holds with ¢ = 0 and gives

0 = By (6ny) + g (8cny + ¥(0cwy))
— ¥(8n)[Bbayy + gay(8n + ¥(8))]  (6.12)

Because the above holds for all solutions 8 on the manifold and since
there is a solution through each point of the manifold, it follows that it is
an identity and thus holds if 6y is replaced by ywy, with {yq| small.



34 ORDINARY DIFFERENTIAL EQUATIONS [CHaPr. 18

Using ¢ = o -+ ¢ in (5.11) and subtracting (5.12), in which 8 is
replaced by ¢y, from (5.11) it follows that

¢ = Bt + gayley + ew) — galem + ¥lew))
— Ylem) (@ (e + o) — gmlem + ¥lew))) (5.13)

- If §* is the vranspose of £, then J = £*¢is the square of the Euclidean
length of £ and clearly J’ = ¢§*§ + ¥t Sihce o = & + Ylew), it
follows that

lga(em + em) — gale +¥lew)) S il G =1,2)
for J¢] = 8, much asin (4.5). Using this in (5.13),
J' =B+ BY)+ J, (5.14)

il & KeJ (5.15)

for some constant K. Because the first k& components of ¢ and ¢* are
zero, only the matrices B; and Bf enter in the evaluation of ¢*(B 4 B*)¢.
The elements of B; + Bf on the main diagonal are all positive and real
and exceed some number 2d. The other nonvanishing elements of
Bs + B} are at most 2(n ~-k=1) constants 4. Thus from (5.14) and
(6.15)

where

J'g(2d—2(n—k—l)-y—Ke)J

Thus, if v is taken small by proper choice of P, and ¢ is taken small by 8

proper choice of §, then
Jzdl

which proves the result so long as |¢(f)] < 8.
Corollary to Theorem: 6.1. Under the hypothesis of Theorem 5.1 there
éxists an (n — k)-dimensional manifold
vy = x(W)
of eolutions stable for L —» — @, By revérsing t, Theorem 5.1 leads to the
Jact that, for ¢ a solution as before, the vector
ea(t) — x(em(?)

Ms a Euclidean length which 18 decreasing as t increases go long as |o(t)!
remains small.

PROBLEMS

L. Let all solutions of the linear system with constant coefficients y’ = Ay be
bounded for ¢ = 0, that is, let |et4) S M, ¢ = O, for some constant M. Let f be of
class C and let there exist a constant a and a g(f) such that |f(¢,z)| S g()lz| for
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]x| £ a and .= 0 and let 'Lu g(t) dt < =. Show that there exists a constant M,

such that any solution ¢ of the system z' = Az + f({,x) satisfies Ip(t)l < M\|e(0)] if
le(@)] S o/M.\.
Hint: Show that [e(t)] S Me(0)] exp [M [ 9(s) ds]

2. In Prob. 1 it is clear that ¢4 = U,(t) 4 Uj(t), where U,(#) contains elements
which are sums of exponential terms e®*if for real )\; and |U (¢)| S Ky, =@ <1< w,
and |Us(t)] S Kset, 0 St < = for some ¢ > 0, where K, and K, are constants.
Show that corresponding to the solution ¢ there is a constant vector p such that
) —U(t)p—0ast— e,

HinT: Show that there is a p such that

o0 = e4p + [ Ust = Wlope) de = [[° U1 — oftaelen) do

8. Another method of dealing with (3.6) and, indeed, for getting further results is
based on the variation-of-constants formula

1gt-= 1 -n
o(8) = cE(s) — bE(s) L Ty 4o E® |, Lg((’;))i- do
wlllere E(s) = e~ ™""/(w=9 for m > 1 and a similar E(s) = s°form = 1. The above
is used with ¢ a small constant, and a successive-approximation procedureis developed
based on setting ¢.—i(¢) in place of ¢(o) on the right and ¢q(s) in place of ¢{s) on the
left. The term ¢o(s) = 0. Show that the process converges for small cand ¢ > 0and
leads to the existence of ¢(s) and to the fact that ¢(s) —» 0 as s — +0."

4. Show that the resulta of Secs. 3 and 4 apply to the case where the constant matrix
A ia replaced by a real periodic matrix P of pericd w.

‘HinT: Set 2 = Z(t)y, where Z(t)et2 is a solution of 2’ = P(f)x and where B and the
pericdic matrix Z(¢) can be taken as real for real P(#). An alternative approach is to ~
take Z(t)¢'? which follows by assigning it the initial value E and, if neceasary, break
¢'® up into several parts, for example, U,(t) 4+ Us(t), where each part iz determined
by the rate of growth of the exponential terms assigned it. 8ince Ze¢*8 ig real, it follows
that ZU, and ZU; are real. Thus in the variation-of-constants formula appears

Vilte) = ZWWQU (L — 7)Z7(r) (G=12)
6. Consider the real system
z; = ax; + filzr,xh) t=12)

witha; < a3 < 0. Letf;be of class C! and let f; and its first-order partial derivatives

vanish at (0,0). Using Theorem 4.4, show that, except for translations of ¢, the

system has exactly one solution ¢ = (p1,¢1) such that .

(21 + e
, 4

lim sup log = a,

—ro
Moreover, show by use of the extension of Theorem 4.2 for the case of Theorem 4.4
that this solution lies on a curve of class Ct z; = y(z:) with ¢'(0) = 0, and that yisan
analytio function if the f; are analytic.

8. Show by Theorem 4.5 that if f; = 0[(|z:| + |2s|)**4], A > 0, then for each choice
of the constant ¢ the differential equation of Prob. 5 has a solution ¢ = (pi;¢4) satisfy-
ing @i(t) = 0(etes=3") and p3(t) = cesr! 4 O(etos—*) for gome 5 > 0 agt—» «»,  Since
the case ¢ = 0 must be that discussed in Prob. §, show that ail other solotions must



346 ORDINARY DIFFERENTIAL EQUATIONS [Cuap, 13

satisfy the equations above. Show therefore that for all solutions other than that of
Prob. 5

im 20 _
et e 0

Express the results of Probs. 5 and 6 in terms of the geometric configuration of the
solutions as curves in the (z1,2:) plane in the neighborhood of the origin.

7. Using Theorems 4.1 and 4.2, show that the real system considered in Prob. 5 but
with @: > 0 > a, has, except for translations in {, exactly one solution tending to
zero a8 { — w and that this solution lies on a curve of class €1 zs = y(z,), ¥'(0) = 0.
Show that for t — — = a similar situation prevails with z, and z interchanging their
roles. This is the case of a saddle point. State the significance of Sec. 5 for this case,
Show that y is an analytic function if the f; are analytic.

8. Consider the real system

:r; = —az; -} Az, +f1(31,$s)

I; = —fr; — az; +f!(?-:,:€:)

where « > 0 and the f; are of class €' and vanish with their first-order partial deriva-
tives at the origin. Let f; = 0[(|z)| + |z3])**4] for some A > 0, Using Theorem 4.5,
show that there is a § > 0 such that corresponding to any choice of the constants ¢
and v there is a unique solution ¢ = (¢y,¢:), where

ei(t) = ce™ cos (Bt + v) + 0(e=(@+)
ea(t) = e~ sin (Bt + ) + 0(e~@+4n)

ast— . For g # 0 thisis the case of spirals, and for 8 = 0, a case of a node at the
origin.
9. In Prob. 8 show that if = tan™" (¢s/¢1) and if p = (¢! + 21, then

‘En; [w(f) +£—log n(t)] =y -i-glogc

Show that, except for translations in ¢, the constant on the right determines the solu-
tion of Prob. 8 uniquely. Note that the case 8 = 0is also valid. Show that lim can
be omitted if f; = f; = 0.

10. Consider the real system

x; = —Az; + fi(z1,22)
Z, = x1 — M3 + fa(z1,73)

where A > 0 and the f; are ng in Prob. 8. Show that for any choice of the constants
¢y and cs there is & unique solution ¢ = (¢1,%2), where

@i(l) = cre™ + 0(e= O+
ea(t) = crte™ + cre™ + 0(e~PHx)

with & > 0. Conversely, for any solution show there are ¢; and cs for which the
nbove holds. Show that

’ ¢z, log o _c loge
;I_}.":a ¥1 1 A ) c1 + A

and that, except for translations in ¢, the constants on the right side above determines
the solution uniquely. Show that lim can be omitted if f, = f; = 0.
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11, Let the hypothesis of Theorem 4.1 be modified so that instead of n — k char-
aateristic roots of A having positive real parts they now have nonnegative real parts.
Show that the coneclusion of Theorem 4.1 remains valid with the following change:
There is no solution ¢ not on 8 at ¢ = ¢, satisfying |e(t)| < n and

lim sup log le(] tlw(‘)l <0
= @

Hint: |Us| S Ke~taton ¢ > 0, |[Uy| S Ke=4, t < 0.

12, Let F = F(t,x) be of period T in . Let 2’ = F((,x), (2.1), have a periodic solu-
tion p of period T and let ¥ and F; be of class C in a region of (¢,z) space which contains
,p(t),0 St < «». Let ¢ = o(i,a) be the solution of (2.1) with »(0,a) = p(0) + a,
where a is a vector with n components. Show that the variational equation (2.4) has
the matrix ¢.(t,0) as a fundamental solution.

13, Assume F and p are as in Prob. 12. Let ¢ = h(z) be a one-to-one transforma-
tion with nonvanishing Jacobian from z to £ space of a region of z space containing the
closed curve z = p({t). Let 2 = g(¢) and let & and g be of class C3% Then, corre-
sponding to (2.1), there is the equation

* £ = ha(g(ENF (4,9(E))

which has the periodic solution A(p(t)). Show that h(wx(t,a)) is a solution of (*) for
small |a|. Show that A:(¢(l,a))ea(l,a) for @ = 0 is a fundamental solution of the
variational equation of (*) with respect to the solution A(p(t)). Show that the char-
acteristic exponents are the same for the transformed case as for the original case.

HinT: Since A (p(1)) ¢a(t,0) is a fundamental matrix, the characteristic exponents are
obtained from the logarithm of the matrix

@2 (0,045 (p(0))h:(p(T))ee(T,0)

which is the matrix ¢'(0,0)¢.(T,0).
14. Let the function V be of class C! in z space for small {z|. Let V(z) > 0 for
z # 0and V(0) = 0. Show that, if |¢| is small, solutions of

z' = f(,1) z(0) = ¢

tend to zero as t — = if there is a constant ¥ > 0 such that

n
av -
' 18—:” (@) filtyx) = —kV(2)
i=
for ¢ Z 0 and small |z|.
HinT: Let ¢ be a solution of 2’ = f(t,z). Let F(t) = V(e(t)). ThendF/dt £ -—-kF.



CHAPTER 14

PERTURBATION OF SYSTEMS HAVING A
PERIODIC SOLUTION

1. Nonautonomous Systems
The behavior of the system

T = g(t:’;) -+ ph(t,:t,,u) (1.1)

for small |4, based on the behavior for y = 0, is of considerable impor-
tance. The system (1.1) is a special case of

z = f(t,z,u) (1.2)

In (1.2) ¢ may be a real vector. The general dependence of solutions on
a parameter x has been considered in Sec. 7, Chap. 1. Here the case of
special importance is considered where (1.2) with x = 0 has a real
periodic solution p of period 7. It is assumed that f is periodic in ¢ of
period 7. (Note that T need not be the least period of either p or of f.
Also note that f need not depend on ¢ at all.)

In Theorem 7.5, Chap. 1, where the existence of the partial derivatives
d¢/8&: of a solution ¢ with respect to initial values & is proved, it is
assumed that f, is continuous, as well as f.. However, by using the
method of Theorem 7.2, Chap, 1, the existence of ¢ follows if only f. is
assumed to be continuous. This will be done here, although in practice
Ju usually exists, and indeed f is usually analytic in (z, p).

It is assumed that f is real and continuous in (¢,z,u) when ({,z) is in
some domain V of (t,z) space containing the curve (¢,p(¢)) and when |y
is small. Tt is also assumed that f has first-order partial derivatives with
respect to the components z; of x which are continuous in (f,2,u).

The first variation as defined in Sec. 2, Chap. 13, will occur in this
chapter.

Theorem 1.1. If f satisfies the conditions above and if the first variation
of (1.2) for p = 0 with respect to the solution p has no solution of period T,
then for small |u| the equation (1.2) has a solution ¢ = q(t,u), periodic in t
of period T, continuous in (t,u), and with q(t,0) = p(t). There is only one

such solution for each p.
348
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The first variation is the linear system with periodic coefficients

Y = 2 a% &p1),0)y; = f(4,p(1),0)y (1.3)

j=1

where the matrix f.(¢,p(#),0) has period 7. The condition that (1.3) have
no solution of period T is equivalent to there being no characteristic
exponent of the linear system (1.3) which is an integral multiple of
2wt/ T.

Proof of Theorem 1.1. The solution of (1.2) which assumes at { = 0
the initial value p(0) + «, where |«| is small, will be denoted by

¢ = p(ta,u)

It follows from the uniqueness of ¢ that for this solution to be periodic of
period T it is necessary and sufficient that ¢(7T,a,u) = ¢(0,a,x) or that

o(T\ap) — p(0) —a =0

For p = ), this system has as a solution @ = 0. If the Jacobian of this
system taken with respect to the components of « is nonvanishing at
p =0, @ =0, then it follows that the system has a unique solution
a = a(y) in the neighborhood of p = 0, « = 0, where « is continuous in
g and @(0) = 0. The Jacobian is the determinant of the matrix

Qatx(q‘!o’o) —F (1-4)

If the Jacobian does not vanish, then the existence of a periodic solution
g of (1.2) is established for small |u| by setting o(f,a(u),n) = q(tu).
Moreover, in the neighborhood of x = p(f), this solution is uniquely
determined since «(g) is unique. It is an important fact that the
Jacobian depends only on f(¢,z,0) since g = 0in (1.4). Thus in the case
(1.1) the Jacobian does not depend on h.

The Jacobian is closely related to the first variation (1.3) of (1.2) with
respect to the solution p. In fact, if the equation

@ (L) = f(to(l,a,u),n)

is differentiated with respect to the components «; of «, there results at
p=0a=10

’19;(!:0!0) = f:(¢,¢(1,0,0),0)¢a(¢,0,0)
or, since ¢(1,0,0) = p(t),

rp:,(!,ﬂ,o) = fz(ta?:’(t) !ﬂ)wﬂ(tsojo)
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Thus the matrix ¥ given by
¥(t) = ¢a(t,0,0) (1.5)

is a solution matrix of (1.3), and since ¢.(0,0,0) = E it is a fundamental
matrix. Hence the multipliers associated with (1.3) are the roots of

det (¥(T) — AE) = 0 (1.6)

But by (1.5), (¥(T) — E) is precisely the matrix (1.4), the determinant of
which is the Jacobian. Thus the Jacobian vanishes if and only if (1.6)
has X =1 as a root. A necessary and sufficient condition for (1.3) to
have a solution of period T is precisely that X = 1 be a root of (1.6), so
that the theorem is established.

If the characteristic exponents of (1.3) all have negative real parts, it
is the case that the solution p of (1.2) for u = 0 is asymptotically stable.
The following result holds.

Theorem 1.2. If the real parts of the characteristic exponenis of (1.3),
the first variation of (1.2) for u = 0 with respect to p, are all negative, then
(1.3) can have no periodic solution, so that the conclusion of Theorem 1.1 is
valid. Moreover, in this case the periodic solution q = q(t,x) of (1.2) is
asymptotically stable providing |u| is small.

Proof.* The first part of the theorem is obvious. To prove the
stability of ¢, we observe that the first variation in this case is the system
with periodic coefficients

Y = L(Lq(bu),m)y (1.7)

and where (1.7) becomes (1.3) for 4 = 0. Thus, if ¥ = W¥(¢,x) is a funda-
mental solution of (1.7) with ¥(0,u) = E, then the multipliers of (1.7)
are the characteristic roots of the matrix ¥(7,4). Since ¥ is continuous
in  for small [u], it follows that, since the characteristic roots of W¥(7',0)
are less than one in magnitude, the same is true for ¥(7'u) for small |u|.
The proof of Theorem 1.2 now follows by using Theorem 2.1, Chap. 13.

For each ¢ let f satisfy the further condition of being analytic in (z,x)
for (t,x) in V and |u| small. Then, from the existence Theorem 8.4,
Chap. 1, it follows that ¢ = ¢(¢,a,u) is analytic in « and g for small | e
and |u[ over 0 = ¢t = T. The nonvanishing of the Jacobian of (1.4) now
assures not only the existence and uniqueness of @ = «(u) but also that
« is analytic in u.  Thus ¢ is analytic in u for small || and for any ¢.

For simplicity it will now be assumed that x has only one component
and thus need not be treated as a vector. Because of analyticity, ¢ has
for each { a power-series representation in g with coefficients which are
continuous in ¢ since ¢ is continuous in (4,x). The power series is of the
form

q(tu) = pO(t) + up®(t) + p2p () + - - - (1.8)
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where p@(¢) = p(t) and because of the periodicity of ¢ it follows that p@
is also periodic of period T for all j.
Using (1.8) in the differential equation (1.2), there results

W Ow = f(talbm)

j=0

Since the right side is analytic in p for small |u|, it can be expanded in
powers of u. Equating powers of g, there results, with pt®(t) = p(¢f), the
sequence

B2 0 = f6000,0)

i{g (t) 2 f,(t,p‘"’(t)ro)?’m(z) —|— % (f,,p(m(f,),ﬂ) (1.9)

dpt®
Pr O = LAp®©,0p00) + FO©)

where F'® is determined by p!® and p, and in general F is determined
by p@,7=0,1,...,m— 1. Thus the procedure leads to a formal
process for obtaining each p® in terms of the p@, 7 < k, by solving a
linear system of differential equations.

Since the existence of ¢ as an analytic function of x has been demon-
strated, it follows that the system (1.9) has the desired periodic p®,
7 = 1, as a solution. It is also the case that there is no other solution of
period T possible for (1.9); this will now be proved by induction, Since
p@(t) = p, which is given as part of the hypothesis, there is no question
about uniqueness here. Suppose then that the next equation of (1.9) has
two different solutions p® and $ of period 7. Then the difference
p — $M is clearly a solution of the first-variation equation (1.3). But
by hypothesis this equation is assumed to have no periodic solution of
period 7. Thus ptV = pM,

Suppose now that p@ is determined for all j < m for some m. Then

dp™
i~ (O = f:p@1),0)p™ (1) + F™(1) (1.10)

where "™ is uniquely determined by »‘?, j < m. Thus for the same
reason as in m = 1 it follows that p‘™ is uniquely determined by (1.10)
and the fact that it is periodic of period 7. This proves the statement
that (1.9) has one and only one system of periodic solutions p®, 7 = 1, of
period 7' and that these may be obtained by solving the sequence of
linear differential equations (1.9) forj =1,2, . . . .
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2. Autonomous Systems

An example of the system to be treated here is

z' = f(@) + pg(a,p) (2.1)

where |g| is small. A more general formulation in which x may be a
vector is

z' = f(x,n) (2.2)

The system (2.2) is real for real = and g. Here it is assumed that, for
u =0, (2.2) has a real periodic solution p of period 7',. This solution,
z = p(t), may be regarded as a closed curve in z space. Let V be a
domain in x space containing the curve x = p(f). Let f be of class C' in
(z,n) for z in V and |u| small. In fact, it suffices for f. to exist and be
continuous for z in V and |u| small.

The first variation of (2.2) for p = 0 with respect to the solution p is

y' = f(p(0),0)y (2.3)

The system (2.3) has a periodic solution of period 7', namely p’. Thus
in the case (2.2) the hypothesis of Theorem 1.1 cannot be satisfied and
a different result is required.

Let ¥ be the tundamental matrix for (2.3) which satisfies ¥(0) = E.
The fact that (2.3) has a solution of period 7' is equivalent to the matrix
W¥(T,) having one as a characteristic root.

Theorem 2.1. If J satisfies the conditions stated above and if (2.3) has
one as a simple characteristic root of the matriz (1), then for small |u| the
equation (2.2) has a solution q = q(t,u) of period T(u). Both qand T are
continuous in p for small |u|, ¢(t,0) = p(t) and T(0) = To. The determi-
nation of q(t,u) und T(u) 1s unique.

In order to motivate the proot presented below the following geometric
discussion is given. By rotating and translating the « space the tangent
vector p’(0) can be made parallel to the z, axis and the first component
of p(0), p:(0), can be made zero. Thus p,(0) = 0 and p;(0) = 0,7 = 2,

.., n. A solution of (2.2) for |u| small which is near some point of
z = p(t) will, because of the continuity of the solution with respect to
initial valiue and g, stay near z = p(t) over a range of ¢ of 2T,. Since p
must cross the plane z; = 0, in this range of ¢, so does the solution of
(2.2). Beecause (2.2) does not involve t explicitly, the solution curve in
x space is uniquely determined by the coordinates of the point where
it crosses ; = 0. Thus for any fixed u it takes only n — 1 parameters to
determine a solution of (2.2) as a curve in x space,

Proof of Theorem 2.1. As above, it is assumed that p’(0) is parallel to
the z, axis. Consider, for small ||, the solution of (2.2) which assumes
att = 0 the value p(0) + «, where |«| is small and &y = 0. This solution
is designated by ¢ = ¢(t.a,u). For this solution to be periodic of period
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T = To + 7, where |r| is small, it is necessary and sufficient that
¢(Tot+7,0,p) —p0) —a=0 (24
The equation (2.4) has at g = 0 the solution @ =0, r = 0. If the
Jacobian with respect to (r, a3, . . . , @) does not vanish at (a = 0,
r =0, g = 0), then (2.4) has a unique solution a = a(y), r = 7(u) for

small |u|, ||, and |r|. Because (d¢/0r)(T0,0,0) = p'(Te) = p’(0), the
Jacobian is the determinant of the matrix

dpy d1 ., 9o
dt (0) 5;2‘ adn
0 d¢: _ 4 ... O
Oas dayp (2.5)
9¢n .. 9¢n _
0 aa, aa,.

where d¢;/da; is evaluated at (7,0,0). If the Jacobian does not vanish,
then « and r are uniquely determined as continuous functions of x for
small |u]. Also «(0) =0, 7(0) =0. Thus ¢(t,a(r),n) = g(t,n) is
periodic of period T, 4+ (). Because p}(0) 5 0, the nonvanishing of
the Jacobian is equivalent to the nonvanishing of the cofactor of dp,/d¢
in (2.5).

If &, is not held fixed, then the fundamental solution ¥ is given by the
matrix ¢.(1,0,0) with elements d¢;/da;. Thus the equation for the char-
acteristic roots of the matrix ¥(T) is given by

det (¢e(T,0,0) — AE) = 0 | (2.6)

Since (3¢;/8a1)(0,0,0) = Oforj = 2 and since (d¢/da1)(¢,0,0) is a solution
of (2.3), it follows that (8¢/da)(t,0,0) is some multiple of p’ and is there-
fore periodic of period T so that (9¢;/8e;)(T6,0,0) =0, j 2 2. Thus
only the first element in the first column of the matrix on the left side of
(2.6) is not zero. Since (3¢1/9a:1)(0,0,0) = 1 = (3¢1/0a1)(T,0,0), it
follows that the cofactor of dp,/d¢ in (2.5) can vanish only if A = 1is a
multiple root of (2.6)." This proves the theorem.

Because p’ is a solution of the first-variation equation (2.3), it follows
that one is a characteristic root of ¥(7T,), as already stated. If the
remaining n — 1 characteristic roots are all less than one in magnitude,
then the solution p has asymptotic orbital stability and the following
result holds.

Theorem 2.2. Ifn — 1 of the characteristic roots associated with the first
varialion, (2.3), of (2.2) with p = 0 are less than one tn magnitude, then
clearty Theorem 2.1 must hold. Moreover, the periodic solution of (2.2),
q = q(t,n), has asymplotic orbital stability for small |ul.

Proof. The proof is very similar to that of Theorem 1.2. Briefly, if
¥ = ¥(t,u) is the solution of ¥’ = f.(q(t,u),s)y with ¥(0,s) = E, then the



b4 ORDINARY DIFFERENTIAL EQUATIONS [Cuap, 14

matrix ¥(T (u),x) is continuous for small x and for g = 0, ¥(T,0) = ¥(T).
Thus, because ¥(To) has n — 1 characteristic roots less than one in
magnitude, the same must be true of ¥(7'(u),x) by continuity considera-
tions, and this proves the theorem.

In case f in (2.2) is analytic in (z,x) for z in V and |u| small, it follows
from Theorem 8.1, Chap. 1, that p is analytic in ¢; and then an easy modi-
fication of the existence theorem 8.4, Chap. 1, implies that

¢ = o(t,a,u)

is analytic in (t,e,u) for small |a| and || over any fixed finite range of t.
The nonvanishing of the Jacobian [the determinant of (2.5)] implies that
« and 7 are analytic in g. Thus ¢ is analytic in (¢,x) and T is analytic in
p for small 1;.11

For simplicity it will be assumed from here on that has only one
component, that is, u need no longer be regarded as a vector. Because
of the analyticity of ¢ and T, it follows that if £ = sT'(x) then

’i’(sT(M):#) == f(S,#)
is analytic in x for small || and periodic in s of period 1. Thus
r(s) = rO(s) + ur(s) + wr®() + + - - @7)
T(u) = To+pTi+p*Te+ - * (2.8)

where r®(s) has period 1 since r does. Letting p — 0, r©@(s) = p(sTh).
The system (2.2) becomes
dz

7 = T(Wi(zp)
Since r is a solution, it follows that for small |u|

dr(® drd dr®
%(3)4-#-5; (s) +u*~—;3—(s)+ Helps

= (To + pT1 + - - )f(r(s,u),n)

Expanding the right member in powers of x yields

&2 = Tof(r,0)

({
&0 P00 + T0,0) + To 3o (40,0)

: (2.9)
drim

T = Tofo(r@,0)r™ + Tuf(r®,0) + F®
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where F» depends only on r®,j < m, and Tj,j < m. Aside from (2.9),
it is also the case that 11(0,x) = p1(0). Thusr{©) =0,/ =1,2, .. ..

The expressions for r(s,u) and T'(u) given by (2.7) and (2.8) are then
solutions of the system (2.9). It will be shown that the system (2.9)
determines @ and T; uniquely. Thus if the system (2.9) is solved for
P and Ty, j = 1, subject to the conditions r{’(0) = 0 and r® periodic of
period 1, then the result is r and 7. The system provides then a con-
venient means for obtaining r and 7.

Since 1 and T, are given, the proof begins with (" and T';. Let there
be two solutions to (2.9) for m = 1, (#,T)), and (#»,T). Denote the
difference r®¥ — 7 by h and Ty — T, by aTs. Then h is periodic of
period 1 and /(0) = 0. Subtracting the equations for the two cases
shows that h is a solution of

dw _ o
4= - P(s)w + aTof (r9(s),0) (2.10)
where P(s) = Tof=(r®(s),0) is the matrix coefficient of the variational
equation for (2.2) with ¢ replaced by sT. Indeed, the variational equa-
tion is
@

g P(s)y (2.11)

and a periodic solution of (2.11) is ¢ = dr®/ds. Moreover, by
hypothesis the characteristic root 1 associated with the periodic solution
is a simple root. The other n — 1 roots are all different from one.
Using the first equation of (2.9), (2.10) becomes

% = P(s)w + a¢tV(s) (2.12)

with solution w = h(s). Since ¥V is a solution of (2.11), it is readily
verified that if

Vv(s) = h(s) — asy‘V(s) (2.13)
then ¢ is a solution of (2.11).
If the solutions of (2.11) are in canonical form ¢, where Y is already
defined and

Y1) = AP (0) + dp1(0) =2 ..,n)

then da = 0, since A\; = 1 is a simple characteristic root. Using

v = Z Fap®
i=1
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the periodicity of A yields

Y k= DYOO) + ) kdd0(0) +ap0(@) =0 (214)

i=2 i=3

Since the solutions are linearly independent, this implies that a = 0.
Thus (2.13) vields h = ¢. By the periodicity of A this means ¢ must be
kg™ for some constant k. Since hi(0) = 0 and ¢/P(0) # 0, it follows
that k = 0. Thus h(s) = 0, and the uniqueness of »® and 7', is proved.
The uniqueness of 7 and T'y, etc., proceeds in identical fashion, and the
proof follows by induction.

3. Perturbation of a Linear System with a Periodic Solution in the
Nonautonomous Case

Consider the second-order differential equation
w4 u = pf(tu,u,p) 3.1

where f is periodic in ¢ of period 2r. The first variation for the case
u =0 is simply @ 4+ u = 0 which has two independent solutions of
period 2x. Thus, if (3.1) is rewritten as a system, neither Theorem 1.1
nor 2.1 (in case f does not contain ¢ explicitly) can apply, since the relevant
Jacobians vanish. Nevertheless, the equation (3.1) is of considerable
importance.

A sketch of a procedure for treating (3.1) will be given and then a
general system will be treated. A minor simplification can be made by
translating ¢ in (3.1) by v, where the constant will be specified later.
Thus (3.1) becomes

W u = pf(t + v, u, 0, p) (3.2)
Let a be a constant and consider the solution w(t) = ¢(t,a,7,s) of (3.2)
which satisfies ¢(0) = a, ¢'(0) = 0. Clearly (3.2) implies

P '
o(t) =acost+ p j; sin (t — 8) f(s + v, ¢(s), ¢'(s), u) ds  (3.3)
In order that ¢ be periodic of period 2x in ¢, it is necessary and sufficient
for ¢(27) = a, ¢'(2r) = 0, or for
' Hilaqyw) =0 (G =1,2) (3.4)
where

ar e
Hi(a,y,u) = ]; sin 8 f(s + v, ¢(s,a,7,1), ¢'(8,0,7,1), 1) ds

and similarly for H, but with sin s replaced by cos «.
Suppose that the equations (3.4) have for u = 0 a solution @ = a, and
y = ~0 80 that H,(ao,v0,0) = 0,7 = 1, 2. Then if the Jacobian
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d(Hq,H,)
W (@o,v0,0) #= 0 (3.5)

it follows that @ and v are uniquely determined as continuous functions
of pnear p = 0. Because the Jacobian is evaluated at g = 0, the explicit
form of H, and H, for use in (3.5) is found from the use of (3.3) with
p =0 Thus

Hi(@7,0) = [["sinaf(s + v, a coss, —asins, 0)ds  (3.6)

and similarly for Hq(a,v,0).
If f({,u, 1) = au + Bu® + c cost, where «, B, and ¢ are constants, then
a and v become functions of «, 8, and c as well as of p. It is easily seen
that H, = 0 with the present choice of f yields yo = 0, and the equation
H,; = 0 becomes
3p
aa+—4—a"+c={] (3.7)
which is then the equation that determines ao. It is easily verified that
(3.5) is now equivalent to the condition that a, be a simple root of (3.7).
The equation (3.1) is a special case of the system

g’ = Az + pf(t,z,n) (3.8)

where A is a constant real matrix with N7 as a characteristic root for some
integer N, and f is real and has period 27 in . (Note that 27 need not be
the least period of f.) The unperturbed system with u = 0,

' = Az (3.9)

has then a solution of period 2 so that Theorem 1.1 does not apply. Let
o™ j=1,...,k be solutions of (3.9) of period 2. Then for any
constants ¢; and «;

k

Y et + ) (3.10)

i=1

is also a periodic solution of (3.9). It isnot obvious for what ¢; and ~;, if
any, (3.8) may have a periodic solution which tends to (3.10) as x — 0.
Here sufficient conditions will be given for (3.8) to have a periodic
solution.

Setting z = Py, where P is a real nonsingular constant matrix, the
system (3.8) can be replaced by a system for y where the coeflicient
matrix B = P~'AP, when x = 0, is in real canonical form. Moreover,
this new system satisfies the same assumption as (3.8). It will therefore
be assumed that A already has the following real canonical form
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f "1 1
“12
.‘1;;
A= B, (3.11)
Vif:
Bm
¢
where the elements not shown are zeros. Each 4;,j =1, ...,k isa
matrix of «; (e; even) rows and columns of the form

S 02 --- 0; 0.

E, 8 - 02 0
Aj = 02 Ez g 02 02 (3.12}

0, 0, -+ I, S;

where 0; is the 2-by-2 zero matrix and

W70 SNSRI
S"‘"(N,- 0) Ez‘(o 1)

N; being a positive integer. (In the following, E) will always denote the
k-dimensional unit matrix, 0 < k < n,and £ = E,.) A matrix 4; may
have only two rows and columns, in which case it is S;. Tach matrix B;
has g; rows and columns, j = 1, . . . , m, and is of the form

0 0 ++= 00
18D 0110
Bi= | 0 1 'm0l 0 (3.13)
O (= i S TRET )
where B; may have only one row and column, in which case B; consists
k m
of the single element 0. The matrix C hasy = n — Z aj — z §; rows
i=1 Jm1

and columns, and has no characteristic roots of the form ¢N for any
integer N, including N = 0. It is useful to notice that €' need not be in
canonical form,
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A fundamental matrix for (3.9) is given by

P
8"’"'
e:.u
e = eth (3.14)
cl'Ba
ciBu
. cﬂ:)
Here
ot8y 02 ety 02
te!si e s 2 g
e = . : AR . (3_15)
{pi—1gtSi {pi—2ptsi o
etdi
(= 1)! (p; — 2)!
where «; = 2p;, and
1s; — [ COS Njt — sin N
% (sin Nit cos Nt )
while
1
t 1
el = . : (3 17)
A= B2

B -0 B —2)

Concerning the matrix e, the fact that the characteristic roots of ' are
not of the form N, for N an integer, implies that

det (e2¢ — E,) # 0 (3.18)

Suppose now that (3.8) has a unique solution ¢ = ¢(f,x,c), where
¢(0,1,¢) = ¢, which exists for ¢ in some interval containing 0 = ¢ = 2r,
and is continuous in g for g sufficiently near g = 0. From (3.8), using
the variation-of-constants formula,

o(tnc) = ettc + p E e (8,0(s,u,0) 1) ds (3.19)

It follows directly from (3.19), and uniqueness, that a necessary and
sufficient condition for ¢ to be periodic of period 2 is that
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(et = Bo + i [ e0r4f(s,p(ome ) ds =0 (3.20)

This represents a system of n equations for the n unknowns consisting
of the components of ¢. In order to state sufficient conditions for the
existence of ¢, the structure of (3.20) is analyzed in more detail. If there
exists a function ¢ = ¢,, continuous in x for small ||, such that o(t,u,c,)
has period 2r, then from (3.20), letting x — 0,

(e*™t — E)eq = (3.21)

Thus (3.21) is a necessary condition for the existence of such a periodic
solution ¢ = ¢(t,u,c,). Note that from (3.19) we have @(1,0,c0) = et4cy,
and (3.21) just expresses the necessary and sufficient condition that
¢(£,0,c0) be a periodic solution of (3.9) with period 2r.

From (3.15) and (3.16) we have

03 02 Ty Aol 02
21'rEn 0. hss 0y
erdi — E” = . . =i wl s (322)
2r)Pi-1E,  (2x)Pi—%E, 0
(-1l (p —2)! !
and from (3.17)
0 0 0
2r 0 Sy 10
et B — [y = . : SR (3.23)
(2mr)fi—1 (2m)Pi—2 0

B =D (6 —2)!

From (3.22), (3.23), and (3.18) it is now clear that (3.21) implies that all
components co; of ¢o are zero, except possibly those with index 7 corre-
sponding to the last two rows of any A; or to the last row of any B;.
These indices are all those with the following forms

t=oa — 1, oy
i=o+ar— 1, a1 + ay

Vmapch o o=l v oo
t=ai+ s+ ah
t=ai+ c+at it P

(3.24)

t=ar+ - +a+p+ - +8.
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The indices ¢ having the forms given in (3.24) will be called exceptional
indices, and the corresponding components of any vector will be called
ezcepiional componenis. They are 2k + m in number, and the exceptional
components cy of co are not determined by (3.21).

To proceed further, consider the components of the vector on the left
in (3.20) with indices

j=1,2

j=a 1, +2

j=aat+ - taatlaat - taat+2
j=ant+ - tat+l
j=ait+ - t+a+ht1

ooooooooooooooooooooooooooo

j=at+ Fa+ph+ - Fhaat1

These 2k + m indices will be called singular indices, and the correspond-
ing components of a vector singular components. From (3.22) and (3.23)
it is evident that the singular components of (e**4 — E)c, are all zero.
Thus the singular components of the integral in (3.20) must vanish for all
u sufficiently near 4 = 0. This gives

[ j;z: e(ir-a)dj(a,go(s,p,c),p). ds] ;= 0 (3.26)

for any j in the set (3.25), where [ ]; represents the jth component. In
particular, if u = 0, then ¢(s,0,c0) = €*4co, and thus for the singular
indices

(3.25)

Hy(eo) = [ [} er=v4f(a,erte00) ds ], = 0 3.2
If the periadicity of e*sco and f are used, then (3.27) can be replaced by
Hico) = [ Azt e*Af(—8,e7*4¢y,0) ds],. =0

For 4 = 0, all components of ¢, other than the exceptional ones are zero.
Thus (3.27) is a system of 2k + m equations in 2k 4+ m unknowns,
namely, the components co; of co with ¢ exceptional. If ¢ = o(t,n,c,) is
to exist as a periodic solution, it is necessary for (3.27) to have a solution.
Note that (3.27) can be written out explicitly without solving the nonlinear
system, (3.8).

Suppose that the system (3.27) has a solution for the exceptional com-
ponents of ¢y, 8ay cu = a;. Denoting by a the vector with components
a; for the exceptional indices and zero otherwise, it follows that

p(t) = ‘P(‘)O'a)
is a periodic solution of (3.9) with period 2a.
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To prove the existence of a periodic solution of (3.8) for || small, the
following assumptions will be needed:

(i) A is a real constant matrix with the canonical form (3.11) through
(3.13), with at least one characteristic root of the form ¢N, where N
is an integer;

(it)  u,f are real, and f has period 2r in ¢;

(iii) a vector a exists which satisfies (3.21) and (3.27) for ¢y = a;

(iv) f, f- are continuous in (t,z,x) for (4,z) in a vicinity V containing
the periodic solution p(t) = e“a of (3.9),0 < ¢ < 2r, inits interior,
and for |u| < §, for some & > 0;f

(v)  the Jacobian of the (2k + m) H; of (3.27), j singular, with respect
to the (2k + m) co, ¢ exceptional, does not vanish for Coi = a;.

Theorem 3.1. Under the assumptions (i) through (v) above, there exists
a unique periodic solution q = q(t,u) of (3.8), of period 2= in t. which is
continuous in (t,u) for all ¢, and |u| sufficiently small, and which for u = 0
reduces to q(t,0) = p(l).

Remark: If assumption (v) does not hold, then a more detailed analysis
is required which will not be undertaken here.

Proof of Theorem 3.1. Tt will be shown that, for sufficiently small |,
(3.20) has a unique solution ¢ = ¢, continuous in y, and with ¢, = a.
From this it follows at once that q(t,u) = o(t,u,e,) is the desired solution.
The existence and uniqueness of a solution ¢(f,u,c) of (3.8) for |g| and
[c — co| sufficiently small and with ¢(0,4,¢) = ¢ follow directly from the
assumption (iv).

To show the existence of ¢ = ¢,, the system of equations (3.20) is
replaced by the systems Si(u,¢) and Sa(u,c), where S;(u,c) consists of the
components of (3.20) with nonsingular indices, while S.(y,c) consists of
the equations (3.26) with singular indices. As discussed after (3.23),
S1(0,¢) is a homogeneous linear system for the nonexceptional components
¢; of ¢, and since the determinant A of the coefficients is nonvanishing, the
only solution is co; = 0, 7 nonexceptional. S.(0,c) is just the system of
Eqs. (3.27) with ¢ = ¢o, and by assumption this has a solution cy; = a;,
i exceptional. The first partial derivatives of the left side of S, ‘u,c) with
respect to the exceptional components of ¢ are all zero at y = 0, ¢ = a.
Thus the over-all Jacobian D(u,c) of the left sides of Si1(u,c) and Sa(g,c)
with respect to the components of ¢, when evaluated at u = 0, ¢ = a, is
the Jacobian Di(u,c) of the left side of Si(u,c) with respect to the non-
exceptional components of ¢, evaluated at p = 0, ¢ = a, multiplied by the
Jacobian Ds(u,c) of the left side of (3.26) with respect to the exceptional
components of ¢, evaluated at 4 = 0, ¢ = a. But D,(0,a) is just the
determinant A which is not zero, and D,(0,a) is just the Jacobian in

 8ee the second paragraph of Sce. 1.
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‘assumption (v), which is not zero. Therefore, by the implicit-function
theorem, the combined system Si(s,c), Sa(u,c) has a unique solution
¢ = c, for sufficiently small |u|, which is continuous in g, and such that
¢o = a. This completes the proof.

The situation as regards analytic perturbations f is as follows:

Theorem 3.2. Suppose the assumptions (i) through (v) are satisfied, and
in addition let f be an analytic function of (z,x) for (t,x) in V and |u| < 8.
Then q is analytic in p for sufficiently small |u|.

Proof. For (p,c) sufficiently close to (0,co), the solution ¢ = o(t,u,c) of
(3.8) is analytic in u and ¢ by the existence theorem for such systems.
Also, ¢, is analytic in g by the implicit-function theorem for analytic
systems. Thus g(t,u) = ¢(t,u,c,) is analytic in p.

From the practical point of view, it is important to know (in the
analytic case) whether the periodic coefficients (with period 2x) ¢ (f) in
the convergent power-series expansion

-

atw) = ) wg®(t) (3.28)

=0

can be calculated recursively. Asis to be expected, this is indeed true.
Let the jth component of ¢ be denoted by ¢;”. Placing (3.28) into (3.8)
and comparing coefficients of powers of y, there results

() = e,
dgtV

1 (1) = Ag() + Sta®O.0),

dg® = o) (0) n of o) o

12 () = 4g00) + L600 O.0600) + 32 a0, . . ., (329)
dg®?

(1) = Aq) + L(LgO 0,005 +FOO), - . .

where F@ depends only on ¢ for0 = ! = j — 2. That there exist solu-
tions ¢® to the system of differeatial equations (3.29) follows from the
existence of ¢. It will be shown that each equation in (3.29) has at most
one solution of period 2r and thus the formal process of solving for the
q® recursively yieldsg. Clearly ¢ is determined by the second equation
in (3.29) only to within a periodic solution of the homogeneous equation
(3.9). However, the requirement that the next equation of (3.29) have
a periodic solution ¢ determines ¢ uniquely. For suppose this is not
the case. Then there are two distinet solutions for ¢ each of which in
the next equation allows for the solution of a periodic ¢¥. Denoting the
differences between the two ¢™’s by ¢ and the two ¢®'s by ¢®, it
follows, by subtracting the two equations for the ¢”’s from each other
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and the two for the ¢®’s, that

n
U © = 400 (3.30)
% t) = AGO() + fu(t,e*a, 0)7 () (3.31)

If ¢®(0) = a®, then from (3.31),
1O = e4a® + [ e-4.(5,6a,03 (o) ds
Since §® has period 2, this yields
(¢4 — E)a® + [ etr04s.(s,64a,00(s) ds = 0

Taking the components of the above with singular indices, j, it follows
that

[L2l’ e{!x—;]df:(s,elda’o)q(n(8) ds]j =10 (3_32)
Clearly ¢, being a periodic solution of (3.30), is of the form
G (s) = ea®

where the only nonvanishing components @;" of a® are those with excep-
tional indices. Now (3.32) is linear homogeneous in these a;”, and the
determinant of the coefficients of the left side of (3.32) with respect to the
" is precisely the Jacobian of the (2k + m) H; of Theorem 3.1 which is
assumed not to vanish. Hence @ = 0, and thus §*V(f) = 0. Precisely
the same argument shows that if the ¢V are uniquely determined for
1 < j, where j > 1, then ¢@+V is also uniquely determined, thus yielding
the result by induction.

Theorem 3.3. If the assumptions of Theorem 3.2 hold, then the analytic
solution q of (3.8) can be obtained recursively by solving the system (3.29) for
the periodic coefficients g, of period 2w, in the convergent power-series
expansion (3.28). Each ¢¥,i Z 1, is determined uniquely by the ith equa-
tion in (3.29) and the fact that the (i + 1)st equation has a periodic solution.

4. Perturbation of an Autonomous System with a Vanishing Jacobian

Here the real system

a' = Az + pf(z,p) (4.1)

will be considered, where 4 is a real constant matrix, || is small, and f is
real continuous in (z,u) for small x| and z in a region V to be described
later. In fact, it will be assumed that f: is continuous in (z,u) for z
in V and |u| small. With g = 0, the system (4.1) becomes

= Az (4.2)
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It is assumed that (4.2) has a periodic solution of period 2r. Note that
or need not be its least period. It is assumed to be the case that e*4 does
not have one as a simple characteristic root. This last statement is
equivalent to the vanishing of the relevant Jacobian (2.5).

As in Sec. 3, it can be assumed with no restriction that A is in real
canonical form given by formulas (3.11) through (3.13). Thus (3.14)
through (3.18) also hold. As before, C need not be in canonical form.

Let (4.1) have a unique solution ¢ = ¢(f,x,c), where o(0,n,c) = ¢,
which exists for ¢ in some finite interval and is continuous in u for x near
p = 0. Then, as before,

oltuc) = e + [ =4f(p(asc)u) do “3)

Necessary and sufficient for ¢ to be periodic of period 2r + 7 is that

25 +r

(e — E)c + p A

e(z:%o)dj(‘p(s,u,c);#) ds =0

or
} 2v-tr ‘
(e — E)e + etva(erd — E)o+u [ eOmsm-4f(p(ame)u) do =0 (44)

If ¢ = o(t,u,c) is periodic of period 2r + 7 and if ¢ = ¢, and r = 7(i)
are continuous for small enough |u|, and 7(0) = 0, then it follows, since
@(8,0,c0) = e'4co, that

(et*4 — E)oo = 0 @8

As in Sec. 3, this implies that only the components of ¢, with exceptional
indices can be different from zero. (Clearly 7 and ¢ need, in fact, only
exist for small x4 > 0 with limiting values as u — 0+.)

It is assumed here that in the canonical form for A there appears
at:least one matrix of the type 4;. The exceptional indices associated
with A, are a; — 1 and «;. The component of e*4co with index a; is
(Co)ay—1 8in N1t + (co)a, cos Nyt, and hence, for any specific choice of
(¢o)a—1 and (co)m, this sinusoid vanishes for some value of ¢ and has
there a nonvanishing first derivative; if not, both (co)ai—1 8nd (co)a,
vanish. By continuity, the component ¢, of ¢(t,u,c,) must cross the ¢
axis at some ¢ also. The system (4.1) is invariant under translations in
t. In what follows it will be assumed that ¢a, vanishes at £ = 0. This
means that

‘o;n(o,")cﬂ) = (cil)ﬂl =0

fbr sufficiently small |u|, including u = 0. . Thus the problem becomes
one in obtaining sufficient -conditions for the existence of ¢ = ¢, and
r = v(u) with (c,)e, = O satisfying (4.4).
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As in Sec. 3, the components of (e*** — E)c, with singular indices are
all zero. Thus (4.4) shows for the components with these indices

[em (e' = )c,. (’;) + /; i eAT=04f( (s 1 c.) 1) dsl =0 (46)

Letting 4 — 0 in (4.6), the term mvolvmg the integral tends to a limit,
and hence the other term approaches a limit. Since r— 0 as x— 0,
(4.6) gives for the components with singular indices

2x . .
[e"“Aco linrl’ Z) + /; e""j"“j(e"co,O) ds]l =0 4.7

Changing the variables from s to 2z — s and usnng the periodicity of
e*4¢q, there follows

2«
[e"‘Aco lim 1) + f e*4f(e=*4co,0) dsl =0
w0 0

which can be used instead of (4.7). If at least one singular component
of e**4 Ac, is different from zero, then (4.7) mplies the existence of the
limit of 7/u as y — 0, whereas the existence of this limit is not implied by
(4.7) if all the components of e**4Ac, with singular indices are zero. The
system (4.7), which holds for singular indices only, can be regarded as a
system of 2k +4-m equations for the 2k + m unknowns consisting of the
2k +m — 1 components of ¢, with exceptional indices ((co)a, = 0)
and the unknown limit of (r/u), g — 0.
Let 7 = pu», and let ‘

Hy(eos) = [reetder + [ etminfeaco0) o], (48)

where j goes through the singular indices. [It is to be observed that H;
is given explicitly in (4.8) as a function of ¢, and », and does not require
that (4.1) be solved.]

For the following existence theorem it is assumed that

(i) A is a real constant matrix with canonical form (3.11) through
(3.13);

@) g, f = f(z,u) are real;

(iii) a vector @, with a., = 0 and with nonexceptional components zero,
and & number », exist which satisfy Hj(a, ve) = 0, j singular;

(iv) f, f. are continuous in (z,u) for z in a vicinity V containing the
periodic solution e*a, of period 2, of (4.2), and for lul < 8, for
gome & > 0;f

{8ee the second paragraph of Sec. 1.



Skec. 4] PERTURBATIONS OF PERIODIC SOLUTIONS 367

(v) the Jacobian determinant of the (2k 4 m) H; of (4.8) with respect
to the (2k 4+ m — 1) (co)s, 7 exceptional (7 # «;), and with respect
to », does not vanish for (co); = a; ((co)a, = 0), and v = vo.

Theorem 4.1. Under the assumptions (1) through (v) above there exists a
pertodic solution q = q(l,u) of (4.1) with period 2= + 7(u), where q is con-
tinuous in (t,u) for all t and |u| sufficiently small, r = 7(u) is conlinuous in
u, q(t,0) = ea, v(u)/k— vo as p— 0, and qu,(0,u) = 0. There is no
other periodic solution of (4.1) which, when y — 0, becomes e*a.

Remark: The role of «; can be taken by ay + - - - + «j for any
ISk

Proof of Theorem 4.1. Since v enters H; linearly, the Jacobian will
certainly vanish if the coefficients (e?**4Aa); = 0, 7 singular. Note that,
ag in Sec. 3, the @; with nonexceptional indices all must vanish. TFrom
this it follows that the terms (e*74 Aa);, 7 singular, can be different from
zero only for those j associated with an A; which has exactly two rows and
columns, and for no B;. Thus (v) really implies thal there is at least one A;
which must have two rows and columns.

The proof follows that of Theorem 3.1 closely and hence will be omitted.

Theorem 4.2. Let f be analylic in (x,u) for x in V and || < 8, and
suppose the assumpltions of Theorem 4.1 hold. Then the periodic solution
g 18 analytic in (t,x) for all t and for |u| sufficiently small, and r is analytic
in p for |u| sufficiently small.

Proof. The proof is very much like that of Theorem 3.2.

In the analytic case, the coefficients in the power-series expansions for
q and 7 can be calculated recursively. Here it is convenient to replace
t by s, where t = s(l + 7/2r), and let q(s(1 + 7/2x),u) = p(s,u).
Clearly p is analytic in x for small |u|, and periodic in s of period 2r.
Therefore there exist expansions

Pl = ) wp®(s) (4.9)
v 1)
T =
— p“bi (4.10)
2 = ),

where both series converge for small enough |u|. Clearly, 2xb, = v, and
p@(s) = e**a. Since the component of ¢(0,u) with index «; vanishes,
it follows that this component of p(0) must vanish for all 7 = 0.

The differential equation (4.1) becomes

% = (1+ L) (= + e w11
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f (4.9) and (4.10) are substituted into (4.11) and coefficients of the powers
of u are compared, there results the following system of equations:

dp®®

& =4

dpt®

S = AP + bidp® + f(p,0)
dp®

T = APY A+ bidp® + bidp® +bfe00) +LEO0PC (o

o oy s

-------------------------------------

where F® depends on p©@, p®, ., ., p¥ and b, by, . .., b
That the system (4.12) has a solution for p” and b; is clear.

Theorem 4.3. Under the assumptions of Theorem 4.2, the analylic solu-
tion g of (4.1) can be oblained by solving Egs. (4.12) in succession for the
periodic coefficients p®, of period 2r, of the power series (4.9) for

Plau) =g (a (1 + {;)m )

and the constants b; in the expansion (4.10) for 7/2x. The p® and b; are
uniquely determined in (4.12) by the requirements that p9(3) = e*4a,
2rby = vo, pD(s + 27) = p¥(s), and p§)(0) = O.

Proof. Suppose there are two functions pt9, ), satlsfymg the second
equation in (4.12), and two constants by, bs, such that to the pairs (p(,b),
(#™,b;) there correspond p®, p®, respectively, satisfying the third
equation of (4.12). Subtracting the third equation for one case from that
for the other case, and denoting " = p® — $M), p(z) = p® — p®,

b: = bs —
dp‘ 2)
g = APY + biApD + biAp® + £.(p,0)p®

From the second equation for each case follows

WY _ 400

Let p(0) = a0, and p(0) = 4. The a, component of each vector
is zero. Since $V is periodie, it follows that

fN(g) = e*4a®
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where only the exceptional components of @ can be different from zero.
Thus @V has at most 2k + m — 1 components that are not known to be
zero. From the differential equation for 5, and the fact that

PO(0) = p(2)
it follows that

(B — e0)a® = bid [ etmp(o) do + bad [ etro14p©() do
[ et £.(p o) 0190 o

_ Bince the singular components of the left side vanish, the same is true for
the right side. Setting p©®(¢) = e*4a, and 2xb, = »,, it follows that

[vue"“A&“) + 2nbiet*iAa + f’ ¢(17=04 {, (o4 0)eoAGD dcr]’. =0

for all singular j. * These 2k + m equations are linear homogeneous in the
2k + m terms consisting of 2rb; and the 2k + m — 1 components of @
not fixed at zero. However, the determinant made up of the coefficients
of these 2k + m terms is precisely the Jacobian of the (2k + m) H;(co,»)
~ with respect to (¢,v) evaluated at v = »o, ¢co = @. This Jacobian is not
zero. Thus §; = 0 and @ = 0, which proves that b, and p® are
uniquely determined by (4.12). In the same way, it follows that if
P9, ... ,p%Vandby, . .., b(j> 2) are determined uniquely, then
(4.12) determines p® and by uniquely, thus yielding the result by
induction.

Examples analogous to those in (3.1) can be considered. The case
'’ 4+ u = pf(u,u' ),
where u,u are scalars, yields for the periodicity equations (4.6)

_ 2x4r
0212024 [T gy ¢~ ) Seom o)) d = 0
sint 7

T n

— cp

2r4-r
-+A 008 ( — 8) S(p (), (80),0) ds = O

where ¢, here represents a scalar. Letting x — 0 and recalling that
7(0) = 0, there results

Lz' sin 8 f(co cos 8, —co 8in 8, 0) ds = 0

—cov + /;2' cos 8 f(co cos 8, —co 8in 8,0)ds =0
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PROBLEMS
1. Show that the consideration of
u"” + u = uf(ot,u,u’,p)
where w is near 1, can be transformed to the case E3.l) by setting 7 = wt nnd_

wt—1

=
wis

giving ‘
L= du
dart u ug \ ™Y, d_f' l‘)

where g = ku 4 (1 —~ ku)f(r,n, w du/dr, p). In particular, if
[ =au 4+ Bud + ccos wl

show that the effect on g, of varying w is the same as that of varying a in (3.7). Bhow
that by varying « continuously, Jal may be discontinuous.
2. Consider the system

2’ = Az + f(t,z) + wF (1)

where A is a constant matrix, f is continuous in (¢,z) for small |z| and all {, and periodic
in t of period T, F is continuous and periodic of period T, and u is a constant. Let f:
exist for small |z| and all ¢ and be continuous in (4,z). Let y' = Ay have no solution
of period T. Let f:(¢,0) = 0, and let f(1,0) = 0. Prove that for small u there exists
a unique solution ¢ = ¢(f,u) of period T which is continuous in (4,) forall |t} and small
u. Show that ¢(t,0) = 0.

Hint: Use Theorem 1.1.

8. In Prob. 2let fbe independent of £ and thus of theform f(z) and let F be an almost
periodic function. Let A have no characteristic root with real part zero. Show that
for small u the differential equation hfis a unique almost periodic solution ¢ = #(f,4).

HINT: 4 = ¥,(1) + ¥a(t), where [¥1(8)] S Ke=o% ¢t = 0, and |¥,()| S Ke*, ¢ 5 0.
By successive approximations, show that if e is taken as ¢/(4K) and Iul < 8¢/(4KM),
where M = max |F()], then the system

™ o e(t) = ]_: H{t — 8)f(e(s)) ds + ng(t)
has a solution. Here H(t) = ¥,(t) fort > 0, and H(t) = —¥3(t) for ¢ < 0and
00 = [ He - oF@ ds

Show that |e(t.p)| S 4KM|ulfe. In (*), g is almost periodic. Given n > 0, let L be
a translation number of g such that |p(¢ + L) — g(t)] < »n. Bhow from (*) that
le(t + L) — o(t)] < 4Kn/c and thus that ¢ is almost periodic. That & is unique
follows from the fget that any small uniformly bounded solution of the differential
equation on (— «, =) is a solution of (*).

4. State and prove the analogues of Theorems 3.1, 3.2, and 3.3 for the case where A
in (3.8) is replaced by a periodic matrix A(t) of period 7'.



CHAPTER 15

PERTURBATION THEORY OF TWO-DIMENSIONAL
REAL AUTONOMOUS SYSTEMS

1. Two-dimensional Linear Systems
Consider the real linear system

7, = azr, + br, ,___d_
% = cz, + dz, ( ‘dz) a.n

where a, b, ¢, d are real constants such that the determinant ad — bc does
not vanish. Clearly (z1,z:) = (0,0) is then the only critical point of this
system, that is, the only point where the right member of (1.1) vanishes.
Let the coefficient matrix of (1.1) be denoted by

a b
4= (c d)

Then (1.1) can be written as ' = Az, where z = (z,,7:). Let A have
the characteristic roots A\, u. These roots can be real or complex, but if
one is complex, say A = o + 8 (a, B real, B = 0), then p = « — 818 the
other root, for the coefficients of the characteristic equation for A are real.
It is known that there exists a real nonsingular constant matrix T such
that, if y = Tz, then the transformed system y’ = (TAT-")y has a real
coeﬂiclent matrix J = (TAT-!') which has one of the followmg real
canomcal forms:

63 a=o a (§O) Ugi<o
(L1Iy (: g) A=0,v>0 (IV) (3 ) (<0<

W) (_;‘ ﬁ) (@080 (VI) (_g g) @ = 0)

K=

Thus, in order to discuss the nature of the orbits of (1.1) near (0,0), one

may assume A has one of the forms (I) through (VI).
371
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Before taking up each of these cases individually, a matter of notation
will be settled. In general, a solution of & two-dimensional system

zh = gi(z,2s) Ty = ga(21,%0) (1.2)

will be denoted by ¢ = (p1,¢3), and it will often be convenient to consider
the polar funciions p, «, associated with the solution ¢, defined by

plt) = (o}®) + AN w() = t"“—l:_:%

it is stressed that p, w are defined with réspect to 8 particular solution ¢

X3

*1

. F16. 3. (I) Proper.node, A < 0. F16. 4. (I) Proper node,‘x >0

of (1.2), and are consequently functions of &. Thus p, w are to be dis-
tinguished from the polar coordinates r,0 in the (z1,2s) plane defined by

r=(t+zH . 0= tan—1 22
) T
just as the,.solut.i'on coordinate functions ¢y,¢; are to be distinguished
from the Cartesian coordinates z,,x; in the plane. '
" (I) Here the system is given by

Z"=M1 .3'3=M3

and ‘therefore, if (¢1,¢2) is any initial point except (0,0), & solution through
this point is given by ¢1{t) = cie*, ¢s(f) = ceeM. If A <0, thenp(t) — 0
as t— 4, and if A >0, p(t) >0 as ¢t — — =, The orbit through
(m:ca) is an open half line passing through this point and with an end
point at (0,0).. See Figs. 3 and 4, where the arrows indicate the direction
of inicreasing £. 'This type of critical point is called a proper node.. Its
distinguishing feature is that every orbit tends to the origin in a definile
direction as t— + o (for X < 0), or as t— — o (for A > 0), and, given
any direction, there exisis an orbit which tends to the origin in this direction.
Thus the origin is (asymptotically) stable in case A <0, and unstable
: wheax>0.. -~ . .. .
- (II) The system for Case (II) is

i =Am Ty = pZe
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and the solution passing through (ei,c2) ¥ (0,0) at ¢ = 0 is given by
ei(l) = 1™, a(t) = cae*. Assumepu < A < 0, forexample. Then ast—
t @, (e1(8),¢2(t)) — (0,0), and if e; 5 0, ¢a(t)/e1(t) = (c2/c1)e® Nt — 0,
agl— +ow, If ¢; =0, c2 # 0, (¢1(2),02(t)) = (0,c2¢*), which is just the
open positive or negative z. axis, according as ¢s > 0 or¢s < 0. In this

Fia. 5. (II) Improper node, p < X < 0. Fia. 6. (1I) Improper node, 0 < u < A

case, the origin is called an /mproper node. A qualitative picture of the
orbits is shown in Figs. 5 and 6. Here, every orbit, except one, has the same
limiting direction at the origin. The origin is (asymptotically) stable in
case g < A < 0, and unstable when 0 < ux < .

(IIT) The equations in this case are

! ’
T, = A1y Te = Y2y + AZa

and it is easy to see that ¢;(t) = 1M, pa(t) = (c2 + ciyt)eM, is the solution
passing through (ey,c2) at ¢ = 0. Suppose X < 0, for example. Then as
t— 4=, prand gs tend to 0. If ¢y # 0, ¢2()/p1(t) = c2/fc1 + vt — + o,

EA £

e EIE
| (

Fig. 7. (I1I) Improper node, A < 0. 1. 8. (ITI) Improper node, A > 0,

as t— oo, If ¢, 20, then ¢.(t) 20, for ¢ positive and large enough,
and if ¢; = 0, then (p1(1),p2(1)) = (0,e2¢M), which gives an orbit which is a
half z, axis.  Also, if ¢; # 0, ¢3(t)/¢1(t) = (v/A) + ¢2(1)/e1(t) = + , as
t— 4 . Thus every orbit has the same limiting direction at (0,0). The
origin in this case is also called an improper node. The nature of the
orbits is sketched in Figs. 7 and 8.
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(IV) Here the equations are
= ATy Th = uts

and a solutlon is given by ¢\(f) = c,e“, ea(t) = cee*, where now A < 0,
g > 0. If |A| = |u|, the orbits would
be rectangular hyperbolas. In the
general case, the orbits resemble these

// A \\ hyperbolas; see Fig. 9. Here, if (c1,¢5)
N A # (0,0), a1(t) > 0, os(t) = £ =, ac-
> " cording as ¢3 > 0 or ¢; < 0. In this

\\ 4 // case, the origin is called a saddle point.

(V) In this case

7
%y = aZy <+ Bz,
%23 = —Bz1 + axs

X3

F1a. 9. (IV) Saddle point, A < 0 < .

and the solution which passes through (ci,c:) at ¢ = 0 is given by
e1(t) = e=*(c1 cos Bt + ¢ sin BE) e2(t) = e#(—e, sin B¢ + ¢4 cos Bt)

If p} = ¢} + ¢}, this solution may be written ¢,(f) = poe cos (8¢ — &),
() = —poe™ sin (Bt — 8), where cos § = ¢,/po and sin § = c3/po. The
polar functions p, w for this solution are p(t) = pee™, w(t) = —Bt + 8,
and hence p = Ce—@®v where C = pee®™, which is a spiral. Thus the
origin in this case is called a spiral point. (Alternate terms for such
n point are vorlex and focus.) See Figs 10 and 11.

X3

G &
NSNS

Fia. 10. (V) Spiral point, « < 0, 8 < 0. Fia. 11. (V) Spiral point, a > 0, 8 < 0.

X

78

(VI) This is just a special case of (V) where « = 0. In this situa-
tion a solution through (ci,cs) at £ = 0 is ¢1(f) = ¢, cos Bt + ¢, sin B,
#a(t) = —cy 8in Bt + ¢z cos B, or, asin (V), p(t) = po, which is a circle of
radius po with (0,0) as the center. The origin is called a center in this
case; see Figs. 12 and 13. ‘

From the definition of stability, it is easy to see by considering the six
cases (I) through (VI) above that the following theorem holds. The
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pictures in Figs. 3 through 13 give a nice qualitative idea of the notion of
stability in each of the cases.

Theorem 1.1. Necessary and sufficient for the origin to be stable for the
system (1.1) is that the characteristic roots of the real nonsingular coeffictent
matriz A should have negative or zero real parls.

X3

7l R
k& =7 % &C y 7

Fia. 12. (VI) Center, 8 < 0. Fic. 13. (VI) Center, § > 0.

$

2. Perturbations of Two-dimensional Linear Systems

Consider now the nonlinear two-dimensional real autonomous system

:.E: = ax; + bz, +f1(171,172)
'

{NL) Tq exy + dxa + f?(xl:xz)

where a, b, ¢, d are real constants, ad — be # 0, and fy,f; are real con-
tinuous functions defined in some circle about the origin (z1,2:) = (0,0)
with radius ro > 0. The functions f, and f» are called perturbations, and
the system (NL) will be referred to as the perturbed system corresponding
to the linear system

(L) zy = az, + bz, xh = cxy + dzra

Intuitively, if the perturbations f; and f» are “small” in some sense, one
would expect that the behavior of the orbits of (NL) near the origin in the
(zy,x2) plane would be very similar to the behavior of the orbits of (L).
It will be shown that this is in general true, provided that fi,f: satisfy
certain minimum assumptions.

In addition to the given assumptions on fy,fz, it will be assumed that

fi = o(r) f2 = o(r) (as r — 04 (2.1)

This guarantees that the perturbations tend to zero faster than the linear
terms in (NL). Also, it is easily seen that this condition, and the fact
that ad — be # 0, imply that the origin is an isolated critical point for
(NL); that is, there exists a circle about the origin in which the origin is
the only point where the right member of (NL) vanishes. An isolated
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critical point such as the origin in (NL), with ad — be 7 0, is called a
gimple crilical point. : -
It is to be remarked that the assumptions made on f; and Sz do not
imply the uniqueness of solutions of (NL). ‘
One of the most important methods for analyzing the orbits of (NL) is
to use the polar equations obtained from (NL) via the substitution

Ty =rcosé Zs=rsainbd
namely,

rr' = r{a cos? 8 + (b + ¢) cos 6 sin 0 + d sin? 0] + r cos 8 Fy(r,0)

+ r gin 8 F3(r,8)
r*6’ = r*c cos? 8 4 (d — a) cos 0 sin 6 — b sin? 6] + r cos 0 Fs(r,0)
. ‘ — r 8in 0 Fy(r,6)
where

Fy(r,8) = fi(r cos 8, r sin 6) G=12

Clearly, if ¢ = (p1,¢3) is a solution of (NL), then the polar functions
(p,w) constitute a solution of the polar equations.’

Before proceeding to the detailed statements and proofs of the results,
the definitions of the various types of critical points will be made precise.
If there exists 8 8,0 < & < r, such that, for any solution path (¢1(),es(t))
of (NL) which has at least one pointin0 < r < 5, the solution exists over
a ¢ half line, and if (¢4(£),¢2(2)) — (0,0) ast — + o or — o , then the origin
is called an attractor for (NL). In the case Ji = f3 = 0, then the nodes
and spiral points are attractors, whereas saddle points and centers are
not. The origin is said to be a nede for (NL) if it is an attractor for which
all orbits arrive at the origin in a definite direction, and it is said to
be & proper node if it is a node and every half line through the origin
is tangent to some orbit there. The origin is called a spiral point for
(NL) if it is an attractor such that |w(f)] = + as {— +w or — ®,
where w(t) = tan—t (ps(t)/¢1(t)) and (¢1,p9) is any solution of (NL) which
enters the region 0 < r < 8. If there exists a sequence of periodic orbits
{Cn} of (NL) each of which contains all later orbits and the origin in its
interior and such that C, tends to the origin as 5 — , then the origin is
called a center for (NL). .

The following theorem is a special case of Theorem 1.1, Chap. 13.

Theorem 2.1. If the origin is an atlractor for the linear system (L), it is
one for the nonlinear system (NL).

Theorem 2.2. If the origin is a spiral point for the linear system (L), it
18 one for the nonlinear system (NL). ‘

Proof. By Theorem 2.1, the origin is an attractor for (NL). The
polar equation for 4 is given by

10 =212 — Zize = —frt +o(rY)  (r— 0)
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But r— 0, a8 t — 4+ (in case « < 0). Thusast— +
¢ = —B+o(1)
and therefore, for any solution ¢ of (NL) starting sufficiently near the
origin,
w(t) = —pt + o(t)

Thus w(t)/t— —B as t— -+ =, which proves w(t) = * e, as it — + =,
according as 8 < 0 or 8 > 0, and hence proves the theorem.

3. Proper Nodes and Proper Spiral Points

Although attractors of (L) go into attractors of (NL), it is not in general
true that a node goes into a node. This is illustrated by the following
example, where a proper node for (L) goes over into a spiral point for
(NL). Consider the system

Iy

P s e T2 e = — M o R

log (z{ + i)}

Clearly (3.1) satisfies the same hypothesis as the system (NL). The
polar equations corresponding to (3.1) are

7 S 1 P il
T logr Sy
Thus r = p(t) = ce™, for some constant ¢ > 0, and hence
T
L O (log ¢ — )
Therefore w(t) = — log (¢ — log ¢) + k, where

k = w(lo) + log (to — log ¢)

This implies w(t) — — ©, as t— -+ «, and the origin is a spiral point for
(3.1), although the origin is a proper node for the corresponding linear
system Ty = —a1, Ty = —a.

The above example shows that in order for a node for (L) to become a
node for (NL) it is necessary to restrict the functions f,,f. still further.
It can be shown, in fact, that if f,,f» satisfy the conditions for (NL), and
if, further, fi = 0(r'*9), fa = 0(r***), r — 0, for some ¢ > 0, then if the
origin is a proper node for (L) it is one for (NL) also.

This result is a special case of one which holds for a spiral point (see
Corollary to Theorem 3.1 below). Consider the canonical form of (NL)
when the corresponding linear system has a spiral point at the origin

2y = azy + Bz + fi1(21,29)

Ty = —Pz1 + azs + fa(21,22) (airg 07 =2 0) (82)
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For the linear case,

¥y = ot + Pzs 2y = —fr) + az, (3.3)

the polar equations are
’ Y =ar ¢ = -8

If «a<0, 8<0, for example, then for every solution path of (3.3),
r=p()—0, and 0 = w(l) — +, 88 {— + . Further, pe=/ ig a
positive constant or, what is the same, w + (8/a) log p = ¢, for some
constant ¢. Also, given any constant ¢, there exists a solution of (3.3)
such that w + (8/a) log p = ¢. This prompts the following' definition.
If @ + 18, @ — 48 (a 5 0) are the characteristic roots of the coefficient

matrix
a b
¢ d

in (NL), the origin is said to be a proper spiral point for (NL) if it is an
attractor such that for every solution tending to the origin as ¢ — 4w
(or t— — ), w + (8/a) log p tends to some constant c as £ — + = (or
{— — «), and given any constant ¢, there exists a solution of (NL) such
that w 4 (8/a) log p—>cast— 4o (ort— —w). If g = 0, then this
reduces to the definition of a proper node.

The following example shows that a spiral point for (L) (which is, of
course, a proper spiral point) may fail to go into a proper spiral point for
(NL). Consider

F 1 ’
A= ontat e 34
] :tg ‘
Ty= -z — 3y

iog &7 + 2D
The polar equation involving r’ is

LA
r , log r

and this implies r = p(t) satisfies pe' = po/(log p — 1), for some constant
po. Thus pef— 0, as t — +o;forp—0,a8¢— 40,

By virtue of the example (3.4), one is led to inquire under what condi-
-iions on f1,f; in (NL) a proper spiral point for (L) becomes one for (NL).
The following general result gives a sufficient condition.

Theorem 3.1. Let f,,fs in (NL) satisfy the inequalities

Venodl S W(@E +2D) G =1,2) (3.5)

where ¥ = Y(r) is a continuous function defined on 0 S r < ry such that
asr—0 ‘
. ) ¥(r) = ofr) (3.6)
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.ﬂ”ig)dr< w @.7)

r

and

Then, if the origin is a spiral point (or a proper node) for (L), it is a proper
spiral point (or a proper node) for (NL).

Using a more restrictive hypothesis, stronger results are obtained in
Probs. 8 and 9, Chap. 13. _

Proof of Theorem 3.1. It can be assumed that the equations (NL) and
(L) are in the canonical forms (3.2) and (3.3), and that « <0, 8 = 0.
Letting 2y = r cos 8, w2 = r sin 0 in (3.2), one obtains

rr!

rig’

ar? + r cos 0 fi(r cos 8, r sin ) + r sin 8 f2(r cos 6, r sin 6)
—Br? 4 r cos 0 fa(r cos 0, r sin 0) (3.8)
— rsin 0 fi(r cos 6, r sin 6)

From the first equation in (3.8)
' =ar*+o(r*) (r—0)

and this implies that not only does any solution r = p(¢), which starts
sufficiently near the origin, tend to the origin, but that for any such solu-
tion p' < 0, for ¢ sufficiently large. Therefore, if ¢ is sufficiently large,
r = p(t) is a monotone function of ¢, and thus determines the inverse func-
tiont = ¢(r) [by t = g(p())], which is monotone in a vicinity of the origin
r=0,sayfor0 <r=ry. If 0= w()isasolution of the second equa-
tion of (3.8), define @ by a(r) = w(g(r)), 0 <r = ri. Then clearly
0 = &(r) is a solution of the equation obtained from (3.8) by formally
dividing, that is,

d
== = F(r,0) (3.9)
where
_ =B+ Fi10)
F(rla) ) C!'(T + f"z(f‘,ﬂ)) (3.10)
and i
Fy(r,0) = m: gfe(r cos 8, r sin 8) — m—?ffl(r cos 8, r sin 0)
: (3.11)
Fo(r,0) = ("—C)f:-—gfl(r cos 0, r sin 0) -+ 512 gfg(r cos 0, r sin 6)
Equation (3.9) can be rewritten in the following form
do , B1 _
T = =) (3.12)
where
p(r 0) s ﬁFﬂ(rlg) + rFl(rlg) (3-13)

ar(r + I"y(r,0))
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From (3.5), (3.6), and (3.11), it follows that if r is sufficiently small, say
0 =r = ry, then
IF(r,0)] 5 4 1oL 81 90 (3.14)

'l

By virtue of (3.14) and the assumption (3.7), the integral
j: F(r,a(r)) dr (F = min (ry,r2))

is convergent. Therefore, from (3.12) it follows that
: B ) I e
alr) + = log r — a(7) + : log7# — | F(r,a(r)) dr (r—0)
0

From the definition of &, one has w(t) + (8/a) log p(t) — ¢, t — + =,
where ¢ is a constant.
Conversely let ¢ be a real constant and consider the integral equation

&(r) =c+ Lr F(s,®(s) — g_log s) ds (3.15)

Because F satisfies (3.14) and y satisfies (3.7), an equicontinuous sequence
can be constructed for (3.15) over some interval 0 < r < ry, just as it was
in the proof of the Carathéodory existence theorem. From this sequence
a convergent subsequence can be extracted which leads to the existence
of a solution ® of (3.15). Let a(r) = ®(r) — (8/a) log r. Then by
(3.15), 8 = &(r) is a solution of (3.12) and clearly

a(r) + - log r—casr— 0

Corresponding to this solution 8 = &(r) there exists a solution r = p(?)
of the first equation of (3.8) for which p(¢) — 0, as t — + =<, and if
w(t) = @(p(t)), the pair (p(t), «(t)) determines a solution of (3.2), for
which w(f) + (B/a) log p(¢) — ¢, as t — «. This completes the proof
of the theorem.

Corollary. The conclusion of Theorem 3.1 remains valid for (NL) if
(3.5), (3.6), (3.7) are replaced by

Ji="0 9 S =t | (n=0)

for some ¢ > 0.

Proof. Choose, in Theorem 3.1, ¢(r) = Cr't¢, where C is a constant
such that |fi| £ Crite, |fo] £ Crite for all sufficiently small r. Clearly
(3.6) and (3.7) hold, and hence the conclusion of Theorem 3.1 is valid.
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4. Centers

The case where the origin is a center for (L) will now be investigated.
In order to illustrate what can happen in passing to the perturbed system
(NL) in this case, consider the example

Ty = —29 — 21 Vi + 2 zh = 1 — 22V 22 -z} (4.1)

This system satisfies the assumptions for (NL), and the polar equations
corresponding to (4.1) are ' = —r* and ¢ = 1. The solution of this
system passing through (rq,80), where ro # 0, at ¢ = 0 is given by

oy (z + rlo)“‘ b=+ 0,

and therefore p(f) — 0 and w(f) — + =, as {— +«. Hence the origin
is a spiral point for the system (4.1), although the origin is a center for the
corresponding linear system.

Actually, the perturbed system (NL) can be much more complicated
than (L) in this case, while still remaining a center. As an example con-
sider the system

]

zy = —22 + z1(x} + x3) sin

1r —
(@i + =)}

. ar (4.2)
oy + xa(x] + x3) sin CEE

g

I

The nonlinear perturbations have continuous first derivatives every-
where, and therefore there exists a unique solution through any given
point (¢1,cs) # (0,0) at £ = 0. The polar equations for (4.2) are

o T
r’=r35m; 0 =1

The cireles r = 1/n, n =1, 2, . . ., are periodic orbits, represented
by the solutions p(t) = 1/n, 8(t) = t + 0, where 6, is a constant. Also

¥ >0! 4l
, 1 1 3
?’<0, 2?1<r<2m-—__1 (m—1,2,...)
1 >0 —l—‘--<?'<-l—'
) 2m + 1 2m

Therefore no orbits but r = 1/n ean be periodie, and every nonperiodic
orbit must remain completely within one of the regions r > 1, 1/2m <
r<l/@Cm—1), 1/@m+ 1) <r<1/2m m=1 2, .... Since p
and w are monotonic as { — -4« (6 — -+ =), these nonperiodic orbits
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must tend to the circles r = 1/n ast— 4 or {— — », or in the case
r>1,p— +=». Thus the origin is a center for (4.2).

The examples (4.1), (4.2) actually exhaust the possibilities for (NL)
when the origin is a center for the linear system (L). In fact, the follow-
ing theorem holds.

Theorem 4.1.  If the origin is a center for (L), then it is either a center or
a spiral point for (NL).

Proof. The canonical form of the equations under consideration is

2y = +Bzs + filzy,2) 7 = —PBxy + fao(z1,72) (4.3)
and

' '
T, = fx, z, = —fr,

Assume § < 0; otherwise the roles of { and —{ are interchanged.
The polar equations for (4.3) give

r’ = a(r) 0 = —B 4 o(1) (as r— 0) (4.4)

From (4.4) it follows that if ¢ is a solution of (4.3) starting near enough
the origin at ¢ = 0, then its polar functions r = p(), 0 = w(l) satisfy, for
any € > 0, and pg > 0 small enough,

poe~" < p(t) w >0

for £ > 0. Therefore p > 0 for all finite ¢ > 0 for which it exists, and w
is a monotone function of {. Let the inverse of w be k, that is, ¢ = k(6),
and define p by 5(0) = p(h(6)). Then r = p(6) satisfies the differential
equation

dr

d_B — r(r,ﬁ) (4-5)
where
F(r,0) = cos 6 fi(r cos 6, r sin 8) - sin 0 fo(r cos 0, r sin 6)

‘—B + (cos 0/r)fa(r cos 6, r sin 8) — (sin 6/7)f1(r cos 0, r sin 0)

Conversely, if r = 5(0) is a solution of (4.5) starting sufficiently near the
origin, the polar equation for 6 will give a solution 6 = w(f) which is
monotone in {. Then, if p(t) = p(w(t)), the pair (p(t),w()) gives rise to a
solution of (4.3) starting near the origin.

From this discussion it follows that the behavior of the solutions of
(4.3) near the origin can be studied by investigating the behavior of the
solutions of (4.5) near the origin,

The function F is continuous in (r,6) in some circle 0 = r = ry, (r; > 0),
F(r,0 + 2x) = F(r,0), and F(r,0) = o(r), r — 0, uniformly in 6. These
facts do not guarantee the uniqueness of solutions of (4.5).
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Let 7o, 0 < 72 < 71, and n > 0 be given, and set M = max [F| on
0 <r < 7. Then, by the local-existence theorem, there exists a circle
0 < r < r./2 such that, if (po,80) is inside this circle, (4.5) has a solution
r = p(0), 5(60) = po, which existsfor0 = [0 — 66| = min (27 + n, 72/2M)
and stays within the circle 0 = r < r.. However, F = o(r), r—0,
implies that if r; is chosen small enough r2/2M > 27 + 9. In this case 5
exists on 0 £ |6 — 6| < 2r + » and remains within 0 = r = ..

Suppose the origin is not a center. Then by decreasing r. if necessary
there exist no periodic orbits in r < r,. Consider again the solution
r = p(6) through (pe,80). Then either 5(8y + 27) < 5(80) or else 5(6o +
2r) > p(8s). With no loss in generality, only the first case need be con-
sidered for p. If 5(0) — (0 + 2r) vanishes as 0 increases, there is a
periodic orbit in » < ro. Thus 5(6) > (0 + 2x) for 8 = 6o. Since the
sequence {5(00 + 27k)}, k =0, 1, . . . ,is monotone decreasing, positive,
its limit 7 exists. If # = 0, then 5(0) > 0 as 6 — ., If # > 0, let
5(00 + 0 + 2wk) = 5(6). As|dp/dO] = M, the sequence {5} is equicon-
tinuous on [0,27]. Clearly 5.(0) — # and p(2x) — # as k— «. Thus
there is a subsequence of {5} converging to a solution 4 of (4.5), and
3(0) = p(2r) = #. Thus the solution is periodie, contrary to the assump-
tion of no periodic orbits in » < r,. Thus# = 0 and p(6) — 0 as 6 — .

In case there is a unique solution through each point, this completes the
proof. In the general case, consider the minimum and maximum solutions
of (4.5) pm and pu through (po,60). Clearly 5, spirals to the origin as 8
increases because 5 does. Suppose px does not do so. Then

. i 5.«(90 + 27") > .53(30)
and pm(00 + 27) < pm(80) = po = pu(Bo) < pu(fo + 27)

Thus, by the corollary to Theorem 1.3, Chap. 2, there must be a periodic
solution through (po,00) contrary to assumption. Thus all solutions
through (po,00) spiral toward the origin as 8 increases.

The solutions through any point near the origin must spiral inward as
9 increases. For if not, there is a solution 4 which spirals outward as 6
increases. The maximum solution jx considered above must intersect
this solution, that is, there must exist a 6, > 6, such that

pu(0y) = p(01 + 2kw)
for some integer k. Consider now the solution 5o, where

po(6) = px(0) (80 = 0 = 601)
po(0) = p(0 + 2km) (6, = 0)
This solution through (po,60) clearly exceeds pa(6) for 8 > 6,, contrary to

the definition of maximum solution. Thus 4 cannot exist and all solu-
tions spiral inward as @ increases. This proves the theorem.
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6. Improper Nodes

Consider the case where the origin is an improper node of Type (IT) for
the linear system (L), and suppose for simplicity that the system is in the
canonical form

T = Any Th = uTs (k<X <0) (5.1)
The nonlinear system (NT) corresponding to (5.1) is then
2y = A1 + fi(z,21) Ty = pxa + f2(x1,22) (5.2)

and the following theorem illustrates how the geometry of the orbits of
(5.2) near the origin compares with the geometry of those of (5.1).

The results of Probs. 5 and 6, Chap. 13, are closely related to the follow-
ing theorem and include (c).

Theorem b6.1. (a) Every orbit of (5.2) near the origin tends to the origin
and has a limiting direction which makes an angle of 0, =/ 2, w, or 37 /2 with
the positive xy axis. Moreover, there are an infinite number of orbits tending
to the origin at angles 0 and .

(b) Tkere exists at least one orbit tending to the origin at an angle /2, and
at least one at 3w /2.

(c) If ofi/dxy, afa/0x, exist and are continuous on 0 < r < 7o, then there
extists exactly one orbil tending to the origin in the directions w/2 and 3w/2.

Proof of (a). From Theorem 2.1 the origin is an attractor for (5.2).
Therefore there exists a 3, 0 < & = ry, such that any solution path start-
ing in 0 = r < § exists for ¢ = ¢, for some Zo, and tends to the origin as
t— 4. From (5.2) it follows that, for any solution starting in
0<r <,

120" = (p — N)r? cos 0 sin 6 + o(r?) (r—0)

or
0 = 5"5—") sin 20 + o(1)  (r— 0) (5.3)
Consider any ¢, 0 < ¢ < 7/4, and the regions
The e [0]6 6 Ta: |0 —=x| S e
Ta: 8—% <e T|: rﬂ—% =e

On the line 0 = ¢, sin 2¢ > 0, and so by (5.3) ¢’ < 0 there if  is small
enough. Similarly, 6" > 0 on 6 = —eif r is small enough. Thus, if r is
small enough, any orbit starting within T, cannot leave 7y, A similar
argument shows this is true of 7. On the other hand, if » is small
enough, the directions of orbits on the boundaries of T'; and T, are toward
the exterior of these regions. Thus any orbit starting outside of 7'; anc
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T, cannot get into T's or Ty, Let 8, < & be so small that orbits starting

inside 0 < r < &, behave as outlined above.

It is clear that a necessary and sufficient condition for an orbit to
approach the orjgin at an angle of = is that for any ¢, 0 < ¢ < /4, there
exists a ¢, such that the orbit lies in T (corresponding to this ¢) for all
{ 2't.. Note that an orbit approaches at an angle of = if it does so along
the positive z, axis. :

It will now be shown that if an orbit C starts inside 0 < r = 3, it tends
to the origin at an angle of 0, #/2, =, or 3z/2. Suppose the assertion is
not true. Then for some €, 0 < & < x/4, C does not lie in Ty, Ty, T,
or Ty (corresponding to e). Suppose, for example, C is in the region S:

60 < 0 < 7/2 —e. Then it eventually enters T,. For suppose this
were not true. Then C stays in S for all sufficiently large {. But in 8§,
by (5.3), 8" < [(s — N)/4] sin 2¢ < 0. Thusif § = —[(x — N)/4] sin 2¢0,
C must leave S and enter T in a ¢ interval of less than =/ (2¢). Thisisa
contradiction, and hence C enters T, for every ¢ and thus tends to the

" origin at an angle of . A similar argument holds if C is in any of the
regions other than Ty, T, Ts, or Te. This completes the proof of (a).

Proof of (b). Let ¢ > 0 and let the sector OAB be bounded by the
radii OB and O A emanating from the origin O at angle 4= — ¢ anddr + ¢
respectively, and let the radius of the sector be small enough so that
in the sector r is a decreasing function of {. Because r is monotone
decreasing in ¢, the system (5.2) can be replaced by a first-order equation
do/dr = F(r,8) in the sector. Consider the points S on the arc AB with
the property that all solutions of d6/dr = F emanating from points of AB
to the left of any point of S pass out of the sector OAB by intersecting
the open radial segment OA. The points S form an interval AQ which
does not include points near B. It will now be shown that S does not
contain the end point @ of the interval. That is, AQ is open on the
right. Indeed, suppose all solutions from Q cross the open segment OA.
Then, in particular, the minimum solution does so. Thus by Theorem
1.4, Chap. 2, the minimum solution for nearby points to the right of @
will cross 0A. The maximum solutions have 6 at least as large as do the
minimum solutions and thus will surely cross OA. Thus all solutions
starting at Q and all points near it will cross 04, which is impossible by
the definition of Q. :

Since the maximum solutions are continuous from above, the maxi-
mum solution from Q crosses OA or staysin the sector OAB. The mini-
mum solution does not cross the open segment OA. If the minimum
solution does not tend to O in OAB, then the minimum solution crosses

- the open segment OB. Let the maximum solution from Q cross OA at C

and the minimum solution cross OB at D. Let A4, lie on OA closer to 0

than C is, let B, be on OB closer to O than D is, and let 0A, = OB,.
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Consider the sector 0A;B;. Proceed on the are A,B; as with AB above.
Let the point that corresponds to @ on this arc be denoted by Q;. Con-
sider the solutions of d8/dr = F from Q, for increasing r. They cannot
cross OA or OB. Thus they must leave OAB by first meeting the solu-
tions CQ or DQ. But a solution which meets CQ at a point K, other than
Q, can be continued as a solution along C'Q from K to @, and similarly for
solutions meeting DQ. Thus there is at least one solution of d6/dr = F
which goes from Q to Q;. In the same way, there is a point @, on an arc
A 4B, closer to O and a solution from @, to @ and thus from Q to Q..
This solution can clearly be continued indefinitely toward 0. Thus
QQ1Q: - - - is asolution that tends to 0. Since 6 is close tox/2in OAB,
it is clear from Part (a) that the solution tends to O at an angle of 3x/2
with the positive z, direction as { — «.

Proof of (¢). The proof will be given for the case 3x/2. For any fixed
solution path (¢1,¢,) tending to the origin at an angle of 3x/2, ¢1/¢2— 0,
and thus from (5.2) ¢y/s = u + 0(1), as t— 4=, Thus for ¢; > 0,
¢a < 0 for all sufficiently large ¢, and hence z; = ¢1(f) may be introduced
as a new variable. Let ' = d/dz..

Suppose there were two distinet orbits tending to the origin at 3r/2 as
t— +». Let the corresponding orbits be represented for all sufficiently
large t by =1 = y1(z2), 71 = Ya(xs). Clearly y;(xs)/xa— 0 83 z,— 0+.
From (5.2)

Ai(zs) + fi(Yi(zs),2) $jed
pz2 + fa(¥i(za),z2) Lt 2)

and by subtraction, if ¢ = ¢; — ¥,

Yi(zs) =

Uzs) = M (z2) + [[r(¥a(xe),22) — fila(za),2s)]
o pxy + fa(Yr(xa),x2)

i \Wa(zs) + fi(¥a(®s),za) [f2(Ya(z2),22) — fa(r(xe),22)] (5.4)
[uxs + fa(¥r(22),22) [z + f2(Ya(22),70)] '

By the uniqueness theorem y # 0, and thus, with no real restriction, it
«n be assumed that ¢ > 0. Because of (2.1), df;/dz; is zero at the
origin, Clearly

Jr(an,z) — flbataz) = W) L (i

where ya(z:) < {; < ¥u(z.), and since df;/dxy — 0 asr — 0, (5.4) implies
that

Uz) = ’% (10 (19)) B0 (s =10) (5.5)
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Therefore, if z, is small enough, z2y/¢ < ¥ < 1 for v > A/u, and thus
Y(z2)

T2

6z < (5.6)

where ¢, > 0 is a constant, so that (5.6) implies y(zs)/z.— +® as
z2-— 0, and vhis contradicts the fact that

Y(za) _ (4’1(333) = \(’2(9:!)) —0

g T2

as 2 — 0. This proves that there exists exactly one orbit tending to the
origin at 3x/2.

The case when the linear system (L) has an imiproper node of Type
(ITI) can be discussed in an analogous fashion. This case will be left to
the reader. This case is also treated in Prob. 10, Chap. 13.

6. Saddle Points

For the case of the saddle point at the origin, let the equations (NL)
and (L) assume the canonical forms

Il

2y = 21 + fi(x1,xa) Ty

1Ty + f2(x1,22) (6.1)

and
T = Az Ty = P (6.2)

respectively, where A\ < 0 < u. Then the geometry of the orbits of (6.1)
near the origin is described in the following theorem. The problem is also
treated in Prob. 7, Chap. 13.

Theorem 6.1. (a) There exists at least one orbit tending to the origin at
each of the angles 0 and 7,

(b) If, jurther, 8f/dxs, dfs/dxs exist and are continuous on 0 S r < 1o,
there exisls exactly one orbit tending to the origin at each of the angles 0 and
x.  Any orbit starting sufficiently near either of these orbits in the neighbor-
hood of the origin tends away from them as t — + .

The proof that there exists an orbit tending to the origin in a sector
|6] = eis very much like the proof of Theorem 5.1(b). This orbit must
tend to the origin at a limiting tangent angle of , for from (6.1)

(0 — )

0 = 5

sin 20 + o(1) (r—0)
and so § = w(t) can remain in the sector |6| < ¢ only if w(t) — 0 as
i— 4o

The method of proof of Theorem 5.1(c) may be used with only minor
changes to prove (b).
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PROBLEMS

1. Locate and classify the singular points of

(1) z'; = I zy = —azr; — bsinm
and
(2) =22 1z =a(l —z})z: — bz

where the constants a and b satisfy a = 0 and b > 0.
2. Let

) 3:: = P;(z1,22) + fi(z1,22) (G=1,2)

where the P; are homogeneous polynomials of degree m > 1 and f; = o(r™) as r — 0,
“where r and 6 are polar coordinates. Suppose all solutions of (*) starting near the
origin tend to the origin as t— «=. Let Q(8) = (z1Ps — x2P1)/r™*! and suppose §
is not identically zero. If @ = w(f) is a solution, show that either w(t) tends to a
finite limit as £ — « or else that w(l) — 4+« (or — =) ast— ©.

Hint: do/dt = r™'Q(8) + o(r™~1).



CHAPTER 16

THE POINCARE-BENDIXSON THEORY OF TWO-DIMENSIONAL
AUTONOMOUS SYSTEMS

Let f = (f,f:) be a real continuous vector function defined on a
bounded open subset D of the real (x,z.) plane, and consider the two-
dimensional autonomous system

(1) 2y = filzy,s) Ty = fa(z1,72) (’ = é-i)

Throughout this chapter it will be assumed that f satisfies the above
assumption, and that, further, for each real {; and each point (&5) e D
there exists a unique vector solution ¢ = ¢((,£7) of (), with components
e, such that ei(to,€n) = £ ea(lo, ) = 7. Actually, the notation
¢(t,£,n), which does not contain ¢, explicitly, is used because the solution
of (K) through (&) considered as a curve in the (z;,x.) plane is inde-
pendent of fo. If (4 £n) is associated with ¢, = 0, then for the same
¢, ¢t — o, £ 7) is the solution through (£,9) at t = ¢,.

By Theorem 4.3, Chap. 2, the assumption that ¢ is unique is enough to
guarantee that ¢ is a continuous funetion of (¢,£,9) for all ¢ for which ¢ is
defined and for all (§75) e D. This remark is essential in many of the
arguments to follow. Sufficient conditions for the existence and con-
tinuity of ¢ are given in Theorem 7.1, Chap, 1.

A point of D at which both f, and f. vanish is called a critical point. A
point of D which is not a critical point will be called a regular point.

1. Limit Sets of an Orbit

Suppose C* (or C-) is a semiorbit of (E) with representing solution ¢
defined for all £ = £, (or¢ = (o) for some £, That is, C'+ (or C~) is the set
of all points P(t) of D with coordinates (¢1(¢),¢2(¢)), where tp = ¢ < +
(or —wo <t =1). A point Q in the (z,,z:) plane is said to be a limit
point of C* (or C~) if there exists a sequence of real numbers {{,}, n = 1,
2,...,wheret,— » (ort,— —®), as n— =, such that P(¢,) — Q,
asn — . The set of all limit points of a semiorbit C+ (or C-) is denoted
by L(C*t) [or L(C-)), and these sets are called limit sets. If C is a full
orbit it can be considered as the sum of a positive semiorbit C+, and a

389
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negative semiorbit C—. The corresponding limit sets L(C+) and L(C-)
will be denoted by L*(C') and L—(C), respectively, and the set of all the
limit points of C, namely, L*(C) \J L=(C), will be denoted by L(C).

The qualitative geometric results concerning the solutions of (E) which
will be presented here follow directly from a thorough investigation of
these limit sets for the case of a semiorbit which remains inside & compact
subset K of D. These investigations lead to one of the few very general
theorems (the Poincaré-Bendixson theorem) which asserts the existence
of periodic solutions of a (nonlinear) system of differential equations.
In what follows, an orbit will always mean an orbit of (E).

Theorem 1.1. If C* s a posilive semiorbit contained in a closed subset
K of D, then L(C*) is a nonemply, closed, and connecled set.

Proof. Let Ct be represented by ¢ = (¢1,¢2) for ¢ = ¢, Then the
infinite set of points P.: (e1(lo + 1), @a(to + n)), n = 1,2, . . . ,is con-
tained in the bounded set K, and hence this sequence has a subsequence
which is convergent to a point which must be in K, for K is closed.
Therefore L(C*) is not empty, and L(C*) C K,

To prove that L(C*) is closed, let Q be a cluster point of L(C+). Then
there exists a sequence Q, e L(C*),n = 1,2, . . . , such that d(Q.,Q) —
0, as n— o, where d(Q,,Q) represents the distance between @, and
Q. Tor each Q. there exists a ¢, > n such that d((ei(ts),¢:(2:)),0Q.) <
1/n. Therefore, given any e > 0, there exists an integer N, such that
d((e1(t),p2(L5)),@n) < €/2, and d(Q.,Q) < /2, forn > N,. Thisimplies
d((e1(tn),p2(tn)),Q) < ¢ forn > N, or Q e L(Ct), for {,— «,asn— e,

Suppose L(C*) is not connected. Then there exist two nonempty,
disjoint, closed sets M,N such that L(C*) is the sum of M and N, that is,
L(C*) = M\UN. Since M and N are both bounded, they are a finite
distance & apart.f Since the points of M and N are limit points of C+,
there exist arbitrarily large ¢ such that P(¢) is within §/2 of M, and arbi-
trarily large ¢ such that the distance of P(¢) from M is more than §/2.
Since the distance d(P, M) from any point P to M is a continuous function
of P, and since the coordinates of P({) are continuous functions of ¢, it
follows that there must exist a sequence {t,}, tx— =, as n — =, such
that d(P(t.),M) = 6/2. The sequence of points {P(¢,)}, being bounded,
must contain a subsequence converging to a point @, which must be a
limit point of C+. Hence Q¢ L(C*), and clearly d(Q,M) = §,/2. But
this implies @ is in neither M nor N, for

d(Q,N) = d(N,M) — d(Q,M) = 5

and this results in a contradiction, since by hypothesis L(C*) = M \J N.
Thus the theorem is proved.,

1 If S, and S are two sets of points, then d(S,,S:) = inf d(P),Ps) taken over all
points Py e 8,, and Pae S,
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Theorem 1.2. Let C* be a positive semiorbit contained in a closed subset
K of D, and assume L(C*) conlains a regular point Q. Then the orbit Cq
through Q exists as a full orbit, and Cq  L(C*).

Proof. Reference to Fig. 14 should prove helpful. Let @ have
coordinates (£,7), and let C* be represented by the solution ¢ = (¢1,¢2)
fort = t,. Now ¢ is a function of the initial position, and thus if

(e1y02) = (£m)

at o, then ¢ = ¢(t,£n). From the definition of @ it follows that there
exists a sequence {{n}, tn— =, as n — «, such that the points P,, whose
coordinates are the components of ¢(i.,£n), have the property P, — @Q,
as n — «. The curve through P, can be reparametrized so that P,
is given by the components of ¢(0,£:,7.), Where Pn: (£,74). Thus
e(LEnnn) = ot + t, & 1).

The orbit Cgis given by o(t,£,5), where Q is given by p(o,é,ﬁ). Thus, if

aa G @EM
Q0,87 il Co
P o
. f.'(ﬁf,.-‘?a)

@ tn, E1) = 0 0,E0m5)
Fio. 14

( is a point on (g, its coordinates are the components of e(L£7), for some
I From the fact that the solution ¢ is continuous as a function of the
initial conditions, ¢(7,£,m.) — o(f,£,7) as s — o, for P, — Q. But this
is the same as (I + tn, £ 7) — o(f,£4), and this implies @ e L(C*), for
I+ t,— »,asn— «. Thus Ce € L(Ct) C K, and by a faniliar con-
tinuation argument this implies C¢ must be a full orbit.

If Q is any regular point in the set L(C*), where C* is any semiorbit
satisfying the assumptions of Theorem 1.2, then the orbit Cq through Q is
called a limit orbit of C*+. Thus Theorem 1.2 says that L(C*) is composed
of critical points and limit orbits,

2. The Poincaré-Bendixson Theorem

In this section it will always be assumed that C* is contained in a
closed subset K of D.

If L(C*+) has only regular points, then a description of L(C*) is given
by the Poincaré-Bendixson theorem which asserts that L(C™) is itself a
periodic orbit in this case. More precisely, the following is true.

Theorem 2.1 (Poincaré-Bendixson Theorem). Let C* be a positive
semiorbil contained in a closed subset K of D. If L(C*) consists of regular
points only, then either
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(i) CH(= L(Ct)) is a periodic orbit, or
(i) L(C*) is a periodic orbit.

If the case (ii) prevails, the limit orbit L(C*) is called a limit eycle. In
this case, C* actually “spirals” around L(C*) in a certain sense. This
will be shown in Seec. 3.

In arder to prove this important theorem, an auxiliary concept will
be introduced. A finite closed segment [ of a straight line in the (x,,z,)
plane is called a transversal with respect to f if every point of [ is regular
and if the direction determined by f at every point of [ is different from
that of I. The properties of a transversal which are required for the
proof of Theorem 2.1 are summarized in Lemmas 2.1 and 2.2 below.

Lemma 2.1. (a) Every regular point (21,x2) of D is an interior point of
some transversal, which may have any direction except that of f(x1,z.).

(b) Every orbit which meels a transversal must cross it, and all such orbits
cross it in the same direction. ,

(¢) Let Poe D be an interior point of a transversal . For every € > 0
there exists a circle C, with Pq as center such that every orbit passing through
a point inside of C, for t = 0 crosses l for some t, |t| < e.

Proof. 'The proofs of (a) and (b) follow easily from the definition of a
transversal, and the fact that f is continuous at (z,z.).

For the proof of (c¢) let Py have coordinates (£q,70), and let the points of
I satisfy azy + bzs 4+ ¢ = 0. There exists a circle about P, which con-
tains only regular points of f. The solution ¢ passing through any
regular point (&%) near Py at t = 0 is continuous in (¢,£) together in
an open set about (0,£0,m0). Let L(LEn) = aei(t,£n) + bealt,£n) + ¢,
where ¢ = (¢1,¢2). Then L(0,£0,m0) = 0, and (aL/at)(0,%0,m0) 5= 0.
Therefore, by the implicit-function theorem, there exists a continuous
function ¢ = i(¢,9) defined in some circle C' about (&o,70), satisfying
t(£o,m0) = 0, and L(i(¢7),Em) = 0. Moreover, since the function
t = {(£9) is continuous at (#o,70), for any € > 0, a circle (', exists about
(£o0,m) such that |{(£7)] < e inside C,. Therefore the orbit passing
through any (§,7) inside C. at ¢ = 0 will cross [ at {(£,7), and |t(¢,9)| < e

Lemma 2.2. If a finile closed arc A of an orbit C meets a transversal [, it
does 8o in a finite number of points, whose order on A 1is the same as the order
onl. If C is a periodic orbit, it meets | in only one point.

Proof. 1If ¢is a solution representing C, the points of A are of the form
P(t): (e1(t),02(1)), T £t = I, for some finite { and 7. If A meets I in
infinitely many distinet points P, = P(t,), then the distinct ¢, will have
a cluster point Zon 7 < ¢ < 1. Thus there exists a subsequence of {¢,],
which can again be denoted by {{.}, such that ¢, — 1, n— «. Then
Po— Q = P@), n— =. But (¢(ts) — ¢@)/({ts — 1) = j(e1(D),02(1)) as
n— =, and since (p2(t.) — ¢1(2))/(¢1(tx) — ¢1(D)) is the constant slope of
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Lit follows that f has the same direction as  at Q, which is a contradiction.
Thus A must meet [ in a finite number of points.

Now let P, = P(t;) and P, = P(t,) be two successive points of inter-
section of A with I, where ¢, < {, (see Figs. 15 and 16). Suppose P, is
distinct from P, Then the curve J consisting of the open arc from P,

F
to P; on A, denoted by P,P., and the closed line segment on I from P. to
P\, denoted by P,P,, is a Jordan curve, and thus separates the plane into
two regions.f Therefore points Q on € for ¢ < t,, and sufficiently near
ty, will be on the opposite side of J from points B on € for t > {,, and
sufficiently near ¢, (see Figs. 15 and 16). There are two cases, according
as the points R are inside J or outside J. Suppose the former (Fig. 15);

Py

Fia. 15 Fi1c. 16

the other case can be treated similarly. Then, in order for C to get

outside J for £ > t;, C' must cross J. But it cannot cross IgI\P,, by
uniqueness, and it cannot cross P,P, in the wrong direction. Hence ('
remains inside J for ¢t > t,. It is thus clear that the next intersection
Py (after P,) of C with [ is inside J and is distinet from P,. Thus P, is
between P, and P; on [. -
If P, is the same as P, clearly C is periodic. Suppose P, is distinct
from P;, and C' is periodic. Then the arc from R on ¢ must return to @Q
and thus the are RQ on € must cross J. But, as above, it cannot cross

}gTP, by uniqueness, and cannot cross P,P, in the wrong direction. Thus
P, is the same as P,, and C is periodic. This completes the proof of
Lemma 2,2,

The proof of the Poincaré-Bendixson theorem now proceeds via the
following two additional lemmas,

Lemma 2.3. If C* and L(C*) have a point in common, then C* is a
periodic orbit.

t A Jordan curve is a topological image of a circle. The separation property of such
a curve is based on the Jordan curve theorem. 'This states that if J is a Jordan curve
in the (z1,22) plane =, then the complement of J, = — J, is the union of two disjoint
open sets S; and S,, each of which has J as boundary, S; is bounded and is called the
interior of J, whereas S, is unbounded and is called the exterior of J.
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Proof. Let Py = P(,) be a point of C* which is also a point of L(C*).
It is a regular point and hence can be made an interior point of a trans-
versal I. Since P, e L(C*), any circle I' with P, as center must contain in
its interior a point Q = P(?), I > t; + 2. If T'is the circle for ¢ = 1 in
Lemma 2.1(c), then there exists P = P(f) of C*, where [ — 2| < 1 and P
isonl. Let P be distinct from P;. Then theare PP of C* intersects [ in
a finite number of pointsby Lemma2.2.  Also, thesuccessiveintersections
of C+ with [ form a monotone sequence which tends away from P,. Thus
P, cannot be a limit point of C* and so is not in L(C*). Therefore C*
meets [ only in P;, and so C't is a periodic orbit.

Remark: This same argument shows that a transversal cannot meet
L(C*) in more than one point.

Lemma 2.4. If L(C*) contains a periodic orbit, it is idenlical with 1t.

Proof. Let Cbe a periodic orbit in L(C*), and suppose C'q is contained
properly in L(Ct). Then, by the connectedness of L(C*), Co contains a
cluster point Qo of the set L(C*) — Co. Let [ be a transversal through
Qo. Every circle with Qo as center contains a point Q of L(C*) — Uy, and,
for Q close enough to @, the orbit Cq through @ will cross [, by Lemma
2.1(¢). The orbit Cq is a limit orbit by Theorem 1.2, and is distinct from
(s, for Co © L(C+) — (. Hence [ contains two distinet points of L(CT).
This contradicts the remark following Lemma 2.3. Thus Cy = L(C).

Proof of the Poincaré-Bendizson Theorem. Clearly, if C* is a periodic
orbit, then C*+ = L(C*). Therefore assume C* is not periodic. Since
L(C*) is not empty and consists of regular points only, there exists by
Theorem 1.2 a limit orbit Cy in L(C*). Now Cy C K implies that the
semiorbit C¢ has a limit point Po, and Py e L(CY), for L(C*) is closed. If
| is a transversal through Py, then, since Pq and C{ are both in L(C*), |
can meet L(C*) in no point but Py, by the remark following Lemma 2.3.
Since Py is a limit point of CF, I must meet C§ in some point, which must
be Po, and hence C§ and L(C{) have the point P, in common. By
Lemma 2.3, C¢ and thus also O are periodic orbits, and this implies, by
Lemma 2.4, that Cy = L(CH).

Corollary. If Ct is a semiorbil contained in a compact set K in which f
has no critical points, then K contains a periodic orbit.

3. Limit Sets with Critical Points

The following result classifies the behavior of L(C*) when this set con-
tains only a finite number of critical points of f.

Theorem 3.1. Let CF be a semiorbit contained in a closed subset K of D,
and suppose D has only a finite number of critical points. Then cither

(i) L(C*") consists of a single point, a critical point of f. which C* ap-
proaches as { — =, or
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(ii) L(C*) is a periodic orbit, or
(i) L(C*) consists of a finite number of critical points of f, and a set of
orbits, each of which tends to one of these cr.tical points ast — + .

Proof. The set L(C*) can contain at most a finite number of critical
points of f. If L(C*) contains no regular points of f, then L(C*) is just
one critical point, for L(C*) is connected. Clearly C+ must tend to this
point as t — 4w,

If L(C*) has regular points, it consists of critical points and a set of
limit orbits. Let Co be a limit orbit. It cannot have a regular limit
point unless Cy is a periodic orbit, by the argument used in the proof of
the Poincaré-Bendixson theorem. Thus either (' is periodic, in which

F1a. 17 Fia. 18

case L(C*) = (', by Lemma 2.4, or (o has no regular limit points. Hence
either L(C*) is a periodic orbit, or all orbits in L(C+) are not periodic and
haye only critical points of f as limit points. Suppose the latter case, and
let C's be an orbit in L(C+). From the proof of (i) it follows that L+(Co)
and L=(Cy) each consists of just one critical point of f [LH(Co) = L~(Cy)
is not ruled out].

Corollary. If C* is a semiorbit contained in a closed set K C D, and
L(C*) contains only one critical point P (and regular points), then a limat
orbit tends to P ast — +w and t — — =

Now suppose L(C+) contains a regular point P of f. If C+isa periodic
orbit, then L(C+) = C*, and L(C'*) is completely known. Suppose C* is
not periodic, and / is a transversal through P. Then, as in Lemma 2.3,
C* must meet [ in an infinite number of points which converge mono-
tonically on I to P. If P, = P(t,) is any such point on I, let P,, n = 2,

3, . . ., be the successive intersections of C+ with I for t > ¢;. Then the
P e

curve J, consisting of the arc P,P,.; on C+ and the line segment PPy
on [ is a Jordan curve which has an interior I, and an exterior E,. See
Figs. 17 and 18.
There are two cases according as Py e I, or Py e E;. In the former case,
1 CIyyn=1,2, ..., andin thelatter Iy D I, n=1,2, .. ..
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For Pye I, P e I,, and since no point of L(C*) ean be in E,, L(C*) C I,
and similarly L(C*) C I, foralln, If P;eE,, E, D L(C*),foralln. In
the first case, let I denote the nonempty closed set consisting of those
points which are in the closure of I, for all n > 0. Thus, if I, is the

closure of I,, Iisgivenby M I,.. Incase Pse Ey, let I denote the closure

n=1

of the set of those points which are interior to I, for some n. Thus I is

the closure of \J [I,. Let J denote the boundary of I.

nel

Lemma. L(C*) =J.

Proof. Suppose I = N I,;if I = U I, the reasoning is similar.

ne=1 nwl
Clearly L(C*) C I, for L(C*) C I, for all n, and since no point of the
interior of I can be in L(C*), it follows that L(C+) € J. On the other
hand, every point on the boundary of [ is a limit point of ("*. Thus
L(Ct) = J.

In the case I = M I,, C* is contained in the exterior of the set I, and

n=1

w

for the case I = \U I,, C'"is located in the interior of [.

ne=1

Let C* satisfy the same conditions as in Theorem 3.1.
Theorem 3.2. Suppose L(C*) has a regular point, and C* and L(C*)
have no point in common, i.e., Ct =
L(CY), If C* 1s in the exterior (in-
terior) of I, the semiorbit C7 (hrough
any regular point P, sufficiently near
L(C*) and in the exterior (interior) of
I, has L(CY) as its limit set. Moreover,
L spirals around L(C%) in the sense
that a transversal through any regular
point of L(Ct) meets CF an infinite num-
ber of limes.

ReEmaARrk: L(C*) may contain critical
points and thus need not be a per-
iodic orbit.

Proof of Theorem 3.2. Suppose C*
is in the exterior of I; refer to Fig.
19. If Q is a regular point of L(C*) and [ is a transversal through @,
then by the discussion above there exists a nested sequence of closed sets

{I..} such that the boundary of I = N I,isL(C*). If P isnear enough
n=1

Fig, 19, (C* exterior to [.)

t In particular, C'* has this property.
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to L(C*), then P is inside some I, and exterior to I,y Clearly C} can-
not cross the boundary of 7,, and thus C} either remains in I, =T, o0r
else crosses I on the segment P, 1P, and passes into /,.,. The first
possibility implies that L(C}) is also in 7, — I,.,. If N is large enough,
i.e,,if P is near enough to L(C+), there are no critical points of fin I, — I,
n > N, for the critical points are isolated. Thus L(C}) has no critical
points, and by the Poincaré-Bendixson theorem L(C}) is a periodic orbit.
However, it will be shown in the next section (Theorem 4.4, Corollary 1)
that any periodic orbit contains at least one critical point in its interior.
This gives a contradiction. Thus C} must enter I,.; along PeiiPasi.
The result follows now by induction.

Theorem 3.2 shows that the limit set L(C*) possesses a type of stability
property. This will be defined precisely in the case of a periodic orbit.
The periodic orbit € is said to be positively stable Jrom the outside (inside)
if for every ¢ > 0 there exists a 8, > 0 such that every positive semiorbit
starting at a distance less than 8, from € and outside (inside) C at ¢t = 0
is defined for all ¢ > 0 and remains at a distance less than e from C. The
periodic orbit C is said to be positively stable if it is positively stable from
the outside and inside. Negative stability can be defined with —¢
replacing ¢ in the above. The type of stability defined here is often called
orbital stability,

Theorem 3.3. Necessary and sufficient for a periodic orbit C lo be
posilively stable 1s that for both the interior and exterior of C, either

(i) an orbit approaches C as a limit cycle as t — + @, or
(ii)  there exist periodic orbils in any e neighborhood of C.

Proof. The sufficiency follows directly from Theorem 3.2. Let C be
stable, and suppose there are no periodic orbits or critical points at a
distance of less than e from C, for some
€ > 0. Then a positive semiorbit C+
starting at a point less than 8, in distance
from C must be such that L(C*) is a
periodic orbit, by the Poincaré-Bendixson
theorem. Hence L(C*+) = (, that is, C
is a limit cycle, and the theorem is
proved.

Now suppose that C, and C, are per-
iodic orbits, with C, contained in the inte-
rior of Cy, and there are no critical points
or periodic orbits between C; and C,.
Then €, and C, are said to be adjacent.

Theorem 3.4. Two adjacent periodic orbits cannot both be positively
stable on the sides facing one another.

Fic. 20
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Proof. If Caisin the interior of (4, this means that C» cannot be posi-
tively stable from the outside and C, positively stable from the inside.
Suppose C; and C3 are positively stable facing one another. Replace

by —t and let (, and (1 be two orbits approaching Cy and C., respec-
tively, ast — — =, and suppose I and I, are two transversals, as shown in
Fig. 20. Let R be the closed region bounded by the two Jordan curves

— A i el A

Ji: PiPyon C, and P,Pyonl
— - ey

J:: qu; on Cg llnd QIQ‘I on lg

Any orbit C starting on the boundary of R must remain in R, and since
R is free of critical points, L(C) must be a periodic orbit in &, by the
Poincaré-Bendixson theorem. This contradicts the assumption that 'y
and (', are adjacent.

4. The Index of an Isolated Critical Point

Let f = (fi,f2) be a continuous real-valued vector function defined on
a bounded open set D in the (1,72) plane, and suppose f has only isolated
critical points on D. Let J be a Jordan curve in D passing through no
critical points of f. If Afis the total change in the angle 6 that f(z1,22)
makes with some fixed direction as (x1,z2) traverses J once in the positive
direction, then the index of J with respect to f is defined to be A6/2x, and
will be denoted by I;(J). Clearly this number is an integer. The impor-
tant property of I,(J) which is required here is one which is usually
proved in topology or complex-variables books.

Theorem 4.1. If J is a Jordan curve in D containing no critical points
of f on it or in ils inlerior, then I;(J) = 0.

Outline of Proof. Since fis continuous, it is uniformly continuous on
any compact subset of D. Thus there is a & > 0 such that, on any
Jordan curve Js that can be contained in a square of side & in D, the
maximum deviation of the angle of f from its value at a fixed point on J;
is less in magnitude than 2r. Thus the index of any such curve with
respect to f is less than one in magnitude and is therefore zero. The
process of showing that the index of the given Jordan curve J is equal to
the sum of the indices of a number of smaller Jordan curves, each of the
type Jy, is familiar in the proof of Cauchy’s theorem and will be omitted
here. By this process it can be shown that I,(J) = 0.

From this result it follows readily, by usual methods in complex vari-
ables, that if J, is a Jordan curve contained in the interior of another
Jordan curve J., and there are no critical points between J:and J,, then
I;(Jy) = I;(Js). The indez of an isolated critical point P with respect to
a vector f is defined as the index of any Jordan curve containing P, and no
other critical point of f, in its interior. This will be denoted by I,(P).
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Theorem 4.2. If J is a Jordan curve surrounding a finite number
n

Py, . . ., Py of critical points of f, then I,(J) = ) I,(Py).
i=1
Proof. Surround each of the points P; by a sufficiently small circle
('; containing P; as the only eritical point in its ir terior, and make the
cuts as illustrated in Fig. 21.

Fi1G. 21

Theorem 4.3. If J is a Jordan curve in the (xy,z.) plane with a con-
tinuously turning tangent vector v, which is nowhere zero on J, then

L)1

Proof. If u(P) is the unit tangent vector to J at P, then clearly
1.(J) = I.(J), and so it suffices to prove the theorem for u. Without
loss of generality, assume that J lies entirely in the region z. = 0, and
that the points P of J are given by P(): (ai(f),as(t)), 0 <t < 1. Thus

P

T t

Pls) T

F16. 22 Fia. 23

v(t) = (ai(t),as(t)), and it can be further assumed that the positive z,
axis is tangent to J at Py = P(0), that is, v(0) has the same direction as
the positive z; axis (see I'ig. 22),

The theorem will be proved by constructing an auxiliary vector i on
the closed triangular region

iz =<3 S 1 sst=s1l

in the (s,f) plane (sce Fig. 23) as follows: Define i(s,s) = u(s) for
0 Ss8=1,10,1) = —u(0), and for all other (s,t) in T define (s,t)
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to be the unit vector in the direction from P(s) to P(t) on J (oee Fig. 22).
Let 6(s,t) be the angle that ii(s,{) makes with the positive z; axis. Clearly
6(0,0) = 0, and since J remains in the region z2 = 0, 6(0,t) varies from
zero to = as ¢ runs from zero to one. Similarly, 6(s,1) varies from = to 2r
as s varies from zero to one. From the definition of @ it is clear that # is
continuous on T, and i 7 0 there. Hence by Theorem 4.1, applied to
the boundary B of T, Iz(B) = 0. This means that the variation of
8(s,s) as s goes from zero to one is 2. But this is precisely the variation
in the angle that u makes with the positive z, axis as J is traversed once
in the positive direction. Hence I..(J) = 1, and the theorem is proved.

An important consequence of this is the following result.

Theorem 4.4. If C is a periodic orbit of the two-dimensional system (E),
then I,(C) = L.

Proof. The curve C is a Jordan curve, and from its definition f is
tangent to C, and f > 0 on C.

Corollary 1. A periodic orbit C contains at least one critical point of f
in its inlerior.

Proof. Otherwise, by Theorem 4.1, 1,(C) = 0, and this would be a
contradiction.

Corollary 2. If C 48 a periodic orbit and the critical points of f are
isolated, then the interior of C conlains a finite number (= 1) of critical
points of f, the sum of whose indices 18 one.

Proof. Apply Theorem 4.2.

5. The Index of a Simple Critical Point
Let ad — be 5 0 and consider again the two-dimensional real system

3”1 = fi(z1,x:) = axs + bza + gr(x1,x2)

2"{_' = fz(xl,xi) = cxy + dva + Ga(-’-U:,Ix) (5-1)

where g1,g2 are continuous in a circle 0 £ r = v/z} + x} < v, for some
v > 0. TFurther assume g1 = o(r), g2 = o(r), as r — 0. Here the origin
(z1,22) = (0,0) is an isolated critical point of f = (f1,f2), a type which has
been called a simple critical point. The index of the origin with respect
to f is easy to calculate, and indeed this index depends only on the linear
terms in (5.1). This latter fact depends on the observation embodied in
the following lemma.

Lemma. If v, § are any two continuous vector functions on a Jordan
curve J which never have opposite directions, or are zero there, then

1.(J) = I:(J)
Proof. For0 < s < 1 define the vectorv, on Jbyv, = (1 — 8)v + si.

Nowv,#0on0 =s = 1, for vy = v, v1 = ¥, and if v, = 0 for s = 0,1,
then v = —(s/(1 — 8))7 at such an s, which implies » has a direction
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opposite to that of 5. Therefore 7,,(J) exists and is clearly continuous in
s. But this index is an integer, and thus a constant. This implies
Ivo(J) = I,,(J), or I(J) = Is(J).

Theorem B.1. If v i3 the vector function with componenis (az, + bz,,
cxy + dzs), and f = (f.fs) 18 the vector defined 1n (5.1), then 1,(0) = 1,(0),
where zero 18 the origin (0,0).

Proof. It will be shown that on a sufficiently small circle with center
at 0, f and v are never in opposition. Suppose the contrary at some point
(z1,21). Then at this point f + & = 0 forsome s = 0. Butf = v + 7
where g = (g1,0s), and hence (1 +8)v = —g, or (1 + 8)*[jo]* = (jg||*
there. Now [[v||* = (az) + bzs)* + (cz1 + dz2)?, and if z, = r cos 6,
zg = r gin 0, ||v||* = r¥[(a cos 6 + b sin 6)* + (c cos 8 + d sin 6)}). Since
ad — be #% 0, v = 0 only at (0,0). Thus v is continuous and not zero on
r = 1. Therefore

m = inf llol| > 0

and since ||v|| is homogeneous in r, |lv|| = mr for all » > 0. This implies
m*(1 + 8)*r* < |lg[i* at any point (z,zs), where f is in opposition to .
From this it follows that such points cannot be arbitrarily close to (0,0),
for such an hypothesis would imply 0 < m* < m?(1 + 5)* < llgli3/r?, and
gince |lg|| = o(r), as r — 0, this gives a contradiction.

Therefore, for some sufficiently small « > 0, f and v are not in opposi-
tionin 0 < r < a. The case s = 0 above shows that f does not vanish
in 0 <r <a. Thus, by the previous lemma, I,(J) = I,(J) holds for
any Jordan curve J in 0 < r < « surrounding (0,0), and this proves
1,(0) = 1,(0).

Theorem 6.2. If f = (f1,f3) s the veclor defined in (6.1), then 1,(0) =

—1 or -1, according as the origin is or is not a saddle point Jor the linear
system x = az, + bzy, 2} = ¢z, + dz,.
v Proof. By Theorem 6.1 it is sufficient to calculate I,(0). The unit
circle J: 2, = cos 8, z; = 6in 4, 0 < 6 < 2, can be used to compute
I(0). The total change in the angle that v makes with the positive z,
axis a8 J is traversed once in the positive direction is clearly

2% I,(J) = /J d tan-! (M)

azy + bz
or
‘(ad — be) [ de
L) = 2r /; (a cos 8 + b sin 6)* + (c cos 0 + d sin 0)* (5.2)

The right side of (5.2) is continuous in (a,b,c,d) for ad — be 4 0. If
ad — be > 0, there are two cases according as ad > 0 or ad S 0. If
ad > 0, let bec— 0, and d > a in (5.2). Then the right side of .2),
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being an integer, remains constant. Thus

1 2

I.(J) == do = +1

in this case. Ifad < 0, then be < 0, and if ad is increased so that ad > 0,
the preceding can be applied to give the same result. If ad — be <0, the
same reasoning shows that /,(J) = —1. But ad — be < 0 is just the
condition which distinguishes the saddle point from the other types of
critical points, and this proves the theorem.

PROBLEMS

1. Show that the system

L ’ d
=1z Tg=-—a+ (1= z! — z3)za (’ - :i-t)

has ¢ = (p1,¢2), Where ¢i(t) = sin (¢ + c), ¢2(t) = cos (¢t + ¢), and ¢ is an arbitrary
constant, as its only periodic solutions (except for the trivial solution ¢ = 0).
Hixnt: Show that on a closed orbit

f (1:— 9&} - q’;)w;df = 0

so that unless 1 — ¢} — 3 = 0 it is necessary for 1 — ¢! — 3 to change sign on the
orbit.

2. Show that orbital stability prevails for the solution in Prob. 1. Show that any
solution ¢, not the trivial one, has an asymptotic phase v, that is, g1(t) — sin (¢ + ),
@a(t) — cos (¢ -+ v) A8l — @,

Hixt: Show that ¢! + ¢} is a decreasing function of f outside of the unit cirele.

3. Consider the system (for the damped pendulum) r'l = x4, 73 = —bsin z1 — azxs,
where a and b are positive constants. Show that for any solution ¢ = (¢1,42) there
is an integer k such that ¢i(f) — kx, ¢2(t) > 0 as t— =. Distinguish between the
nature of the orbits in the vicinity of (kx,0) for the cases k even and k odd. Sketch
the orbits in the (z1,z:) plane.

Hixt: Show that X = ¥¢} + 2b sin F¢1 is a monotone decreasing function of ¢
unless ¢2 = 0 and ¢ = nx for some integer n. Show that as t— =, A—c=0,
where ¢ is a constant, and that ¢:— 080 that 2b sin? a}m —+ ¢. Thus ¢y — ¢y, & cOn-
stant. Since ¢y = —b sin g1 — ag2— —b sin ¢ and g2~ 0, it follows that sin ¢y = 0.

4. Let z' = f(t,x), where z is a sealar and f and af/ax are continuous in (t,x). Let
f be real and of period @ in & If a solution ¢ satisfies

lim sup |e(t)] < =

= =

then show the equation has a periodic solution.
Hixt: Either ¢(w) = ¢(0) or else elka) b =0,1,2, ..., is o monotone sequence,
6. Let f be real and even, ¢ be real and odd, and let g(z) >0, z > 0. Let

geC* and j be piecewise continuous. Let F(z) = j: F(t) dt and G(z) = j;z g(t) dt.
Let there exist an a > 0 such that F(z) <0for0 <z <a and F(z) > 0 and mono-
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tone increasing for z > a. Let G(z) = » and F(z) » @ as 2 — o, Show that,
aside from the identically zero golution, the differential equation

' +f(z)z' +g(z) =0

has (aside from translations in t) a unique periodic solution which is stable. An
important example is z// 4 u(z = 1)z 2 =0,

Hinr: Consider the system z/ = Y = F(z), ¥y = —g(z) and consider the change in
U = 3y* 4+ G(z) along solutions in the '
right half plane z > 0. Let A'B'C'D’
(Fig. 24) and ABEFCD each represent
a solution in z > 0. Using dU/dz =
—gF/(y — F), show that Up — U<
Uw — Ux. Using dU/dy = F, show
that Uy — Ug < Uer — Uy, Show Usg
< Up. Show finally that Up — Uy
< Up — Uy. For small A’ show that
Upr — Uy >0 and for large A show
that Up < Uy, From the monotone
character of Up — Uy, prove the result.

6. Let F be as in Prob. 5. Show
that y” + F(y') +y =0 has, aside from
the frivial solution, a unique periodic
solution,

Hinr: Let ¢’ = z,

7. If the system z; = f;(z1,24), j = 1,
2, where f; e C1, is considered in the three- Fig, 24
dimensional (t,z,,z,) space, the solutions
may be regarded ns determining a 1 — 1 transformation of the (z1,75) plane into
itself, the transformation being continuous in ¢&. The more complicated problem

(.) ‘; "ff(!frhz!) {J- - 1! 2)

where f; is periodic in £ of period w and where f; and af;/az; are continuous in (t,z1,21)
may be studied by means of the transformation ' of the (z1,2,) plane into itself defined
as follows: Let ¢ be a point in the (z1,z1) plane. Let » be the solution of (*) with
#(0) = . Then T¢ is defined to be ¢(w). Prove that if T exists on the whole plane
then T'#n¢ = TmT'nt.  Prove that if an open simply connected domain D, bounded
by a Jordan curve J, satisfies TD C D, where D = p\U J, ther (*) has a periodic
solution of period w,

Hint: Use the Brouwer fixed-point theorem which states that if 75D C D then there
iz a point Pe D with TP = P, provided that 7 is continuous.




CHAPTER 17

DIFFERENTIAL EQUATIONS ON A TORUS

1. Introduction

The situation of interest here is the study of the solutions, in the large.
of the single differential equation

2 = f(t;2) ( - d%) (L.1)

where it is assumed (throughout this chapter) that

(a) fis a real continuous function defined for all real (t,7),

(b) fit+1,2) =f(t,z+1) = f(t2), and

(c) through every point of the (¢,z) plane there passes a unique solution
of (1.1).

Because of (a) and (b), f is bounded and hence every solution of (1.1)
exists for all £. The periodicity assumption (b) implies that f may be
considered as a function on the surface of a torus J, the points of which can
be described by Cartesian coordinates (¢,z), where two points Py = (i,,z,)
and Ps = (f3,z;) are regarded as identical if ¢, — ¢, and z, — z, are
integers. Similarly the solution paths (¢,¢(t)) may be represented on 3.
In three-dimensional space with rectilinear coordinates (u,v,w) the torus
3 is given by

u = (a + b cos 2xx) cos 2t
v = (a + b cos 2xz) sin 2xt
w = b sin 2rz

where a and b are constants and 0 < b < a.

By (c), through every point P of 3 there exists a uinique solution path
of (1.1). The study, in the large, of the solutions of (1.1) is therefore
reduced to the study of the paths ({,¢(t)), —® <t < - =, on the com-
pact surface J.

Let ¢ = ¢(t,n) be the solution of (1.1) such that ¢(0,7) = 5. Then
consider the transformation ¢ of the real line onto itself defined by

¥(n) = (1,1) (1.2)
w04
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From the assumptions (a) and (c) it follows, by applying Theorem 4.3,
Chap. 2, that y is a homeomorphism of the real line onto itself, that is, a
continuous mapping whose inverse is continuous.t Let @ be the circle on
3 defined as the set of all (4,z) on 3 such that ¢ = 0. Then ¥ induces a
homeomorphism T of € onto € defined by

TP = P, (1.3)
where P = (0,1), P, = (1,0(1,9)) = (0,¢(n)). It follows directly from
the uniqueness assumption (c) that no two solution paths may cross on 3,
and hence Y must be a monotone increasing function. This implies that

T preserves the orientation of the circle €.
Consider the solutions ¢, of (1.1) defined by

60 =elbn+1) 30 = oty) +1
It follows easily, from the assumptions (b) and (c), that since
¢(0) = ¢(0, 7+ 1) = 5+ 1 = $(0)
#(¢) = ¢(t). Using the definition of y [(1.2)], one then obtains
¥+ 1) = y() + 1 (14)

for all real n. The continuous monotone increasing function y is said to
represent T.  Actually, from (1.3) it is clear that 7' can also be repre-
sented by ¥ + n, where n is any integer, for if P = (0,7), then

Pl - - (ls\:’(’?)) =7 (135"(’?) 1= ﬂ') — (Oi\&(ﬂ'))

Also if ¢ satisfies (1.4), then so does ¥+ n.

The investigation of the nature of the solution paths of (1.1) on J can
now be carried out by studying the homeomorphism 7 and its represent-
ing real function y.

2. The Rotation Number

Let y* be the function defined by ¥*(n) = ¥(¥(n)), and, in general,
¥"(n) = ¥(¥"~'(n)) for any integer n, where it is understood that y°(y) = .
Similarly, define 7 by TP = T(TP), and the iterates 7 by

T*P = T(T-1P)

(n=0, £1, 2, . . .), where T°P = P, The set of iterates of T' {T;

n=0, t1, 2, . . .} form a group, for clearly T*T'™ = Thtm — Pmpu
The function y* is of the same type as ¥, that is, it is continuous, mono-

tone increasing, and satisfies (1.4). Also ¥" represents T, if y represents

1 If f; is continuous, this follows from Sec. 7, Chap. 1.
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T. Often it will be convenient to abbreviate as follows:
M = ¥"(n) Po="TrE (n=0, £1, £2, . . J)
Theorem 2.1. The limit
p= lim I (2.1)

Inj—+ = T
exists and s independent of 1 = 7o The number p 18 rational if and only
if some power of T has a fized point.
Proof. First, suppose p exists for some 7, and consider any other 7.
Then there exists an integer m such that

m<g—a<m+1 (2.2)

Using the monotone character of yn, it follows from (2.2) that (7 + m)
< yo(n) < y°(i + m + 1), or by (1.4) applied to ", fa +m = 7 <
7n +m + 1. This is readily seen to imply that (1. — 7a)/n— 0, as
|n| = 4. Thus if p exists for 7, it exists for # and is the same number.

Now suppose some power of T, say T, has a fixed point P (that is,
TmP = P), with coordinate 7. If TP = P, then P = T-nP, and so
7-m has the same fixed point. Thus it can be assumed that m > 0.
Now TmP = P implies 7 = 1 + 7 for some integer r. Thus

nam = Yn(nm) = Y70 1) = a7 =020
and by induction
Mmn =0+ 10 (n =0, -2 e ) (2.3)

Every integer k can be written as k = mn -+ 8, where n,8 are integers and
0 <s<m. Thus

M = fmate = ¥ (mn) = V(0 + m) = ¢'(n) +rm=mn+rm
by (2.3), and

el Tehal
B E T
Since 7, is one of 7o, N1y - « + 3 Im—1y no/k— 0 as |k| — = and
lim % = lim Bl il

i = o wnprie M 8 T om

Hence p exists, and is the rational number r/m.

Next it will be shown that if no power of T has a fixed point, then p
still exists. To say that no power of T has a fixed point means that no
integers m and r and real number 5 exist such that

Nm =0T T
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Thus corresponding to any integer m and a particular n there exists an
- integer r such that
! n+r <o, <n74+r+1 (2.4)
But by continuity considerations (2.4) must then hold for all real 7, for
the corresponding equalities can never take place. If (2.4) is applied to
7 =0, 0u, O2m, . . . , Onn v, and the inequalities added, one obtains

nr < 0, <mn(r+1)

for n = 1 and a similar result for n £ — 1. However,

£ T < 0p <741
. and hence
2

[m]

b oo o=

Omn Om

mn m

(2.5)

Interchanging m and n in (2.5) and adding to (2.5), there results

m ki3 2 2
0, 0| 2 2
frl T o

m n

~ and thus p = lim (0,/m), |m| — o, exists.

] Finally it has to be proved that, if g is rational, some power of T has a
fixed point. Let p be rational, that is; there exist integers k¥ and m such
that mp + &k = 0. It will be shown T™ has a fixed point. Define x by
x(m) = ¢™(n) + k. Then

x*(n) = ¢™(n) + kn
and thus

xX'm) _ ()
n

y
=t kompt+k (n)— ©)

Clearly x represents T, and mp + k = 0 stands in the same relation to
x as p does to .

Suppose T™ has no fixed points. Then x(3) — n # 0 for any 5, and
hence it can be assumed that x(n) > 5 for all real 5. In particular,
x(0) > 0, and by the monotone nature of x, x*(0) > x*~*(0) > - - - >
x(0) > 0. Thus x*(0) is increasing in n. Moreover, x*(0) < 1, for all
n. For suppose not; then from some n onward x*(0) > 1. Pick one
such n. Then

x*(0) > x*(1) = ¢y™(1) + kn = x/xm"(O) +kn4+1=x0)+1>2
Thus x*(0) > 1, and

x"(0) S 1

= - (2.6)

| ‘ Letting I — « in (2.6), one obtains mp + k = (1/n), which contradicts
s the fact mp + k = 0. Therefore the sequence of numbers {x*(0)} is
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monotone increasing and bounded, and thus has 2 limit, say 7. Now
x(4) = lim x(x*(0)) = lim x»*1(0) = 4. Hence 7 determines a fixed
point P = (0,%) of T™, which is a contradiction. This proves p rational,
mp + k = 0, implies 7™ has a fixed point.

The number p is called the rotation number of T for the equation (1.1).
It measures the average advance of a solution ¢ of (1.1) starting at (0,4)
as t changes by a unit. It isindependent of the solution used to define it,
and is rational if and only if there exists some solution which is periodic
with an integer period.

3. The Cluster Set

Let S be the set consisting of all iterates of a point Pe @ under T,
that is,

S={T"P;n=0 *1, £2, .. .}

Denote by S’ the set of cluster points of S. The set S’ will be called the
cluster set associated with T and (1.1). When p is rational, mp + k = 0,
it follows readily from consideration of 7™ that S’ consists of a finite num-
ber of points. In what follows it will be assumed that p is irrational.
Superficially S’ depends on the P chosen to define S, but the following
theorem shows that actually S’ is independent of P, and thus the term
the cluster set is meaningful.

Theorem 3.1. The cluster set S’ is tnvartant under T, that 15, TS = S,
and it s independent of P.

Proof. Let QeS'. Then @ = lim Py, *,— «, where Py, ¢S
Hence TQ = lim TP, = lim Py, = @8, and therefore TS C S.
Also T-'Q = lim T-'P;, = lim Pr,_;y = Q¢S’, and so T-18 C S
Hence T(T-18") € TS, or 8’ € T'S’, proving TS’ = §'.

In order to prove that S’ is independent of P, the following lemma will
be required.

Lemma. Let P, P.e 8, and let « and & be the two closed arcs on © with
P,. and P, as end points. Then «, & both contain at least one of the trans-

forms @ of any poini @ ¢ C. .
Proof. 'The proof will be deduced for the arc . It is easy to see that 3
the arcs o, T ", T2 Mg, . . ., TEm—ny gre adjacent on €. Siuce p 1

is irrational, the arcs which are sums of the form

a\U Trra \J Tom—mg \J -+ . \J Trin-ng

must cover @ if k is sufficiently large. For if this were not true the set of
points {T#m—mp 1 (k =0,1,2, . . .), would be monotone and bounded
on @, and thus possess a limit point . But then

Tr—nP = lim Tr—n(Tk—mP ) = lim T®+Dm—mP, = P
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k— =, and thercfore P would be a fixed point for 7"~ which is a con-
tradiction. Therefore, for some I Qe 7" "a, or T!»-mQea, or
Qitn-m) = @, which proves the lemma.

To continue the prodf of Theorem 3.1, let S, denote the cluster set
associated with 7" and defined using the point P, whereas let S, denote
the corresponding cluster set defined by using any other point Q on €.
If R ¢S}, then there exists a sequence of transforms P, — R, where » runs
through some sequence of integers. l_iy the lemma, there exists a trans-
form @, of @ on the short arc joining any two successive P,. Thus there
exists a sequence @, of transforms of @ such that Q, — R, where g runs
through some scquence of integers.  Hence R ¢ S, which proves S, C S,
and by symmetry this shows S’ is independent of P.

Theorem 3.2. The cluster set S’ is perfect, and either

(& S*=e or
(b) 8’ 7s nowhere dense on @.

ReMark. In the case (a) T is called ergodic; the case (b) is called the
singular case.

Proof of Theorem 3.2, Since S’ is closed, S" = (8')' € 8. To show
S" € S8, choose @ in the last paragraph of the proof of Theorem 3.1 to be
a point in 8",  Then any point R ¢ S is a limit of transforms Quof Qe S,
that is, R eS”. Hence S” = ', and thus &’ is perfect.

The set S is either everywhere dense on € or nowhere dense on e, for if
S is dense on an arc of @, this arc can be assumed to be the « of the
previous lemma. Then the sum of a finite number of transforms of a
covers C. T'urther, S is everywhere dense on @ if and only if S’ is, and
this completes the proof of the theorem.

4, The Ergodic Case

From a practical point of view it is desirable to know when the singular
case cannot occur. The following theorem, originally due to Denjoy,
gives a sufficient condition in order that 7' be ergodic. The theorem
itself was conjectured by Poinecaré in the case where f [of {1.1)] is analytie.
The variation of the Denjoy proof given here is due to van Kampen,

Theorem 4.1. Suppose ¢ possesses a continuous first derivative ' > 0
on 0 =y = 1, and Y' is of bounded variation there. If no power of T has
a fized point, then T is ergodic.

Proof. Let P be a point on €, and & an arc with P as end point. Let
n be the positive integer such that either P, or P_, is the only point P,
|k| = n, in the interior of a. Given any integer N > 0, then « can be
taken small enough so that there is such ann = N, Suppose P_, e «; the
case Py e a can be dealt with similarly.
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Lemma. The two finite sequences
Pu,Pl,---,Pﬂ_—landp—!ljpl—ﬂll"lP—l

alternate on C.

Proof. Choose the arc I;:IE'_,, which liesin a. Tt has to be shown that
if 0 <k < n, no point of either of the two sequences is in the inlerior
of the arc Ig:l\’k_,. on @ that has the same orientation as I';;?’_,_; that is, the
arcsfg:l\’.,_,, (t =0,1, ... ,n— 1)are disjoint arcs. Suppose the con-

e
trary; then for somel = —n, . . . ,n — 1, P& PiPs_,. There are two
cases according as

@ k—nsl<nor
(i) —n=l<k-—n<0.

~
Consider Case (i). Then Pje PiPi_, implies, using the orientation-
J ! ¥ e
preserving nature of T-* that T—*Pye PoP_,, or Piie PoP_,.. But

—n<l—Fk=1<n,and hence Prsc¢ Ig;.?’_,, has been excluded by the
choice of n. For Case (ii), 0 < | + n < k, and hence by Case (1) Pryn is

. ,-\ - . - - f—\ -
not in PiPi_,. Since P;is and Py, 1s not In PPy _,, it follows that
F\ ~ P ’

wnPi and PiP._, overlap and thus Pie Pr.P;. Applying T-*" to

this relation, one obtains Pr.i—n € Ig‘;f\?_,‘. But this is impossible since, by
(i), 0 <k —1l—n< —l=n Thus the lemma is proved.

Since ¢/ is of bounded variation on 0 = 9 < 1,andy’ > 0, the function
¥ defined by ¥(n) = log ¢/(9) is definedon 0 = 9 = 1, and is of bounded
variation there. Further, ¥ has period 1, for ¢ satisfies (1.4). Let the

point P (chosen prior to the above lemma) have coordinate 5. Then
o
from the lemma it follows that, since the arcs PPy (= 0,k ..y

n — 1) are disjoint,

n—1
\ 2 (¥(m) — ‘P(m_n))\ =V (4.1)
k=0
where V is the total variation of ¥ over [0,1]. But
n-1 n—1
/ ayr
2 W) = lng (ﬂ v ('ﬂi)) = l{_}g _;-;- (73)
k=0 k=0
Similarly,
n—1

2 ‘l’("p'k— ,‘) = - Iog dﬁ;" (n)

k=0
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and therefore, from (4.1),

1o (d‘“ 7% (n;)‘

<V
[ dn dn -
ar
s d‘” s (4.2)

Now 7 is any number on 0 = y = 1, and hence (4.2) holds for any n,
0 = 5 = 1, and for arbitrarily large integral n.

Now let 8 be any arc on € with length s. Suppose 7%8 has length s,.
Then, if we make the nonessential assumptiorn that the radius of € is 1/2x,

_ [ a¥ _ dy*
% [drr s oer O
and therefore

) dy* b Ay’ . dy* } %
fr s L(dn I ){h’ : 2£(37}_ dn ) dn 2 zse, £

for those k satisfying (4.2). Hence sy + s . =~ 0 as k— .

Suppose the open set € — S’ is not, empty. Then consider an open are
BC e — &, with end points in S’. 'Since 7S’ = &', and since T is
orientation-preserving, all the transforms T*8 (k = 0, 41, +2, . . .) are
in€ — 8. Clearly no two arcs of {7*8} can overlap, for the end points
must be in §’. Moreover, no arc can be mapped onto another are, for
an end point of one would be mapped onto an end point of the other and
thus p would be rational. Thus the arcs {T*8] are disjoint and so, as
k— =, s + sx — 0, which contradicts the result of the previous para-
graph, Therefore € — S’ must be empty, that is, T is ergodic.

It remains to give sufficient conditions on f in (1.1) in order that ¢
satisfy the conditions of Theorem 4.1.

Theorem 4.2. Lel f in the differential equation (1.1) a’ = f(t,x) satisfy,
besides the assumptions (a) through (c) below (1.1), the hypothesis that
af/ox exists, is continuous, and is of bounded variation with respect to z for
0 =z = 1, uniformly in t. Then if no power of T has a fized point, T 18
ergodic,

Remark: The assumptions on f are sathﬁed if (a) through (c) below
(1.1) hold, and if 8% /ax* exists and is continuous.

Proof of Theorem 4.2. 1t will be shown ' is positive, continuous, and of
bounded variation. ; ;

First, since df/dx exists and is continuous in (1,z), it follows from .
Theorem 7.2, Chap. 1, that the solution ¢ = (4,) of (1.1) such that
¢(0,1) = 7, is a continuously differentiable function of 4, and in fact
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; :
3—:: (t,m) =L\exp[ [0 :—i (r,(rym) dr] (4.3)

In particular, at { = 1, (4.3) gives, sir'we (dg/dm)(1,m) = ¢'(n),

V' (n) = exp [L% (r,0(r,m)) drl (+.4)

Therefore ¥ (n) exists, and from 44 ') > 0.
If

1
g(n) = f gi(nw(f.n)) dr
0

I

then clearly, if g is of bounded variation on 0 < 7 S 1, ¢/(n) = exp g(n)
will have the same property. To show ¢ is of bounded variation, let
O=mamn<- i Sh=l be a subdivision of 0 £ n = L. Then

n—1 * 1 n..—l
Z lg(nesr) — gln)| = J; 2 \ g—i (ry0(rymesr)) — % (r,(T,me)) .ld'r (4.5)
=0 =0

For fixed t, 0 < ¢ = 1, the transformation ¢, defined by

viln) = o(tn) (I = 1)

is clearly a homeomorphism of the interval0 < n < 1 ontoa real interval.
Since y is orientation-preserving, so is ¢.. Thusif

0=ﬂn{ﬂ1<"‘<ﬂn=l
is a subdivision of 0 < 5 = 1, then
U(0) < Yil) < -0 0 <wulma) :

or
'p(tJO) < ‘p(z:?l) Lt S W(tal)

is a subdivision of the interval o(t,0) S = = o(,1). Since 3f/dz is of
bounded variation in z uniformly n t,
n—1

2 . a'a_;: (t:(}oalﬂl‘-{—l)) gl a'a_i (L‘P(trﬂl’)}

k=0

IA .

Vv

for some constant V, independent of ¢, 0 = ¢ < 1. From this it follows
from (4.5) that g is of bounded variation on 0 < n < 1, completing the
proof of the theorem.
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6. Characterization of Solutions in the Ergodic Case

In the ergodic case the solutions of (1.1) have a particular structure.
In order to see this, the relationship between the rotation number p of 7
and the set of iterates ¥»(n) of n will be investigated in more detail,

Theorem b.1. Suppose p ts irralional, and 3 is a fived real number.
Then the number systems A: {np + m}, and B: {3, + m}, where m, n are
arbitrary infegers, are in a one-to-one monotone correspondence.

Proof. 1If np -+ m is associated with g, + m, (9. = ¥"(y)), then clearly
the correspondence is one-to-one because of the irrationality of p and
the consequent absence of fixed points of 7'

Secondly, the order of the elements in B does not depend on the n
chosen, that is, if n, +m < m + [, then {, + m < & + [, for any real ¢.
Equivalently, 5, — 9 <l — m implies ¢, — & <1 — m. The latter
follows since the continuous function y of , defined by

x(n) = y¥r(n) — (@) = 1 — m

can never be an integer, for p is irrational,
Hence it suffices to prove the result for 5 = 0. If p,q,r are integers
such that
pS0,=r (0, = ¢2(0)) (5.1)

then it will be shown that
p<qgp<r (5.2)

To prove (5.2), apply ¢ to (5.1), obtaining y(p) < 0, < ¢¥4(r), or
0,4+ p £ 0., €0, + r, using (1.4). Thus by (5.1) 2p = 02, = 2r, and

by repeating it follows for any integer ! > 0 that lp < 0,y < Ir, or

0,
S ST 5.3
PEay, (5.3)

Letting I — « in (5.3) one obtains p < qp < r. But since p is irrational,
neither equality can occur. Hence (5.2)-is proved.

Now if 0, + m < 0 -+ [, it is to be shown that np + m < kp + [, and
conversely. Applying ¢* to the fiffst inequality, one sees that what has
to be proved is that 0, <l — m is equivalent to (n — k)p <1 — m.
From (5.1) and (5.2) 0,k <l —m implies (n — k)p <l —m. If
(n —k)p <l —myand 0, = I — m, then by (5.1) and (5.2) (n — k)p >
[ — m, which is a contradiction. This completes the proof of the theorem.

The result of Theorem 5.1 leads immediately to a geometric justification
of the term ‘“rotation number” for p. Indeed, the following theorem
shows that if 7 is ergodic then T is topologically equivalent to a rotation
of the circle @ by an angle 2r,. By this is meant that there exists a
homeomorphism H of € onto € such that HT = RH, where R is the rota-
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tion of @ by an angle 2rp. In terms of representing real functions, this
means that there exists & continuous monotone increasing real function h
defined for all real y possessing the properties

hy +1) = h(y) + 1 (5.4)
h(¥(y)) = h(y) + » (5.5)

The continuous increasing nature of i combined with (5.4) implies A
represents a homeomorphism H of € onto €, and (5.5) just says that
. HT = RH, where R, which is represented by the real function

Il

rly) =y +oe

is the rotation of € by an angle 2rp.

Theorem 6.2. If T is ergodic, then T is topologically equivalent to a
rotation of the circle @ by an angle 2rp.

Proof. Let 5 be a fixed real number and consider the sets A and B
defined in Theorem 5.1. If ye Bandy = 3. + m, define ho(y) = np + m.
This defines a real funetion kg, on B with values in A, which is monotone
increasing. Also A is dense on the real line because p is irrational. From
this it follows that hg is continuous on B, Since 7' is ergodic, B is dense
on the real numbers. Therefore hy can be extended in a unique way to a
continuous increasing real function h = h(y) defined for all real y.

Now suppose y ¢ B, and y = 5, + m.. Then h(y) = np + m, and it is.
clear that h(y) + 1 = np + (m + 1) must correspond to

y+1=n.+(m-41)

that is, for y e B, (5.4) must hold. But, by continuity, (5.4) must hold
for all real y. Similarly, if y e B, y = 5. + m, then

h(y) +p=m+1p+m

must correspond to n,.1 + m = Y(n.) + m = ¢(n. + m) = Y(y). Thus,
for y e B, (5.5) must be valid, and by continuity (5.5) holds for all real y.
From the remarks just preceding the theorem, it is clear that h represents
a homeomorphism H of € onto € which establishes the desired topological
equivalence.

The importance of Theorems 5.1 and 5.2 from the point of view of
differential equations is that they prepare the way for a simple character-
ization of the solutions of (1.1).

Theorem 6.3 (Bohl). If T is ergodic, there exists a funclion w = w(l,z)
which is continuous in (1,z), and periodic

ot +1,2) = o, z4+ 1) = w(t,2) (5.6)
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such that every solution ¢ of (1.1) can be written in the form
o) =tp+c+ wt, tp+c) (5.7)

where ¢ 7s a constant, and p 1s the rotation number. Conversely, for any
constant ¢, (5.7) 7s a solution of (1.1) and to each ¢, 0 < ¢ < 1, there corre-
sponds a witique ¢(0) (mod 1). Indeed, ¢ = h((0)).

Proof.. Let n be any real number, and let ¢ = ¢(¢,3) be the solution of
(1.1) with ¢(0,9) = 9. Because f(t, z + 1) = f(t,x)

et,n+ 1) = o(tn) + 1 (5.8)
With () = ©(1,7) and because f(t + 1, z) = J(t,x)
e+ 1,1) = o(t,¥(n) (5.9)

Let h(n) = ¢. Then, because h is monotone increasing and continuous,
7 = g(c), where g is monotone increasing and continuous. Moreover, by
(6.4) and (5.5),

gle +1) = g(e) + 1 (5.10)
¥(g(c)) = gle + p) (5.11)

Let ¢(tc) = o(t,g(c)). Then, by (5.8) and (5.10),
et,ce+1) = e(te) + 1 (512)

By (5.9) and (5.11)
V-’('t + 1! C) = ‘P(t + 1) Q'(C)) L= 60(31'1'(9(0))) = P(isg(c + P)) e ‘;’(tr c+ P)

s0 that
@t +1,¢) = 3@, ¢+ p) (5.13)

Let w(t,2) = &(f, z — tp) — z for all real ¢ and 2. Then, by (5.12) and
(5.13),
ot +1,2) = wt,z4 1) = w(t,2)

Clearly, with z = #p + ¢,
e(te) =tp + ¢ + w(t, tp + ¢)
which proves the theorem,
6. A System of Two Equations
With little change in argument, the pair of equations
vy = filzye) @ = fa(zyza) (6.1)
may be considered, where it is assumed that f, f are real continuous fune-
tions defined for all real z,,z, satisfying

Jil@y + 1, 22) = fi(zy, 72 + 1) = fi(z1,22) (G=12)
fi+fi=0
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Suppose that through each point of the (2y,22) plane passes a unique solu-
tion of (6.1), except for translations in ¢, and that (6.1) has no periodic
solutions.

The coordinates (r;,x2) may be taken on a torus 3. The role of the
circle @ in the previous sections is taken by the curve & which will now be
defined. Consider the orthogonal system of equations

ay = —fa@y,as) &y = fi(21,%2) (6.2)

Let ¢ = (¥1,¥2) be a solution of (6.2). If it is a closed curve on 3, it may
be taken as K. If ¢ is not a closed curve, then the points y(¢), { = 1, 2,
. .., have at least one limit point P on 3. Consider a small curvilinear
rectangle R with P in its interior and with its edges consisting of two ares
P,P, and P3P, which are solutions of (6.1) and two arcs P1P3 and PyPy
which are solutions of (6.2). Let the ares PP, and P,P; have equal
length on 3 and let, R be taken small enough so that the change in direction
of the vector with components (fi,f2) in R is less than =/100. Let the
solution y first intersect are P,P; (or arc PsPy) at { = {, and leave R for
increasing { > fo. Let it return to R for the first time for ¢ = 4 when it
meets arc PsP; (or PyPs).  The curve y(t), to = t = &, can now be closed
by an are from ¥(t,) to ¢(f) which will be entirely in R, will make an
angle less in magnitude than «/3 with the solutions of (6.2) in R, and
which ean have continuous first derivatives at ¥(f) and ¢(t,) (and also
continuous second derivatives if f; and f; are of class C*). The closed
curve so defined is called XK.

% cannot be continuously deformed to a point since this would imply a
critical point on 3 because the index of & with respect to the vector
field (f1,f2) is one. Any solution of (6.1) must cut & as ¢ increases (or
decreases). For let this not be the case for a semiorbit C+ of (6.1). The
torus cut along & is an annulus. Thus, since C* does not intersect X, it
cannot approach % and thus C* and L(C*) are in the annulus. The
Poincaré-Bendixson argument can be applied to show that L(C*) is a
closed orbit. But, by hypothesis, (6.1) has no periodic orbits. Thus all
semiorbits of (6.1) cut &. In particular, all solutions starting on X
return to 3. This defines a homeomorphism of X into itself and the
previous results proved for € now apply also to X.
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Ascoli lemma, 5
Asymptotic behavior of solutions, of
linear systems, 91, 98, 99 (Probs.
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Asymptotic expansion (see Asymptotic
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Asymptotic orbital stability, 353
Asymptotic phase, 323, 402 (Prob. 2)
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formal solutions as, 160, 161, 163, 168
and Laplace integral, 170
for linear systems with large param-
eter, 178, 179
for nth-order equation with param-
eter, 182-184
Asymptotically stable soltftion, 314, 322
Attractor, 376
Autonomous system, 342, 352

Bessel equation, 136 (Probs. 8, 9)
Bessel functions, 260 (Prob. 16)
Liessel inequality, 197

Bohl, P,, 414

Boundary condition, adjoint, 289

Boundary condition, homogeneous, 28§
nonhomogeneous, 294
self-adjoint, 291, 297 (Prob. 1)
Boundary-form formula, 288
Boundary forms, 286
complementary, 287
Boundary operators, 286
Boundary-value problems, adjoint, 201
homogeneous, 291
nonhomogeneous, 294
for nonlinear second-order equation,
38 (Prob. 5)
self-ndjoint, 291
for system, of first order, 204 (Prob.
16), 205 (Prob. 17)
of nth order, 206 (Probs. 18, 19),
297 (Probs. 4-6)
(See also Eigenvalue problems)
Brouwer fixed-point theorem, 403
(Prob. 6)

Canonical form of matrix, 63, 106
(Probs. 39, 40)
Carathéodory existence theorem, 43
Cauchy formula for expansion, 209
Cauchy integral method, 208
Center, 374, 376, 381, 382
Characteristic equation of matrix, 65
Characteristic exponents, 80, 321-323
347 (Prob. 13)
Characteristic polynomial of matrix, 62
Characteristic roots of matrix, 62
Closed set of functions, 200
Cluster set, 408
Comparison theorems, 208-211
Completeness relation, nonsingular ease.
198
singular second-order case, 233
(See also Parseval equality)

423



. 424

Complex systems, 32-37
Conditional stability, 330, 333
Confluent hypergeometric equation, 132
Constant coefficients, 75, 88, 100 (Prob.
13)
Continuation of solutions, 13-15, 61
(Probs. 4, 5)
of maximum solutions, 47
of minimum solutions, 47
Convex set, 8
Copson, E. T., 132
Critical point, 371, 375, 376, 389, 400
simple, 376, 400
index of, 400-402

Denjoy, A., 409
Domain, 1

Eigenfunctions, 186, 189
closure of, self-adjoint case, 203
(Prob. 8)
completeness of, self-adjoint case, 203
(Prob. 9)
enumerability of, 189
of integral operator, 193
normalized, 196 .
orthogonality of, 189
orthonormal, 196
of singular problems, 252, 256, 257
(Probs. 6, 7)
for system, of first order, 205 (Prob.
17)
of nth order, 206 (Prob. 18)
Eigenvalue problems, 189
nonself-adjoint, nth-order, 308-312
second-order, 305-308
systems of first order, 312-313
(Prob. 2)
periodic boundary conditions, 213-215
for second-order equations, 211-215
self-adjoint, 189
for singular first-order systems, 281-
283 (Probs. 3-6)
for singular nth-order systems, 281
(Prob. 1)
for singular pair of first-order equa-
tions, 260 (Prob. 20)
singular self-adjoint nth-order, 261
singular self-adjoint second-order, 222
for system of first order, 205 (Prob, 17)
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Eigenvalue problems, for system of nth
order, 206 (Probs. 18, 19}
Eigenvalues, 186, 189
existence of, 195
for second-order equations, 212
of integral operator, 193
in limit-circle case, 259, (Prob. 15)
for second-order equations, 220, 221
(Probs. 3-5)
eapproximate solution, 3, 19
Equicontinuity, 5
Equiconvergence, 303, 308, 310
Ergodic case, 400
characterization of solutions in, 414,
415
sufficient condition for, 411
Euclidean length of vector, 17
Euler equation, 122, 131
Exceptional components, 361
Exceptional indices, 361
Existence theorems, analytic systems, 34
Banach space formulation, 40, 41
Carathéodory, 43
Cauchy-Peano, 6
implicit equation, 40 (Prob. 8)
initial-value problems, 10
linear systems, 20, 40 (Prob. 7), 97
(Prob. 1), 98 (Prob. 2)
maximum solutions, 45
minimum solutions, 45
Picard-Lindelof, 12
successive approximations, 12, 38
(Prob. 4) ;
Expansion theorem, Hilbert space
formulation of, 283 (Probs. 7-9)
nonself-ndjoint nth-order case, 311
nonself-adjoint second-order case,
303, 307, 311, 313 (Prob. 3)
nonsingular self-adjoint case, 197, 199
singular nth-order case, 264, 283
(Prob. 9) \
for singular nth-order systems, 281
(Prob. 1)
singular second-order case, 233, 252
for system, of first order, 205 (Prob. 17)
of nth order, 206 (Prob. 18)

First-variation equation, 322
Focus, 374

(See also Spiral point)
Formal Laurent series, 115
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Formal power series, 116
Formal solutions, 117, 142
asymptotic nature of, 160, 161, 163,
168, 173 (Probs. 1-5), 178, 179
for linear systems with large param-
eter, 175, 176
log-exponential sum, 141
matrix, 142
for nonhomogeneous linear system with
parameter, 184, 185 (Probs. 1, 2)
for systems, with singularity of first
kind, 119122
with singularity of second kind,
142, 143
Fourier coeflicients, 187, 197
Fourier integral formula, 253
Frobenius method, 132-135
for systems, 136 (Prob. 13)
Fuchsian type, systems of, 120
Fundamental inequality, 37 (Prob. 1)
Fundamental matrix, 69
associated with nth-order equation,
201
for singularity of first kind, 119, 121
IF'undamental set of solutions, 60

Green's formula, 86
Green's function, 192, 295
for adjoint problem, 296
connection with spectral matrix, 280
expansion for, 202 (Prob. 4)
explicit representation of, 204 (Prob.
12)
for first-order system, 204 (Prob. 16)
in limit-circle case, 244
for Lz = —2', 300 |
for Lz = —z'" 4 q(t)z, 306
for nonself-adjoint problems, 31{} 312,
313 (Prob. 3)
for nth-order systems, 206 (Prob. 18),
297 (Prob. 6)
poles of, 202 (Prob. 7)
for second-order problem, 229
. singular nth-order case, 278
symmetry of, in self-adjoint case, 202
(Prob. 6)

Halmos, P. R., 68n,
Helly’s theorem, 233
Hermite operator, 253
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Hermite polynomials, 253
Hilbert space, 233n.
formulation of eigenvalue problems,
283 (Probs. 7-10)
Hill equation, 220
Homeomorphism, 405, 413
(See also Topological mapping)
Homogeneous linear systems, 67
adjoint systems, 70
basis for, 69
fundamental matrix for, 69
matrix equation associated with, 69
reduction of order of, 71
Hypergeometric equation, 132, 135
(Probs. 5, 6)

Ince, E. L., 170n.
Index, of isolated critical point, 398
of Jordan curve, 398
of periodic orbit, 400
of simple critical point, 400-402
Indicial equation, 123, 127
Inequality, fundamental, 37 (Prob. 1)
Initial conditions, dependence of solu-
tions on, 22-32, 40 (Probs. 7, 9),
58-60
analytic case, 35
discontinuous right member, 39
(Prob. 6)
+ maximum solution, 47
Initial-value problem, 2
existence theorems, 10
for systems of differential equations, 15
uniqueness theorems, 10, 48-52, 60
(Probs. 1, 2)
Inner product, 189, 262
Instability, 317
Inverse of differential operator, 245n.,
258 (Prob. 12), 265, 271, 278
Inverse-transform theorem, singular
nth-order case, 266, 272
for singular nth-order systems, 281
(Prob. 1)
singular second-order case, 233
Irregular singular point, 111, 169
generalization to nonlinear case, 320

Jordan curve, 393n., 398-400
Jordan-curve theorem, 393n.
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£, space, 187

2 (p), space, 232, 251, 264

Lagrange identity, 86

Laplace integral, 170

Laurent series, formal, 115
(See also Formal solutions)

Legendre equation, 136 (Prob. 11)

Limit circle, 228

Limit-circle case at infinity, 242

Limit-circle type, 225

Limit cycle, 392

Limit orbit, 391

Limit point, 228
of a semiorbit, 389

Limit-point case, examples, 254-258

(Probs. 1, 2, 4, 10, 11)

sufficient conditions for, 229-231

Limit-point type, 225

Limit sets of orbits, 380

Lindeldf, existence theorem of Picard-

Lindelof, 12 .

Linear equations of order n, 81
adjoint equations, 84
analytic coefficients, 91
basis for, 83 2
constant coefficients, 88
fundamental set for, 83
homogenéous equation, 82
nonhomogeneous equation, 87
periodic coefficients, 100 (Prob. 14)
reduction of order of, 84
variation-of-constants for, 87
Wronskian of, 82

Linear systems, analytic coefficients, 90
‘asymptotic behavior of, 91
constant coefficients, 75, 100 (Prob. 13)
homogeneous (see Homogeneous linear

systems)

nonhomogeneous, 74, 76
of nth order, 103 (Prob. 27)
periodic coefficients, 78
perturbations of (see Perturbations)
singular point for (see Singular point)
two-dimensional, 371-375

Lipschitz condition, 8 .
abstract, 41 .
extended form of, 37 (Prob. 2)
for vectors, 19

Lipschitz constant, 8
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Log-exponential matrix, 142
Log-exponential sum, 141
Logarithm of matrix, 107 (Prob. 41)
Logarithmic sum, formal, 116

Mathieu equation, 220

Matrices, series of, 64
similar, 63

Matrix, canonical form for, 63, 106

(Probs. 39, 40)

characteristic equation of, 66
characteristic polynomial of, 62
characteristic roots of, 62
conjugate, 62
conjugate transposed, 62
determinant of, 25, 64 0
exponential of, 64
formal logarithmic, 117
formal-golution, 142
fundamental (see Fundamentsl matrix)
lpg-exponential, 142
logarithm of, 65
norm, 62
reciprocal, 62
singular, 62
spectral (see Spectral matrix’
trace of, 25, 64
transposed, 62

Meissner equation, 220

Multipliers, 80

7

Nagy, B. v. 8z., 283 (Prob. 8)
Node, 346 (Prob. 8), 376
improper, 373, 384
proper, 372, 376, 378, 379
Nonautonomous systems, 348
Nonhomogeneous linear systems, fun-
damental matrix for, 74
variation-of-constants formula for, 75
Norm, of functions in €% 189, 262
of integral operator, 194, 195
of matrix, 62
of vector, 17
Normalized eigenfunctiop, 196
nth-order equation, existence theorem
for, 22
initial-value problem for, 21
solution of, 21
system associated with, 21
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nth-order equation, uniqueness theorem
for, 22
(See also Boundary-value problems;
Eigenvalue problems)

o [symbol used in “f = o(g), t — a,”
_meaning f/g — 0, { — a], 92
0 [symbol used in “f = 0(g), t — a,”
meaning f/g is bounded as t — a),
148, 153
Orbit, 323, 389
adjacent, 397
limit, 391
periodic, 392, 395
index of, 400
of two-dimensional linear system,
371-375
Orbital stability, 397, 402 (Prob. 2)
asymptotie, 323
Orthogonal functions, 189
Orthonormal sequence, 187, 196

Parameter, large, linear systems with,
174
Parameters, dependence of solutions on,
20-32, 40 (Prob. 7), 59
analytic case, 36
Parseval equality, 187, 108
singular nth-order case, 264, 283
(Prob. 9)
for singular nth-order systems, 281
(Prob. 1)
singular second-order case, 233, 252
Pendulum, damped, 402 (Prob. 3)
Periodic boundary conditions for second-
order equations, 213-215
Periodic coefficients, first-variation
equation with, 322
linear systems with, 78, 283 (Prob. 6)
nth-order equations with, 100 (Prob.
14)
perturbations of linear systems with,
345 (Prob, 4), 370 (Prob. 4)
second-order equations with, 99
(Probs. 7-11), 213-220
singular problems with, 257, 258
(Probs. 10, 11)
stability of systems with, 321
Periodic nonlinear equations, 404, 415
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Periodic nonlinear systems, 322, 347
(Probs. 12, 13), 348
Periodic solutions, analytic case, 351,
354, 363, 364, 367, 368
asymptotic orbital stability of, 353
asymptotic stability of, 350
existence of, autonomous ecase, 352,
367
nonautonomous case, 348, 362, 370
(Probs. 2, 3)
for nonlinear equations, 391, 394,
402, 403 (Probs. 1, 4-7)
on torus, 408
Perturbations, of linear systems, 314—
321, 327-345 (Probs. 1, 2)
with periodic coefficients, 370 (Prob.
4)
with a periodic solution, autonomous
case, 364-369
nonautonomous case, 356-364
two-dimensional case, 345, 346
(Probs. 5-10), 375
of second-order equations, 356, 369,
370 (Prob. 1)
Phragmen-Lindelif theorems, 162
Picard, existence theorem of Picard-
Lindeldf, 12
Piecewise continuous derivative, 3
Plancherel equation, 223
Plancherel theorem, 261
Poinecaré, H., 138, 409
Poincaré-Bendixson theorem, 391
Polar equations, 376
Polar funetions, 372
Power series, formal, 116
(See also Formal solutions)
Product integration, 98 (Prob. 2)

Regular point, 389
Regular singular point, 111
Rellich, F., 283 (Prob. 8)
Riesz-Fischer theorem, 201
Rotation number, 406-408
Rudin, W., 201n.

Saddle point, 346 (Prob. 7), 374, 387, 401
Schwarz inequality, 104
Self-adjoint differential operators,

204 (Probs. 13, 14)



428

Self-adjoint operator, 283 (Prob. 8)
Self-adjoint problems, 189
boundary conditions for, 204 (Prob.
15)
examples of, 201 (Probs. 1-3)
limit-cirele case, 246
limit-point case, 258 (Prob. 13), 260
(Prob. 17)
for systems, of first order, 281-283
(Probs. 3-6) :
of nth order, 281 (Prob. 1)
(See alse Boundary-value problems;
Eigenvalue problems)
Self-adjointness condition, 188
Semibilinear form, 285
Semiorbit, 389
Separation of zeros of solutions, 209, 220
(Probs. 1, 2
Singular case, 409
Singular components, 361
Singular eigenvalue problems (See
Eigenvalue problems)
Singular indices, 361
Singular point, for linear system, 111
apparent, 114
first kind, 111
at infinity, 127-130, 138
irregular, 111
isolated, 109
regular, 111
gecond kind, 111
at infinity, 138
for nth-order equation, first kind, 122
irregular, 125, 169
regular, 124, 130
for nth-order system, first kind, 135
{Probs. 1, 2)
Solution, 2
in extended sense, 42
maximum, 45
minimum, 45
periodic (see Periodic solution)
stable, 314, 318, 322
subharmonic, 322
trivial, 67
Speetral function, examples of, 254258
(Probs. 1, 2, 4, 10, 11)
limit-circle case, 242
limit-point case, 233
in nonsingular case, 232
uniqueness of, 232, 259 (Prob. 14)

ORDINARY DIFFERENTIAL EQUATIONS

Spectral matrix, in limit-circle case, 251
in nonsingular nth-order case, 263
in nonsingular second-order case, 247
in singular ath-order case, 263
in terms of Green’s function, 280
uniqueness of, 209
Spectral resolution, 283 (Prob. 8)
Spectrum, 252, 269 2
cluster points, 257 (Prob. 8)
continuous, 252, 269
eigenvalues, 252
point, 252, 269
Spiral point, 346 (Frob. 8), 374, 376,
381, 382
proper, 378, 379
Stability, asymptotie, 314
asymptotic orbital, 323, 353
conditional, 330
orbital, 397, 402 (Prob. 2)
of solutions of two-dimensional linear
systems, 375
Stability regions for second-order equa-
tions with periodic coefficients, 218,
221 (Probs. 6, 9)
Stable manifold, 330, 343, 344
Stable solution, 314, 318, 322
Subharmonic solution, 322
Successive approximations, 11-13
in Banach space, 41
convergence of, 54, 60 (Prob., 3)
divergence of, 53
Symmetric operator, 283 (Prob. 7)
Systems of differenticl equations, 15
complex, 32-37
initial-value problem for, 15

Titchmarsh, E. C., 161n.

Topologieal mapping, 22, 61, 405, 414
Torus, differential equations on, 104, 415
Transition point, 175

Transversal, 302

Trivial solution, 67

Turritin, 1. L., 182n.

Uniqueness, of spectral function, 232
of spectral matrix, singular nth-order
case, 269, 272, 280
singular second-order case, 251
Uniqueness theorems, initial-value prob-
lems, 10, 48-52, 60 (Probs. 1, 2
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Variation, of constants formula, 75, 87 Wronskian, 82
first, equation of, 322
Vectors, 17
Euclidean length of, 17
norm'of, 17 Zeros of solutions of second-order equa-

Vortex, 374 tions, 208-214, 254-256 (Probs. -
(See also Spiral point) 1-4)
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