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Preface

It is more than 20 years since the concept of the soliton was introduced into
nonlinear dynamics by Zabusky and Kruskal in their now famous numerical
experiments on the Kortweg-deVries equation. Since then the field has grown
in an almost exponential manner and has now entered a period of stability and
high respectability. It has attracted the attention of researchers in all mod-
ern areas of mathematics, physics, engineering and biology. On the one hand
various mathematical concepts such as prolongation structures, jet bundles,
space curves and surfaces, gauge-equivalence, Lie-algebraic properties includ-
ing Kac-Moody and Virasoro algebras, symplectic structures, Lie-Backlund
symmetries, singularity structures, and so on have been attributed to soli-
ton properties, while on the other hand numerous applications have been
found in such wide areas as fluid dynamics, lattice theory, plasma physics,
condensed matter physics, superconductivity, magnetism, nonlinear optics,
particle theory, general relativity, aerodynamics, meteorology and electrical
networks.

The Science and Engineering Research Council of the Government of In-
dia, Department of Science and Technology (DST), has formulated a pro-
gramme of annual summer/winter schools to encourage research by younger
scientists in the frontier areas of nonlinear phenomena. A winter school in
this series on the topic “Solitons” was held at the Bharathidasan University,
Tiruchirapalli, South India, January 5-17, 1987. This book contains the pro-
ceedings of this winter school. It includes eighteen articles by the speakers
at the winter school (of which two articles were given in absentia) and six
contributions by participants.

The book consists of five sections. The first section (Part I) deals with
introductory remarks on integrability and dynamics and historical aspects of
the solitary wave which eventually led to the concept of the soliton. Part
IT deals with the mathematical theory of solitons in both 141 and 241 di-
mensions. The inverse scattering transform (IST), Lie-Bécklund symmetry,
singularity structure and integrability aspects of nonlinear evolution equa-
tions are discussed here. Then in the next section (Part III) lattice solitons
are considered. The quantum field theoretical and statistical mechanical as-
pects of solitons are described in Part IV. Finally in Part V a few selected
physical and biological applications are considered.

We are extremely grateful to the DST for its financial support and to
Professor A. Gnanam, Vice-Chancellor, Bharathidasan University for his en-

v



thusiastic encouragement. The school was organized in collaboration with
Professor P.K. Kaw, Institute for Plasma Research, Gandhinagar, and his
support is also gratefully acknowledged. My colleagues offered me unflinch-
ing cooperation in this endeavour and I am particularly indebted to Dr. R.
Sahadevan, Messrs. S. Rajasekar, K. Porsezian, and S. Parthasarathy for
their help. Finally, I record my appreciation of the very efficient typing of
Mr. S. Venugopal of the entire manuscript.

Tiruchirapalli, India M. Lakshmanan
August, 1987
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Introduction



Inaugural Address — The Dynamics of Dynamics

E.C.G. Sudarshan
The Institute of Mathematical Sciences, Madras 600113, India

A dynamical system is defined by a collection of configurational coordi-
nates and equations of motion obeyed by them. These equations of motion
may be generated by a suitable principle or may themselves be postulated.
Given such equations of motion we would like to solve them so that the
dynamical variables at any time may be determined as a function of

the initial variables and time. For a system which is a generalization
of a Newtonian system these would be even in number. The central problem
of dynamics is the determination and characterization of the solutions.
Naturally if we can solve the problem completely then we could consider
various aspects of the solutions including the dependence of the solution
on the initial data. Except for the really trivial cases, even in
relatively elementary examples there are interesting dependences and
qualitatively new features emerging. For example if we consider the
elementary problem of uniform acceleration, say a projectile moving
vertically in terms of the initial position Sy initial velocity u

and the acceleration due to gravity -g, the distance s travelled in

time t is:

s = s +tut -5 gt". (1)

But if we ask the time t, at which the distance S4 is reached we have

1
to solve a quadratic eqguation in which $1785r 9 and u appear as coeffi-
cients. We may get no solution, one solution or two solutions depending

on the set of initial values.

Returning to the question of a general dynamical system, what con-
stitutes a solution? Most of the time "reducing to quadratures" is
considered as having solved the problem, though we may not get the
solutions in terms of elementary functions. In most cases singular
integrals and singularities may appear. One immediate consequence of
this is that the solution may become multiple valued and thus imply
an unexpected richness of the dynamics.
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If the equations of motion of a system can be reduced to a polynomial
in a single dynamical variable and its time derivative equated to zero,
the problem is reducible to quadratures in terms of Abelian integrals.
These have pole and branch point (including logarithmic) singularities.
Correspondingly, the dynamical system develops qualitatively new physi-
cal behaviour. For simple harmonic motion the singularity corresponds

to the limits of the simple harmonic motion.

In a recent paper M. Lakshmanan and R. Sahadevan [1] have given
a succinct exposition of nonlinear dynamics from the point of view of
integrability and Painlevé analysis with many standard examples and
applied the method to two,three and N-coupled quartic anharmonic oscil-
lators [2].

There is a close connection between integrable systems and Lie
groups. Gelfand and Kirillov have shown that under very general condi-
tions the generators of a Lie algebra of rank vy and dimension N=2n+ vy
can be realized in terms of rational functions of n pairs of canonical
variables and vy unknowns. If one of these generators turns out to
be the Hamiltonian, then the dynamical evolution can be viewed as a
one-parameter group of transformations generating an orbit. Naturally
this is true not only for polynomial Hamiltonians but also Hamiltonians

which are rational functions.

But few systems of practical interest are integrable; and so we
must resort to a study of qualitative dynamics. The state of the system
can be plotted as a point in phase space; and the evolution in a small
but finite time maps this point to another point, unless singularities
intervene. These phase space maps can be viewed as an alternate form
of (discrete time!) dynamics, and one could ask questions about longtime
behaviour and other qualitative aspects. Among dynamics so defined
we may identify systems which "mix" (in which the long-time evolute
is independent of the initial conditions) and those in which the number

of constants of motion are much less than normally expected.

Another class of questions of interest involve stability and secular
behaviour. These questions are expected to be complicated for nonlinear
systems, but they can become nontrivial even for innocent looking systems.
For example, consider a Hamiltonian system with n degrees of freedom
whose Hamiltonian is quadratic in the phase space variables. The equa-
tions of motion are all linear and finite time solutions all exist.
However the diagonalization is nontrivial (though already done by



Williamson [3]). It is only in one of the Williamson classes is the

solution properly bounded.

Just because the equations of motion of a dynamical system have
been integrated it does not follow that the system behaves in a satis-
factory manner. If we consider a system with a central inverse cube
force added to an inverse square force, the orbit would be a rosette
made from a precessing ellipse. There are more startling examples
of integrable chaotic systems. In fact the most acceptable forms of
chaos are generated by such mechanisms.

We are thus led to the unexpected and unsettling recognition that
the lawfulness and the determinism embodied in the orbits of an integ-
rable dynamical system does not automatically imply our intuitive notions
of continuity and stability. Slight disturbances could dramatically
alter the orbits; and the conserved quantities of dynamics vary irregu-
larly over the phase space. Long term trends cannot be predicted on

ideas abstracted from simple dynamical systems.

When a dynamical system has nonlinear equations of motion, the
dynamic inertia of the system becomes dependent on the configﬁration.
If it happens that this dynamic inertia tends to vanish these are points
of maximum fluctuation where even a miniscule change in the configuration
can cause a substantial change in the outcome. Gone is the smooth

dependence of the outcome on the initial conditions.

Such irregular configurations could also result from constraints.
Given a system with holonomic constraints we can get rid of the cons-
traints, at least locally, by choosing generalized coordinates. But
with nonholonomic constraints we have to evolve a whole new theory of
constrained systems. The extraction of the true degrees of freedom
and the true equations of motion are nontrivial tasks and the question

of uniqueness must be investigated in each case.

The elimination of constraints, even when they are holonomic, may
not be possible globally. A simple example is provided by a charged
particle moving in a monopole magnetic field. 1In this case the configu-

ration space is R3

with the origin deleted, and the equations of motion
can be written down and seen to be explicitly rotationally invariant.
However, the Lagrangian formulation of the problem requires the introduc-
tion of the vector potential. This vector potential cannot  be chosen

in a rotationally invariant manner; and any choice involves a "line

singularity" along which the potential cannot be defined. The proper
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way to handle this problem is to use fibre bundle formalism and identify
the choice of any vector potential as a particular section of the fibre
bundle. In this case the structure is quite simple; the group space

of SU(2) may be seen as a fibre bundle on Sz, the unit sphere, as base.
Such dynamics on manifolds is not any longer a curiosity, but appropriate
to many problems of dynamics particularly to gauge field theories con-

sidered as dynamical systems with infinite number of degrees of freedom.

The invariance group of the differential equations of motion leads
to integrals of motion, and serves to simplify the problem of complete
integration of the equations of motion. In the Lagrangian form if
the Lagrangian is invariant under a group of transformations, so will
the equations of motion be invariant. The reverse is not necessarily
true. The equations of motion may exhibit quasi-invariance and change
of the Lagrangian by a total derivative which may or may not require
a redefinition of the generators of change. For example, the system

moving in two dimensions having the Lagrangian

Z-

2

m(k2 + ¥2) + eBlxy - xy) (2)

1
2
possesses a modified translation invariance with generators 3X+eB8p ,

ay - eBap which commute amongst themselves. On the other hand the
X

system with Lagrangian
L= Ink-9?+exy-iy) +5lx - y)? (3)

is only quasi invariant under the translation 9y + ay ; but by
the addition of %€ {%(x2 - y2)} this becomes strictly invariant under
the same translation. Of course, the equations of motion are unchanged

by this addition.

In the study of mechanics we have come a long way. From the idealized

free particles and the two-body celestial mechanics problems we get

the impression thét mechanics is an exact strictly casual discipline

with solutions which may be difficult to compute but which are generally
well behaved. This good behaviour includes smooth variations of the
trajectory with regard to specification of initial data, .and regular
longtime behaviour. For nonlinear systems, even relatively simple

ones, neither aspect of good behaviour may obtain. Catastrophes and
singularities may vitiate the first tendency; and the discovery of
completely integrable chaotic systems puts in evidence unexpected possi-

bilities in longtime behaviour. It is a classical result of celestial



mechanics that present knowledge is unable to predict whether the moon
would escape or undergo capture in the moon-earth-sun system; but
many more new features come to light in simple dynamical systems with

nonlinear interactions, including the existence of mixing systems.

The generalization of mechanics to general topological manifolds
also introduces a new flavour to dynamics itself; and reminds us that
we have not always been dealing with the most natural frameworks in
mechanics. We are in a period where older results and problems are

restudied with new insights and points of view.

It is therefore appropriate that Bharathidasan University has
organized this winter school on 'Solitons'. I am honoured to inaugurate
it.
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“The Wave” “Par Excellence”, the Solitary Progressive
Great Wave of Equilibrium of the Fluid:
An Early History of the Solitary Wave

R.K. Bullough

Department of Mathematics, U.M.I.S.T., P.O. Box 88,
Manchester M601QD, United Kingdom

It is shown how in 1876 Rayleigh resolved the conflict between Russell
on the one hand, and Stokes and Airy on the other, about the nature

of the solitary wave and the formula for its velocity of propagation

c. However, Boussinesq had already done this in 1872 when he published
the Boussinesq equation and gave its solitary wave solution. The
fundamental articles by Russell of 1840 and 1844 which first introduced
the solitary wave and gave the formula c = Yg(h+k] for its velocity

are surveyed. They show that he understood the collision properties

of solitons in 1835, though these objects and their mathematics emerged
only some 130 years later.

1. INTRODUCTION

This lecture is concerned with a few points surrounding the early history

of the solitary wave and of the soliton it gave birth to.

Because the 1973 review of solitons [1] made its now well known
quotation from John Scott Russell's 1844 paper [2], everybody knows
how in the month of August 1834 he rode his horse along the banks of
a certain Scottish canal [3] in pursuit of a disturbance of the water
which in particular Stokes [4], and more latterly ourselves have called
a 'solitary wave'. Recall Russell 'was observing the motion of a boat
which was rapidly drawn along a narrow channel by a pair of horses
when the boat suddenly stopped--not so the mass of water in the channel
which it had put in motion: it accumulated round the prow of the vessel
in a state of violent agitation, then suddenly leaving it behind, rolled
forward with great velocity, assuming the form of a solitary elevatian,
a rounded smooth and well defined heap of water, which continued its
course along the channel apparently without change of form or diminution
of speed. I (He) followed it on horseback and overtook it still rolling
at some eight or nine miles an hour, preserving its original figure

some thirty feet long and a foot to a foot and a half in height. 1Its



height gradually diminished and after a chase of one or two miles I
lost it in the windings of the channel. Such, in the month of August
1834, was my first chance encounter with the singular and beautiful
phenomenon which I have called the Wave of Translation, a name which
it now generally bears: which I have since found to be an important
element in almost every case of fluid resistance, and ascertained

to be of the type of that great moving elevation of the sea, which,
with the regularity of a planet, ascends our rivers and rolls along
our shores", This 'first chance encounter' was actually reported first
of all in an earlier paper (5] and in a rather more prosaic fashion
(Ref. [5]1, p. 61).

Notice that Russell is using 'Wave of Translation' not 'solitary
wave'. As we shall see it was certainly he who introduced the word
'solitary' to describe it, and on the p. 61 of Ref. [5] he used 'a
large solitary progressive wave' (Russell's italics) propably the
first such use. But generally he preferred 'Wave of Translation',
or 'The Wave' ([5], p. 61) as it is used in the title of this lecture.
It was Wave of Translation he continued to use throughout his life
and finally in the posthumous book [6], 'The Wave of Translation in
the Oceans of Water, Air and Ether' published in 1885, on which I
comment shortly. However, I shall follow Stokes [4], Rayleigh [7],
and indeed current practice, and use the term 'solitary wave' for
Russell's 'Wave' here; and this lecture is concerned with the history
of the solitary wave from August 1834, when Russell first saw it,

upto 1876 when Rayleigh [7] calculated its profile.

Of course the history of the solitary wave, or even of this parti-
cular solitary wave, does not stop in 1876. 1In 1895 Korteweg and
de Vries published their paper [8] in which they gave their now famous
equation. And they also gave the solitary wave solution of that equation.
It was probably only then, as we shall see, that the controversy sur-
rounding the whole idea of the solitary wave as Russell conceived it
ceased, and during the period 1876-95 a number of papers contributed

to its discussion--two by McCowan [9,10] amongst others.

These days we usually quote the KAV equation in a scaled form

such as [11]

u, + 6qu tu . = 0, (1.1)

where u, means %%, etc. And its solitary wave solution is then



u = 262 sech®f(x - 4£°%¢) (1.2)

in which £ is a free, real, parameter. Both the equation (1.1) and
its solution (1.2) actually refer to a frame translating at the 'sound'
speed, but Russell was not concerned with subtleties like that. However

he was very much aware of the formula for that sound speed, namely

c, = /gh (1.3)
in which g is the acceleration due to gravity and h, using Russell's
terminology [2], is the depth of undisturbed water in the canal.
Equation (1.1) is thus in a frame translating at cq with c, set equal
to unity.

Following the discoveries of Zabusky and Kruskal [12], and Gardner,
Greene, Kruskal and Miura [13], we now know that (1.2) is not just
a solitary wave: it is a soliton with the remarkable collision proper-
ties of solitons [12]. Viewed in these terms, and without any computer
power at his disposal, Russell's mathematical capabilities were rela-
tively weak. He knew [2] Euler's 'general formula for the motion of
fluids in the Memoirs of the Academy of Sciences of Berlin' [14]. And
he seems to have had a useful knowledge of classical texts like
Lagrange's [15] and Laplace's [16], and even Poisson's [17], while -
he particularly appreciated [2] a work [18] by the two brothers Weber,
Professors at Leipzig and Halle respectively. But it was on his acute-
ness of observation and a strong if variable physical insight and under-
standing on which he relied; and from his experiments on water waves
in channels constructed in the laboratory during 1834-40 [2], as well
as the earlier experiments he performed on the canal [5] in the period
1834-35, he already knew that the solitary wave he had first seen
generated in 1834 had this collision property. Perhaps what prevented
him from stressing this particular, and to us so much more remarkable,
feature was the more compelling need he faced to justify to his scienti-
fic peers the idea of the solitary wave itself. It is with this aspect

that this historical note is concerned.

2. JUSTIFICATION OF THE SOLITARY WAVE:

BOUSSINESQ'S PAPER
Although, as I shall show, Rayleigh's paper [7] should have settled the
whole argument in 1876, it was settled even before this in a remark-
able paper by Boussinesq presented in 1871 [19] and published in 1872

[20]. Moreover, and despite the discussion between 1876 and 1895 cul-

9



minating in the paper by Korteweg and de Vries [8], this paper might

in one respect have opened up the problem again rather than closed it.
This was because much of Russell's own case for the existence of the
solitary wave rested on the exact truth of his formula for the velocity
of propagation of that wave

c = /G(h+K) (2.1)

which he first gave as such in [2]: again the terminology is Russell's,
and k is the height of the peak of the solitary wave above the surface
of the undisturbed water. Obviously (2.1) is a natural generalisation
of (1.3) and I believe this is how Russell found it. However he then
went on to demonstrate its truth by experiment [2]. The point now

is that the formula (2.1) is not quite the velocity of the solitary
wave solution (1.2) of the KAV equation (1.1), even when that solution
is placed in the laboratory, rather than the moving, frame. I establish
the actual error shortly. Later I show how Korteweg and de Vries [8]
really did settle the whole matter, however.

Still the matter was settled by Boussinesq in 1871-72. For in his
paper [20] he gave the analysis by which, starting from Euler's equation
for the conservation of momentum under pressure gradients Vp and body
forces V@ in an incompressible fluid of density p

pu = p(gt + (g.V)E) = —Vp - Ve, u = (u,v,w) (2.2)

UIU
o

(in a modern notation), together with the equation for conservation
of mass

vau= 0, (2.3)

he reached the partial differential equation

wl::‘

3 u2 2
utt = couxx + Co [—2— -H-— + Uxx]xx H (2.4)

h is the depth of undisturbed water and 4 is given by (1.3).

Boussinesq also gave the solitary wave solution of this equation, namely,

ulx,t) =k sech2 (% /P%:(x - ct)] . (2.5)
h

The height at peak of this solitary wave is indeed k, while its velocity
c proves to be given by (2.1) exactly.

10



One easily scales (2.4) to

_ 3 2
e = u, [5 u’ + uxx) , (2.6)
XX

called the Boussinesq equation. The solitary wave solution of (2.6) is

u = kz sech2 %k(x - ct) (2.7)

and
c =1+ 27 . (2.8)

The Boussinesq equation is integrable and (2.7) is a soliton; but the
spectral problem which solves it is a third order (or 3 x 3 matrix)
spectral problem [21], and so it is rather more complicated than the
Schrddinger spectral problem —wxx + uyY = kZW, already familiar from
wave mechanics, which solves the KAV equation (1.2) [13]. It is there-
fore fascinating to speculate on the history of the soliton itself if
Boussinesqg's paper of 1872 had then, and subsequently, received the
attention it deserved. It is just possible that this meeting at

Tiruchirapalli would not have taken place had it done so!

Of course the Boussinesqg equation (2.6) 'contains' the KdV equation
(1.1). PFor in reaching (2.4) terms effectively of order 0(k2/h2) are
dropped. And to this order (2.4) can be 'factorised' so that (2.6)

is written as

2
9 _ 3 )j8_ .38 .13 (3 3 Vg =
(5% ax)[at T AT [2 ut axz]}u 0 . (2.9)

A solution of

u, + u_ + 1 éuz + u \ =0 (2.10)
t pid 2

u =12 sech® % Ax = cyt) (2.11)
with

ey =1+ g% (2.12)
Evidently

=1+t (2.13)

11



and c? differs from c2, equation (2.8), by 0(A4) = 0(k2/h2). On the
other hand in a moving frame, so that 3/3t + 3/9x »3/3t, (2.10) easily
scales to the KdV equation (1.1), so that (2.13) makes the point that

the KdV soliton moves at a speed slightly different from Russell's
formula (2.1)! Still it was at O(A2) that the argument raged, as we
shall see, and Az ~ 1/5 in Russell's first experiments [5] on his canal.
Larger values of Xz arise in the more detailed laboratory experiments
reported in [2], however: the largest value quoted seems to be Az = 1/3
(Ref. [2] Table VII, p. 336) but values of A = 1 were examined for
Russell [2] certainly knew that the waves broke in this case as he points
out (e.g. [2], p. 340). Rayleigh [7] quotes Airy [22] as saying the

wave always broke in this case and shows why. Rayleigh's actual remarks

in this connection are given at the very end of this paper.

In the remainder of this note I survey some aspects of Russell's
work, that due to Airy [22] which disagreed with Russell's, some due
to Stokes [4] which did likewise, and Rayleigh's paper [7] which confirmed
both the solutions (2.5) or (2.7) (upto (k2/h2)!) for Russell's solitary
wave and his key formula (2.1) for the velocity of that solitary wave )

exactly.

3. THE BOOK 'THE WAVE OF TRANSLATION' AND

RUSSELL'S PAPERS OF 1840 AND 1844
Although almost everybody alive must now know of Russell's 1844 paper
[2], few have read it, and only the well-known gquotation from it survives.
Still fewer people are aware that the 1844 paper was preceded by the
longer paper [5] published in 1840 in the Transactions of the Royal
Society of Edinburgh. These two papers, [2] and [5], contain Russell's
permanent contribution to the evolution of our science. In a working
lifetime of some 56 years (he was born in 1808, had studied at three
of the four Scottish universities, Edinburgh, St. Andrews and Glasgow,
before graduating from the last at the age of 16, and died in 1882)
he published some 49 scientific articles [11]--including 21 British

Association Reports, 4 Edinburgh Royal Society Transactions or Pro-

ceedings, and one Royal Society (of London) Proceedings [23]. (He
was elected FRS in 1847.) He also wrote at least three books, namely
the posthumous [6], an original, and indeed seminal, contribution to

Naval Architecture 'The Modern System of Naval Architecture' [24],

and a pedagogical contribution a 'Systematic Technical Education' [25].
But he never had a permanent academic or scientific appointment (Sir

W. R. Hamilton, the great Hamilton, wrote of Russell as a 'person of

active and inventive genius' in support of his application for the

12



Chair of Mathematics at Edinburgh University in 1842; but this was

not enough to get Russell the job). Russell spent the period upto
1846 on his scientific researches often in his spare time [5]. By
1855 he was certainly building the great 12,000 ton iron ship 'The
Great Eastern' at his own shipyard at Millwall on the Thames, for the
engineer Isambard Kingdom Brunel; and in 1856 he published his major
work on Naval Architecture 'The Modern System'. Further details of

a remarkable life are given in the Appendix to [11] and the biography
[26]. He seems to have reflected on his solitary wave throughout that
life and on June 16, 1881, one year before his death on June 8, 1882,
he gave his paper [3] at the Royal Society entitled 'The Wave of trans-
lation and the work it does as the carrier wave of sound'. This was
followed by the posthumous book [6] of 1885.

In the paper [23] Russell apparently argued, as his book certainly
does, that since in general dispersion will obviate any possibility
of transmitting information by sound, the solitary wave, which, virtually
by definition has permanent shape, must be used instead. The 'Wave
of translation' is Russell's solitary wave so the formula (2.1) applies.
From ¢ ~ 1100 ft sec ', g =~ 32 ft sec™® , one finds h+k ~8 miles;
Russell corrects for varying density by a factor 2/3 so the equivalent
depth of the atmosphere is about 5 miles. From there Russell [6] used
the velocity of light for ¢, the same g, and certain apparently arbitrary

factors ~5 X104

, to reach a 'depth of the universe' of 5 x1017 miles:
this is in error by only 5 orders of magnitude--quite a respectable

estimate in my view given all the circumstances!

The permanent work in the book [6] is the Appendix. This is simply
a reprint of the 1844 paper [2]. That paper is primarily concerned

to report the formula (2.1) which it then validates pragmatically by
showing that the speeds of the solitary waves actually measured by
Russell in the laboratory fit to it: no theory leading to (2.1) is pre-
sented anywhere in Russell's work. The paper also contains a categori-
sation of waves which was very much Russell's concern at the time. He
here gives four 'orders': First, the wave of translation-~-wave of
first order and its two species, positive and negative, though Russell
well recognised the important difference between the positive and nega-
tive cases--see below; second, oscillatory waves, positive and negative
and second order; third, surfaces agitated to minute depth, that is
capillary waves, third order; and fourth, corpuscular waves, sound waves
in fluids reflecting the existence of molecular forces. There appears
the Table I "System of Water Waves". First order is as above: it is

solitary in character, it can be free or forced, and includes the 'wave
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of resistance', the 'tide wave', and the aerial sound wave (as explained
already). Waves of the second and third orders are gregarious: order
two includes stream ripples, wind waves, ocean swell, stationary or
progressive, free or forced; third order includes 'dentate waves' and
'zephyral waves', free or forced. The corpuscular wave of fourth order
is solitary and includes the water and sound waves.

That Russell knew about soliton break-up is evidenced by the Fig.6
in the Plate 47 of the 1844 paper [2]: this Plate 47 is now reproduced
here as the Fig. 1. One sees the first example of break-up is positive
and so really is soliton break-up. However, the second example shows
break-up into a positive wave leading and a negative one following.
Still, Russell certainly knew the negative wave is not really a soliton
at all--or even a solitary wave: its speed did not conform to the formula
(2.1) as the experiments he reports in the Fig. 5 of Plate 48 of [2]
showed, while in the Plate 52 of [2] he shows how the negative wave
though at first solitary breaks up into gregarious oscillating waves
of order two. The Plates 48 and 52 of [2] are here reproduced as the
Figs. 4 and 7.

The 'wave of resistance' of first order referred to in the Table I
and appearing already in the quotation from [2], is a reference to
Russell's work in the earlier paper [5]. In this long paper he is not
so much concerned with the velocity formula (2.7), which he quotes in
words only, but with the very practical problem of the resistance of

boats towed (or travelling) through water of finite depth. One should
recall that Russell was actually on his horse on the banks of canal

in the month of August 1834 charged by the Union Canal Company to deter-
mine the efficiency of canals for the possible transport of steam driven
barges [3]. The conventional wisdom of the time, due to Newton,
Bernouilli and d'Alembert to whom he refers, was that the resistance

R was simply proportional to the square V2, of the velocity V of the
boat through the water. Being aware as he says [5] 'of the very imper-
fect state of that part of Theoretical Hydrodynamics which relates

to the Resistance of Fluids to the Motion of Floating Bodies, and that
there had been found in its application to the solution of practical
questions, discrepancies so wide between predicted results and the
observed phenomena, as render the principles of the theory exceedingly
false guides, when followed as maxims of art' Russell determined to
investigate the situation by a series of experiments which he carried
out in the summers of 1834 and 1835. He found instead of R ocV2 that

resistance X plotted against velocity Y followed curves like those
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Fig. 1 This Figure is the Plate 47 of Ref. [2]. This plate shows the
ways in which Russell created solitary waves in troughs some 6 inches
deep in the laboratory. For soliton theory the two most interesting
Figures in this plate are the two at the bottom (Fig. 6) as explained
in the text. Fig. 5 on the plate shows in its four diagrams the motion
of individual water particles during the passage of a solitary wave
(the particles were actually material particles suspended in the
water). The first diagram describes simultaneous motions at different
points; the second, motion of four particles throughout the whole pas-
sage of the solitary wave from A to X (the curves are semi-ellipses
according to Russell and show that there is a net translation of posi-
tion which he takes to be the volume of water to create the wave divid-
ed by the breadth of the channel); the third shows the motions of ver-
tical planes during the passage (small particles were suspended from
stalks in equally spaced vertical planes in the undisturbed water);
the fourth shows movement of initially equally spaced horizontal planes
of particles during the passage.
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AX and AY rectangular.co-ordinates.

Velocity mecasured on AY, and resistance on AX.

AP the parabola resulting from the squares of the velocities.

AMm R the line of resistance, M the point of first maximum, and m the
succeeding point of minimum.

Fig. 2 Two sets of observations made by Russell on his canal

of the resistance X of a boat plotted against its speed Y. The
curves P are the parabola of the conventional view at the time

and the curves R are what Russell found in 1834-35(taken from [5]).

shown in Fig. 2: curves P are R G:V2, curves R with a maximum at M and

a minimum at m, both depending on the depth h of the fluid, are followed
by the rising curves to R; but, later, for velocities ~29 mph, he

argues that these curves too fallaway from a second maximum. In this
later discussion Russell gives an explanation of the whole form. 1Its
essentials are these: a crucial feature is the emersion (i.e. emer-
gence) of the whole boat: this explains the second maximum of resis-
tance at V = 29 m.p.h. (which Russell [5] computes as 4g/3) and its
subsequent fall where at 43.8 m.p.h. (V = 2g) the 'floating body emerges
wholly from the fluid and skims its surface'. However, the more pro-
found influence arises, as Russell was the first to realise, from the
generation and bropagation of waves. These waves travelled with speed

c given by (2.1), according to Russell, so were unconnected with the
form of the vessel. It was this speed which coincided with the first
maximum at M. When V < ¢ the effect was to generate Russell's 'Great
Anterior Wave' [5], a wholly positive disturbance, near the prow and

a depression, the 'Great Posterior Wave' near the stern. Thus the
vessel tilted and increased its resistance. But for V > c¢ the vessel
could ride horizontally on the water diminishing the resistance to m.

Russell noticed that in this region the destructive power due to what
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he called the 'stern surge', destructive to the banks of the channel

and dangerous in navigating shallow water, disappeared. Whilst the

great anterior wave of so called displacement was bell shaped, the great
posterior wave of so called replacement was oscillatory, breaking into
the 'surge' or 'breaking' wave. At this stage he therefore distinguished
four species of wave, the 'Ripple or Dentate', the 'Oscillatory', the
'Surge’', and '"The Wave" "par excellence", the solitary progressive

great wave of equilibrium of the fluid'. For the vessel itself the

Great Primary Wave of displacement i.e. the great anterior wave, was

the only example of 'The Wave'. 'The Wave' is the solitary wave as

I use it here--so thus the title of this lecture!

Russell noticed the independence of 'The Wave' from its mode of
genesis and that its speeds (8 m.p.h. for the channel 5.5 ft deep he
was concerned with) were independent of the speed of the generating
bodies (e.g. 2, 5, 6 and 12 m.p.h.). Moreover 'Another observation
equally simple served to show that a large or high wave had a greater
velocity than a small one. When a small wave preceded a large one,
the latter invariably overtook the other, and when the large wave was
before the less, their mutual distance invariably became greater'(Ref.
[5], p. 6). This remark certainly supports the formula (2.1), but it
also supports the concept of the soliton also. Moreover, reference
to Plate II of [5] shows that Russell had already drawn the shapes

of different observed examples of his "Wave". And he also draws there
three different examples of soliton break-up which he must therefore

have known about in 1835, and strictly from his observations on the

canal not from the experiments of [2].

Russell was naturally concerned with the problem of moving a boat
into the minimum resistance region m and noted some of the possible
difficulties. 'It appears', he says, 'that increased force applied
gradually to the vessel for the purpose of rendering the velocity of
the body equal to or greater than that of the wave, has the effect
at the same time of increasing at a more rapid rate the retarding forces,
and a limit is séon reached, which it has in many case been found impos-
sible to pass' (later he shows how a singularity may develop at M).

'It is the circumstance of _he very rapid increase of the resistance

in approximating to the velocity of the wave that has led to the false
idea that there is a final and low limit to velocity in shallow water.

There are circumstances in which this limit is final, the channel being
very shallow, and the boat very bluff in its formation, I have seen

in such an extreme case, when the depth of the channel was about five

feet, the channel laid bare in the stern hollow behind the wave, so
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that the stern of the vessel no longer floated but rested on the bottom,
while the bow was elevated and buried in a large anterior wave, rising
more than two feet above the level, and overflowing the banks, and

the posterior wave rushed furiously on behind, roaring and foaming,
tearing up the banks of the channel, and threatening the destruction

of the vessel, which, indeed, on stopping, it nearly accomplished.

In such a case the persons in the vessel were not visible from the

shore, being sunk in the hollow between the great anterior and posterior

waves.'

He then goes on to discuss the passage beyond the point M, namely
to m, where the boat rides horizontally upon the wave. Figures 7 and

8 from [5] appearing in Fig. 3 show exactly what he intends. 'But

Fig. 3.
(at rest.)

X

T

Fig. 4.
(at 4 miles an hour.)

Py

- A\ '_p == T e —’j /\_

Fig. 5.
(at 6 miles an hour.)

— o AN\
Fig. 6.
(at 73 miles an hour.)
=
P A\ A\ AN e ey
Fig. 7.—Bchind thoe Wave.
Py A\,

Fig. 3 Figs. 3-8 taken from Russell [5]. Figs. 7 and 8 show how a
maximum resistance (Fig. 7) is replaced by a minimum as the vessel rides
on the solitary wave.
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it will be inquired, how is a vessel to be placed in such circumstances?
How is the extreme resistance of the anterior wave to be vanquished,

and the vessel planted on its summit? This is admitted to be a practical
problem, often of extreme difficulty; sometimes it is impracticable.
There are forms of vessel that do not admit of a position of stable
equilibrium on the top of a wave. Still, however, it is a practical
problem solved everyday on all canals navigated on the Scotch system.
Vessels of greater length than the wave, having a fine entrance, built
of light materials, and drawn by well trained highly bred horses, and
guided by experienced postillions, are raised by a sudden and powerful
jerk to the top of the wave (at from 6 to 8 m.p.h.) and are drawn along
on the summit of the wave with greater ease at 10 or 12 m.p.h., than

at 6 or 7.' (see §IX of [5]).

I have given these various quotations from [5] at length in order
to show Russell's grasp of the situation and incidentally to exhibit
the lively and imaginative character of his writing: I hope it will
stimulate others to search out his articles and read them. They reflect
a much more leisured scientific age, and amaze, stimulate, and infuriate
all at the same time. In the rest of this paper I want to show why
Russell had such difficulty in establishing the existence of the object
we now call the solitary wave. Herschel's comment "It is merely half
of a common wave that has been cut off" [27] seems typical of his cri-
tics. To simplify the account here I shall focus only on the objections
raised by Airy [22] and Stokes [4]. This leads to some historical
comment on the shape of Russell's wave. Then, in a final section, I
shall quickly show how Rayleigh [7], in particular, fully justified
Russell's position.

4. THE OBJECTIONS OF AIRY AND STOKES AND

SOME COMMENTS ON THE SHAPE OF THE WAVE
In publishing the 1844 paper [2], which just preceded the appearance
of Airy's treatise [22], Russell already knew that Airy disagreed with
his formula (2.1) for the velocity c of propagation of a wave of per-
manent shape. Such a wave is necessarily a wave u(x,t) = u(x - ct).
Russell believed his 'Wave' was in this category and, by implication
was the only such wave being necessarily positive and lump shaped i.e.
solitary. Airy believed to the contrary. Rayleigh [7] quotes from
Airy [22] "We are not disposed to recognize this wave as deserving
the epithets 'great' or 'primary' . . . and we conceive that ever since
it was known that the theory of shallow waves of great length was con-
tained in the relation dZX/dt2 = gkdzx/dxz,... the theory of the solitary
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wave has been well known". And again "Some experiments were made by
Mr. Russell on what he calls a negative wave--that is, a wave which

is in reality a progressive hollow or depression. But (we know not
why) he appears not to have been satisfied with these experiments,

and has omitted them in his abstract. All the theories of our IV Sec-

tion, without exception, apply to these as well as to positive waves,

the sign of the coefficient only being changed." That the second comment

is unfair in the light of the material published in [2] is clear--
though Airy might not have seen that. However, it is immediately
obvious that the linear eqguation given in the first quotation can only
have harmonic solutions albeit, since it is not dispersive, they are
unique in speed as well as of permanent shape: But they are nowise

solitary. More generally Airy [22] found the velocity formula

> g emh _ e—mh g
(o] :H—mh—_—-ﬁﬁ— =-I-n-tanh mh (4.1})
e + e
which reduces to ci, (1.3), for wave number m<< h_1. However he also

included the effect of finite disturbance k to redch

c = g(h + 3k) . (4.2)

As we shall see Rayleigh [7] subsequently found an argument for the

same result; but, finding it for a distorting wave, he then developed

the very different argument that arrives at (2.1). Boussinesq [19,20]
quotes Bazin as confirming (2.1), for (2.5), and (4.2) with %k not

3k, for a step function. But in 1844 Russell [2] was simply very much
concerned to show that Airy's formulae did not fit his actual observa-
tions. And the Fig. 4, reproduced from Plate 48 of [2] shows in its
Figs. 3 and 4 how well he succeeds in doing this. Russell also knew

a result by Kelland [28] quoted in [2] p. 333 as [29] )

ah -ah ah -ah
ct =328 ;{1—5—-———36 - } (4.3)
eah + e—ah eah + e—ah

N
Qla

in which € is given as the semi-elevation, h the depth of water in
repose, and X the length of the wave. He suggests (Ref. [2],p.334)
that Airy [22] has simply followed Kelland 'over the same ground in

an elaborate paper on waves' and concludes 'a theory of the first order
accurately representing this characteristic phenomenon is still wanting,
a worthy object for the enterprise of a future wave mathematician'.
There proved to be at least two of these, Bousinnesqg [19,20] and
Rayleigh [7].
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Fig. 4 This Figure is the Plate 48 of [2]. Its Fig.1 is a check of
the formula (2.1) against observations for channels 1.0 to 8.0 inches
deep and wave heights up to 0.54 inches; Fig. 2 is for depths 1.62-8.0
inches deep and wave heights up to 0.96 inches. Figs. 3 & 4 compare
experimental points against (2.1) (bold line) and against four different
formulae due to Airy which Russell does not specifically quote (dotted
lines). Fig. 5 compares the formula (2.1) (curve AB) against observa-
tions for a negative wave in a rectangular channel and formula c? =
1/2 g(h+k) (curve AB') for a negative wave in a triangular channel.
Fig. 6 plots general results for ¢ (in units of one foot per second)
against (h+k) (in units of five inches): 2B is (2.1) for a rectangular
channel; AB' is ¢? = 1/2 g(h+k) for a triangular one.

At this stage it is useful to summarize what Russell apparently
knew. Lagrange [15] first integrated the conserv’ .ion of momentum

equation (2.2) in the case of irrotational motion u = Ve. This integral

is

¢ (x,t) + F(t) + % 92 = - p~]p - o' (4.4)
(u2= u2 + vS o+ wo) For steady motion

§+%92+%=0 ‘ (4.5)
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(by choosing the zero forQ ) and this result contains both Bernouilli's
theorem [30] and Torricelli's [31]. Russell well understood Torricelli's
theorem, which he quotes in [5], as well as (4.5) and its application

in the pitot tube. He built a shallow bottomed boat 'The Skiff' [5]

in which he placed a series of pitot tubes to measure the velocity

profile of water passing a boat in connection with the 1834-35 experi-

ments.
The formula (1.3) quoted by Russell in [2] is apparently due to
Lagrange who used the 'method of long waves' to find it [15]. Consider

motion in the (x,y)-plane only with an undisturbed surface y =y ,

o
and a disturbed one y = n(x,t) + Yo- At an arbitrary point (x,y) within

the disturbed fluid the pressure p there is Pg the pressure at the
disturbed surface enhanced by the potential term gp(yo+11—y) so that

P - p, =9ply, +n-y) . (4.6)
The content of the method of long waves is to identify y and Yo SO
that p is independent of y: then from (2.2), all particles in a plane
perpendicular to x get the same acceleration, and all particles in

this plane remain in the same plane and the horizontal velocity u depends

on x, t only, u = u(x,t). Equation (2.2) is
= - 13
u, +uu = > Ix (4.7)

and the nonlinear term is simply dropped as being of the second order.
Though this is not a priori a necessary feature of the method of long
waves, there is no dispersion term left in the method to balance it.
From (4.6) 3p/3x = g@nAx and so

U = -gn, - (4.8)
If £ =[u dt, Ett = -gn.., and continuity (2.3) means
-2 (e nb)éx =nb sx (4.9)
9x ! :

b being the breadth of the canal--both expressions being the volume
of fluid which, up to time t, has entered the space between x, x+68x.
From (4.9)

—hgx =7, so gtt = gh gxx and
_ 2
r]ttACQ nXX (4.10)

22



with cg given by (1.3). This is the relation dzx/dt2 = gkdzx/dx2 of
Airy [22] quoted by Rayleigh [7].

The argument given here is really that as presented by Lamb [32].
George Green (of Green's Theorem) considered long waves in a rectangular
canal with slowly varying breadth B and depth y and found a wave height
@ ﬁ_%yf% and the velocity formula (1.3) as ¢ = /gy [33]. For a
triangular canal with one side vertical [35] Green found c = (%gy)i,

a result Russell [2] also applies to the isosceles triangle and confirms
experimentally (see Fig. 6 line AB' of the Plate 48 of [2] in our Fig.4).
Kelland [28] found ¢ = Y/9BA/b for a canal of cross-sectional area A

and breadth b at the surface. But this result Russell [2] apparently
confirmed only for the rectangular and triangular cases disagreeing
otherwise (Ref. [2], p. 355). Our Fig. 5, which is Plate 49 of [2],
shows the different triangular cross-sections Russell worked with.
Nevertheless Stokes [36] says Kelland's formula 'agrees with the experi-
ments of Mr. Russell' simply.

We turn now to the work of Stokes himself. 1In the British Associa-
tion Report of 1846 [36] Stokes says "It is the opinion of Mr. Russell
that the solitary wave is a phenomenon sui generis in nowise deriving
its character from the circumstances of the generation of the wave.

His experiments seem to render this conclusion probable. Should it
be correct the analytical character of the solitary wave remains to
be discovered". Note that he expects to agree with Russell, and that
already he firmly uses the designation 'solitary wave'. However, in
a paper read on 1 March 1847 and published in the Trans. Camb. Phil.
Soc. [4] "On the theory of oscillatory waves" he effectively concludes

(for axes x horizontal and y vertically downwards) that

y = a cos m(x - ct) - Ka2 cos 2m(x - ct) (4.11)
(with a = -m Ac g_1 and m arbitrary, but K then fixed and depending
on a, m and h, and c given by (4.1))" is the only form of wave which

possesses the property of being propagated with a constant velocity
and without change of form--so that a solitary wave cannot be propaga-
ted in this manner. Thus the degradation observed by Russell is not
due to the imperfect fluidity of the fluid and its adhesion to the
sides and bottom of the canal but is an essential characteristic of

" the solitary wave".

Stokes's argumentation is as follows: He starts from (4.4) in

the form
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Fig. 5 This Figure is the Plate 49 of [2]. The Figs. 3,4,5 show the
triangular profiles used by Russell in his experiments. The curves AB
describe the crest of the wave and in Fig. 5 this crest is breaking in
the regions aA and Bb. Fig. 1 is the smooth curves drawn through observ-
ed wave heights in order to remove observational error, and similar
curves were drawn for the velocities. These smoothed results were then
plotted in Fig. 2 and compared against (2.1) plotted as the curve AB.

with continuity

2 2
i¢+98 = o, (4.13)
: 2 2
ax dy
and with
2 - =h (4.14)
ay 0 when vy ,
and
dp , d¢ dp de dp _ -
It + I ax + dy dy 0 when p 0, (4.15)
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the condition for the free surface remaining the free surface throughout
the motion. The velocities u = d¢/dx and v = d¢/dy, and p, depend
on x - ct, the condition for permanent profile, together with y. From

(4.12) we can admit in ¢ a term linear in t to fix p so

o = f(x - ct) + Ct ; (4.16)

and (x - ct) is called x, while C is set to -gk. Then (4.12) is

do _ 1 [fae)? , (ag)?
p = gply+k) + cp I " 7p[(dXJ + (dy] :] (4.17)
so that for u = v = 0, p = 0 when y = -k. Also, from dependence on

X - ct, (4.15) 1is

[%}%—c]%&+g—;ed—§=0whenp=0, (4.18)
and (4.17) into (4.18) gives
2 2 2 2 2
gl 2%, 5 [é&é_%+iced_<zz](ica] y
4 dx dx dx dy dy dx dx
do dg d° doy a2
2588820 _(22) B¢ - g (4.19)
dx dy dxdy dy dy2
when
(y+k) + ¢ Se - 1 ésez+ 9‘92 =0 (420)
gty ¢ ax 2 dx dy - : :

At this stage the argument is exact, but Stokes now first of all
neglects all the (nonlinear) terms in the second row of (4.19), retaining

those in the first row however. He sets
= éﬂ) = E&q (4.21)
9 = [ oo [} = .
X dx y=0 y dy y=0

(y = 0 is the undisturbed surface) so that (4.20) implies

1,2 2

gly + k) + clg,  + ywxy) - Hley + @y) =v0 (4.22a)

and by one iteration
=_.k_9_ +.(.:_ [k-{-g }4.1_ 2+ 2 4.22b
Y g %% * g %%y g Ox 75 0% T 0y) ( )
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in which y evidently describes the ordinate of the disturbed surface.
He now puts y = -(k + (c/g)mx) in the first two terms of (4.19) and
y = 0 in the second two terms so that

2. 2 [ =
99, = CThgy ~ Ileyy T o) (k + gwx) T 20,0, T 9,0, = 0.
(4.23)
Thus ¢ satisfies (4.13), with (4.14) at y = h, and with (4.23) at y
= 0. When ¢ is determined (4.22b) gives the ordinate y of the surface

and k is fixed by the condition that the mean value of y shall be zero.

The first approximation to (4.23) is

g do _ c2 49 0, wheny=20. (4.24)
dy dxz
Put ¢ = P A e(mx+ny) which satisfies (4.13): the boundary
2,2
m~+n“=0

conditions are chosen to make m imaginary (so the behaviour along x
is matched to a Fourier series and periodic boundary conditions have
entered). Then

9 = Z[em(h—y) + e—m(h—y)) (A sin mx + B cos mx) (4.25)

since the choice satisfies (4.14). Then one non-trivial contribution
to (4.25) satisfies

mh ~mh
e

2 _ge -
€ T o Tmh -mh ’ (4.26)
e + e

which is of course the formula (4.1). Stokes then proves that
d(log cz)/d (2mh) < 0 which implies a unique m satisfies (4.26).

By choosing the origin of x

@ = A[em(h—y) + e—m(h-y)) sin mx , (4.27)
and this, put into (4.20), yields

y = -m Ac g ! (emh + ¢Mh ) cos mx (4.28)

(he sets k = 0 since the mean value y = 0) and this is the equation
for the free surface.

For a second approximation he uses ¢ from (4.28) in the small
terms of (4.23) retained, so that

26



2 222 . _
g¢y C7@yy ~ 2cA"cm” sin 2mx = 0 . (4.29)

Stokes continues "The general value of ¢ given by (4.25), which is
derived from (4.13) and (4.14), must now be restricted to satisfy (4.29).
It is evident that no new terms in ¢ involving sin mx and cos mx need
be introduced, since such terms may be included in the first approximate

value, and the only other term which can enter is one of the form
B (eZm(h—y) + e—2m(h_y)Jsin 2mx . (4.30)
Substituting this term in (4.29) and simplifying by means of (4.26)

B = 3m AZ/c2 (emh - oMb ]2 ) (4.31)

Moreover, since the term in ¢ containing sin mx must disappear from
(4.29), the equation (4.26) will give ¢ to a second approximation"--
so the velocity formula (4.26) is actually unchanged.

If we now set a for the coefficient of cos mx in the first approxi-
mation (4.28),

a= - mAcg-1 (™ 4 My (4.32a)
and
A = -ca/(e™ - M0y, (4.32b)
while
m(h-y) -m(h-y) 2m(h-y) -2m(h-y)
¢ = -ac = A=) * e_ h=y) sin mx + 3ma“c (e —h * fmh i sin2mx.
e™ yho_ ™™ y (e - e )
(4.33)

Thus the ordinate of the surface to the second approximation from (4.22b)
is

y = a cos mx - Ka’ cos 2mx (4.34)

with x » x - ct, c2 given by (4.26), and

1 (eth + e—2mh + 4)

K = =m
mh _ _-mh,2

> coth mh (4.35)
(e

which is the statement (4.11).

To proceed further Stokes simplifies to h >> X(depth h >>length A
of the wave). Then (4.33), (4.34) and (4.35) are
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m .
® = - ace Y sin mx

_ 1 2
y = a cos mx - 5 ma" cos 2mx
K=%m="/x ; (4.36)
and c2 = gA/2m; the parameter k = 0. He then finds at next order that

(with h >>\),

¢ = -ac (1 - %mzaz) e™ sin mx
y = a cos mx - % ma2 cos2mx + % m2a3 cos3mx

- @20 . 1 a2y o ()7 [ 2mle? (4.37)
€= 'm 2 = 2 )2 :

and only at this order does the wave amplitude a enter the expression
for ¢. Stokes draws the form of y for a = 7)/80 (for some reason)
but notes the term in a retainer "is almost insensible”. His most
significant result is that the figure is not symmetrical above and

below y = 0.

Stokes also notes that "It is remarkable that this expression(for
y) coincides with that of the prolate cycloid, if the latter equation
be expanded according to ascending powers of the distance of the tracing
point from the centre of the rolling circle, and the terms of the fourth
order be omitted. The prolate cycloid is the form assigned by Mr.
Russell to waves of the kind considered here (Reprints of the British
Association Vol. VI p. 448 (Ref. [34], p. 448)". For h/A not great
the form of the surface is not a prolate cycloid even to second approxi-

mation.

Before discussing further Stokes's results (4.11) and their exten-
sion (4.36) and (4.37), it is interesting to take up his comment on
the form of Russell's wave. The reference by Stokes to [34] is correct
for 1837 but not for 1847. For in [2] (of 1844) Russell already des-
cribed the shapes of his waves as curves of versines not cycloids(see
below). The paper [34] (of 1837) is the report of a "Committee on
Waves" set up by the British Association in 1836. The committee had
two members--Russell and Sir John Robinson, Secretary to the Royal
Society of Edinburgh. It was charged to determine: first 'What is
a Wave'; second what is the nature of the 'Waves of the Sea'; third

does the behaviour of the 'Tidal Elevation' obey the same laws as other
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waves; and is its propagation affected by 'Local Winds'. The report

is plainly Russell's report on these questions.

In it he was most concerned to establish what he had already believed
to be true--namely that the tidal wave was an example of his solitary
wave. In September 1836 he carried out experiments on the River Dee,
near Chester, where there is a 5 mile channel of the river straight
and uniform in depth and width. Then he carried out experiments on
the Firth of Clyde, where conditions were less uniform. From these
experiments, and a further series in the laboratory, the Committee
concluded: 1. the certain existence of a 'Great Primary Wave' of
fluid in its laws different from that of the oscillatory waves treated
hitherto; 2. that its velocity c¢ satisfied (2.1); 3. that c¢ is indepen-
dent of the mode of generation; 4. the motion of the particles of
water involves their actual net translation {(refer Fig. 5 in our Fig.1);
5. the form of the wave is cycloidal, being first a prolate cycloid,
becoming a cusped 'common' cycloid as the height k increases to h,
and breaking beyond that height; 6. in channels of arbitrary cross-
section ¢ is 'that due to gravity acting through a height equal to
the depth of the centre of gravity of the transverse cross-section
(so (2.1) applies to a rectangular channel and c2 = %g(h+k) in a tri-
angular one (refer {35])); 7. that the increased height k in a wedge
/2 (b the breadth
(refer [33])); 8. in a uniformly shelving channel the wave breaks

shaped narrowing of the channel may follow ko b

when k = h; 9. the solitary wave can be normally reflected without

any change but reversal of direction; 10. the solitary waves cross
each other without change of any kind (solitons again); 11. Waves

of the Sea are not of this type but are second order oscillatory; 12.
these waves nevertheless become solitary waves as they approach the
shore and break for k < h; 13. waves at the surface of the sea do not
move with the velocity~5ue to the total depth h+k; 14. that at sea
every 3rd or 7th or 9th wave can be the largest (this is in fact a
reference to waves in deep water governed by the nonlinear Schrddinger
equation) and these, in particular, will break on the shore; 15. the
Tide Wave is the only wave of the ocean which is a wave of first order
(is a solitary one); 16. the tide itself is a compound wave; 17. a tidal
bore is created when the water is so shallow at low water that 'the
first waves of flood tide move with velocity so much less than that
due to the succeeding part of the tidal wave, as to be overtaken by

the subsequent waves, or wherever the tide rises so rapidly, and the
water on the shore or the river so shallow, that

the height of the first wave of the tide is greater
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than the depth of the fluid at that place. Hence in deep water vessels
are safe from the waves of rivers which injure those on the shore';

18. that because the Tidal Wave is solitary (2.1) means that deepening
a channel means an advance in the time of observation of high water;
19. that likewise spring tides (large k) travel faster than neap tides

(small k) with a consequent effect on tide tables.

This report was followed [37] by a further brief note on the form
of the tidal wave in the Firth of Forth. Again the note identifies
the Tidal Wave with Russell's solitary wave, while 'It appears that,
like the great wave of Translation, tidal waves could not only meet
each other without losing their individuality, but they could pass

over each other when going in the same direction'.

Thus Russell confirms yet again that he had observed the soliton
property. However, he never found the analytical sech2 formula for
the soliton's shape. His shapes are cycloids in [34]; his Wave was
a trochoid in [5], p. 85; and it becomes a 'curve of versines' in [2]
whilst in that paper his cycloid refers to his gregarious oscillatory
waves of order two. Russell shows some of his laboratory observations
of wave shapes in the Plates 50 and 51 of [2]. The latter is reproduced
here as the Fig. 6 and shows two waves breaking. The Plate 52 of [2],
reproduced here as Fig. 7, shows that Russell's 'curve of versines'
is a %k(1 + cos®) curve, i.e. it is harmonic but rendered positive.
At first sight Russell's insight has really failed him here. But note
that for large k (Figs. 4 and 5 in the Plate) he is already correcting
this harmonic shape by an effect due to the translation of the particles.
The translation in the Fig. 4, AA', is the volume of water used to
create the wave divided by the breadth of the channel, and Russell
has already demonstrated this is the net translation of planes of water
particles (cf. our Fig. 1). The Fig. 6 in our Fig. 7 shows a single
particle path in the case of Fig. 5, where k=h, and three successive

positions of the wave in regard to it.

Evidently Russell would have been in a much stronger position in
1844 if he could have given an analytical form to his wave by analytical
methods. I now return to Stokes's [4] result of 1847, namely (4.11)

and its extension, and indicate what was wrong with it.

The passage to h>>A (i.e. m h +») involved in (4.36) and (4.37)
prejudices any discussion with respect to Russell. But Stokes's results

at second order are at first quite general and in particular, for the
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Fig. 6 This Figure is Plate 51 of [2]. The waves are 'drawn by them-
selves' by using pairs of equal waves travelling in opposite directions
and registering their wetting profile in collision. The second four
curves are all drawn this way; the first two, which are breaking, are
apparently found similarly. The last four curves are also apparently
drawn in the same way but the troughs have the sloping bottoms gX, kX,
£X and mX with gradients one in twelve. Otherwise h = 2 inches for all
the curves. The dimensions were reduced by Russell by a factor 2/3 and
the parallel lines are really one inch apart (the preceding Plate 50 is
similar but is drawn full size).

'long wave' condition mh small, Ka2 in (4.35) reduces to 3a2/4m2h3.

2.3

Since Stokes's Fourier series must converge he then requires 3a2/4m h
< a and (a/h)< mz/h2. According to Stokes this resolves an apparent
discrepancy with Airy [22] (Art. 198, etc.) who working under the long
wave condition mh<< 1 finds the form y of his wave alters at second

order as the wave proceeds while c depends on wave height at that order
(Airy may even reach his expression (4.2) for c at this point). Evidently
Stokes has (a/h) < m2h2 and Airy has mh small with a/h > (mh)z. Thus

the two assume "different physical circumstances”.

31



WAVES . _ Onder [

WAVES ___ dnder Ul Jsallating Waves.

y = s g - o
e 2 e & v —
e — Ww

Fig. 7 This Figure is the Plate 52 taken from [2]. Figs. 3,4,5 show
Russell's curve of versines description of the shapes of his Waves
and Figs. 4,5 show the corrections he made for the translation of the
particles. Fig. 6 shows the single particle path. Figs. 1 and 2 are
each superb examples of soliton break up: Fig. 2 is generated from a
long low column of water, Fig. 1 by a plate with variable force and
longitudinal velocity. The lower Figs. show the creation of a solitary
negative wave and its break-up into gregarious oscillatory waves of
Order II.

This is almost but not quite the nub of the matter. To second
approximation Stokes has no error and everything depends on the approach
to the long wave limit A =2nm-1+ . In this respect both Stokes and

Airy, who assume X = « a priori but then work incorrectly, are wrong.

Certainly Stokes avoids the assumption of p independent of vy, charac—
teristic of the method of long waves, and nonlinear terms are retained
at sufficient accuracy in (4.19) at his second approximation. For mh
small the two terms of (4.11) then prove to be the first two in the Fourier expansion
of the square cn2 of the Jacobian elliptic function cn. And in later

work (see Stokes in [39]) Stokes finds the third term also. Since cn2
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Fig. 8 This Figure is Plate 53 of [2] and is not referred to in the
text. It shows reflexion of a solitary wave from the surface R for dif-
ferent angles of incidence measured from R. The reflected wave decreases
in amplitude with decreasing angle of incidence until at about 15°
incidence it prefers to travel as a single wave by increasing its

height in the plane of R.

- sech2 as the period A finally goes to infinity Stokes's real error

has been to impose periodic boundary conditions in all of his analyses.
It was Korteweg and de Vries [8] who pointed out that Stokes [4] had
found the first two terms of the cn2 function and it was in this way
they finally settled the matter. ©No such escape seems available to Airy
however. The critically different physics described by periodic boundary
conditions is still not always appreciated [38].

Later Stokes acknowledged his error [39] but Airy never did. His
opinion carried weight well beyond Rayleigh's paper [7] and Korteweg
and de Vries [8] seem to have written their paper in 1895 essentially

for that reason. They quote Boussinesq [19,20], Rayleigh [7] and St.

33



Venant [40] as establishing the theory of the solitary wave but noted
that (in 1895) treatises by Lamb ([32], 2nd edition 1895) and Basset
still assert that Airy was correct in his opinion. The same is true

of the Encyclopaedia Brittanica article on Russell of 1886. Moreoever,
Korteweg and de Vries say that even Rayleigh [7] and McCowan [9] do

not directly refute Lamb's and Basset's assertions and "It is the desire
to settle this question definitively which has led us into the somewhat
tedious calculations which are to be found at the end of this paper”.
The KAV equation itself, though noted as "very important" in [8] gets
rather less discussion.

5. RAYLEIGH'S PAPER AND HIS RESOLUTION OF THE PROBLEM

These various remarks in [8] seem quite extraordinary when we actually
look at what Rayleigh did in his paper [7] in 1876. It is somewhat of
a relief to turn to this paper after those of Stokes which are also
"somewhat tedious". The paper [7] is 'On Waves', and in it Rayleigh
exploits his physical insight as usual rather than any extraordinary
manipulative mathematical skills. 1In these terms his paper [7] should
have settled the matter in England at least, and Russell, a Scot by
birth should have benefitted for he had long since moved to London [26].
Boussinesq [20] working in Paris could be ignored but Rayleigh scarcely.
Yet he seems to have been if Korteweqg and de Vries [8], working in
Holland however, were right. McCowan's papers [9,10] suggest very much
that they were.

Rayleigh uses h for the height of the proposed solitary wave above
the undisturbed water, and he uses & for the depth of undisturbed water.
At the risk of confusing, I shall at first keep Rayleigh's usage and
change it to Scott Russell's only when I turn, with Rayleigh, to his

actual analysis for the solitary wave.

Rayleigh first notes (in effect by appeal to (4.5)) that a steady
water velocity ug along x in the undisturbed region will lead to an
increase in pressure inside the solitary wave where, by continuity,
if h >0, ug drops to u. On the other hand the pressure will decrease
from the p_lﬂ = gh, and the possibility of a balance exists. He first
of all assumes the postulate of the theory of long waves, i.e., A>>h,
so that the velocity v (in the y-direction) is negligible and u (the
velocity along x) is independent of y: u 1is of course uniform along
z, i.e., across the canal. Continuity then means

luo

2+h
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and

2 2 2 20h+h?
42 2&h+h®

ul - u° = 5 - (5.2)
(2+h)

o o

'The principle of hydrodynamics' (namely (4.5)) now means that the

increase in pressure due to the fall from Uy to u is

2
1 2 2 1 2 24h+h
5 pluZ - u”) = =5 pu, —/——=— (5.3)
2 o 2 o (Q+h)2
while the net gain is therefore
oul 1+ h/2e pui
{ 5 - gp}h =~ E-—— gp }h . (5.4)
2 (1+h/2) L

Implicitly he now moves to a frame where the velocity ug is reduced

to still water so the region where the velocity is u moves up the x-
direction (actually he treats a stationary wave and points out this

also gives the velocity of the wave in still water). The condition

for a free surface (no net gain in pressure) is to the order just realised
then ui = g4&, which is Lagrange's (1.3). To second approximation how-
ever it follows that

§p = goh (—PM%‘ 1}“‘%9%2 (5.5)
(1+h/ %)

so that p is defective wherever h # 0, and it is impossible for a long

wave of finite height to be propagated in still water 'without change

of type'. Evidently (from (5.4)) if h > 0 one obtains a better result

if ug is increased, thus making the left hand expression less negative.

But if h < 0 one obtains a better result if ug is decreased, making

the curly bracket there less positive. The wholly positive wave Russell

conceived therefore has a velocity c >C while a negative wave has

c<cg.
Rayleigh now notes that (5.1) is
= u-u = (ga)"/n (5.6)

(since he has just shown h is infinitesimal). For vanishingly small
h, as required, (5.6) is the condition that the disturbance moves up
the positive x direction. If the condition is violated the wave emerges

in the negative x direction. Rayleigh adopts this condition as a local
condition for the profile at any finite distance h above the undisturbed
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water so that, with velocity and height changing gradually, the local

condition for no negative wave is

du' = /g/(g¥h) dh (5.7)

and the resultant net condition at final height h is that the total

discrepancy u' = u - U will be
u' = 2/g {YTFR - /T} . (5.8)

Now the formula (1.3) means that at total depth (h+g), ug = /g Th+g)

so that u, the velocity of the peak relative to still water is

u = 2/9{ YT+h /% + /g(&+h)}

~ /g y/T+3h . (5.9)
This is actually Airy's formula (4.2). However, the condition is an

always positive moving profile and this profile necessarily distorts

(as Rayleigh has proved already).

Rayleigh next uses the same line of reasoning to regain Kelland's

formula ¢ = J/gA/b as well as those of Green. Let A be the area of
the cross section below the undisturbed level, b the breadth at that
level. Then continuity means

(A + bh)u = Auo (5.10)

for small enough h; so instead of (5.2)

2 2 _ 2
ug - u = (2bh/A)uO . (5.11)
But, since 'by dynamics' (namely (4.5) ui - u2 = 2gh if the upper surface
is free,
2 _
u = gA/b , (5.12)
o
which is Kelland's formula.
Rayleigh then goes on to argue as follows: "The energy of a long

wave is half potential and half kinetic. If we suppose that initially
the surface is displaced, but that the particles have no velocity, we

shall evidently obtain (as in the case of sound) two equal waves tra-
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velling in opposite directions". Evidently the total energies of each
are equal and make up the original energy of displacement, these derived
waves have each one half the elevation of the original and potential
energies one quarter. The energy of each wave is one half so potential
and kinetic energies are equal in the two derived waves. Now apply

this result to the case of gradually changing b and A. The potential
energy o {length x breadth x (height)z} of the wave which is then true
of the total energy. Since wave-length oc propagation velocity ¢c/A/b
from (5.12)), energy

Eocy/TA/BTx (height)? x b (5.13)

and, since this is constant for a slowly varying canal,

height oc A~ V/4p~1/4 (5.14)

This is cc %~%b~% for a rectangular canal, namely Green's result [33]

for a canal of slowly varying depth and breadth. Both (5.12) and (5.14)
are also given by Airy [22] (Art. 260) and Stokes [36] points out that
his proof of (5.12) is actually simpler than Kelland's in [28]. However,
Rayleigh simply refers them jointly to Green, Kelland and Airy by

reference to Stokes [36].

Next Rayleigh proves that h cannot exceed the value due to the velo-
city u by generalising (5.3), a result he notes as 'otherwise obvious'
(which it is). He then shows that if ug is less than the velocity of
the free wave (gAO > bui ) a contraction of area AO to A produces a
depression of the surface while an expansion from Ao to A produces an
elevation the effects being reversed for ng <bui. He notes that a
stationary wave can sustain itself "in a stationary position without
requiring a variation in the channel; and the effects of such a variation
are naturally much intensified" and goes on to show that the situation

when ui > ngb_1 is unstable.

At this point Rayleigh starts a wholly new section entitled "The
Solitary Wave". He says "This is the name given by Mr. Scott Russell
to a peculiar wave described by him" (in [2]). Since Russell's wave is
6 or 8 times the canal depth in length it should be treatable by the
theory of longwaves. However "there are several circumstances observed
by Mr. Russell which indicate it has a character distinct from that
of long waves"--notably the different behaviours of positive and negative
waves, the former having a "remarkable permanence", the latter being

"soon broken up and dissipated".
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Rayleigh remarks that Airy "appears not to recognize anything dist-
inctive in the solitary wave" and quotes from Airy [22] "We are not
disposed . .." in the form of the two quotes given above. On the other
hand he then also gquotes the earlier view expressed by Stokes in [36]
"It is the opinion of Mr. Russell . . . (also given above). After dis-
missing a paper by Earnshaw [41], which appeals to experiment in order
to validate the postulates of the theory of long waves and thereby runs
into a problem of matching rotational motion in the wave to irrotational
motion beyond it, Rayleigh goes on to consider whether there can be
compensation between pressure variation at the surface from the finite-
ness of height and variation due to the departure from the law of uniform

velocity proper to very long waves. This is the crucial consideration.

To analyse this he introduces stream lines ¥ = const. and a velocity
potential ¢ setting

o+ i¥Y = F(x + iy) = el % F(x) , (5.15)

this choice being motivated by the fact that one stream line, at the
bottom of the canal, is straight. Thus

2

¢ =F - L F" +

1

2.

3 5
‘*}’=yF' _LF'I'+LF(V) ; (5.16)

Y = 0 on the bottom of the canal, and at this point by changing back

to Russell's notation and choosing h for the depth of undisturbed water,

Y = -ch at the free surface. On this surface p is uniform so that
(from (4.5))
w? o+ vl = - 2g(y-h) . (5.17)
Then
2 4 (v)
u=F" - Fr+ LF .. (5.18a)
21 41
and
v = =-yF" 4+ . . ., (5.18b)
so that
(F')2 - y2FrRro+ y2(F2% + L . . = ¢ - 2g9(y - h) (5.19)
on the free surface. But the free surface is also ¥ = -ch so that
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3

yF' - 31

F'''+ . .. = -ch. (5.20)

The procedure now is to eliminate F from (5.19) and (5.20) to get
a differential equation for y, the ordinate of the free surface. If
F varies slowly one can solve these two equations for y by iteration
so that

B =_§£+%YZFII|+
1 1 2,1
= -ch {< + = )"+ L.
{y TR (y) } (5.21)

and (5.19) becomes

1 2 Tyn 2,1 1 (y - h)

- Ly ()" + Y)Y = = - 29 (5.22)

y2 3 y y h2 c2h2
or

2 _ 3y - n? ay
(yn? = 2y hl [1 - 2] (5.23)
h c

from which, when y' = 0, y = hor y = cz/g. Then if 1 -~ gy/c2_30,
y = c2/g is maximum, y = k + h (say). Thus

2 _

c” = g(k + h) . (5.24)
Also

y - h =k sech? 1(x/b) (5.25)
and

b2 = h2(n + k)/3k . (5.26)
The formula (5.24) for c2 is of course precisely Russell's (2.1). Also
(5.25) is

27 13k (b \?
u(x, t) = y - h =KXk SeChh‘:ib} [m—k] X:l (5.27)

(at t = 0) and the maximum height is Russell's k. However thelformula
differs from Boussinesqg's result (2.5) by the scaling (h/h+k)? on

x. This scaling has the same order ofldiscrepancy as does the KdV
solitary wave (2.11), for [1/(1 +kMm)12 =1 - %(k/h). But now the exact
result (5.24) is found for c2 (to within the order worked). Thus,

in this very direct way, Rayleigh further justifies Boussinesq's analysis

.and wholly justifies (2.1) and therefore, for Russell, his whole position.

It would be tempting now to trace the further developments to modern

methods which, for example, identify symplectic manifolds and infinite
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dimensional Lie algebras within the theory, quantise it and find Yang-
Baxter integrability conditions. I leave this fascinating series of

developments to other contributions to this meeting.

I therefore finish with Rayleigh's own summing up of his work on
the solitary wave. He says [7] "The velocity of propagation is given
by (5.24), which is Scott Russell's formula exactly. In words, the
velocity of the wave is that due to half the greatest depth of water.

Another of Russell's observations is now readily accounted for:-
'It was always found that the wave broke when its elevation above the
general level became equal, or nearly so, to the greatest depth. The
application of mathematics to this circumstance is so difficult, that
we confine ourselves to the mention of the observed fact [22,42]"'.
When the wave is treated as stationary it is evident from dynamics
that its height can never exceed that due to the velocity of the stream
in the undisturbed parts; that is, k is less than ui/Zg. But ui =
g(h + k), and therefore k is less than %(h + k) or k is less than h.
When the wave is on the point of breaking, the water at the crest is

moving with the velocity of the wave”.

Rayleigh then goes on to consider Periodic Waves in Deep Water.
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2n 2 _ g & - € L (B.1)
X ah -ah 2
e + e 2na 2 oh -aqh
1 - E——J [e - e ]
A
. . . ah, -gh,-1
with a the amplitude of the wave given by a = (x/¢n)(e” +e ).

However in a Sec. III devoted to "Solitary Wave Motion" Kelland
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ah
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= + 4 2

y 1 S¢P

mc2 _ El 1
S
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Topics Associated with Nonlinear Evolution Equations
and Inverse Scattering in Multidimensions

M.J. Ablowitz

Department of Mathematics and Computer Science, Clarkson University,
Potsdam, NY 13676, USA

In recent years the basic structure required to implement the inverse
scattering transform in 1+1 and 2+1 dimensions has been clarified and
extended. Aspects involved with fully multidimensional problems have
also been treated. In particular the inverse scattering associated
with various multidimensional operators and generalizations of the
sine-Gordon and self-dual Yang-Mills equations have been studied. A
review of some of this work will be discussed in this review.

The Inverse Scattering Transform (I.S.T.) is a method to solve certain
nonlinear evolution equations. There has been wide ranging interest

in this method for many reasons. A review of earlier work can be found
in [1]. A surprisingly large number of physically interesting nonlinear
equations can be solved via IST; there are many applications in physics
including: surface waves, internal waves, lattice dynamics, plasma
physics, nonlinear optics, particle physics and relativity. Mathemati-
cally speaking the field is also quite rich, with nontrivial results

in the areas of analysis, group theory, algebra, differential and alge-
braic geometry being used by various researchers. From our point of
view, IST allows us to solve the Cauchy problem for these nonlinear
systems. We shall concentrate on questions in infinite space. All of
the nonlinear equations discussed below arise as the compatibility
condition of certain linear equations, one of which is identified as

a scattering (direct and inverse scattering is required) problem and

the other(s) serves to fix the "time evolution" of the scattering data.
In one spatial dimension the prototype problem is the (KdV) equation

u, + 6uuX + Upx = 0. (1)

The KAV equation is compatible with

v + ulx,t)v = Av (2)
XX

ve = (Y+UX)V - (4)\+2u)vX (3)

44



i.e., v = v implies (1). Equation (2) is the time independent

xxt txx
Schrodinger scattering problem, A the eigenvalue (y = const. in (3)).
The solution of (1) on the line: -w<x<w for initial values ul(x,t=0)

vanishing sufficiently rapidly at infinity is obtained by studying

the associated direct and inverse scattering problem of (2) and using
(3) to fix the time evolution of the scattering data. It turns out
that the inverse problem accounts to solving a matrix Riemann-Hilbert
boundary value problem (RHBVP) whose jump discontinuity depends expli-
citly on the scattering data. Calling A =—k2, vix,k) = 1.1(x,k)e_ikx
the RHBVP takes the following form,

(u+—u_)(x,t,k) = p_(x,t,a(k))V(x,t,k) on L, ut =1, | k|sw, (4)
where V(x,t,k) = r(k,t)e2ikx, alk) = -k, £ = {k:k€R}, and u, are
the limiting boundary values, as Imk-+ 0 #, of meromorphic funcgions
in the upper (+) lower (-) half plane. (4) may be converted into a
linear integral equation by taking a minus projection and the potential
is reconstructed via

ulx,t) = -1 1 (x,t,-K)V(x, €, k) K, (5)

1
T
C
where the contour is taken above all poles of r(k,t); of which there
is at most a finite number, k. = i %, %> 0, j=1,...,N. The scattering
data: the reflection coefficient, r(k,t) evolves simply in time
L2

r(k,t) = r(k,0) e8¢t (6)

The above scheme may be extended so as to solve a surprisingly large
number of interesting nonlinear evolution equations. There are two

scattering problems of particular interest in one dimension:

(i) Scalar scattering problems:
n n n-j
g—% + 7 u.(x) d n—Y = \v,
dx j=2 J ax™
vix,k), uj € C

(ii) First order systems - generalized AKNS

%% = 1ikJv+qguv

vix,k), g(x) € ¢NXN, J = diag(J1,...,Jn)
gty 37, i+ 5

qll = 0
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Via an appropriate transformation the inverse problem associated with
(i), (ii) can be expressed as a matrix RHBVP of the form (4). The
potentials uj, g can be shown to satisfy nonlinear evolution equations
by appending to (i) and (ii), suitable linear time evolution equations.
One then finds that the scattering data V(x,t,k) evolves simply in time.
Well-known solvable nonlinear edquations include the Boussinesqg, modified
KAV, sine-Gordon, nonlinear Schrodinger, and three wave interaction
equations. The reader may wish to consult for example [2a-e] for a

detailed discussion of some of this material.

It is most significant that these concepts can be generalized to
twospatial plus one time dimension. Here the prototype equation is the
Kadomtsev-Petviashvili (K-P) equation:

2

(ut + 6uux + uxxx)x = =30 uyy (7)

which is the compatibility equation between the following linear problems:

oV, tv T u(x,y,t)v. = 0 (8)

X
ve + 4vxxx + 6uvx + 3(uX -0 {m uydx')v + v = 0 (9)

(y = const.). We shall consider the question of solving (7) for u(x,y,0)

decaying sufficiently rapidly in the plane r2 = x2 + y2 + o, Physi-

+1 (KPII) are of interest.

cally speaking, both cases 02 = -1 (KPI) 02
Whereas KPI can be related to a RHBVP of a certain type (nonlocal; see

ref. [3]), KPII turns out to require new ideas. Letting
. 2
v = ul(x,y,k) exp(ikx + k“y/0)

g = op + i01, oR # 0. Then there exist functions pu bounded for all
X,y satisfying uw + 1 as |k| - =« . However such a function turns out
to be nowhere analytic in k, rather it depends nontrivially on both the

real and imaginary parts of k(k=kR + ikI). u o= u(x,y,kR,kI).

In fact p satisfies a generalization of a RHBVP--namely a @ (DBAR)

problem where p satisfies,

3
A w(x,y, &g, kpIVIX, y, kg k) (10)
ak
3 _ 1 3 ]
where -— = =z( == + 1 z—) and V has the structure
3k 2 BkR akI
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sgn(ko) exp[iB(x,y,kR,kI,EO)]

V(x,y,kR,kI) = 27 ]on ] T(kR,kI),
mTiog
kI kI
B(x,y,kR,kI,go) = (x + 2y E;)(EO - kR) = -2(x + 2y E;)ko'
ZUI or
go =—kR—TRkI, kosz+?1;kI (11)

(10-11) may be converted into a linear integral equation by employing
the generalized Cauchy formula. T(kR,kI) is viewed as the "nonphysical"
data (i.e., inverse scattering data or inverse data) and the potential

is reconstructed via

N

ulx,y) = <% %; FIux,y,8g k) Vix,y,kp k) dkpdky. (12)

|

The basic ideas used in order to derive these equations is as follows.

We convert the equation for u = p(x,y,k):

ouy Ut Zlkux - ul(x,y)u = 0 (13)

into an integral equation

wix,y,k) = 1+ G(u,u) (14)
where
G(E) = G*f = [JG(x-x', y-y',k) f(x',y")dx'dy’, (15)

the Green's function kernel being given by (k=kR+ikI):

1 exp[i(gx+yy)]
G(XIYIk Ik ) =
RO (Zn?jf(ion—gz—zkg)

dgdy

sgnly) Jag explixg+g (g+2k)y/gl

210
e(—yoR(gz+2gk0))dg (16)

where

o
I
k0 = kR + E; kI and 0(x) ={1:x>0,0:x< 0} .
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The 3 derivative of the Green's function is especially simple,

3G sgn(ko)
—:(x,y,kR,kI) = exp[iB(x,y,kR,kI)] (17)
3k 2m g |
where
9 1.3 .9
— = Slg—+ 1 ), and
3% 2 3kR akI ’
kI
B(lelk Ik ) = -2(x + 2y c—-)k .
R 0

Taking the 3 derivative of (14)

B (x,y, kg ky) = JF 28(x-x',y-y' kg kpulx',y u(x',y' Ky kp)dx'dy'
3k 2k
+ IIG(x-x',y-y',kR,kI)u(x',y')Q%(x',y',kR,kI)dx'dy' (18)

3k

and using (17) shows that

sgn(ko)
= T(kR,kI)w(x,y,kR,kI) (19)

(=5
=

@
~

where T(kR,kI) = ffexp[—iB(x,y,kR,kI)]u(x,y)u(x,y,kR,kI)dxdy and
w(x,y,kR,kI) satisfies:
w(XIyIkRIkI) = exp[iB(XIYIkR'kI) + ffG(x—x',y—y',kR,kI)
u(x',y')w(x',y',kR,kI)dx'dy']. (20)

Multiplying (20) by exp[—iB(x,y,kR,kI)] and employing the following
symmetry condition on the Green's function

exp[—iB(x,y,kR,kI)] G(x,y,kR,kI) = G(x,y,&o,kl) (21)
91
where EO = —k0 - Egkl’ yields
w(x,y,kR,kI) = exp[iB(x,y,kR,kI)] u(x,y,EO,kI) (22)

whereupon (10-11) follow. The eigenfunction u 1is recovered with the

generalized Cauchy formula
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B (x,y .k k)

1 ok
’ rk, = _— 1 v
u(x,y kg k) =3 dkgrdky (23)
noting that using (10-11), (23) becomes a linear integral equation
for p. The potential u(x,y) is recovered by taking kse in (13) or (14)
and (23). For the K-P the evolution of the data obeys (Y=4ik3 in (9))
3T _ . o2 a2
Fr (81k0)(6kk0 4k0 3k“)T (24)
ork:
where ko = kR + on , k= kR + 1kI
Special cases include 0 = 0p t+ i0;
(a) KPII; o= -1: og = -1, op = 0
AT _ 4. 2 _ .2
T - 81kR(3kI kR)T (25)
(b) KP;; o = i: o> 0=, oy =1, R, = x /04
3T _ _gi(k, + R.)(k2 + 2k k. + akdH)T (26)
at R I R R7I I

These formulae allow us in principle to solve the Cauchy problem for
K-P and in particular the limit (ii) discussed above allows us to give
an alternative solution for KPI via 3 and not via a nonlocal RHBVP.

Similar ideas apply to higher order scalar problems

u.(x) Y = o

2 Ix

(iii) g — + — +

™MD

where v, qu € and to first order systems

. Vv .4 OV _
(iv) o 3y +°J % + q(x,ylv = 0
where v, q€E¢NXN, J = diag(J],...,JN), Jts JJ, i+j with qll = 0.

Interested readers may consult reference 4a, and review 4b for more
details.

The notion of 3 extends to higher dimensional scattering and inverse
scattering problems. However as we shall mention, despite the fact

that the inverse scattering problem is essentially tractable there does
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not appear to be any local nonlinear evolution equations in dimension
greater than 2+1 associated with multidimensional generalizations of

(iii) or (iv).

Our prototype scattering problem will be

oVy + Av + u(x,y)v = 0
n 32 n
A= I —5 XxXER, v € R. (27)
=1 3x
2
Letting

pix,y,k) exp(ikx + k2y/0)

v =
- n
k = kR + lkI' k €C
n
k.x = ? ijj, g = og + iog-

Then there exist functions u bounded for all x, y satisfying u-~+1,

R

s

as | kﬂ + o, j=1,...,n. When o, % 0, p turns out to be nonanalytic

, koo,..
Rn I1

in each of the variables k, i.e., u = LJ(X,y,kR s eerk ..k
1

and satisfies a problem linear in u , in each of the variables kj;

i.e., we shall show that y satisfies an equation of the form,

SE - Fo(w; 3 =1,...,n (28)

where fj is an appropriate linear integral operator.

The basic idea in order to derive (28) follows a similar format to

the two dimensional case described earlier. From the definition of

u(x,y,k) below (27) we see that it satisfies

Ouy + Ap+ 2ik.Vp+w = 0. (29)
We convert to an integral equation

u =1+ &(u,n) (30)

where the Green's function kernel is given by
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1 expli(x.£+yn)]
G(x,y,kyrik) = I dgdy
R (211)n+1 ioy-£2—2k.€

sgn(y) 1 2
= — Jexplix.g+ L(g“+2k.E).
o (2mw) o
0.k
2 "I
.O(—ch(E +2(kR + on ).E)dg.

Taking the 3 derivative of (30)

Q%_ = gg(uu) + G(u é%— '
ok, ok dk.
J
and using
3G .
2 (x,y.ky, k) = - o, | fexpliB(x,y, kg k /&)
ok RTI (2m® R ROE
. =Ky d
(E] R])S(p(E)) 13
where

1]

k
I
B(XrYIkRIkIIE;) (X + 2y 'b_R).(E“kR)

o o]
1 2 I 2
p(E) = (& + ==k ) - (k, + — k)
UR I R UR I

shows that

du ! ! T(k.,k-E) (E.~k_.)8(p(E))

— = - R'"I i " Rj

3k (2™ Jogl 3R]

.w(x,y,kR,kI,E)di

where

T(kp kp E) = JSexpl-iB(x,y kg, ky,E)ulx,y)u(x,y kg, ky)dxdy
and w satisfies

w(x,y,kR,kI,g) = exp[ig(x,y,kR,ka;)] + G(uw).

Multiplying (37) by exp(-ig) and using the symmetry condition
exp[_iB(XIYIkRIkIIE)] G(xIYIkR’kI) = G(XIYIE;IkI)

yields

(31)

(32)

(33)

(34)

(35) -

(36)

(37)

(38)

(39)
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WX,y Kpiky, ) = exp[—is(x,y,kR,kI,g)] uix,y,g.k) (40)

and hence (36) gives

W oy o= -k k, ) Bk L)
o J (2m™ %R RI 1 R3
-8(p(E))expliB(x,y, kg, ki, E) nix,y, &k )AE. (41)

We see that T. is an integral operator which depends on a scalar scat-
tering function T = T(kR,kI,E)E being effectively (n-1) integration
parameters (due to the delta function in (41) in the nonlocal operator

T.).
])

One can use a generalized Cauchy formula such as (23) in order to
obtain a linear integral equation to reconstruct u . However due to the
redundancy of the data discussed below, we find that an alternative
method is more useful. The inverse problem is redundant, i.e., we are
given T(kR,kI,E) (3n-1 parameters) and we must reconstruct a local
potential u(x,y) (n+1 parameters). A serious issue is how to characterize
admissible inverse data T, i.e., data that really arises from a local
potential (small generic changes in T(kR,kI,E) cannot be expected to arise
from a local potential u(x,y)). Insight into this question is obtained
by noting that T must satisfy a nonlinear constraint, one which is ob-
tained by requiring azu/aiiaij = azu/aijaii (i#j). The form of this
constraint is given by

xjj(T) = Nij[T] (42)

where i’ij is a linear operator and Nij a nonlinear (quadratic) nonlocal

operator. These operators are given by
£, = (gj-ijuzTi + g 3—5? - (gi—kiR)(gTj + g gTj) (43)
Nij(T) = f[(iﬁ‘ij’(ii‘Ei) - (5i‘kiR)(5j'5§)]
.s(p(g')T(kR,kI,g)T(g',kl,g)dg'. (44)

There is, in fact, an explicit transformation of variables

1

(kpokpsE) » (x,wo,w) € €' xRxR"
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which simplifies (42). Namely,

L B M orom
R1 j=2 jAR] 2 2w2
w. O WAW .
= .y 3 _ 103 :
Krj WiXRy T 2 R (3>2)
n OCrWAW
1
it T L WaXpy o
j=2 2w
OrpWAW..
= —w,y _R07J -
Kig T Mgy o (322)
S
j=2 JRI 2 2w?
W O WY
£y = ~WiXgy t 3% - ———2 . (3>2) (45)
3 3 . 2z
transforms (42) into
L - N D (xwpw) . 3=2,...,n (46)
j
3% 4

using the generalized Cauchy formula (23) we have

: Nij(T)(i,w,wo)
Ij[T](X,w,wo) = T(X,w,wy) - py J—— X gx 1
X =X
= G(w,wo) , (47)
where
Yy = (XZ'X3""’X3""’X1’1)
ﬁ(wo,w) = JJ exp[—i(yw0+x.w)]u(x,y)dxdy. (48)

We have used the fact that when wy = 2kI.(£—kR)/0R and w = E—kR are
kept fixed, T(X,w,wo) - ﬁ(w,wo) (The Fourier Transform of u(x,y)) for

large {w.+0); this is the analogue of the Born approximation.

We expect that for suitably "small" u (i.e., no homogeneous solutions
to the relevant integral equations) if I is independent of x,j and decays
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sufficiently fast for ]wl'lwol*“ , then T(kR,kI,E) is admissible. More-
over (47) gives a formula to reconstruct the potential by quadratures.
Limits to case g = i and reductions to stationary potentials u(x,y) = u(x)
can be carried out. Details can be found in Ref. [5a,b]. It should also
be noted that in recent work Nachman and Lavine [5c] have extended their

ideas to situations where there are homogeneous solutions to the relevant

integral equations. (42) also suggests why simple local nonlinear evolu-
tion equations have not been associated with equation (27). Namely, in
the previous lower dimensional (2+1 and 1+4+1) problems the time evolution

of the scattering data obeyed a particularly simple equation (e.g.,
ar
ot
maintained due to the nonlinear constraint (42).

= m(kR,kI)T). However in this case such a simple flow will not be

These ideas can be generalized to first order systems:

n Y
(v) + 0 E J. 5;; = qv

NxN . 1 N k 2
,gECT , J. = diag(J.,...,Jd.) J. +# J2, k # %
Ve j ragidye i j j

with many similar results obtained [6a,b,c}; though there are some impor-

tant differences as well: see ref. [6c]. Again the scattering data
satisfies a nonlinear constraint. In general, there is no compatible
local nonlinear evolution equation associated with (v). However when

certain restrictions are put on Jj then the constraint equation becomes
linear and the so-called N wave interaction equations are compatible
with the system (v). Nachman and Ablowitz [6a] showed that at most,
the system would be 3+1 dimensional, and Fokas [6b] showed that indeed

the system is reducible to 2+1 dimensions by a transformation of inde-

pendent variables (characteristic variables). 1In [6c] Fokas studies
the inverse scattering of (v). For o = i he finds an equation similar
to (42). However its integrated form shows that in order for the poten-

tial to be reconstructed one must solve a reduced system of equations
of the form (v): i.e., for N = 2. This is in contrast to the scalar

problem where reconstruction is via quadratures.

Beals and Coifman have an alternative but similar formulation [7a,bl

for multidimensional scalar problems.

There is an n-dimensional problem which also fits within the frame-
work of IST: The so-called generalized wave and generalized sine-Gordon
equation (GWE and GSGE). These equations arise in the context of dif-
ferential geometry and serve to extend the classical results of Backlund
for the sine-Gordon equation to n-dimensions [8]. The n-dimensional

Backlund transformation is given by:
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dyx + xAtx = A - xB, (49)

where
Ay
dx = z 3y dxj,
=1 X3
Aij = Bi(Z)aijdxj,
da da. .
1 15 1 1i .
f. = dx P dx., 1<i,j<n, (50)
ij ag; ax j a1j axj i - -
and a= bij Yer™ ™, Equations (49-50) reduce to the Backlund trans-

formation for the generalized sine-Gordon equation (GSGE) when

8.(2) = (z°

i + (26i1 - 1))/2z, (51)

and for the generalized wave equation (GWE) when
= 2 -
Bi(z) = -(1-27)/2z = x(z). (52)

The compatibility condition required for the existence of solutions
to these Backlund transformations results in a system of second-order
partial differential equations for an orthogonal nxn matrix a = {aij}
in (49) which is a function of n independent variables a = a(x1,x2,...,
xn). The equation has the form

PR NG & N NP Bt
X (a ox )+ ax (a 9Ix )

i 1i i j “1k j

da,. da, .
1 11 1

+ z € a,.a,., i # I,

k+i,3 as, %k % 11715

da, . da,. 9da
1 1 1 1 1 . L
gx a X ) = a.. a 3% 2 5% k, i,j,k distinct,
k 713 773 1k%13 k

Ja da.. 9da

3 X - Lot itk (53)

X ay3 9%y

where ¢ = 1 for the GSGE and € = 0 for the GWE,
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We observe that when n = 2 and € = 1 (GSGE), the orthogonal matrix
a = {aij} given by

1 L1
coszu sinzu
a = (54)
—sinlu coslu
2 2
for the function u = u(x,t) reduces the GSGE to the classical sine-
Gordon equation ( k=-1),
Oy T Uk T Ksin u = 0. (55)

On the other hand when n = 2 and k= 0, then with (54) the GWE reduces
to the wave equation '(55). When n > 3 the generalization of the wave

equations discussed here is nonlinear.

The Backlund transformations (49) described above are in fact matrix

Riccati equations. Linearizations of such a system can be performed
in a straightforward manner. Introducing the transformation
-1
X = Uuv ', (56)
where U, V and nxn matrix functions of E SRR Ny the following linear

system is deduced:

du 0 A U
= (57)
av At B \Y
with the components of A, B given by (50). Compatibility ensures that

the orthogonal matrix a = {aij} satisfies the GSGE with (51) and GWE
with (52). Alternatively, if we call

U
v | T Vb (58)

the following linear system of 2n o.d.e.'s are obtained:

v - , , 59
a%; A A] v o+ Cjw, (59)

where Aj’ Cj are 2nx2n matrices with the block structure

0 a. 0 0

By = . I, ¢y = . (60)
E 0 .
a] 0 YJ
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Here éj’ §j are nxn matrices having the following structure:

.oo= - 1)e,a. + a.,
%3 8/ 193 7 3
a. = ae. (61
] ] )
where ej = {ej}ik is the unit matrix

1 i=k=3
i e = o, (62)

otherwise,

and in component form -ﬁ takes the form

(y5) (1 -5, 2 a3 g an b 1 (63)
Y3'ke k3T apy, eax °ad 83’ag, ax, k3’

In (61) a is the orthogonal matrix R" 5 SO(n) associated with the GWE
when § =) and with the GSGE when § = %(z + 1/z), A = %(z - 1/2),

and ¥ is the matrix (63): R - Mn(ﬂl), Y; + \L = 0. Equations (53)
arise as the compatibility condition associated with (58). More expli-

citly, for the GWE the scattering problem takes the form [p=p(x,A)]

%gg = xAjw + Cj¢ (64)
with
A, = {0 aj] , (65)
J a§ 0

and Cj given by (60,63).

For the GSGE the scattering problem for ¢ = y(x,z) takes the form

20 0 e1aj
3% ) 6(2) [ ¢ 0 } \I)
j . aje1
0 (I—e1)a.
+ a(z) [ & 3] v o+ Cj¢ , (66)
aj(I-q) 0

8(2), a(2), Cj given above, or equivalently

3
an

[NSIES

Z
qu, + 713].\1, +cj¢ , (67)
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where

0 ua.
B, = I, u = diag(+1,-1,...,-1). (68)
Jj t

a;u 0

J
In [8] it is shown how these linear problems may be viewed as a direct
and inverse scattering problem for the GWE and GSGE. Namely, the direct
and inverse problem may be solved for matrix potentials, depending on
the orthogonal matrix a, tending to the identity sufficiently fast in
certain "generic" directions. It should be noted that solving the n-
dimensional GWE and GSGE reduces to the study of the scattering and
inverse scattering associated with a coupled system of n one-dimensional
o.d.e.'s. This is in marked contrast to other attempts described earlier
to isolate solvable (local) multidimensional nonlinear evolution equation

which are compatibility conditions of two Lax-type operators, e.g.,

Ly =y (69)

vy = My (70)

where L is a partial differential operator with the variable t entering
only parametrically. Although as we have seen nonlinear evolution equa-
tions in three independent variables can be associated with such Lax
pairs (e.g., the K-P, Davey-Stewartson, three wave interaction equations,
etc.) little progress via this route has been made in more than three
dimensions. As discussed earlier one has to overcome a serious constraint
inherent in the scattering/inverse scattering theory for higher dimen-
sional partial differential operators in order to be able to isolate
associated solvable nonlinear equations, i.e., the scattering data
generally satisfies a nonlinear equation (eq. (42)). The analysis
associated with the GWE and GSGE avoids these difficulties since the

GWE and GSGE problems are simply a compatible set of nonlinear one-
dimensional o.e.e.'s. The results in ref. [8] demonstrate that the
initial value problem is posed with given data along lines and not

on (n-1) dimensional manifolds.

Similar ideas apply to certain n-dimensional extensions of the so-
called anti-self-dual Yang-Mills equations (SDYM) [9]. 1In two complex

variables the self-dual Yang Mills equations take the form (see [10])

(g W)+ 2 (g7 2, - o, (71)

Q
LR 3%, ax, 3%y
where § is a positive matrix valued function of (X1IX2)E E2- Alter-
natively SDYM takes the form
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9A 3A

1 ‘:g = 0

ER S LR

3A A

1 2
— - — + [a,,A,] = 0,
FEN Xy 17772
where
_1 BQ

A. = -Q —_—

3 BXj

(72)

(73)

(74)

The SDYM may be obtained via the compatibility condition of the following

linear system

- ~ %2 - < A1m
3%y X,

am am =

L— + z &&=~ = A,m

Multidimensional extensions may be obtained.

the linear system

Dlm(x,z) = AjGxImix,2), 3= 1,....n
pJ = a__ 4 ZS . 3
z axj j £
3% 441
and
- = (-1)3
Xn+1 Xp0 8y (=1)-.
Compatibility (commutativity) implies:
pia. - pJa. + [A.,A.] = 0
z 3 271 i’
3A. oA
CR. _EJ + [a,A] = 0
ij LR J
aAi A
S§ 3% -85 ——:l——— = 0.
1 i1

A potential @ may be introduced as before:

A. = 9_1 28

X.
] 9 j

(75)

For example, consider

(76)

(77)

(78)

(79)

(80)

(81)
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to obtain

_q 9@ _q 3@
Sja_ (Q ! a—x‘—) - S-l 3 (Q 1 B_X_) = 0. (82)
%441 * 0% 41 J
Clearly when n = 2 this system reduces to the classical SDYM equation.

Solutions to these equations may be constructed via the 3 method.
Define

i o2 43 J
Dz = L1 + zL2 (83)
with
j _ 3 o P
L, T L, S5 =
J X349

We shall show that the 3 integral equation

1 .rf (mV)(x,T)

m(x,z) = I + o= ——=r2’ dradg (84)
C-z
satisfies (76) (dzadg = —zidCRch). Operating on (84) with Dg yields,

(LImv + m(LIv)

in = 7
D = 2ﬂiJ’ dgade+ J (85)
-z
where
1 zL%(mV) _
J = ‘2Tl.r ——— dzAa dg
-z
! j _ . ng(mv) o
= - 5 J Ly (mV)dz ndg o J - dr Adz. (86)
Putting (85), (86) together gives
. (0Im)v + m(pIv)
pIm = A, + ot [ —C & dg Aat (87)
z 3 2mi
C - z
where
_ _ 1 3j z_ _ 9 -~
Aj(x) = - > ) L2(mv)chdc-» 777 S5 o J(nv)dg.Ade. (88)
j+1
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We shall require V(x,z) to satisfy
DIv = 0 . (89)

in which case using (84) in (87) by writing

_ S N\ 7
By = Ajm - oy [ 355 dradD) (90)
we find
s : ((dm) - &, (x)m)v _
(Dym - Ajm) = o7 1) — dr Ade. (91)

For V suitably chosen (84) has a unique solution in which case

Dim - E.m = 0. (92)
Z ]
Thus Aj = Aj and solutioné of the extended SDYM are obtained.
The condition (89) is satisfied if we take V(x,z) = V(u(x),z},
with uj(x) = zxj + stxj+1 and V holomorphic in the uj. Then
DjV = 2 4 zs. vViu,,...,u_,2z)
z 9X . J 5% i’ "“n’
J §+1
n
= ' =
z v (uE'Z)(ZGjl + sjsj+126jl) 0 (93)
2=1
by virtue of sy = (-=1)3. 1In ref. [9] other examples of multidimensional

extensions of SDYM and a rigorous derivation of the foregoing is given.
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Inverse Problems and a Unified Approach
to Integrability in 1, 14+1 and 241 Dimensions *

A.S. Fokas and V. Papageorgiou

Department of Mathematics and Computer Science and Institute for
Nonlinear Studies, Clarkson University, Potsdam, NY 13676, USA

A unified approach for solving initial value problems for equations in
0+1, 1+1 (one spatial and one temporal), and 2+1 (two spatial and one
temporal) dimensions is given. Illustrative examples in each of these
cases are provided. Some remarks on inverse problems in higher than
two spatial dimensions are made in the context of inverse scattering.

1. INTRODUCTION

The aim of this paper is to emphasize that there exists a unified ap-
proach for solving initial value problems for equations in 1, 1+1 (i.e.,
one spatial and one temporal), and 2+1 (i.e., two spatial and one tem-
poral) dimensions. Furthermore it remarks on inverse problems in higher
than two spatial dimensions. Although these inverse problems are not
related to physically significant nonlinear evolution equations, they
are useful in the context of inverse scattering. 1In this presentation
we emphasize the main ideas. The detailed formalisms can be found in

the cited papers.

It turns out that solving the initial value problem for some equa-
tions for g(t), or gq(x,t), or g(x,y,t) is equivalent to solving an
inverse problem for some related eigenfunction ¥(z;t), or ¥(z;x,t),
or ¥(z;x,y,t). The inverse problem takes the form of a Riemann-Hilbert
(RH) problem for equations in 1 and 1+1, and the form of a nonlocal RH
problem or of a 3(DBAR) problem for equations in 2+1 (a DBAR problem
is generalization)of a RH problem). To define the relevant RH or DBAR
problems one needs to study the analyticity properties of ¥ with
respect to z. Furthermore those problems are uniquely defined in terms
of certain asymptotic data of the underlying linear system satisfied

by y: Monodromy data in 1, scattering data in 1+1 and some cases of

*This article consists of expanded material of six lectures presented
by one of us (A. S. Fokas) at this Winter School on "Solitons".
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2+1, and inverse data in some cases of 2+1. We use the Painlevé IV(PIV),
modified KAV (mKdV) and the Davey-Stewartson (DS) as illustrative exam-

ples of equations in 1, 1+1, and 2+1 respectively.

The above inverse problems can be naturally generalized to higher
than two spatial dimensions. For example, the generalization of the
inverse problem associated with the DS equation leads to an inverse
problem for a matrix valued function W(z;xo,x), Z € Cn, Xogﬂﬂ,

X E.Rn, n > 1. However, while the associated potential q(xo,x) depends
on n+1 variables, the inverse data T(ZR’ZI’mZ""’mn)’ zp € Rn, zIeiRn,
my eR, depends on 3n-1variables. This has important implications: (a)

The inverse data must be appropriately constrained. This "characteri-
zation" of the inverse data is conceptually analogous to the charac-
terization of the inverse scattering data in the multidimensional
Schrodinger equation [1]. (b) The existence of "redundant" scattering
parameters can be used to reduce the above problem to one in two spatial
dimensions. This is in contrast to the case of the multidimensional
Schrodinger equation where the inverse problem can be solved in closed
form. (c) Since the inverse problem for V¥ is reduced to one in two
spatial dimensions, it follows that, if one allows ¥ , g to depend
parametrically on t, q(xo,x,t) satisfies an evolution equation reducible
to two spatial dimensions. 1In particular, the N-wave interaction equa-
tion in n+1 spatial dimensions can always be reduced to two spatial
dimensions. Thus a genuine three-spatial-dimensional nonlinear evolution
equation, related to an inverse problem, remains to be found. (It should
be noted that several other "multidimensional" problems can be reduced

to one or two spatial dimensions, see M. J. Ablowitz's contribution

in these proceedings.)

We first define the standard RH and DBAR problems.

2. RH AND DBAR PROBLEMS

Let C be a simple, smooth closed contour dividing the complex z-plane
into two regions D" and D~ (the positive direction of C will be taken
as that for which D" is on the left).

A function ¢(z) defined in the entire plane, except for points
on C, will be called sectionally holomorphic if: (i) the function ¢(z)
. . . + -
is holomorphic in each of regions D and D except, perhaps, at z = o;
(ii) the function ¢ (z) is sectionally continuous with respect to C,

approaching the definite limiting values ¢+(§), ¢ (z) as z approaches
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Fig. 1

a point ¢ on C from D+, or D, respectively. The classical homogeneous
RH problem is defined as follows [2]. Given a contour C, and a function
G(gz) which is Holder on C and det G{(z) # 0 on C, find a sectionally
holomorphic function & (z), with finite degree at « , such that

' () = G(g)® (z), onC, (2.1)
where @t(c) are the boundary values of ¢(z) on C. If G(Z) is scalar,
(2.1) is solvable in closed form. If G(Z) is a matrix valued function,

then (2.1) is in general solvable in terms of a system of Fredholm
integral equations. Various generalizations of the above RH problem
are possible. For example: (i) The contour C may be replaced by a
union of intersecting contours. (ii) G(Z) may have simple discontinui-
ties at a finite number of points; in this case one allows ®(z) to
have integrable singularities in the neighbourhood of these points.
(iii) RH problems may be considered in other than H&lder spaces (e.g.
[3]): (iv) One may consider inhomogeneous RH problems o (z) = G(L)® (L)
+ F(z) on C.

The DBAR problem can be defined as follows: Given 9¢/3z, find ®.
If 3%/3z = 0 everywhere except on a curve, then the DBAR problem reduces
to a RH problem (since 3¢/3z = ot - ¢”, in a distribution sense). The
DBAR problem can be solved via the following extension of Cauchy's

formula [4]

1 d¥) 1 J ag ¥e) (2.2)

_ 1 =
¥(z) = 5 J 2 & N A o 7 771 T=z"

R

It is interesting that the first RH problem was formulated in connec-
tion with an inverse problem (see [12] for references). Actually RH
problems are intimately related to solutions of inverse problems in

1+1, 241, and 1 dimensions:
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3. INVERSE PROBLEMS IN 1+1

We recall that a necessary condition for a given nonlinear equation

for gq(x,t) to be solvable via IST is that this equation is the compati-
bility condition of a Lax pair of linear equations. Let us consider
the modified KdV equation

- 6q°q. = 0, (3.1)

q, + g %

XXX

as an illustrative example. Equation (3.1) is the compatibility condi-

tion of

Yx(z;x,t) = iz[J2, Y(z;x,t)] + Q¥(z;x,t);

[
N
ol
N
!
o —_—
—_ o
—
<
©
oo
N
Q o
o Q
—

(3.2a)
¥ (zix,t) = [UO,W(z;x,t)] + O0¥(z;x,t) (3.2b)
-4iz3 0 —2izq2 4q22+21q z+2q3—q
X XX
Ug = Y B A 2 .. 3 . 2 :
0 4iz 4gz —21qxz+2q ey 2iq-z
We first note that the above Lax pair is isospectral, i.e., %% = 0.

Also it turns out that equation (3.2a) is of primary importance; equa-
tion (3.2b) plays only an auxiliary role. To solve the initial value
problem for initial data decaying as |x|+» , one first formulates an
inverse problem for VY(z;x,t): Given appropriate scattering data

reconstruct Y.

By studying the analytic properties of vy with respect to z, where
y satisfies (3.2a) one establishes the existence of a ¥ which is
a sectionally meromorphic function of z, with a jump along the Re z
axis. This jump as well as the residues of the poles, are given in
terms of appropriate scattering data. Thus the inverse problem is
equivalent to a matrix, reqular, continuous RH problem defined along

the Re z axis and uniquely specified in terms of scattering data.

Since in the above discussion we have only used (3.2a), it is evident
that one may pose an inverse problem for any function g{(x). However,

this result is useful for solving the initial value problem for q(x,t)
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only if g evolves in such a way in t, that the scattering data is known
for all t. If y evolves in t according to (3.2b) (i.e., if g solves
(3.1)) then it turns out that the evolution of the scattering data with
respect to t is simple. Hence, the above RH problem is specified in
terms of initial scattering data; its solution yields V¥(z;x,t) and
then (3.2a) gives g(x,t).

We summarize the results of[5,13] concerning mKdV in the case of
solitonless potentials.

Proposition 3.1 (Bounded eigenfunctions). A solution of (3.2a) bounded
for all complex values of z = Zx + izI and tending to I as z »+wis
given by
v (z;x), zp >0
y(z;x) = (3.3)
Y (zix), zp <0

where Wi(z;x) satisfy the following integral equations:

. _ .
v z;x) = 1 +I dgelZ(x_‘r’)J niQ(g)Wi(z;E)
*oo iz(x-£)d s
- J dg e (s 4wyt (3.4)
X

where if F and Y are 2 x 2 matrices then

> 0 F 0 0
e'F = eYFe—Y, n,F % [ 12] , T_F = { } (3.5)

. F = Diag(F ).

117F22

Proposition 3.2 (Departure from Holomorphicity-Scattering Equation).

W+, Y~ are holomorphic functions of z for zp > 0, zy < 0 respectively.
The departure from holomorphicity for z = Zp is given by

¥ zix) - ¥ (zix) = ¥elPI(1-87(2)b(2)) (3.6)
where

o]

B(z) = I + J dge

—©

T vy, bz 2 1o+ [ oageTTERr (v

so,

vriz:x0et 289 (8 (2)b(z)) = ¥ (z;x). (3.7)

67



Proposition 3.3 (Inverse Problem-Reconstruction of Q)

Q(x) is obtained from

ox) = 13, = j az'¥(z';x)ei? ¥ (157 (21 )bz )], (3.8)

where Y(z;x) solves the following Riemann-Hilbert boundary value problem:

00 12" -
1 j dz'¥(z';x)e'? XJ(I—B

2mi z' - (z - 10)

1

Y(z;x) = 1 + (z')blz')) (3.9)

Using equation (3.2b) we obtain:

Proposition 3.4 (Evolution of Scattering Data). The evolution of the

scattering data from B(z;0), b(z;0) is given by
Uot Uot
B(z;t) = e B(z;0), b(z;t) = e b(z;0).

Since B (resp. b) is a strictly upper (resp. lower) triangular matrix

the evolution of the scattering data is given by

.3 .3
. _ _—8iz"t N . _ _8iz"t .
B12(z,t) = e B12(z,0), b21(z,t) = e b21(z,0). (3.10)

4. INVERSE PROBLEMS IN 2+1

Let us consider the Davey-Stewartson equation (a two dimensional ana-

logue of the nonlinear Schrodinger equation)

: 1,2 _ 2 2 2 _ 2 2, .
10, + zlo%0 +0 ) = —oA[Q]7Q + 90, o, - o0, = 207 (]QIT),

A =1 1 (4.1)

as an illustrative example. A Lax pair for (4.1) is given by

&
]

1 0 0 Q
iz(JY-¥J) + q¥ + oJ¥_, J = , q = _ (4.2a)
X Y 0 -1 o, 0

¥

ALY+ ALY+ ALY - 22(A3W-WA

N ¥y ¥y ) + 2izA Wy + izA.Y, (4.2b)

30 3 2

where A1, Az, A3, A30 are appropriate matrix functions of Q, Q (The bar

denotes complex conjugate).

The situation is conceptually similar to the case of 1+1: To solve

the initial value problem for g(x,y,t) one first formulates an inverse
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problem for V¥(z;x,y,t). Depending on the value of g there exist two
different cases (for brevity of presentation we assume non-existence

of poles, i.e., non-existence of lumps): (i) ¢ = 1. There exists a

¥ which is a sectionally holomorphic function of z and which has a
jump along the Re z axis. This jump is also given in terms of scattering
data but it depends on them in a non-local way. Thus the inverse pro-
blem is equivalent to a non-local, matrix continuous RH problem defined
along the Re z axis and uniquely specified in terms of scattering data.
(ii) ¢ = - i. There exists a ¥ which is bounded for all complex z,
but which is analytic nowhere in the complex z plane. However, its
departure from holomorphicity 3¥/3z can be expressed in terms of appro-
priate inverse data. Thus, now the inverse problem is equivalent to a

3 (DBAR) problem: Given 9¥/9z reconstruct V¥ .

Using (4.2b), again one shows that the inverse scattering and the
inverse data evolve simply in time. Hence, the above RH and 3 problems
are specified in terms of initial data; their solutions yield Y¥(z;x,y,t)
and then (4.2a) gives g(x,y,t).

We summarize the results of [6] concerning DSI (0 = 1, Proposition
4.1.-4.4) and DSII (o = -i, Propositions 4.5-4.8).
Proposition 4.1 (Bounded Eigenfunctions) A solution of (4.2a) with
0 = 1 bounded for all complex values of z = Zp * izI and tending to I
as z +» o« is given by
W+(2;x,y), z; > 0
Y(z;x,y) = (4.3)
Y (z;3x%,y), zp < 0

where Wi(z;x,y) satisfy the following integral equations:

X . g .
viizix,y) = 1 + %? J aE elZ(x_E)JJ dnjgm iml{y-n)T+(x-£)J]
(mo+m ) (QlE, MY (2;8,m))
1 iz(x—g)3 ® * im{ (y-m)I + (x-£)J]
T JX dg e J_mdnj_mdm e .

n—(q(g,n)wi(z;i,n)) (4.4)i
+

-(cf. (3.5) for notation).

+
Assuming that the linear integral equations (4.4) have no homoge-

neous solutions, it follows that:
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Proposition 4.2 (Departure from Holomorphicity). W+, ¥~ are holomorphic

functions of z for z; >0, zI< 0, respectively. Hence the function
Y(z;x,y) defined by (4.3) is a sectionally holomorphic function of z.
In particular, ég = 0 for all z, with Zy +# 0 and 3; = W+(z;x,y) -
dz dz
Y (z;x,y) for z = Zp- The departure from holomorphicity is given by:
vizsx,y) - ¥ (z;x,y) = J’ dz'¥ (z';x,y)e’? Jx+izly
— ) .
f(z,'z)e—lsz—lzy’ (4.5)
for z = 2 where the scattering data f(z',z) are given by:
£,02",2) = —J;jmf1ﬂszH2ﬁmJ),
1 (" * - -{z+z'")E+i(z-2")n
fip0zt2) = g5 agf anavy, e (4.6)
_ 1 m * =yt i(z+z')g+i(z=")n _
£y,02"2) = - 2= j_mdgj~wdnx oyt e , £y,=0. (4.7)

Proposition 4.3 (Inverse Problem-Reconstruction of the potential q)

q{x,y) is obtained from:

00 [e<]
qlx,y) = - %F[J' J dz' J dz¥ (z';x,yle
-

—0o

(' 3 : " _
iz fo(z',z)e izdx+i(z Z)YL

(4.8)

where ¥ (z;x,y) solves the following integral equation:

W'(z";x,y)elz fo(znlz,)e—lsz+ﬂz -z')y

- 1 ® n ® '
Y (z;x,y) + TE J dz J dz
—c0 -

z' - z + i0
= 1. (4.9)
Finally from (4.2b) we obtain the following:
Proposition 4.4 (Evolution of the Scattering Data). The evolution of

the scattering data from t = 0, £(z',z;0) is given by:

V2 2
£(z',z:t) = e 2 B30 £(z1,2;0)e% P30, (4.10)

where

f(z',2z;0) is given by (4.7) and Azg = diag(i,-i).
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Proposition 4.5 (Bounded Eigenfunctions). A solution of (4.2a) with

0 = -i bounded for all complex values of z = zp * izI and tending to I

as z + =« satisfies the following Fredholm linear integral equation

Y(z;x,y) = I+ (GZ .z 'q‘l’(z;.,.))(x,y) ’ (4.11)
R'™I
where

{(c Y(z;.,. )}, = 1—(jx a cijzldmjm an -["ag an[Tan)

zgezped TP T 3l "] E[ Joam
-0 © - X .Z — o
1371
{expl (m+i(1-—Jj)z)(x—€)+im(y—n)][q(E,n)‘Y(z;g,n)]}1j, (4.12)1j

and

| 1 X 0 =) o ) C2jZI o
{(c CIIN ——[j a [ fam [~ an - [ ae an| dn)x
Zr%1'4 23 m - 42 e o X - —

{eXp[—(m+i(1+Jj)z)(x—€)+im(y*n)][q(E,n)‘l’(z;E,n)]}zj, (4.12)2j

15 3 c2j = 1+Jj, j=1,2.

Proposition 4.6 (Departure from Holomorphicity). For every z ¢ C

3g(z;x,y) = W(E;x,y)Q(ZR,zI;x,y), (4.13)
9z

where the matrix £ is defined by: 91] = 922 =0
Qij = Tij(z)exp@ij(z;x,y), i+ 3 (4.14)

. i_ 00 (o] . _ . . )

Tiy(z) ¢ g [ def anfatEm)¥izigmdgg expl-0;(zEm), i3
%2(z;x,y) = 2i(sz + sz), %1(z;x,y) = 2i(—sz+sz).

Propostion 4.7 (Inverse Problem-Reconstruction of q). gq(x,y) is ob-

tained from
1 - -
alx,y) = [J, > jngz;x,y) Q(ZR,ZI;x,y)dzA dzl , (4.15)

where ¥(z;x,y) satisfies:

JIW(E;x,y) Q(zé,zi;x,y) dz'adz' _ I. (4.16)
C z'-z

Yz;x,y) - 2Li

Finally from equation (4.2b) we obtain:
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Proposition 4.8 (Evolution of the Inverse Data). The inverse data

at time t, Q(zR,zI;x,y,t), is given by
Qlz,,2.:X t) = exp(EZA t) QUz,,z_ ;% 0)ex (—22A t) (4.17)
R'Z17 Y 30 R7?T7 1Y p 30 .

where Q(ZR,zl;x,y,O) is given by (4.14) using the initial condition
g(x,y,0) and Ajg = diag(i,-1i).

5. INVERSE PROBLEMS IN 0+1

The Lax pair associated with the PIV equation

2
a%y .1 (9y)2 , 3 3 2 2 8
dt2 2y(dt) t 5yt o+ AtyT o+ 2(t° + a)y + v’ (5.1)
is given by
- - uy
1 0 t u 90 v > :
Y (z) = z + + —|Y(z)
2 2 2v 2 '
0 -1 G(V—@O—Om) -t E;(V—ZOO) —(QO—V)
(5.2a)
1 0 0 u
Yt(z) = z + Y(z). (5.2b)
2
0 -1 E(v—eo—em) 0
Indegd th = Ytz implies
dy _ _ 2 du _ _
It 4v + y° + 2ty + 4@0, 3t uly+2t),
(5.3)
40
v _ _ 2 2 0 _
& -~y vt (§7—' ylv + (85 + 0_)y,
where,
a=20, -1, B8 =-80C.

As in the cases of 1+1 and 2+1, solving the initial value problem
of PIV reduces to solving an inverse problem for Y: Reconstruct Y(z;t)
in terms of appropriate monodromy data. Again this inverse problem will
be solved in terms of a RH problem. Thus it is essential to study the
analytic properties of Y with respect to z. However, in contrast to
the analogous problem in IST for 1+1 and 2+1, this task here is straight-

forward: Equation (5.2a) is a linear ODE in z, therefore its analytic
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structure is completely determined by its singular points. 1In this
particular case z = 0 is a regular singular point and z = «» is an irregqu-
lar singular point of rank 2. Complete information about z = » is

provided by the monodromy matrix Mw and by the Stokes multipliers

a, b, ¢, 4. Solutions of (5.2a), YO and Y1, normalized at zero and
infinity respectively are related via a connection matrix E, with
entries Y 30, Yor 50. Taking into consideration the above singula-
rities, there exists a sectionally holomorphic function Y, with jumps
across the four rays, arg z = - %, %, %l, %1 and with singularities

at z = 0, z = ». The jumps are specified by a, b, ¢, d and the nature

of singularities by MO’ M. This leads to a matrix, singular, dis-
continuous RH problem, defined on the above rays and specified in terms

of the monodromy data
Monodromy Data (MD) = {a,b,c,d, aO'BO’YO’GO}‘

A consistency condition of the above RH problem yields

where Gj are the Stokes matrices uniquely defined in terms of the Stokes
multipliers. Using (5.5) and certain similarity arguments it can be
shown that all MD can be expressed in terms of two of them. Furthermore,
equation (5.2b) implies that the MD are time invariant. Hence the

above basic RH is specified in terms of two initial parameters (these
two initial parameters are obtained from the two initial data of PIV).

The solution of this RH problem yields Y(z;t) and hence (5.2a) yields

yit).

The above basic RH problem can be simplified considerably: (i)
Assume 0 < eo < 1, 0 < @co < 1, OO $ %; then the above RH problem is
regular. It is interesting that the basic RH problem can be used to
obtain Schlessinger transformations which shift 9q and o, by a half-
integer. By using these transformations the general case is reduced
to the regular case. (ii) The basic RH problem can be mapped to a
sequence of two RH problems, one on the line arg z = % and the other
on the line arg z = - %. The first one is continuous (both at x = 0
and X = »); furthermore, it can be solved in closed form. The second
one is discontinuous both at x = 0 and x = ». By using standard auxi-
liary functions one maps the discontinuous problem to a continuous
one. Then the theory of continuous RH problems on simple contours

can be used to establish uniqueness and existence of solutions. Elemen-
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tary solutions of PIV, expressible in terms of Weber-Hermite functions
are natually obtained within the above formalism. We summarize the
results of [7] concerning PIV.

Proposition 5.1 (Direct Problem). Let YO be the solution of (5.2a)

analytic in the neighbourhood of z = 0 and normalized by the require-
ments that det Y, = 1 and that ¥, also solves (5.2b). Let Y., j =
1,...,4 be solutions of (5.2a) analytic in the neighbourhood of infinity

such that det Yj = 1 and Yj~ Ym as |x| + o in S., where ~ denotes

asymptotics, Y is the formal solution matrix of (5.2a) in the neigh-
(o]

bourhood of infinity, and the sectors Sj are given by

3
S]: - % < arg z<-%, 82: % < arg z < EE’
3 5 5 7
83: Zﬂ < arg z < Zl’ S4: Zﬂ < arg z < Zl'
The rays C1,...,C4 are defined by arg z = %, %, %ﬂ, %l respectively.
C3 o
Ca C, Fig. 5.1
Then the analytic functions YO' Y1,...,Y4 satisfy:
- D0 ) n
(l) YO(Z) ~ YO(Z)Z as z -» 0; DO = Dlag(eor_eo)r 60 * i‘r ne ¥,
where Yo(z) is holomorphic at z = 0. (If 60 = n/2, Yo(z) has
a logarithmic singularity.)
. o(z) P
(ii) Yj(z) ~ Ym(z)e (1/2z) © as ]z| + o, Z 1n Sj, Dco = Diag(em,—em),
Z2 -
Q(z) % Diag(g,-q), qlz,t) % 5=+ zt, Yo(2z) is holomorphic at
Z = o
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exp(2in60) 2inJexp(2in@0)
211T _ -
(iii) Yo(ze ) = YO(Z)MO, My J ,(5.4)
0 exp(*ZiﬂOO)
= i n = i =1
J =0 if 90# 5 J 1 if @0 5
(iv) Y2(z) = Y1(z)G1, Y3(z) = YZ(Z)GZ' Y4(z) = Y3(z)G3,
Y. (2) = ¥,(ze? )G, M (5.5)
1 4 4 "o’ .
where
1 0 1 1 0
a 1 0 1 C 1
1 d
G, * [ ] , M_ % exp(2inD ). (5.6)
0 1
g Bo
({v) Y1(z) = YO(Z)EO, E, ¥ , det E, = 1. (5.7)
Yo 8o
Furthermore, the parameters
Mp % f{a,b,c,d, ag, By, vy 84} (5.8)

satisfy the following consistency condition.

(vi) ( v g, . (5.9)

=
(9]
=
]
=
o
=
o
23}
o

Proposition 5.2 (Properties of Monodromy Data)

(i) The monodromy data, MD, given by (5.8) and defined in Proposition

5.1, are time-invariant.

(ii) All of the MD can be expressed in terms of two of them.

(iii) (1+bc)exp(2inqg + [ad + (1+cd)(1+ab)]exp(—2in6m) = 2 cos2nQé
(5.10)
In what follows we formulate a RH problem for the case that
0 < @0
The general case follows by considering this result and Schlessinger

<1, 0 < C <1. This assumption leads to a regular RH problem.

transformations.

75



Theorem 5.1 (Inverse Problem). Consider the following matrix, regular

homogeneous RH problem along the four rays C1,...,C4 (Figure 5.1):
Determine the sectionally holomorphic function ¥(z), ¥(z) = Wj(Z) if
z is 1in Sj’ j=1,...,4, from the following conditions:

1. Wj satisfy the jump conditions

Yo(z) =¥, (g)g (g), ¥5(z) = ¥,(g)g,(z), ¥,(z) = ¥3(glgslg),

v.(g) =¥,z e2”‘)g4(;) (5.11)
along the rays C2, C3, C4, C1 respectively, where
g. 2 e%.e™ 9, §=1,2,3, g, = % e W . (5.12)
J 4 4 ©
1, e 1
2. ¥(z) ~ (E) (I + O(E)) as |z| » =. (5.13)
3. ¥(z) has at most an integrable singularity at the origin with a
monodromy matrix given by
v (ze?™) =y (2)E'M z * 0 (5.14)
1 1 0 070’ . .

In the above, Gj’ Q, Mm, Dw, M0 are defined in Proposition 5.1.

4, The monodromy data MD, given by (5.8), satisfy the properties given
in Proposition 5.2(ii). Then:
(i) The above RH problem is discontinuous both at the origin and at
infinity. Actually

1

4 1 -1 4
Tg.~E, M E z » 0; I g.~M, 2z~ =, (5.15)

173 00 70

Fig. 5.2
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(ii) To obtain the solution of the above RH problem consider the
following RH problem along the contour C1 + C3: Determine the
sectionally holomorphic function K(z), K{(z) = K1(z) if z in
S1 + S
conditions:

o K(z) = Kz(z) if z in S, + S4, from the following

3

1. Kj satisfy the jump condition

I 1 ae?d .
h Mmh on C1,

0 -a/c 1 0
K, =K, , h(z) = ,
1 -ped ap(z) 1
h { ] h_1 on C3
0 -a/c
-2q(tg)
. 1 dz e
Q(Z) T J -Z—t—;————. (5.16)
C2+C4

(If h], h2 denote h in 82 + S3 and S, + S, respectively then h=h

4 1 1
Onc1,h=h20nC

3-)

D
2. K(z2) ~ (1) "(r+ 0l as 2] = . (5.17)

3. K{(z) has at most an integrable singularity at the origin with a
monodromy matrix given by
K(zeZl“)

-1 -1
= K(z)h1(O)E0 M th1 (0), =z - 0. (5.18)

0

The above RH is discontinuous both at the origin and at infinity.

Actually if Ix 19k denote the jump matrices along C1, C3 respectively
1 3
then

-1 =1 =1 . =1 -1 ,
gK3gK1~ h1(0)E0 M0 th1 (0), z » O; gK3gK1~ M, z o=, (5.19)

However, the above RH problem can be mapped to a continuous one using
the auxiliary functions

£40) +Q
0 [P ™
2 1
{zil] ! thIJ ! (5.20)

to remove the above singularities.

77



¥ is related to K via:
Yy = Kh if z in S1+Sz; Y = KhM, M % Diag(i,-a/c), (5.21)

if z in S3+S4

(i.e., W] = K1h1, WZ = K1h2, W3 = K2h1M, W4 = K2h1M).
Proposition 5.3 (The Solution of PIV). Let V¥(z) be the solution
matrix of the inverse problem formulated in Theorem 5.1. Then y(t),

= —(1 du = _21i -2q(z)
y(t) = -(5 g¢ *+ 2t), u 3 T;Tfm ¥y (2)e ' (5.22)

solves PIV.

6. INVERSE PROBLEMS IN n SPATIAL DIMENSIONS, n> 2

Consider the inverse problem associated with the following system of
N first-order equations in n+1 dimensions:

n
¥ +0 E JQW . = q¥, o = oy + icI, op * 0, n>1, (6.1)

where q(xo,x) is an N x N matrix-valued off-diagonal function in Rn+1,

decaying suitably fast for large Xgr Xi and the Jl are constant real
diagonal N x N matrices (we denote the diagonal entries of J, by JL,

...,JE). Alternatively, using the transformation

¥(z,x45,x) = u(z,xo,x)exp[i z (%)= OXOJQ)]’ z eC?, (6.2)

™Mo

=1

equation (2.13) becomes

[ =]

u, *o (Jz“x + izg[J,,u]) = g (6.3)

0 =1

We assume that n < N, otherwise the entries of the J, matrices will be
linearly related and one can always reduce n by a change of coordinates.
An inverse problem in this case is defined as follows: Given appropriate
inverse data T, where T is an N x N matrix-valued off-diagonal function
of suitable inverse parameters, reconstruct the potential q. Again

there exists a u which is bounded for all complex z, z eCn. 3u/ 9z
depends on appropriai;q}nvers;zgata T(zR,zI,mz,...,mn), ZREjmn’ zIER?

m ¢ R. T satisfies ——— = ———0Using this equation and introducing

. — =
Born variables, Bziazj azjazi
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2, m &3 WorWo X 5 W eR , w eR , vy e , (6.4)

one obtains a characterization equation for the inverse data:

[ 1 lj !
g 1 dXPRdXPINIP[T](WO’w'XP )
T J(w Iw'X) - J‘ ’(6'5)
0 m 2
R Y. - X!
P

TlJ(WO’W)

where N is a quadratic function of T. That is, Tij(z,m) is appropriate
inverse data iff the right-hand side of (6.5) is independent of X.
Hence, equation (6.5) serves as both characterizing Tij and defining
%ij. This equation was first introduced by Nachman and Ablowitz [8].
Using equation (6.5) and taking the limit of W as |Xl + ® we show that
the general problem of reconstructing an N x N potential g in n+1 spatial
dimensions, is reduced to one of reconstructing a 2 x 2 potential with
entries qij, qji in two dimegsiogs. The inverse data needed for this
reconstruction is precisely Tij,Tji. This reduction makes crucial use

of the existence of redundant scattering parameters. In this sense it

is the analog of the Born approximation. However, the crucial difference
is that while in the inverse scattering of the multidimensional Schro-

dinger equation one can reconstruct the potential in closed form, here
one can only reduce the general problem to one for 2x 2 matrices in
two dimensions. This reduced problem was solved in [6]. 1In the follow-

ing, we summarize the results of [9].

Proposition 6.1 (Bounded Eigenfunctions). The function u (xo,x,z)
defined below, solves equation (6.3), is bounded for all complex values

of z and tends to I for large Z:

expl1813 (x =€ o x, €, ,2) ]
)

sgn (o at)
i _ i 17 J
i (xo,x,z) 8 t T m? dEOdE1

.
(x1—E1) - 0J1(x0—§0
(q) P HE B ixy= (=8 )35/T7 - x = (%= ,) 3 /37,2) ,z eC7, (6.6)

where 8'7 is defined by

ij n JiR~Jj
B (xo,x1,z) % 21 o

1

5 x1(oz )I
{ Xo|0| 2o~ MR K 12,= 2, +iz
I J1 R I
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Equivalently uij satisfies

i
.. - sgn(o.J.) .
Ul](xo,x,z) =3 + —————E—l——-I N+ dEOdE[c _1j _1dm2ela (x E;'m)]
27i R n Rr"

expli8™) (xg-Eg. %=, 2) Ham (g, 6,20
x]—€1—0J1(x0—€0)

(6.7)

where

dm® = dm ...dmn, al(x,m) =

[ R=]
b

Z—X] J—), (o] = (Zn)n. (6.8)

Proposition 6.2 (Departure from Holomorphicity). Let ulj be defined
by eq. (6.5). Then

3 - i1 43 al]
—%~(x0,x z) Iy (Jp Jp)exP[lB (xgr%x,,2)]
32z i,]
P
2 i ij ij
x C. 4 J n—q dm“explia ™ (x,m)JT""(z,m) ulxy,x, A (z'm))Eij' (6.9)

where B ](xo,x1,z), o (x m) are defined by (6.6), (6.8) respectively; Eij
is an N x N matrlx with zeros in all its entries except the ij h, which

equals 1; and A 1J ana T 13 are given by

. . n .
Aﬁj(z,m) * (z i3 z my —TeZy ), A;J(z,m) = (zr tm_,z ); r=2,..,n.
= I R 1

vyt s G/amilaie |,

' (z,m) # [ ner dE0dE expl-i8'3 (£, £, 2)-10 (g, m 1taw (g, €, 2).
R
(6.10)
Proposition 6.3 (Characterization of T)

(a) Assume that au/BEp is given by Eg. (6.9) and the (z,m) is given
by (6.10). Then

LijTl](z,m) = - c J dMZTlE(Alj(z,M),m—M)TRJ(z,m)
rp n-1 n-1

M
-

L _+3 i_ .8y _ L_4] i_% = yid
x[(Jp Jp)(Jr Jr) (Jr Jr)(Jp Jp)] s Nrp[T](z,m), (6.11)
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where

S A E S D IOV E U, & D (6.12)
rp P P 35 r r E
r p

Q

(b) Assume that au/BEp is given by Eg. (6.9) and that azu/airaép

is symmetric with respect to r, p. Then 3 (z,m) solves (6.11).

Following A. Nachman and M. J. Ablowitz we introduce appropriate
Born variables. Then equation (6.11) can be integrated. Furthermore,
we can compute the limit of Tij in the new coordinates as |xp| +
(see below):

.. . . 1
Let wé], w;], w L = 2,...,0 ¢ R1 and XQQC , & = 2,...,n, be
defined by

3 i i
. n J_-J . n J -J n J
wéj z 3 r r |o|22r , w#j = - 3 ———TE—(czr)I— I om —%,
r=1 91 I r=1 o.,J r=2 J
11 1
i %
w2 = mﬂ, Xy, = 3 T , L= 2, . n (6.13)
J1 - J1

Assume that

(Jf—J?)(J;—J;) + (J?~J?)(J;—Jg), for all distinct i,j,r and p#1.
(6.14)

For convenience of writing we usually suppress the superscripts, i,]
in wo,w1, x. Let z denote Zire-er2 m denote m2,...,mn, X denote

Xp7r+-+r Xpt w denote Wireoo W Then we have the following.

(a) The inverse of the transformation,z,m - Wor Yoo X is given by

L n .
- J_ji = = = - J_gt
z, _XQ(J1 I, me =W, & 2,...,n, 1z, rEZ(Jr Jr)Xr+
(5/]0| %)W, + ; w gt
o |O| 0 o rr
r=1
3 ] . (6.15)
I o9
(b) In the new coordinates, Eq. (6.11) with r = 1 becomes
ij L
8T “(wy.w,x) = N 2T wg wox) s B = 2,.. . (6.16)
BXP
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(c)

(d)

(e)

(f)

82

In the new coordinates,

i4
T ](wo,w,x)

LR”*‘ ag ,dg exp[—i(w0g0+wg)](qu)ij(EO,E,wo,w,x),

(6.17)

(6.18)

j 1 )
(xO,x ,wO,w),

where
n
wg = z wrir
r=1
Let
23 . 23 i i3 ij NS . [
wyT oF o (xo,x,wo woo, X 7), uy lim uyo.
|Xp|+m
A% .
Then the uy satisfy
i
ﬁij(x ) sgmoIJ1) . J §
i o'=rro’ 271 n-1 2n
R
||2 : —o! — !
dxodx dw exp[l{(x0 xo)wo+w0+(x x'")w}] iy, i
- q o xt,x" )
X -x'- oI (x.- x!) 0 .
1 1 1 0 0
.. sgn(o Jj)
ﬁEJ(XO’X'WO’W) = 1+ —____l_l__cn-1 j 2n *
2mi R
||2ji|l"ijl'
dxodx dw™q (xo,x )ui (xo,x ,wo,w) e .
3 . ui = 0, for all &, 2#i,%+%j.
X =X) - 0J1(x0—x0)

lim Tij(wo,w,x)
|Xp|-)-co

at e, en; ey, g wy

LR“+1 dg ,ag exp[-i(w0€0+wi)] x

W) = T”(wo,m.

The basic characterization equation is given by

nid - mi]
T (wO,W) =T (wo,w,

where Xp denotes Xy

d'd'NijT(,,p')
Xp IXp NiplT1(wo wox

x) '%sz

e Xp_1l Xpr Xp+-|r--

’

(6.19)

(6.20)

(6.21)



It follows from the above that as IX |+=, the ptd's decouple.

Furthermore, the ﬁij, j] satisfy a system of two equations depending
on qu, qjl. It turns out that: (a) By introducing appropriate spatial
variables g, the ﬁij, Jjsatlsfy equations in two spatial dlmen51ons

1] JJ ij

(b) The inverse data needed to reconstruct y; (and hence q -,

q]l) can be obtained from T ]

Proposition 6.4 (Reconstruction of q). Let
gl - 5341 i3 _ 5341
. J2Jr JrJ2 J1Jr J1Jr _
a, * T3 3.1 Br = i3 31 r=1,...,n, (6.22)
l -
J1J2 - J1J2 J1J2 J1J2

where for convenience of writing we have suppressed the dependence of

on i,j. Let £y eR, E e r"

(6.23)

kol
o
Il
aa
o
<
<
-
It
sl
N
~
~
N
I
il
[
~

X, = Eg *tagEy * By £y &= 3,....m.

Then we have the following:

(a) The system (6.19) becomes

i
. J7) .
~ij 5, _ s9nlorYy VAF T TE . —F T— ot -ty
i1, 6,2 = - Lmz dEJAEL[E,-EL- 0TT(Ey - £4)]
Jl
3 i 1 v 5 13~37 ] 1 ] 2
X exP[lélJ(go_golg‘l_g]'Z)]quugj(€0'£1lg2 - (€1_€1 ilg3r---r€n72)
J
1
. sgn(o : -
i3 0 =1 21 j , AEQAET[E, 8! - 03 (g -1 ]!
J
i3 g e e © (p—g)—2 2) (6.24)
x g Ui 50151152 5] £1 ?l €3r---:€nrz r .
1
where
n J% - J?
2 = z (Z ar + T 1 err)l
r=1 J? -~ J1
i J
J,- J (oz)
1 1
@lj(xo,x1,z) 3 5 [xql0] X, I (6.25)
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(b) 7 in the new coordinates becomes

Aij 5 W = ] [} -1 ij ] [ -1
T2 M) = f g 48 expl iBtey,e,2) +
7 n 13,33
+ mz(gé - &) _T) + E mrgr]q Hi (go,g ' 2), (6.26)
J1 r=3
where
n
m, * m, + r£3 mrBr’ ml =m, 2 = 3,...,n. (6.27)

(c¢) The inverse data associated with (6.24) and the analogous problem
for ﬁ%l, ﬁ;l are given by T'71, TI'. Let
i3 35 J
T (z,8,-E =5, E3s-..08 ) F C__ J _, dh explif, (£,-E, —)
2 "1 i 3 n n-1 RrD 1 2'22 71 I

1 1

=33
N -

n T A
+i L @E T2, (6.28)
r=3
Then
Ji
19 A 2 . 1 [ Al ' !
Tl](z,g2_€1 —1_’53""'En) = J' 2 dEOdE] exp[~1’3\13(£0,€1,2)]
J1 R
Ji
(s aa 5 .
x(ql]ug])(ié'gi'gz - (g1—£%) EY' €3,...,€n,2). (6.29)
1

Equations (6.1)-(6.3) with ¢ -1 lead to a system which appears

to be physically more interesting: (a) Since the system is hyperbolic one
may consider the physically important question of inverse scattering (IS);
i.e., given a scattering amplitude function S(X,k) find the potential
q(xo,x). (b) A special case of the above system, namely if the Jis are

constrained by

g* - g3 gt - g3
E P_ - Af B p,r=1,...,0, 1,3, =1,...,N, (6.30)
g¥ - g gt - 33
r r r r

is associated with the N-wave interaction in n+1 spatial and one temporal
dimensions [10]. The above system can be considered as a limiting case
of (6.1)-(6.3) [8]. Alternatively, it can be considered on its own right
[11]; the problem of reconstruction can be reduced to one for a 2 x 2

matrix problem in two spatial dimensions.
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Gauge Unification of Integrable Nonlinear Systems
A. Kundu

Theoretical Nuclear Physics Division, Saha Institute of Nuclear Physics,
92 A.P.C. Road, Calcutta 700009, India

Gauge equivalence of generalized NLS type equations is established with
its possible application to find out soliton solutions and with the
generation of new integrable systems. Through certain gauge choices
some realistic models are exactly solved. Explicit auto BT for different
classes of equations are also obtained by gauge transformation.

1. INTRODUCTION

Some twenty years back discovery of nonlinear integrable field models
created immense excitements. In fact when in 1967 Kruskal et al. [1]
showed the Korteweg-de Vries (KdV) equation to be completely integrable
with soliton solutions having beautiful properties, it was not considered
by all to have any universal appeal. Subsequently, however, mainly

with the works of Zakharov and Shabat [2] and AKNS [3] the existence

of a whole class of such systems was revealed. Recent years have now
witnessed a rapid growth of such members in the family of integrable
systems. 1In the present day, however, the situation is somewhat reversed.
There is already a large collection of members in the integrable circle,
seemingly all with their own originality and independence, demanding
individual care and analysis. Besides these bonafide members there

is also a vast number of candidates from the real world with their
nonlinearity, awaiting their recognition at least 'near' to some integ-
rable members. 1In this complicated affair of today, there is then a
natural urgency to work out some sort of unification scheme to group
together integrable members of the same class by finding out their inter-
relationship and pinpointing some genuine representatives, from which
others originate. Thus individual treatment of each one of them, as

is the standard practice of today, would become unnecessary and full
information about only a few basic equations would be sufficient to

solve the rest, generated from them. The aim of our article is to present
such a unification scheme through gauge equivalence , to trace out
genuinely independent equations, find out gauge relations between

different systems and recognize real world candidates for their member-
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ship of the integrable family. Though our ambitious programme is not
yet completed and we confine here only to nonlinear Schrddinger (NLS)
type of equations, we are able to achieve a breakthrough in this line
recently [4-8]. Thisscheme also enabled us to use the same machinary
to generate a number of new integrable equations, some of them coinci-
ding with the known nonlinear realistic systems or coming near to them,
thus solving exactly few long standing hydrodynamic problems. Along
with the above idea of gauge transformation (GT) between different
systems we also use it for another aspect, i.e., for finding Backlund

transformation (BT) between different solutions of the same equation.

Interest in gauge equivalence between different nonlinear dynamical
systems and the corresponding models was boosted up after the remark-
able works of Lakshmanan [9], Pohlmeyer [10] and Zakharov and Takhtajan
[11]. On the one hand, sine-Gordon (SG) and nonlinear ¢ model was
linked [10] and extended [12] and on the other hand Landau-Lifshitz
equation (LLE) was gauge related to nonlinear Schroédinger equation (NLSE)
and generalized [13-14]. However, besides the nonlinear systems men-
tioned above, there are various other NLS like equations in the integ-
rable family, e.g., NLSE of repulsive type [15], attra:tive-repulsive
NLSE [16] and also systems like derivative NLSE [17], mixed NLSE [18],
Chen-Lee-Liu equation [19], modified derivative NLS [20], Gerdjikov-
Ivanov equations [21], etc. It is natural to ask whether they are inter-
related and whether there exist any Landau-Lifshitz type equation,
gauge equivalent to them. Besides, these integrable members, there
are also some well-known hydrodynamic equations with high nonlinearity,
such as Johnson equation [22], Beney's first [23] and second [24] kind
of long-short wave interaction equations. Whether integrability of
these real models, which mostly received approximate treatment, may be
recognized? Our aim is to answer to the above questions (Fig. 1) by
generalizing the gauge equivalence scheme and proposing a LLE with non-
compact Grassmannian manifold SU(p,q)/S(v(r,s) x v(u,v)). Through
H-gauge transformation we are also able to connect realistic systems

with integrable models and thus solve them exactly.

The organization of the paper is as follows. In Sec. 2 the general
scheme of gauge equivalence (GE) is outlined and demonstrated for NLS
and LLE. In Sec. 3, GE is applied to noncompact manifolds recovering
old and yielding new results. In Sec. 4 we demonstrate the applicabi-
lity of GE for extracting soliton solutions and other informations.
Section 5 finds generalized LLE equivalent to derivative and mixed NLSE's.
In Sec. 6 we generate through H-gauge transformation a hierarchy of

higher-order equations, connecting a number of integrable systems. In

87



LEE SeSU(p,§ ALLE Fig.'l Are thgre
MDLL any interrelation
SECPN XLLE between these mem-
DLL bers? Are there some
HXNS o genuinely fundamen-
ccL MNLS tal members?
NLS MDNS
+
81 LEE
- +
+ 2/ -
XNS ses® (ynL|\ ONS
S+ S
NL
u(p,q) ~
LEE NLS SNLS
3 -
SU(,1( NLS
u(l)

INTEGRABLE FAMILY /@\

REAL - WORLD CANDIDATES

Sec. 7 we connect realistic equatiomswith integrable systems and solve
them exactly. Section 8 demonstrates the applicability of GE for finding
BT even where earlier attempt [25] failed. Section 9 is the concluding

section.

2. GAUGE EQUIVALENCE OF NONLINEAR
EVOLUTIONARY EQUATIONS

Let the linear problem or Lax pair associated with the given integrable

equation £g = 0 be expressed as
o = U , ® = Vo, (2.1)

where the Jost function ¢ and U, V are complex matrix functionsof the
field q(x,t), qx,the independent variables x and t and the spectral
parameter A . The compatibility of system (2.1), i.e., @ = ¢

. Xt tx
Upe - Vo [U,V] = 0 yields the original nonlinear system Lg = 0 by appro-

priate construction of U and V. For real )X, & € G, G being a compact

or noncompact Lie group and under the local gauge transformation
g(x,t;ko) = o(x,t;A) ]| € G (2.2)
the Jost function changes as

o0 (x,t;x,xo) = g_T(X,t; AO) o (x,t;)n) (2.3)
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and the corresponding new linear system is

o, = U's', ol = V'9 (2.4)
with
. - Y -1 -
v =9 U9 -9 g, =9 (0-U)9, 9,9 =10U,=1
A=)
o
\ -1 -1 -1 -1
V' =g Vg - g 9. = 9 (v - Vo)g, 9.9 =V, = V] (2.5)
A=)
e}

The compatibility of (2.4) gives now the GE equation

t_x71 1 ] - -1 _ _ _ —
ug-ve o+ (U, v'] = g {(U -V _+[U,V]) (U =V, U,V 1)}g = 0

(2.6)

relative to a new field S. There exists also another type of spectral
parameter dependent GT: &(x,A) = Gl(g,q',\) ®(x,\), which generates
an auto Backlund transformation (BT) mapping a solution g to a different

solution g' of the same system.

Let us now look into the well-established [11] GE between NLSE and
LLE to make the picture clear. Scalar attractive NLSE

gy, + g, 2|¢|2¢ = 0 (2.7)

is given by the Lax pair

_ _ 2
U= Ay + XA, V. = B+ ABy + A B2 ' (2.8)
o BT _ _ _ 2
Yherf A, —_103, Ay = ?0 Yo, B, = 2A0, B, = 21—\1 and B = 1(|¢|03+
wx o} +¢xo ), where g~ = o1ii02 and o, i=1,2,3 are Pauli matrices.

If § = g-1¢ with g =g+x=x , where ¢, is the Jost functions with
o +

o, —— exp(io3x) and scattering matrix T(A) = ®;1®_, then defining
T X too
S+ = g_|o3g we get the GT Lax operators to be
[ -1 _ _ : _
Ut =g [(aj + Ap,) (Aj + 2 A lg = i) A)8
and
v — -1 - 2 2 = 2_2 -
V=g IO )By + (A=A 0)Bylg = 2(07-A )8 + (A-A )sS_, (2.9)
where we have used
SS. = -5.8 =g | - g% “To.9 =g 'g.~g" 0.0 0.g=9" 'B,g.(2.10)
x X g9 gX g9 3ng 3g =g gX g 3 0 3g_g 19- .
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(2.9) yields the GE LLE: S, = --[S,S.. ] - 8\ S_. Note that for the
t 21 XX o°x

choice g =¢_(x,xo) one similarly gets (2.10) S_ = g:1o3g_ which is
-1 . -1

related to 5 as 5_ = TO S+To' But if we try to set @i =9, ¢i’ ¢;

would satisfy different equations like @;X - U9, thus violating the

Jost function condition. On the other hand with the choice ¢, = g;1¢+

we immediately get the relation between the scattering matrices:

o' = ¢;1g+g;1¢_ = T(), (2.11)

(X)) = o',
which helps to bypass the individual IST investigation of a system, if
one knows the corresponding information of its gauge equivalent counter-
parts. The integrability property is also obviously preserved. Another
way of looking at GT for 2x2 matrices is through the trihedral Ea'
as used by Pohlmeyer, Eichenherr and others, where one introduces E_=

+

b = Yap + lfabcEc' Ea =

is an antisymmetric tensor

eo = 9_1oag, a =1,2,3 with the relation E_E

gBan3, where Jap 15 2 symmetric and fabc

and with the equfﬁlon Eax = Aé Eb' Eat = BabEb' Hence in our case
S = E3 =8 =g 039, Ei =g 0,9 with the equation
S, = 2(yE_ + YE), E = -2iAE_ - ¢S, E_ = 2iAE - S (2.12a)
and
S, = 2(-iy, + 20PIE, +2(iy,  + 20Y)E ,
E,, = 2i(uP - 222)E, - (iy, + 2au)S (2.12b)
+t ll¢| A + 1¢X y)s. .

. : 2
The 0(3)-invariants are tr(S)), tr(St,SX) and tr(Si). Eliminating

E, the final equation for S is again given by LEE (2.10").

3. GENERALIZED LLE WITH NONCOMPACT GRASSMANNIAN
MANIFOLD AND GAUGE EQUIVALENT NLSE

We propose a generalized Landau-Lifshitz equation (LLE) with non-compact

manifold:

St = ;—i—[S,SXX], SEM = G/H,

G = su(p,g), H = S(U(u,v)eUlr,s)), (3.1)
where utv = m, s+r = n, utr = p, vts = q, ptg = m+tn = N and find its

gauge equivalent system using the above scheme. The corresponding

linear system is
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U = ixS, V = 2i8°2%s + Jz-x[s,sx], § = (m+n)/2mn (3.2)

2

with S satisfying 8 = aI + bS, § = rS+r
r1 diag(Iu,—Iv) and F2 = diag(Ir,—Is), a, b are constants and Ii
is a ixi matrix. G/H being a symmetric space, it is always possible

S, where T = diag(F1,F2):

1]

to express S = ng-], g € Gand f = diag(Im/m, —In/n), which gives

. -1 -1 1 -1
on using S = g[z,L ] , L = , =lS,S = 2g9zlz,L,1] the trans-
98,=9 ulg L9 9y 51 %! gzl 119

formed operators

v = g lug - g'1gx = ixz - A,
v = g lvg - 9_19t = 2i6%)%z + azlz,B] - B (3.3)
with L1 = A, LO = B. Taking A and B in the explicit form
Ay b by byt eBAy ALY
A = , B = 1§
-y A2 ¢x+¢A1—A2¢ b2
L= + = _ i - (0T 1
with —_F1¢ Ty, Ai = 2Ai, tr(A1+A2) 0, Ai = Hx and b1 = (yy Lﬂm)+Ht,
b, = -(yy=plm/n)I ) + H . The compatibility of (3.3) yields the gauge
equivalent matrix NLSE
Ppy by, F 2000 - up) + 4isa Y = 0. (3.4)

It is worth mentioning that in deriving (3.4) we have set simply A1=
ixOIm/m, A, = —iAOIn/n. In general, contrary to the usual belief,

LLE is GE not only to NLSE but also to all its H-gauge equivalent part-
ners (see Fig. 2), which may also be obtained by different choices of
function Hi. We, therefore, conclude that LLE (3.1) with noncompact
manifold is gauge equivalent to matrix NLSE (3.4) with internal symmetry
group U(u,v) @ U(r,s) along with all its H-GT systems. Note that for
trivial boundary condition on fields vy, A is arbitrary real and may

be trivial [11], but for a nontrivial boundary condition, which is impor-
tant in noncompact cases Xo is nontrivial, since it should always be

from the real spectrum [6]. The following particular cases recover

old results, yield new relations and answer some of the questions raised

in Sec. 1.
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Fig. 2 CGauge equivalence between generalized LLE with noncompact Grass-
mannian manifold and NLSE along with its H-gauge equivalent systems and
their different reductions. (%) represents 'attractive' or 'repulsive'
while (+-) represents 'attractive-repulsive' type cases

3.1 Examples

Let u=m, v =0, ¥r = p-m > 0, that is,

S € SU(p,q)/S{U(m)xU(p-m,q)) (3.5)

We further suppose that (i) p =N, g = 0, ry =T, - 1, hence g - st

recovering equivalence of LLE with compact manifold S € SU(N)/S(U(m)e
U(n)) [12] and consequently for m = 1 with S ¢ cpV [13] and for N = 1
with standard S € S2

[11]. For extracting the relevance of noncompact-
+

’

that is LLE with SU(p,q)/S(U(r) @ U(q)) is GE to matrix NLS of repulsive
type. p = 1 connects LLE with SU(1,N-1)/U(N-1) and vector NLS (VNLS)
of repulsive type

ness we suppose that (ii) p = m, g = n giving r, =1, r, = -I, @=—¢

iy, + Voo 202 {077 - wy = 0. (3.6)

N=2 gives a SU(1,1)/U(1) version of LLE and related repulsive scalar
NLS {15]. (iii) m = 1 reduces (3.5) to LLE with noncompact manifold
SU(p,q)/U(p-1,q) and GE attractive-repulsive VNLS [16]

. P=T 42 9 po
l‘pt * lpXx + 2(a£1|w = - b£1|¢ l - wy = 0, (3.7)
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which in limiting cases leads again to VNLS of attractive or repulsive

type. The above equivalence is schematically depicted in Fig. 2.

It may also be shown that [4] SU(2) LLE with easy axis (A>0) aniso-
tropy (ALLE) is gauge equivalent to attractive SNLS, while the aniso-
tropic SU(I,I) LLE to repulsive SNLS and easy plane (A<0) case to AKNS
system.

4. APPLICATION OF GE FOR SOLITON SOLUTION

Most of the early works, besides establishing the GE, largely ignored
the possible applications of such a beautiful relationship. We aim to
utilize the GE for extracting information of LEE without the associated
tedius IST calculation but only using well-investigated properties of
its GE NLSE. As shown in §2, the Jost function of LLE @; may be
expressed through that of NLSE Qa as @i = ®61¢i’ where B

L=
+ =
™
L]
+

I+ N
—_
*

is the Jost solution of spectral problems connected with NLSE and € =11
correspond to NLSE of attractive and repulsive type, respectively rela-

ting to LLE with S € SU(2)/U(1) and SU(1,1)/U(1) manifolds. As shown
before the scattering matrices of GE system are identical. The field

solution of LLE may be expressed through NLSE Jost solutions as

-1 1 3.3 - +.+
S ® L 030, A—O (870° + S0 + 850), b _ = det® ,
_ a2 2,2 12 - Lt
Sy = e |” +ele |”, s = -200907, S = €S (4.1)

4.1 SU(2)/U(1) LLE Solution from
NLSE of Attractive Type

The solution to LLE is normally extracted through tedious IST calcula-
tions [26]. We, however, recover the soliton solution through GE using

the known results of NLSE [2] given by the Jost function for N-soliton

solution:
02" 0
B NoC @
d(r,x) = = exp(-iAx) + I Y exp(iknx). (4.2)
n=1 n
‘l*
) 1
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where Qn = @(X.An), Xn being the discrete spectrum. For simplicity

we consider N = 1 giving 1-soliton solution of NLSE as
N
P(x) = -2 L C d'(x)exp(ii_x) = -2in exp(iYy)sech vy, (4.3)
nn n
n=1 N=1
where x1 = g+in, y = 2Ex + 4(&2—n2)t + ¢O and y = 2n(x—4€t—xo). On

the other hand from (4.2) one obtains

o
Il

- p(Ao) exp[i(k—ko)x]sech Y

@]

2 _ _ s

o, = [1 - p(xo)exp( y)sech y] exp( 1X0x), (4.4)
with p(ko) = 1in /(A—AO), which gives directly from (4.2) the LLE soliton
solution

2
Sy = 1 - 2lpF sech®y,
arg(S+) = 2 Xox -y- tan_1{[(ko—€)ﬁ1]coth y 1 (4.5)

coinciding for ), =0 with the result of ref. 26 found through direct IST.

4.2 Noncompact SU(1,1)/U(1) LLE Solution
Through Repulsive Type NLSE

The noncompact LLE model may be given by the Hamiltonian

2 .2 2
e 2 1 e, o3 2%
H = {m tr(SX)dx = 3 {m(SX Sx Sx ydx (4.6)
32 22 12 a .
with 8~ -S° -8 = 1 and S = 8 TaE SU(1,1)/0(1). This is a new model,

which may have physical applications. For finding its soliton solution
we may apply again the GE with NLSE of repulsive type established here
and use the known IST information of the latter system [15]. The IST
programme of repulsive NLSE is rather complicated due to nontrivial
boundary condition lim[¢[2 »pz. Here § = i(xz— uz)% actually serves
the role of spectral|5$?§meter and E()) is defined on a 2-sheeted
Riemann surface with cu?s at (-o,-u) and (p,»). The bound states are
given at £, = (xi - uz)3 = iv with|An|2< U2- The Jost solution corres-
ponding to 1-soliton of NLSE is given by [15]

1 17 K K. Y]
¢ = expl(-itx) - ! 21, (4.7)
A-E 1 v +ig | K K#
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where
1

K, (y) = vE(y), K, (y) = vly-iv)f(y), £(y) = [1+exp(2y)]1 ',

EZ = Az— TroA = vy v2 =1 - Y2 and y = v(x—xo—Zyt),

Vix,t) = [y +iv)2 + exp(2y) 1£(y). (4.8)
Using € = 1 and (4.7) one gets from (4.1) the soliton solution for (4.6)

LLE in the form

S3 = 1 + (2Y2/v2)tanh2y ,

arg(S+) = 2Ex + tan_l[(y/v)tanhy], (4.9)
where we have chosen AO - go = y for simplicity, which, however puts
restriction on the soliton velocity u = 2y = 2(x0 - go), 2>u> 0.
We also have the restriction]).d >u =1 since A  must be from the

continuous spectrum.

5. NLS TYPE EQUATIONS AND
GAUGE EQUIVALENT EXTENDED LLE

Using the technique similar to that applied above for standard NLSE, we
may also find new extended LLE, gauge equivalent to various known NLS
type equations [5].

5.1 DLL Gauge Generated from DNS

The scalar derivative NLS (DNS)

(ONS): g, + q, * ia(jal®a), = 0 a0 (5.1)

may be given by the linear system

u = *iakzo3 + a)A
vo= (-2ia®2® £ i0?[q] %o, + 2680 ¢ arB, (5.2)
+ - . - -
where A = gqo * qQ*cs , B = (1qx + alq[zq)o+ + (iiq; +a!ql2q*)o .
Defining as before S = g~ 039 one gets SSx = 2xoa g_1Ag, ssi =
2 2 -1 2 2 =1 .
-4 Aga'g 04A%g and S(St—2axosx) = 2axog Bg. Repeating now the

above procedure for GT (2.5) one obtains the new system
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Ut = g7 [-ia(A®22)0y + alr-d,)Alg

—iaa®a2)s + (5—) (A=2,)SS,
(o]

Co_ Sl 5.2 2,4 4 2,,3..3 L 2,02 2 2
\ g [-2i3%a" (A=A J)oy + 227 (A AGIA = da”(A"=A])o4A"+alA-1 )Blg
2 2%
_ . 2,4 4 3.3 . A°="0 .2
= 2ia"(A"-x])S + (a/xg) (A A;)88, + i f—== 88
4%
o
A=A
+ °(sst - 202%ss.) (5.3)
2 o "x
o
yielding the extended LLE (DLL) [5]:
(DLL): S, + +-[S,S__ ] - 4a2%s_ + —— 53 =0, a>0 (5.4)
. t 2177 Txx AA o % 2 "x ! .
4ako
with § € SsU(2)/U0(1)[SU(1,1)/U(1)] corresponding to +(-) signs. Note

that the integrable system (5.4) has also been found recently through
an altogether different method [27].

5.2 XLL Gauge Generated from XNS

The known mixed NLS (XNS), a hybrid of DNS and NSE,

. 2 . 2
(XNS): igqe + a,, tgla]®q ¢ iallq| q)X =0, o >0, B >0 (5.5)
given by somewhat complicated U, V operators [18] is gauge transformed

similarly to [5]

u' = 9_1 {(503 + aAlg
= a
= §S + c SSX
. -1 2
\Y = g .{ kg3 + bA + aB +Y03A }g
- bgg _ X gg2 , 2 _, b
= kS + cSSX ZSSX + C(SSt 2 z SSX): (5.6)

C

where c,§, a, k, b,y, b are different expressions depending on A, Xo,a
and B [5]. The flatness condition of (5.6) yields gauge equivalent LLE
type equation in the form (XLL)-r

1XLL given in refs. 5,6 may be simplified to this form.
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1 3 _
(XLL) : St + §T[S,SXX] + YSX + pSX = 0, (5.7)

where vy = 4xo{/2 - ako} and p = a/(ZQXO - V2B)2. The * sign as before
corresponds to S € SU(2)/0(1) (SU(1,1)/U(1)) cases. One gets also

the invariant relations

2

2
X |

alol

tr(ss) = i202|q » tris,s.) = 2 ?i(qq§ - a*q,) 4 |q12—2a|q|4}'

(5.8)

Note that XLL (5.7) has exactly the same form as DLL (5.4) but only with
different coefficients, which clearly reduces to the corresponding coeffi-
cients of LLE and DLL in particular cases a =0, B8 #0 and o # 0, B = 0,
respectively. The coincidence of XLL and DLL reflects the fact that

their gauge equivalent Schrddinger type equations, e.g., XNS and DNS

are U(1)-gauge related (see$§6.1), which does not change the corresponding

LLE system as shown in §6.

5.3 MDLL Equivalent to DMNS

A modified DNS (MDNS) given by

. . 2. 1
(MDNS): iq  + (a/p),, = 0, p = (1 % |q|7)? (5.9)
corresponds to the linear system
U = -ikog + AB, v = 2)°D + AB (5.10)
with A as in (5.2) and
0 (q/p)X B -i q
B = 1 ’ D = o
* +a* 1
t(g /p)X 0 g 1

Repeating the above procedure we now get the gauge transformed operators

as
-1 .
Ut o= (aa)g {-ioy * A} g
. 1
= (Amag) (=18 + 55=8s ),
o]
.o =1 2 .2 B

vio= g {2(07-2J)D + (A= A )Blg

= 2(02-2%)XS( 518 ~i) + (A=2)S(S. - 2% _yS.)/2x (5.11)

o 2Ao X o t oX°x o °
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yielding a new LLE type integrable equation (MDLL) [5]

. = i A
(MDLL) = St 1(XSSX)X + 4 oXSX (5.12)

1
with y = (1+tr(Si)/8Xi)_2 with S € SU(2)/U(1)[SU(1,1)/U(1)] corres-

ponding to +(-) signs in (5.9).

6. UNIFICATION THROUGH H-GAUGE TRANSFORMATION

It is interesting to note that from the matrix NLSE (3.4) one can generate
through the local H-gauge transformation ¢ -+ h;1w h1 relative to group
element h = diag(h1,h2) €H = S(U(u,v)® U(s,t)) a class of new higher-

order equations

_ _ . i 1.2 2
l¢t+¢xx+2(www—p¢)+4lx05¢x —[§(¢Ht—Ht¢)+2(wal—Hth)

1 2 2 1 2,2 1,2 _
+ (gH  —HL W)F2(H pH )] + (H )Ty + y(H )" =0, (6.1)
where Hi = h11a hi. Since under h(x,t) € H-gauge transformation, the
model field is invariant: S' = g'Ll g'-1 = thh_1<3_1 = ng—] = S, the

LLE system remains unchanged under such transformation, whereas the
1Uih+(i)\2—h"1hi). We consider
below the simplest case of h = exp(i003) €EU(1), G = SU(2)(SuU(1,1)) and

equivalent matrix NLSE changes as Ui = h"

show how certain new hierarchy of integrable equations can be generated

unifying different systems for various particular choices.

6.1 U(1)-Gauge Generated Higher Order
Integrable Systems

The XNS (5.5) is transformed to the higher-order equation
i0.+0+8|el% + ia(]0|%Q), + 2A(g-202-i6__+a0_|0|?)Q -2i6.Q.} = 0
t *xx X %. X XX X X X !
Q = e q. (6.2)

It is evident, that a choice of 0 = %(x + %t) and a Galilian transfor-
mation with V = -28/a reduces (6.2) to DNS (5.1) and thus establishes
gauge equivalence between XNS and DNS while for a = 0 we directly get
NLS. We may, therefore, consider gauge generation from later two systems

only.
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(i) Gauge generation from NLS: One interesting choice for @U ,

(3) _ (3) _ _ . . ,
e.g., @X = pj, @t —»qj where (pk)t = (qk)x yielding conservation
laws from the Ricatti-equation generates a hierarchy of integrable
systems [8]

. 2 2 . . _

iQ, + QXX+B|Q| Q+ 2 {(ﬂj 2pj 1ij)Q 2lijx} =0,

3= 1,2,....

One may easily construct for these systems exact solutions, Lax pairs,
infinite conservation laws, etc. [8]. 1In the simplest case of j = 1
we have @£1) = —6]q]2, Oé1) = i6 (gq% - g*q,) yielding the new integ-

rable system with fifth-order nonlinearity

, 2 2 4 . 2
iQ.+o  +B|Q|70 + 467|070 + 4is(|Q[T) .0 = ©

reducible to a linear equation iqt + Ay = 0 for g = 0. For choice
® = 0(x) one gets a NLS with variable dependent coefficients. Other

choices of © will be discussed in the next section.

(ii) Gauge generation from DNS: Similar choice as the above gives
again another hierarchy of integrable systems generated from DNS [8].

The simplest case gives Johnson type equation

i, + 0 + ial]e]?), + stasta)|o|te + 4is(]e}®) 0 = o,

which for the choice § = - % reduces to Chen-Lee-Liu [19] equation (CLL).
(cLL): io, + o, + iale]’, = 0

and for § = - % to Gerdjikov-Ivanov (GI) equation [21]
(cr): io, + o, + 2 |o|% - 1a0%0x = 0.

Thus we have established the gauge relation between a large number of
systems. Consequently, the soliton solutions and Lax pairs for these
systems may also be trivially constructed from those of DNS thus avoiding

lengthy sophisticated approaches [28,31].

7. EXACT SOLUTION OF REALISTIC MODELS THROUGH GE

Johnson derived [22] the following fifth order nonlinear equation (JE)

for the amplitude of the fundamental wave.
o B 2 4 . 2, . 2 B
(JE): lAT a1ACC a2|A| A + a3]A| A + 1a4|A| A 1a5A(|A| )C—asAeT—O,
(7.1)
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where GC:6|AI2 and a; are real numbers. Previous attempt [22] to solve

this equation was both tedious and approximate. We, however, notice

that (7.1) may be gauge transformed to XNS
ig -~a,q__-a |q|2q - ia(|q|2q) =0 (7.2)
T 17gr T2 4
with o = 6a1(a6+4) + a5 and a constraint 5a1+a4+a5+3a6+4 = 0. Thus

(7.1) can be solved exactly extracting the Lax pair and different soliton

solutions [8].

In describing the mechanism of interaction between long and short
waves Benney has derived the following famous equations. The first
of this kind may be given by [23]

. = . 2 . 2.
(LS1): Qt = —1Qxx + k3AxQ + k3AQX 1k4A Q+2is|Q|"Q = O, (7.3)

_ 2
ac = 2s(|Q|7),
where A(x,t) describes the long wave, while Q(x,t) is associated with

the short wave. The second equation due to Benney is [24]

_ 2
(LS2): L, + c;L = el(al(|S]®) + gLL ),

. . . 2 :
Sy * CgSy — 16LS = e(iBS  + iv|s|“s + mLS, + nSL.), (7.4)

with L and S describing the long and short waves, respectively. We
observe again through gauge equivalence, that for certain parameter

choice both the above equations become exactly solvable and connected

with the NLS equation. In particular, for the choice EB = 2k3 = -2a,
kg = —a? by U(1) - GT described above (7.3) is reduced for q = Qe‘Zle
. a 2
with 0 = A, 0, = as([Q|?) to NLSE
ig, + q__ + 25|q|2q =0 A, = 25(|q|2) (7.3%)
t XX ! t X .
where s = -s(i+a), yielding easily the explicit Lax pair through Ui=
h_1Uih - h—1hi’ h = exp(i@o3) and soliton solutions. For example,
when s > 0 the exact 1-soliton solution of (7.3) may be given by
2tanh2vz
A = —————éx——sech22vz, Q = 2¥ sech2vz expi( wt+kz - ——— )
v]1+ af Vs 2U1 + o
where z = x - vt. Note that for o = -1 one gets s = 0 reducing (7.3)
to a linear equation. It is worth mentioning that for a more restricted

set of parameters the solvability of (7.3) has also been established[23]
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2i0

’

through much involved prolongation theory. A similar GT with g = Se
where 0 =1L - ¢ /4 and @, = -c,L + e(a|S| + 9 L2 )+ cg/8 transforms
(7.4) dlrectly 1nto the NLS equation of the form 1qt+qxx+ Y]q[ g=0
1)+ 4B=2n=m=4e and eq=4.

However, if ep - 4 = p # 0 one should include in (7.4) a higher order

with y = e(y-20) and the choice § = 2(cg—

nonlinear term like pLZS to restore its gauge equivalence with the
NLSE.

Following the same line of argument one can show that the Langmuir

type equation (LTE) with some additional nonlinearity

) 2, . . N

igp + Q.+ n0 - [(n"+in )Q + 2inQ 1 = 0
— B 2

n, - n, = - j(|Q|

is also reducible to NLS for the choice

e, = =n, e =%(n—BIQ|2

Now we may depict the result of gauge unification scheme in Fig. 3.

CLL

Gl

+ g6 B8 ocLi-ns
. NS HXNS
T T
.
2, B 7002

ALLE(A>0) |¥=0:B#0
N

- LTE
G=SU(2) \\\b__’__g_EE__ QEH /
_________ < —OLS 1
O O HNLS ™
ALLE(A>O) LLE NLS ™
o~ LS 2
G=SU(1,1)

Fig. 3 Extended cauge equivalence scheme of different LLE and NLS type
equations. This establishes the relationship between different members
of the integrable family as well as real world candidates thus answer-
ing the questions raised in Fig. 1. Here H = U(1) and G = SU(2) (or
SU(1,1) corresponds to attractive (+) (or repulsive (-)) case
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8. EXPLICIT AUTO BT THROUGH GT

As mentioned in Sec. 2, another interesting application of GT is the
auto BT for integrable systems, which is otherwise a tricky problem
[29] demanding 'guess' work. Here the parameter dependent gauge element

G(g,q',\) satisfies the equation

GX (gq,q',x) = Ui(Q'rHG(Q:CI',)\)‘G(quJ',HUi(q,)\), (8.1)
i
where X, = (x,t), i = 0,1. For finding out explicit Backlund Transform
(BT) for some concrete systems like K4V, sG, NLS, DNLS, LLE, modified
DNLS, we may express the elements Gab = g (aib)/(ix)n and from (8.1)

choose N by matching coefficients of eqHEQ powers in (in" to get con-
sistent closed set of equations for aab‘ The value of N and explicit

solutions would depend on particular form of U1[7].

8.1 BT for AKNS System

A q
For AKNS system we have U1 =[ r —ik}: which results in the choice

11 . 22 . 12 21
o = agt2ir, @ =8, " 2ixs o = By~ © = Yo+ Where agrBor Yor 8y
are independent of ). This leads to the relation agv = u - %(u+v),
a0y = %(r‘(u+v)—r(u—v)) with u = g'+q, v = g'-q. For deducing now

th& BT for particular systems we have to imply different reductions
of AKNS, e.g., for KAV r = -1, q = W for sGr = -q = Qyr for NLS
r = tg*, etc. leading to explicit BT's for these systems [7].

8.2 BT for Kaup Newell Problem

We have U, given by (5.2) dictating the choice a11 =1+ a2X2, a22=

-1 +52x2, a12 = 31* , a21 = vy leading to the relation
ilag8,-a,8,) = -2(q'+q) + (q'r'-qr)(q's,+qa,),

which yields easily for r = tg* the BT for DNS (5.2). Since the mixed

DNLS (5.5) is shown in Sec. 6 to be GE to DNS, the BT for XNS is also

easily obtained.

8.3 BT for WKI Problem: Modified DNS

EBEarlier attempt [25] for finding BT of modified DNS was not successful.
We, however, notice that since LLE and NLS are gauge equivalent, one

may construct the BT of the former system through the latter, which

takes the form [7] S' = B1SB;1 where S', S are different solutions
=11 . _

of LLE and B1 = ¢o Go g3¢0, where GO is the BT-gauge of NLS and ¢O

is its Jost functicn at ) = Xo' Using now the fact [30] that a change

of variable iq = S-/S3, X = - jS3 dx transforms LLE to (5.9) we may

derive BT for the latter system [7].
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9. CONCLUSION

We have demonstrated that through gauge equivalence method it is possible
to 'unify' a large number of integrable systems, pinpointing a few

basic ones. Using this machinery one may also obtain full information
of a system, for example, know its Lax pair, soliton solutions, and
Jost functions without doing any tedious IST investigation, but from
its gauge equivalent, well investigated counterpart. Application of GE

also allows us to generate new integrable systems along with their Lax
pair and sometimes solve exactly existing realistic systems. It also
opens up an elegant way of finding explicit BT of a large class of
systems. One of our interesting observations is that some realistic
nonlinear equations may turn into exactly integrable systems and some-
times they do so when some still higher nonlinear terms are added,
whereas the usual practice is to throw away such terms in real models
to give the equations some 'elegancy'. Our investigation shows however
that in certain systems one may be able to gauge transform them to
some known integrable models without neglecting any of their nonlinear
terms (e.g., HNLS, LS1, LS2, Johnson equation), while in some other
cases higher order nonlinear terms are necessary to add for restoring
the integrability. Some models may even be linearized through such
procedure. Therefore, in handling realistic equations the possibility

of application of GE should be carefully explored.

In spite of some encouraging achievements, our ambitious programme
of gauge unification is far from being complete. The extension of
such equivalence to the corresponding quantum models is indeed a challen-

ging problem, which is being taken up by us at present.
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Prolongation Structure in One and Two Dimensions

A. Roy Chowdhury

High Energy Physics Division, Department of Physics,
Jadavpur University, Calcutta 700032, India

A computational basis for the prolongation theory applicable to soliton
equations is given with several examples 1included as illustrations.

1. INTRODUCTION

One of the most important developments in theoretical physics during

the past twenty years is the understanding of the complete integrability
property of a class of nonlinear partial differential equations(nlpde)[1].
The initial attempts for the systematic analysis of such equations
started with the famous papers of Gardner, Greene,Kruskal and Miura [2],
and also with that of Lax [3]. The observation of Lax, that these
integrable equations are representable as the consistency condition

of two linear equations was of utmost importance for the fast development
of the theory of solitons. However for a long time there was no concrete
way to arrive at a Lax pair for a given nlpde, though given the Lax

pair the problem can be analysed exhaustively. Then the now famous

work of AKNS (Ablowitz, Kaup Newell, Segur) [4] indicated a reverse

way of getting a class of integrable evolution equations starting

from a given Lax pair. The first detailed study of inverse scattering
was also taken up in this paper. One should of course mention the
pioneering work of Zakharov and Shabat [5] also. But the problem of

getting a Lax pair from a given nlpde was still not solved.

The basic problem was attacked and solved in the ingenious article
of Whalquist and Estabrook [6]. Later a simplified version was also
suggested by Corones [7], who showed how a pseudopotential can be asso-
ciated with a given nlpde. Later, different applications of the method
have been given by Gibbon [8], Fordy [9], Dodd [10], Roy Chowdhury
[11] and others [12].

2. RUDIMENTS OF THE THEORY OF DIFFERENTIAL FORMS

The whole formalism of Whalquist and Estabrook is based on the Cartan's

calculus of differential forms. Here we describe tersely the basic
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rules for the operations on forms. Since we will be working mainly
in two spatial dimensions, we will use (x,y,t) as the set of independent

variables and u(x,y,t) as the dependent nonlinear field variable.
We start with the definition of differential forms:

(i) A differential dx, dt, du or an expression fdx, gdt, etc., is
called one form.
(ii) An expression of the form dxAdt, duadx, dyAdu is called two
forms, where A 1is the antisymmetric wedge product.
(iii) 1In fact one can also define the 1-form, 2-form, 3-form as the
integrands in respectively of a single, double or triple integral.
That is fdx of [fdx, gdxdy of [[fgdxdy and hdxdydz of [f[hdxdydz.
(iv) The symbol "d" stands for exterior derivative and acts in the

following manner: d(fdx) = dfAadx, d(gdxdt) = dgadxadt.

(v) It possesses the basic antisymmetric property: dxadt = -dtadx,
dxAdx = 0.
(vi) 1In general for any coordinate representation, df = f,i dxl,
_df
Fri = 7o
(vii) d(dw) = 0, Poincdre Lemma.

(viii) For any vector v, and forms w and o :
v.(wAg) = (v.w)as + (-1)Pwa(v.o).
(ix) For forms w and o , wag = (-1)P9 0o Aw, where p = rank of w,

q = rank of o.

3. nlpde AS THE SECTION OF A SET OF FORMS

The starting point of the WE formulation is to write the nonlinear
differential equation as a collection of differential forms. The process
of obtaining a particular equation from a set of forms is called sec-
tioning. In short it means that if one chooses a particular coordinate
representation then the "coordinate free" writing of the differential
form will reproduce the particular equation. In order to use a minimum
amount of abst}action we illustrate this with examples. Let us consider
the KdV equation

¢ * 99y + qxxx = 0. ()

The first step is to define a set of primary sets of variables by
considering the derivatives of g, upto n-th degree (n being one less
than the highest degree of derivative of q occurring in the equation),

as independent set. In this case we consider,
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u=g9q.; p=u, =49dg,. (2)

So (u,p,q) form the primary set. To recast these in the differential

form language we set,

ag = udxadt - dgadt, o, = pdxadt - dundt (3)
whence the equation (1) is

9. * 9, tp, = 0. (4)
So we have

a, = dgrdx - qudxadt - dpadt (5)
and (1) is equivalent to {a1, oy a3} if we choose a coordinate such
that

du = uxdx + utdt, dq = qxdx + qtdt. (6)

The above statement is quite easy to prove. From (6) and (3), we get,

a, = udxAdt - (qxdx + qtdt)Adt = (u - qx)dxAdt. So a, = 0 implies

<
Consider a more complicated situation for an equation of the form

[12]

u —%auu + 30374, -3ualu =o0. (7)
X

= r = =u u, = - iw ; lr - W, - guz + 2 =0

Uy = P Py xx' t 3%’ 47x t 74 P pw = Y.
(8)
These forms can be written as
4

31 = dundt - pdxadt, 82 = dpAdt - rdxadt, 83 = dundx - §-dedt,

_ 1 32
B, = dwndx + 7 dradt + (2pw - 3u p)axAdt. (9)

The verification can be done following the same procedure as above.

4. CLOSED IDEAL

The next stage of the prolongation analysis makes use of an important
aspect of the differential forms, which is the closure of the set of
forms under exterior differentiation. 1In mathematical language we

write
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n .
_ i
dai = E fjAa. (10)

As an example, let us consider equations (3), (4) and compute dai.
Using d(fdx) = dfadx, d(dg) = 0, we get da.l = duadxadt = dxa oy
da2 = dpadxadt = dan3 and da3 = ua1Adx + g azAdx. So the fl's are

either dx or udx or gdx. On the other hand for equations (9) we obtain

dB1 = —-dpadxadt = —BzAdX: d82 = —dradxadt = 4B4Adx, d83 =0

’

3.2 .
d84 = (2w - Su )BzAdx + 2p84Adt + 3puB1Adx.

5. THE PROLONGATION ANALYSIS

After the closure property of the set of basis forms has been established
the final stage is set for the computation of the prolongation structure.

Here we actually search for a set of one forms )

wy = dyk + dex + det, (13)
where Fk and Gk depend on the premitive set (u,p,q,...), independent
variables (x,t) and also on some new dependent variables Yy (which
are called the prolongation variables), in such a way that

m n
- k k
dwy, = f gjo; + 151 njAw; (14)

where n is the number of prolongation variables, m is the number of

basic defining forms a's and n? is some set of one forms. Equation(14)is
actually an extension of the closure condition elaborated above. Ac-

tually they lead to an overdetermined set of partial differential
equations for F and G which are not always linear. Fortunately the
nonlinear part always has certain commutator-like structure and almost
always solvable. We will be using these features in the following
paragraphs by some explicit examples. Incidentally when Fk, Gk do

not depend on y's themselves, wk is called a potential. However if

FF and G depend on the y's, they are called pseodopotentials. To illus-

trate the above ideas we consider again the case of KdV equation.

An important observation at this stage is that n; can be chosen
in various ways, on which depends the generality of the prolongation
forms Wy - In the usual case we take

n; = (aidx + bidt). (15)
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On the other hand, one can also set [13] n, = aidx + bidt + cidz +

didp + eidq. Equating to zero the coefficients of basic two forms
dxadu, dundp, dpadt, etc., in equation (14), with Gqs Gy, Qg @S in

(3), (4), (5) we arrive at
Pk =0; ¥ =o0; F* +c65 =0 , (16a)
,U :p :q 'p
. k . k
k k k i 9F i 3G
uG + pG - 12uG + G —— - F — = 0. 16b
g p u v P ayi 3yi ( )

In (16) we have used

dw, = d(dy, + F,dx + G dt) = dF Adx + dG Adt

=

aFy 3G
30i dO’i/\dX + E dUi'\dtr Oi = {Q:U,P,X:t:yk}- (17)

Equation (16) will determine the dependence of F and G on (u,p,q).

Differentiating repeatedly (16b) and utilising (16a), we get F = 0,
F =F_ = 0; G = 0; G = 0; G = 0. Then it is not diffi-
P u qgqq uuu PP X
cult to envisage the following structure of F' and G,

o= x5y v axBy) v ?xBy)s &R = —2preatixSiy) +

2 3 k k k k
3(u"-997-2qp) X5 (y) + 8X,(y) + 8qX§(y) + 4q XG(y)+4uX7(y),(18)

where Xt,s are dependent only on the prolongation variables. TIf we
plugg in these Fk and Gk's in equation (16b) and equate coefficients

of q2, q3, ug, pg, etc., we then get the following incomplete Lie
algebra

[X,.%,] = [X,,%5] = [X,,%,] = [X,,X) = 0

]

[X1!X2] ‘X7; [x11X7] = XS; [X21X7] = X6

[x1,x5] + [x2,x4] = 0; [x3,x4] + [x1,x6] = -X (19)

7
As a next example, we consider the equation of a relativistic string
in a curved space-time. The governing equations are [14]

= 20 cos2y + ke 29, Xoo - = 2% sin 2%, (20)

Pxx ~ Pt XX Xtt

where K is the curvature of the embedding space. We can also write
(2) as

109



1 —21(¢1+¢2) 1 2i(¢1—¢2)
=€ - 5 e

Pree T Pixx T 32 = B

2
20 2(p,+9,) 2(9.-¢,)
% s v2 %(e 12l TR

ot T Poxx T =B (21)

when a special value of K is chosen.

The basis variables are now defined to be Pop = 21 Py =Py 9 = Qs

P = T Then it is easy to observe that the basic two forms are

r, = d@zAdx - zdtAdx, r, = d¢1Adx - gdtAdx,

-
I

dg,Adt - pdxAdt, «r

5 4 d¢1Adt - rdxadt,

~
1]

dzadx + dpAdt - Adtadx, re = dgadx + dpAadt - Bdtadx. (22)

The closure of the ideal generated by ri's can again be tested and we

search for w in the form

we = dyy + F(z,p,q,r,9,9,,y;)dx + G (2,p,9,7,9,,9,,y;)dt.

Following the procedure laid down previously we get

GZ =0 = Gq ; Fp =0 = Fr H
F,G =-F z - F + G + G r - AF, - BF . (23)
2 1 2 1
We choose F ang G as
k k k k
Fo o= 2X (y) + aX,(y) + Fale 9,0y )y
k k k k
G" = rXZ(y) + pX1(y) + G3((p1,(p2, yk). (24)
Equation (23) then implies
[X1IG3] = _F3¢2 H [F31X2] = G3(p1l
[X,,6,] =-TF ;i [FL,X. 1 =6 (25)
273 30, 3' M 39,
along with
®q70 ~{o1t9,) 3
;= e ! 2Y3(y) + e 172 Y4(y) + e ZYS(Y) (27)
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which immediately leads to the incomplete Lie algebra

[X1)Y3] = X3I [X21Y3] = _X3r [X1’Y1] = X4;
[X21Y4] = X4I [X21Y5] = 0, [X1,X3] = Y3;
[X11X4] - Y4r [X2IXS] = Or [X1IX5] = - YS;
[X,,¥,] = (X, -X.) [X,,Y,] = 1(X. + X.);

3'°3 2°'71 720 4’74 27 27

= -] - _ 0.

[XS'YS] - 7X]r [XT'XZ] - 0, [X3IY4] + [X4,Y3] - 0:
[(X5,¥g] + [Xg,¥5] =0, [X,,Y] + [Xg,¥,] = 0. (28)

Lastly let us consider a new integrable system, which is a generalisa-

tion of Liouville equation [15] written as

- a+f-2
Pt T 7 € i
_ _ 2 _ _B-o
Opp = 00y (a,) e Bs
B, = B.g, - (B2 - &% %4 (29)
XX x¥Px X t
If we set a, = q, Bx =r, 9 = s, Py = p, the basic two forms become
a; = doAadt - pdxadt, o, = daadx - gdtadx;
oy = dgadt - rdxadt, ay = depadx - sdtadx;
ag = dpadx + ®*B205¢ nax, ag = dandx - qdeadx + qzthdx - P ®ggadt;
a, = dradt - rdgadt + rldxadt + e® " ?Pagndx, ag = dsadt + e®tB=205¢ nax.
(30)
. k k
In this case F', G are seen to be
FE = pr(y) + ea—wxg(y) + e2¢x§(y) + qea_3¢X§(y),
k= sxE(y) + B70xE(y) + e20xE(y) + refI0xK(y) (31)

along with the Lie algebra
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[X,X1 =0, [X5,X5] = -2X5, [X,,Xc] = —Xg;

[X3’X6] =0, [x1,X7] = 2X7, [X3,X7] = 0;

[x1,x8] = -2Xg, [x3,x8] = X [x2,x5] = Xy

(X, X1 = 2%, [X,,Xc] = X = Xg, (X, X1 = Xg;

[xz,x7] =0, [X4,X7] = -X,, [x2,x8] - X, [x4,x8] = 0. (32)

6. CLOSURE OF THE ALGEBRA

In all the examples cited above it is pertinent to observe that the Lie

algebra generated is never closed by itself. Of course there are some
examples where an exception can be seen [16]. 1In the former case
there is no rule to attain this closure. However one may follow either

one of the following two broad strategies:

(1) First, to find a scaling, Galiean, Lorentz or conformal type
of symmetry of the original nlpde. Then impose these on Wy to obtain
on automorphism of F and G. This will have some nontrivial implications
regarding the unknown part of the Lie algebra. As an example, let
us consider the case of the extended Liouville equation (29). It remains

invariant under the transformation

-1

x'>¢x, t' or t, o' > @
a'= o - 3 logg, B' > B t+ 3 logg. (33)
. k! -1k k' k .
Then we impose these on Wy and get F" 5o ¢ F'; G 5 G, which lead
to the automorphism
X! 5 X,, X! 2x X} k., x X
[t R B 378 T3 g Ll
X! 4 X X! - % XY 5 X X! & ¢ 'x (34)
57 %57 %% Ter 77 th7r “g > T “g-
Now equation (32) does not give any information about [X2,X4]. If
we study the transformation of [X2,X4] under (34) we get [X',Xa] >
;3[X2,X4]. But there is no generator with such a scaling property in
(34). So its immediate implication is [X2,X4] = 0. On the other hand,

if we consider [X3,X4], under (34) we get [xi,x&]ﬁ.[x3,x4] and generators
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with such scaling behaviour (with no factor ofg), are X.I and X5. So

we infer
[x3,x4] = aX, + BXg (35)
and ¢ and B may be fixed by Jacobi identity.

(2) The other route is the adhoc procedure adopted by WE who closed
the algebra by hand. The main algebraic reason for the effectiveness
of WE procedure was analysed by Shadwick [18]. Basically the procedure
of closing off is to obtain the various forms of embedding of SL(2,R),
SL(3,R) or SU(3), etc., in the incomplete Lie algebra. Such a procedure

is described in detail in references [9] and [10].

Once the Lie algebra is closed, then one can successfully obtain
the linearization, Lax pairs and Bicklund transformations. For details
see [6-19].

7. EQUATIONS IN TWO SPACE VARIABLES

After the success of prolongation theory in (1+41) dimensions, extension
was made for (2+1) dimensional systems such as the K-P equation, Davey-
Stewartson equation by Morris [19], though the IST equations for these
were known a priori from the research of Dryuma [20] and Zakharov and
Shabat [21]. Here we indicate the procedure by considering a novel
application. We can summarize the basic rules for higher dimension

as follows:

(1) In n-dimension the nlpde's are equivalent to n-forms o,

H u H
aA = L aA dx 1Adx 2A ...dx
noHgMy Mg

n

(2) They satisfy .closure as before daAC:I ;i I = {aA}.

(3) Then we introduce the prolongation variables y's and (n-1) forms

1 J, i=1,2,3,...,dim y], B; are (n-2) forms to be

i
Q" = A
ij

1 i Hy L) Hp-2

. i
determined, B: = ———=sv b dx A dx “A ...dx
J (n =27 "3 wquy | Hpoo

i ik k

and w' is the connection one form defined as w' = dy” + IA dx
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(4) We again impose the closure for the extended set I' = aptcr.

An important and novel equation is the Benjamin-Ono equation [21],

P Uyrx!
ug + uu + 7 J — dx =0 (36)

Xl

-x
which can be written as a 3-d system following reference [22] as

u + u = 0,
XX vy

u, +uu +ou = 0. (37)

The basic three forms are [24]

o, = duadyAdt - pdxadysdt, o, = -duadxadt - rdxAdyAdt,
oy = dpadyAadt - drAdxAadt, a, = drAdyAdt + updxAdyAdt + durdx/dy.
(38)

We then set

wh = ayl + rlax + clay + mlac, (39)
F, G, H depend on (u,p,r,x,y,t,yi) and

ol = (a) ax + b) ay + ¢ ar)aw® (40)
with [ad, bJ1 = 0; [b}, cl] = 0; I[c, ajl = 0.
Then Qj are written as

Qj = aa dx/\dyk + bg dy/\dyk + cg thdyk

+ Li dxady + Mi dtAadx + N7 dtAady.

We then demand 497 =Zaif£ + (Adx + udy + vdt)s 27 which will then lead
to equations for L, M and N. Details of such a computation can be
found in refs. [25]-[27].

8. THE CONCEPT OF CONSTANT COEFFICIENTS IDEAL

A few years back an excellent method was suggested by K. Harrison [25]
for circumventing the difficulty of fixing the arbitrariness in the

form of F and G. He suggested that if it is possible to choose a special
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class of two forms so that the nlpdes can be converted into an ideal
of differential forms with constant coefficients (C.C. Ideal) then

the process of obtaining the form of F and G can be streamlined and
one can arrive at the incomplete Lie algebra quickly. Let us refer

back to equation (22) and choose a new set of forms equivalent to the

nlpde's,

€, = dt - dx, €, = zdx + pdt, €y = gdx + rdt,

2¢, “2(9g%9,) 2(0q%%y)
€4 = © (dx + dt), €g = e (ax + dt), € = © (dx+dt).
(40a)

Then we can observe that

d =0 de., = l[e AE, - EcAE, — E.NE,]

€1 ! 2 T F'E4RE 57€ 671"
dey = %[€6A€1 - 25A€1], de, = 2g,ne,,
deg = -2legre, + egnesls e neg =g neg = egreg = 0. (41)

It is interesting to note that these closure conditions do not involve

any variable coefficients so that (20) is equivalent to the C.C. ideal

generated by (41). The one form w is now written as

mk = -Yy +(2Biei)yk, (42)
Bi being numerical matrices so that dw = 0 leads to

Blact - 1%, B*¥1e ne, = 0 (43)
which immediately implies

(B,,B,1 = 0; [B,,B3] =0; [B;,B3] =0;

(B,,B,]1 = -B,; [B,,B,] = - 2B,; [By,B;] = iB;

(B,,B.] = 5(B,+B,); [B,,B;] = 4B;

[B,,Bg] = %(32—33); [B,,B,] = 0; [B;,B.] = 4By; [B,,B.] = 4B,.

(44)

The same procedure can also be illustrated with the basis of sine-Gordon

equation. It is written as, = sing, Set r = Opr Ty = sing.

¢xt
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The usual two forms are a = deo Adt - rdxAdt and B = drAdx - sing dxAdt.
But a set of C.C. ideals can be constructed by choosing the basis given
by

51 = dx, €2 = rdx, 53 = sing dt, €4 = cosy dt;
EAEy = E3nE, =0, QE, =0, dE, = E5AE,,
d€2 = 53 A€1; d€3 = 52 AE4 (45)

is closed but with constant coefficients. We again write wk =
—dyk + (BlEi)yk. Then dwk = 0 implies

2

(82,831 = -4, (8',8%) = -2, [B?,B%) = B3

, [B1,B4] =0 (46)

leading to a Lax pair for sine-Gordon equation.

9. USE OF PROLONGATION STRUCTURE FOR
OBTAINING BACKLUND TRANSFORMATION

Lastly we only mention another important use of prolongation theory. One
can use the forms wk to deduce a B.T. [26] of the particular equation.
The basic principle is to assume that the new field variable depends

on the old one and also on the primitive variables along with the pro-
longation variables Yy - That is, u' = u'{(g, u, p, ..., x, t, yk).

For KdV, we write for the new set of forms as

ai = du'Adt - z'dxAadt, aé = dz'Adt - p'dxAdt, aé = -du'Adx
and demanding that these be in the ring of the prolonged ideal, we
can obtain the BT, u' = -u - y2 + A. Detailed discussions can be

found in refs. [26]-[29] for other systems.

10.. CONCLUSION

In our above exposition we have tried to give a computational basis

for the prolongation theory that may be useful for a beginner. There

are many references for the geometric or differential geometric back-
ground for the prolongation structure, which we have not touched at

all. Finally, it is pleasure to thank the organisers, Prof. M. Lakshmanan
and Prof. P. K. Kaw for giving me this opportunity to deliver this talk

at the Winter School organized by SERC (DST, Government of India).
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Integrable Equations in Multi-Dimensions (2+1)
are Bi-Hamiltonian Systems
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Recent developments by the authors in finding the recursion operators
and the bi-Hamiltonian formulation of a large class of nonlinear evo-
lution equations in (2+1)-dimensions is reviewed. The general theory
associated with factorizable recursion operators in multidimensions
is discussed. Both gradient and non-gradient master-symmetries are
simply derived and their general theory is developed, using the
Kadomtsev-Petviashvili equation as an example.

1. INTRODUCTION

Ablowitz, Kaup, Newell and Segur [1], following ideas of Lax [2] were
the first to solve in the concrete case of the Dirac problem the follow-
ing question: Given a linear eigenvalue problem find all nonlinear
equations that are related to it. They found that associated with a
given eigenvalue problem there exists a hierarchy of infinitely many
equations. This hierarchy is generated by a certain linear operator.
This operator is the squared eigenfunction operator of the underlying
linear eigenvalue problem. The operator generating the KAV hierarchy
(i.e., the squared eigenfunction operator of the Schrddinger eigenvalue
problem) was found by Lenard. For other eigenvalue problems see [3]-
[101].

Olver [11] established the group theoretical origin of the above
hierarchy: Finding the hierarchy associated with a given equation is
equivalent to finding the non-Lie point symmetries of the given equation.
He thus interpreted the squared eigenfunction operator as an operator
mapping symmetries onto symmetries; this lead to a simple mathematical
characterization of the recursion operator ®. Olver was thus the first
to establish that certain integrable nonlinear equations possess infi-

nitely many symmetries. This motivates the following question: Is
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there an algorithmic way for generating equations possessing infinitely
many symmetries? Fuchssteiner [12] discovered such a way: If an operator
¢ has a certain mathematical property called hereditary then the equa-
tions u, = @nux, n integer, possess infinitely many symmetries. From

the above discussion it follows that both linear eigenvalue problems

and hereditary operators yield hierarchies of equations possessing in-
finitely many symmetries. Actually Anderson and the author [13], follow-
ing ideas of Fuchssteiner, have shown that eigenvalue problems algorith-
mically imply hereditary operators.

Equations solvable by the Inverse Scattering Transform are Hamil-
tonian systems. Magri, in a pioneering paper [14], realized that integ-
rable Hamiltonian systems have additional structure: They are bi-Hamil-
tonian systems. Actually the underlying hereditary operator can be
factorized in terms of the two associated Hamiltonian operators. The
theory of factorizable hereditary operators has been further developed

by Fuchssteiner and the author [15] and by Gel'fand and Dorfman [16].

The understanding of the central role played by factorizable heredi-
tary operators for equations in 1+1, motivated a search for hereditary
operators for equations in 2+1. However, in this direction several
negative results have appeared in the literature. For example, Zakharov
and Konopelchenko [17], in an interesting paper proved that recursion
operators (of a certain type naturally motivated from the results in
1+1) did not exist in multidimensions. A similar result has been proved
for the Benjamin-Ono (BO) equation [18]. It should be noted that the
BO equation has more similarities [19] with the Kadomtsev-Petviashvili
(KP) equation than with the KAV equation. Fuchssteiner and the author
[18] after failing to find a recursion operator for the BO introduced
the concept of the master-symmetries 1. Subsequently Oevel and
Fuchssteiner {20] found a master-symmetry for the KP equation. The t
theory for equations in 2+1 has been developed by Dorfman [21] and
Fuchssteiner [22]. However, the T 1is not related to the underlying
isospectral problem and also cannot be used to construct a second Hamil-
tonian operator. This is a serious drawback: several prominent investi-
gators, for example Gel'fand [23] have considered the existence of a
pi-Hamiltonian formulation as fundamental to integrability. Without

finding a recursion operator ¢, one cannot find the second Hamiltonian

operator. Several investigators have noticed that master-symmetries
also exist for equations in 1+1. The theory for the master-symmetries
T in 1+1 was developed by Oevel [24] (see also [25]) and is more satis-
factory than the theory in 2+1: If one assumes that an equation is

invariant under scaling then there exists a one-to-one constructive

relationship between T and the recursionoperator ¢.
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Recently P. M. Santini and the author [26]-[28] have found the
recursion operator and the bi-Hamiltonian formulation of a large class
of eguations in 2+1. They have also established the general theory
associated with factorizable recursion operators in multidimensions.
Furthermore, both gradient and non-gradient (the 2+1 analogue of T)
master-symmetries are simply derived and their general theory is deve-

loped.

2. MASTER SYMMETRIES

In this section we review certain aspects of non-gradient master-symme-

tries in 1+1 and gradient master-symmetries in 2+1.

Definition 2.1

A function 1t is a master-symmetry of the equation q, = K iff the map
[.,t], where [a,b] = a'[b] - b'[a] (2.1)
maps symmetries onto symmetries (prime denotes Fréchet derivative).

The first example of a master-symmetry was given for the Benjamin-

Ono equation

- .1 [ dEf(e)
q, = Ha,, + 2qq,., (FEf) (x) = . JR Ex (2.2)
. . . 2 3
It was shown in [18] that if 1 = x(Hqxx + 2qqx) +q° + 5 Hq, and o,

is a symmetry then o [on,T] is also a symmetry. It was further

+1
shown in [18] that D 't 1is a gradient function (1'D + Dt'* = 0).

Master-symmetries are intimately related to time-dependent non-

Lie-point symmetries [25]. 1Indeed, the first non-Lie-point time-dependent
symmetry is a natural candidate for a master-symmetry: Consider the
evolution equation q = K(1) and let K(z), K(3), . . . denote its time-

independent non-Lie-point symmetries. Let

$(2) (), (2.3)

be a time-dependent non-Lie-point symmetry. Then

(2) 2) (2)

+ [tK( + T, K(1)]L = 0, or K = [K(1)

K (Tl

and T is a candidate for a master-symmetry.
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2.1 Master-symmetries for equations in 1+1

Lemma 2.1
Let

s; ¥ @'Ix;1 + [9,K}], i =1,2. (2.4)

If ¢ is hereditary, i.e., if ®'[®¢v]w - $¢'[v]w is symmetric with respect

to v, w, then

m
n+m _ n m n m-r r-1 _
[} [K1’K2]L = [® K1,¢ K2]L + & ( Z1¢ S1¢ )K2

r=
" g ¢r"1)x1, (2.5)

m
o 5

r

[ e =]

1
m,n are non-negative integers.
Proof

See Theorem 2.1 of [28].

Corollary 2.1

Assume that T is a scaling of both K and of the hereditary operator o,

i.e.,
[K,TO] = oK, Q'[TO] + (o, 16] = R9. (2.6)
Then
(i) (o + ng)o™ 'k (o7, 011 , (2.7)
i.e., ¢10 is a master-symmetry for q, = K.
(ii) (@ + ng)e™ Mk = (o7, o™ 1., (2.8)

i.e., ¢mro is a master-symmetry of order m for q = K.

(iii) r F (o + ne)t¢n+1K + ®1, is a symmetry of q, = o K.

Proof

(i) Apply Theorem 2.1 with
K, = K, K, =14, [K1,K2]L= @K, L, =0, L, =go.
(ii) Similar to (i).
(iii) Use the definition of a symmetry.
In the above we derive T from ¢. Now we obtain ¢ from T.
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Lemma 2.2

Let & be a hereditary operator such that %0 =6¢+, where 6 is a constant,

invertible, skew-symmetric operator. Then
(oT)' + o(oT)'Te” ' = (7 + a(r)Te™") + est 07T, (2.9)
where
st 2o frT) + (107,00,
Proof
See [28].

Theorem 2.1

(i) If the hereditary operator ¢ admits the scaling thendt

T

is a master-symmetry for the hierarchy generated bg 9. °
(ii) Assume that the hereditary operator ¢ admits the scaling o
and that it also satisfies ¢0 =®¢+, where © 1is a constant, inver-
table, skew-symmetric operator which also admits the scaling 1

Then

0°

= (or)' 4 ooty Yol (2.10)

Proof

(i) If ¢ admits a scaling and K is generated from ¢ then K also admits
a scaling. Hence Corollary 2.1 implies (i) above.

(ii) Since ¢ admits a scaling, ¢* also admits a scaling, hence st is
proportional to ¢+, thus (9S+G)_1 is proportional to ¢® . Further-

o Th0 + 013" = 00, thus

16 + @(T6)+@_] equals a constant. Hence (2.9) implies (2.10).

more, since © admits the scaling T

EXAMPLES

1. &¢=D+ g + qu—1 is the hereditary operator associated with Burgers
equation. It admits the scaling g-+ og, x-»a_1x, i.e., Typ = 9 * xqg.
Thus x(qXX + 2qqx) + q2 is a master-symmetry of Burgers equation.

2

2. & =D" + 4q + 2qu_1

admits the scaling g —+ oq, x-*a_zx, i.e.,

g = a+ 2qu. Thus T = @TO is a master-symmetry of the Kdv.

3. 1If Tp =49+ 2qu, then 16 + D(”c('))‘FD_1 = -3. Hence if T is the

master-symmetry of Kdav,

® =1 + p(r)p7]

is the recursion operator of the Kdv.
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2.2 Gradient Master-Symmetries for Equations in 2+1

A straightforward generalization of Theorem 2.1 to equations 2+1 fails:
(i) ¢ could not be found; (ii) the known master-symmetries T were
gradient functions, hence T1' + G)(‘r')+6_1 = 0. It will be shown in §3
that for equations in 2+1: (i) suitable generalizations of ¢ , denoted
by ®12 can be found; (ii) there exist non-gradient master-symmetries
T,y (for example for the KP Ty, = ¢$26(y1—y2), where § denotes the Dirac
delta function). Hence a generalization of Theorem 2.1 to equations

in 2+1 is given in §3.

One can still develop a theory for master-symmetries without using

the connection with the recursion operator ¢: see [21],[22].

3. SYMMETRIES FOR EQUATIONS IN 2+1

In this section we review the theory recently developed by Paoclo Santini

and the author. We use the KP as an illustrative example and quote
the basic theorems when needed. We hope that this form of presentation

will aid the non-expert reader to become familiar with the notions and
methods developed in [26]-[28]. We advise the non-expert reader to
read [15] before reading this paper since many of the results presented

here are two dimensional generalizations of results given in [15].

3.1 Derivation of Recursion Operators

Given an isospectral eigenvalue problem there exists a simple algorith-
mic way of obtaining a recursion operator. This approach involves three
steps: compatibility, an integral representation of a certain differen-
tial operator, and an expansion in terms of delta functions. Let us
consider the eigenvalue equation

Woe T qi{x,ylw + awy = 0, o is a constant (3.1)

and for convenience of notation we suppress the t-dependence. Using

vector notation, (3.1) yields
w 0 1
. ~ 3
WL , W o= W, £ g+ D ; D = 2. 3.2
. X R 4 < y Yy oy ( )
W -q 0
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3.1la Compatibility

Associated with WX = UW we look for compatible flows Wt = VW where
A 2C
v = [ ], A, B, C, E polynomials in Dy‘
B E

Compatibility implies the operator equation

u. = v, - [u,vl,
or
0 0 A 2C 0 1 A 2C
[ J [ X X] [ ] { }
-q, O B, E, -4 0 B E

Solving in the above equation for A, B, E in terms of C we obtain the

following operator equation:

~

+ 1a,07'1g,c1] + A - grg,  (3.3)

where

. + .
[ , 1 is a commutator, [ , ] 1is an anticommutator, AO

is an operator such that

X
A, =0 and (07 '£) (x,y) = I £(g ,y)dE .
X —oo
In what follows we take AO = 0 (the general case is considered in [27]).

3.1b An Integral Representation

The crucial step is to use an integral representation for the differen-

tial operator C:

(CH) (x,y,) = JR Ay, T(x,y ;0¥ £(x,y,). (3.4)

Let

q; ¥ q(x,yi), D, * Dy o i=1,2, T, % T(x,y1,y2). (3.5)

Equation (3.4) implies similar integral representations for all quanti-

ties appearing on the RHS of (3.3). For example

(q,00f = J dy,{ayTy, + alDy + Dy)Ty 3 E,.
R
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For

(q,C)f = JR dy,(q,T,,)€, D;(CE) = (D,CIE + CE = j dy,T., £,
1 R 1
Cf = J dy,T.,f = —J dy,T f..
y 2712°2 2712 2
1 R Yoy R Y,

Thus

(D1C)f = JR dyz(T12 + T, )f2.

Y4 Yy

Similarly

(§,C + Caf = JR dy, (a3, T, E,,

where the operators q?z are defined by

* q, t q, + a(D, ¥ D,). (3.6)
Using the above integral representations in (3.3) we obtain

= + + - -1 - . _
61,97 =Ty, +0a Ty )+ QyoT, 9D Ty, 84, F 80y -y,)
t XXX X
or
2

. +
Yy 7D +qy, + 0D

= -1+ -1 - -1 -
612q1t = D¥, T 5 q;,D + D qy,D ay,. (3.7)

Let us introduce the operator ¢12 via

_ ) + + -1 - -1 - -1
DY,, = ¢12D, ¢12 * D° + gy, + Dg,,D + q,,0 ‘gD . (3.8)
Thus
512q1t = DY, ,T,, = &,,DT ;. (3.9)
3.1c Expansions in terms of delta functions
We expand T12 in the form
n . . 3j
- 3 n(3), j - d -
Ty, = ‘E 612T12 ; 512 = 3 G(y1 yz). (3.10)
j=0 dy

It turns out that W12 admits a simple commutator relationship with

respect to h12 = h(y1-y2). Actually the following operator equation .is

valid

— v ., 1 = —_—
[y, h12] = 4ah12, h]2 = dy1 h12. (3.11)

125



Hence equation (3.7) yields

8 O £ U 1 & LIRS JIA S DR n42-1 §3_ppld-1
1291 - 12°12712 2 092P T 002 a2 0712752
t j=0 j=0 =1
Thus
(n) _ (3-1v)y _ _ 1 (3) _ (0)
B F 0, Ty3 = -7 YTy 512q1t = 84,D¥, Ty, (3.12)
Letting ng) = 1 we have the following proposition:
Proposition 3.1
The isospectral equation
W F gw = 0, g % q+ aDy; a constant (3.13)

is associated with the equations

_ n+1 _ n
q]t =B JR dy,84,D¥,, -1 = B“JR dy,8,,97,(¢,,D).1, B constant

(3.14)
where

PRI -1 _+ -1 - -1 - e 2, Tt + -1
Y90 = D +q12+D q12D + D q12D dyp7 @12 = D +q12+Dq12D +

q;ZD_1q12D_1 (3.15)
and Y50 &4, are related via Dy,, = ¢12D. The operators q?z are defined
by

+
Lo - - P _
ay, ¥ 4, * aj, 4, #qq ¢ aDy1, ary # q, aD_ . (3.16)

(The notation @? is justified, since ﬁq is indeed the adjoint of @1,
see §3.2)

EXAMPLE

1. Equation (3.14) with n = 0 and BO 1/2 implies a;, = q
t

2. Equation (3.14) with n

]

and B, = 1/2 implies the KP equation
1 d

a; = q + 6q1q1 + 3a2D_1q1 . (3.17)
t XXX X Yq1Y4q

Remark 3.1
(i) The operators ¢12 and W12 with Yy = ¥4 and a = 0 reduce to ¢ and
¢+ respectively, where ¢ is the recursion operator of the Kdv.
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(ii) The starting symmetry (®12D).1 is given by q; +aq, +
b'e

(q,-q )D_1(q -q,) + aD-T(q - g ). Thus it reduces to q, ,
1792 1792 1y 2y, 1

the starting symmetry of the KdV, when Yo = ¥q-

3.2 A New Directional Derivative and a New Bilinear Form

Recall that ¢ generates symmetries and ®+ generates conserved covariants.
Similarly, it will turn out, that @12 and @?2 generate extended symmet-
ries and extended conserved covariants respectively. To define these
extended notions we need to introduce a new bilinear form and a new

directional derivative:

(i) A new bilinear form

CRPYS STV I 3 dx dy,dy, trace g, ,f,,, (3.18)
R

where f12 and 9,, are matrix valued functions of x, Yir ¥y and obviously

the trace is dropped if f12, 9,, are scalars. In association with the
above form we define L?z to be the adjoint of L12 iff
* =
<L12g12’f12> 6312'L12 f12>- (3.19)

We recall that the usual bilinear form and the usual adjoint are defined
by
(g,f) = j , dx dy trace gf, (LYg,f) = (g,Lf), (3.20)
R

where f, g are matrix valued functions of x, y.

EXAMPLE

1. The adjoint of §1 is given by Q? =q, - aD2

+ o+ - Ve - -
* =
3. @12 W12.
Note that the fastest way to compute the adjoint of an operator L12
is to evaluate the adjoint as usually and then interchange 1 < 2.
Let I be a functional given by
I = JR2 dx dy, trace p,, = JR3 dx dy1dy2612 trace p,,. (3.22)
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The extended gradient of this functional is defined by

<grad121, DU Id[.] = JR3 X dy1dy2612p12d[.], (3.23)

where subscript d denotes a suitable directional derivative. It is

easily seen that a function Yqp is an extended gradient function, i.e.,
it has a potential I, iff

Y = y*, . (3.24)
12d 12d

Also

(grad I, .) = If[.] = IRz dx dy pf[.] (3.25)
and y is a gradient function iff y. = Y;.

(ii) A new directional derivative

Recall the crucial integral representation

(G,6)(x,y,) = jR dya(x,y,,y3) £(x,v5).

Allowing f also to depend on Yy, we obtain
qfq, = IR dy3dy3f3;-

The above mapping between an operator and its kernel induces a mapping
between derivatives: Let subscript d denote the new directional deri-

vative. Then

~

g, lo,,1f = j dy .0, ,E4,-
1d 127712 R 3713732

The integral representation for @1 also induces, via (3.18) an integral

representation for the adjoint of §1:

9108181 = JRs dy,dy,dx g, JR dy3dy3:f30p = JR4dY3dY2dY1dx

f

92319319512

=JR3 dy1dy2dx G21f12, where we have used 3' «— 1, and

= = !
621 = IR dy3953:93:q,  thus Gy, IR dy3913:9312-
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Thus
. _
aify, JR dy3d3,% 13-

Furthermore, the qg mapping induces a mapping between derivatives.
Thus

oo

Af95 % (qq+ aD)fy, = jR dy3ay3f35.  A7fy, 7 (ay-aby)fy,

jR dyydy,fq3  (3.26)

q1d[°12]f12 = JR dyjo13f3,,  GF logylfy, = jR dyjo3,fq5-  (3.27)

d

The above derivatives with respect to @1 and Q? imply the following

derivatives with respect to q?z, q;2:

s -
q12d[°12]f12 = jR dyjloq3f3, * 03,f3). (3.28)

Furthermore, using the chain rule and (3.28), if an operator K,, depends
only on q?z, qqz its directional derivative L, [012] is well defined.
This derivative is linear, and satisfies the Leibnitz rule. Also, using
(3.28) it follows that the directional derivative in the direction of

[ reduces to the usual total Fréchet derivative:

12
Ky [815F ) = Kyp [F1 2 Ky [F ]+ Ky [Pl (3.29)
d £ q q
1 2
where the subscript f stands for a Fréchet derivative and
_ 9 Cos o
Ky [Fii] = 3z K12(qi + Fiiv qj) TS 1,2, (3.30)
95 e=0 143

+

Operators which depend only on qj, are called admissible. Similarly,
a function K., is called admissible if it can be written in the form
Kiy = K12H12, where K12 is an admissible operator and H,, is an appro-
priate function (for the KP, H,, = H(y1,y2)).

EXAMPLE

: . + - - - . . . .
The function M]2612 = Dq12612 + q12D 1q1%612 is an admissible function
since the operator M12 depends only on q;z, and 5]2 = 5(y1—y2), It

is easy to compute its directional derivative:
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4 - 1 - N
(B8 10qlo9,] = Doyp8yy + 095D a8, + dyD 0,84,

i — _—
where 012f12 = J dy3(013f32 + 032f13). Hence (M12612)d[012] = 2Do12.
R

3.3 Isospectral Problems Yield Hereditary Operators

Using the same methods as in 1+1, it can be shown that if the extended

gradient (Gk)12 of the eigenvalue X of an isospectral problem satisfies

(G )y, = (G, (3.31)

then ¢12 = W?z is a hereditary operator. (One must again assume complete-
ness, a proof of which should follow a two dimensional version of the

method developed in [6].)

EXAMPLE

Consider the isospectral problem

v, + (6_[1 - Av, = 0. (3.32)
XX

Taking the directional derivative of the above it follows that

2, 4 n
(D% + §, —X)V1d[f12] + (q1d[f12] - A

[£ )V, = 0.

d 12]

?, where VT satisfies the adjoint of (3.32),

integrating with respect to dx dy1, and assuming f 5 dx dy1 V1V+ =1,
R

Multiplying the above by V

1
we obtain

_ _ + A
AglEqpl = (gradiph, £y = ij dx dy, V1q1d[f12]v1'

Using (3.26) to evaluate @1 [f12] it follows that
d

) + grad,, A = V.V_. (3.33)
It is easy to show that ®T2 as defined by (3.7) satisfies

ox V.VI = 4xv1v;. (3.34)

Hence ®12 is a hereditary operator.
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Remark 3.2

Konopelchenko and Dubrovsky [29] were the first to establish the impor-
tance of working with V(x,y1)V+(x,y2), as opposed Eo V(x,y)V+(x,y).

They also found a linear equation satisfied by V1V2‘ However, they
failed to recognize that this equationcould actually yield the recursion
operator of the entire associated hierarchy of nonlinear equations.
Indeed, they used the above equation to obtain "local" recursion opera-
tors. Thus the guestion of studying the remarkably rich structure

of these recursion operators in particular its connection to symmetries,

conservation laws, and bi-Hamiltonian operators were not even posed.

3.4 Starting Symmetries

The theory of symmetries for equations in 1+1 is based on the existence
of "starting" symmetries KO, which via & generate infinitely many

symmetries. For example, for the KdVv KO = qy- For equations in 2+1

we find that the starting symmetries K?zhave the following important
properties: (i) Can be written in the form K?2H12, where K?z is an
admissible operator and H12 is an appropriate function. (ii) The start-
ing operators K?Z have simple commutator properties with respect to

h12 = h(y1—y2). (iii) The Lie algebra of the starting operator K?z
acting on functions H12 is closed. (iv) Using (ii) and the fact that
¢12 also admits a simple gommutator relationship with h12, it can be

n ,0 _ n-%2 ,0 2
shown that 612¢12K12.1 _Qiobn'l¢12 K12. 612,

constants; hence 612 Q?Z K?z. 1 are admissible functions. It is thus

where bn . are appropriate
’

clear that in 141 one considers the Lie algebra of functions KO, while
0

12°
algebraic structure of equations in 2+1 can be exploited in a variety

of ways. For example, different choices of Hyy yield both time-indepen-
dent and time-dependent symmetries. Furthermore, all these symmetries

correspond to gradient functions.

in 2+1 one considers the Lie algebra of operators K This richer

We now discuss (i)-(iv) above for the concrete case of the KP: It
should be first noted that given an operator ¢12 there exists an algo-
rithmic way of finding its starting symmetries: One looks for operators

S12 such that S

that if a starting symmetry is constructed in the above way and @12

_ _ 0
12H12 = 0 but ¢12812H12 = K12H12 $0. It can be shown

is hereditary then ¢12 is a strong symmetry for this starting symmetry.

(i) For the KP there exist two starting symmetries:

N = + - —‘.I - - = - -

Mz Ddy, + @450 'Gyyr N Fqy,, Hy, H(y1,y2) (3.35)
corresponding to S,, = D and §,, = D(q?z)_1D respectively.
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(ii) The following operator equations are valid:

~ -~

[M12,h12] = 2aDh! [N

127 h12] = 0. (3.36)

127

(iii) The Lie algebra of Myoe Ny is given by

- (1) = (2) 2 (3) " (1) = (2) _ - (3)
NG H TN S T T g = ANy H T TN H S T M H S T g = “MyH
(1) - (2) _ - (3)
[M12 12 MigHiy 1 = - 9N HS (3.37)
where
(1) _(2) . (1) (2) (2)
(K /K 1, % [K ] - K [K ]. (3.38)
12 12, 12
(3) . (1) 4(2) (1),(2) _ 4(2),(1)
EEAE N CHL A j ay, i al2) - uifln U, (3.39)
Let us derive (3.37a):
(2) _ . (2) _ ((2)) (1)
9z, CHCIE LI IdeY3dY3 {(q13'H3'3 EETEUSEYRLEP
(1) (2) (2)
Hy3 (a33.H T 9302 33')}
_ (1) (2) 41 ) 4 (2)
= J’RZ dy3dy3.{H32 [q -q5- a(D +Dy )]H [q3 q, a(D +D, ) JH 35
Hence
- (1) (2) (1) ,(2)
laipHyy raypfys 1g = - {?1'q2 * 0‘(131‘”'32)} S PILEPIRS.
Remark 3.3

The bracket (3.39) can also be traced back to the integral representation

of @1 (see [27]).

(iv) Equations (3.36) and the operator egquation (see (3.11))

= ! 3.40
[¢12,h12] 4ahj, ( )
imply
n 2 L,n,, n-% o & )
= - 3.41
81,07 ,N 5] 221( 4a)7 ()07 Ny 8%, (
n n n-9 [} o X -j,n-3
= g = (- 2 2 )e(3.42
612¢12M12.1 g£1bn’9‘ LI M, 587, bn,R, (-4q) jio (9“_])( )
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Let us indicate how the above equations can be derived: Introducing an

operator D, which commutes with all admissible operators K and which

12
has the property that
D.hyp = By
it follows that
n - _ _ n - _ _ n
612¢12N12.1 = (<I>12 4aD) (512N12.1 = (012 4 o) N12.512
n ~
— _ £ ,n, n-% '3
= E (-4a) (l)®12 N, 875
2=1
To derive equation (3.42) note that
§.0" M 1 = (6, -4aD)"§ M .1 = (8,,-4aD)"(M.§,,-2aD.5],)
12%712M12 12 §2M12- 12 892 812
n g,n, . n-g ° 2 n L,n, . n-g 2+1
= I (-4a) (2)¢12 M. 87, - 20 I (-4a) (2)®12 D.8%, -
=0 =0
(3.43)
The next step is to express ¢32D in terms of ¢?2 M12, where j, j'
are integers. This can be achieved as follows: It can be shown that
¢?;1D.1 = ¢?2M.1. This equation implies
T S I TN = JUUN J- e (3.44)
12 712 T . 0’ 12 12°7°12° 12 7 J 12° )
J=0 dy.I
For example, multiplying ¢12D.1 = M12.1 by h12, it follows that
(¢12—4a D)h12D.1 = (M12—2a.D).h, or ¢12D.h12 = M12.h12. Similarly,
2 _ - . . 2 _ g g
¢12D.1 = ¢12M12.1 implies <1>12D.h12 ®12M12.h12 + 2aM12.h12, etc.
Using (3.44) into (3.43) yields (3.42).
3.5 Basic Notions and Results
We consider exactly solvable evolution equations in the form 4, = K(q),

q{x,y,t), on a normed space M of vector-valued functions on R; K is a sui-
table C® vector field on M. We assume that the space of smooth vector
fields on M is some space S of C* functions on the plane vanishing
rapidly as x, y+* ». The above equation is a member of a hierarchy
generated by P hence more generally we shall study qp = K(n)(q).

Fundamental in our theory is to write these equations in the form
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n >0 . (n) (n)
aQ = J dyy 895 29K9,-1 # j Ay, 84,Ky5" = Kyqty (3.45)
t R R
(in the matrix case, 1 is replaced by the identity matrix I), where

Kgg)(ql,qz) belongs to a suitably extended space é, and S* denotes the
dual of S. 1In the extended spaces S and S* we define the new directional
derivative (3.28) and the new bilinear form (3.18); the notions of the
adjoint and of a gradient are well defined with respect to (3.18) (see

(3.19), (3.23), (3.24)). 1In analogy with definition 2.1 we have:

Definition 3.1

(i) A function 012€ § is called an extended symmetry of

a, = dy,8,,K,, = K (3.46)
1, fR 2812%12 11
iff
3045
Fra 012f[K] - (81,K5)4qlaq,]1 = 0. (3.47)
(ii) A function Yq5€ §* is called an extended conserved gradient

(i.e., it is the extended gradient of a conserved functional I)
of (3.46) iff

AP [K] + (6,,K,.) o fyss] = 0O (
v Y + Y =0, ¥ = vy . 3.48)
ot 12f 127127 a2 12d 12d*

Functions which satisfy (3.48a) are called extended conserved

covariants.

(iii) An operator valued function @12: S -+ §, is a recursion operator
for (3.46) (or it is a strong symmetry for K12) iff

¢12f[K] + [@12,(612K12)d] = 0. (3.49)

(iv) An operator valued function ¢12: S - S, is a hereditary operator

(or Nijenhuis or reqular) iff

Lo} @12®12 [v12]w12 is symmetric with respect

(o, v, ]lw -
12d 12712 12 a

W, (3.50)

to v 12

127
(v) An operator valued function 912: S* + S is a Hamiltonian operator
iff it is skew symmetric, i.e., 0., = - Oqz, and it satisfies

12

@12,@12 [612b]2]c12> + cyclic permutation = 0. (3.51)
d
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(vi) Equation (3.46) is a Hamiltonian system iff it can be written

in the form

q = dy,8.,0. .., (3.52)
]t Li 2712712712
where 912 is a Hamiltonian operator and f12 is an extended

gradient function, i.e., f* = f . Associated with (3.52)
12d 12d

we define the following Poisson bracket
1,8} = @rad,,I, 6 ,grad,,H) . (3.53)

In the above, subscripts f and d denote total Fréchet (see (3.29))

and directional (see (3.28)) derivatives respectively.

Remark 3.4

(i) Equation (3.47) can also be written as
d0.
12 -
- PUERPLIPY R

since 012dﬁ 12Kq51 = 012E[K]. Similarly, ¢12f[K] = ®12d[512K12]_

(ii) Some of the above notions are well defined only if (512K12)d

is well defined. However, for equations (3.45)

-~

n-9 -0 [}

(n) [}
n, g %127 Ky 892-

_ n .0
§12K127 = 842912y, b

0

1=
&

[ =]

Furthermore, by construction ¢4 and the starting operators K?2

depend on the basic operators qu. Hence (a12K§2)

defined.

)d is well

In analogy with the basic results in 1+1:

Theorem 3.1

(i) If ¢12 is a recursion operator for (3.46) then ®12 maps extended
symmetries onto extended symmetries and ®¥2 maps extended con-
served covariants onto extended conserved covariants.

(ii) TIf (3.46) is a Hamiltonian system then o,, = 0,,7,,-

(iii) If @12 is a hereditary operator and a recursion operator for

k%..1 then o

. n ;0
. is a recursion operator for g = f dy,68,,0, K. 1.
12 12 1t R 2712712712
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12 % , where s;) + vegg) is a Hamiltonian
(1)

operator for all values of the constant v and 612

(iv) If o (2)g{10)"1

is invertible,

then ¢ is hereditary.

12
(1),-120
12 12 ) Kyp-

function then all (¢?2)my?2 are extended gradient functions.

(v) If ¢ as in (iv) and Y?2 = (0 1 is an extended gradient

EXAMPLE

The hereditary operator ¢12 of the KP equation is factorizable in terms
of the Hamiltonian cperators D and ¢12D. Hence each member of the KP
hierarchy is a bi-Hamiltonian system, with respect to the following two

Poisson brackets

{I,H} = (grad121, 0 grad12H>, i=1,2

(1) _ o(2) _ 3 4 + o1 -
2 =D 0457 = 9,0 = D7 4 gD 4+ DA, + gD a4,
3.6 Extended Symmetries

Lemma 3.1

(i) Let ¢ be hereditary, then

12

(87K gé)' o7,k (2)] ?;m[K:;) SHS 12‘r2 o7y §§)¢§2 )Kgé)
- o, (r§1¢T2r sitVel k{2, (3.54)

where

siiV e o xiP)y 4 fo,, K (1)], (3.55)

m, n are non-negative integers.

(r)

(ii) is a time-dependent extended symmetry of order r of equation

9y
(3.46) iff
r . . .
%5) = I tjzgg)' Z%%) s - %[253 v, 810K )qr 3=1eeury
=0
(z{r), s 1. =0 (3.56)
12 ¢ 842K219 = O- .
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Proof

See [28].

We propose the following constructive approach to extended symmetries:

Given an isospectral problem construct a recursion operator ¢12. This

operator must be hereditary (see §3.3). Then construct its starting

symmetries operators, say M12, N12. The operator ®12 is a strong

symmetry of M12' N12 (see [27]). Compute the commutators of M12, N]Z’
. . . . -0

@12nw1th h12. Use the commutator relationships to derive 612®12K12.1

_ n-2-0 L - L - . .

= gﬁobn'£®12 K12.612, K12 is M12 or N12. Finally, compute the Lie

algebra of Mo N, . This Lie algebra together with (3.54)-(3.56) yield

infinitely many time-independent and time-dependent extended symmetries.

EXAMPLE
1. ¢T2M12.1, ®T2N12.1 are extended symmetries of the KP hierarchy
= n ~ ~
q1t = IR dy2612¢12 M12.1 (recall KP corresponds to n = 1). M12,
N,, are defined in (3.35).
For
n m n n-9. % m
(6150121120 @qMyp-Hiplq = 12 by 421, M.87200 1M Holg
_ nb m+n—9,[;d [} ble 1. = - nb m+n—9,+1N [(SQ, Ho ]
T L Pn,y %12 8 M Hypdg T 7 L Py ®92 129127127 a”
2=0 2=0
(3.57)
where we have used (3.54) (@1% is hereditary and it is also a strong
symmetry for ﬂ12H12, thus Sgé = 0), and (3.37c). Taking Hy, = 1
and using
b4 =
ion (3.57) implies (80" M. .1, o™ i .11 =0, i.e., o™ M .1
cquation . implies 512 12M12- 10 1o2M19- d , .e., $2A12.
is an extended symmetry of the KP hierarchy. Similarly for ¢12N12.1,

since
n
n m . m+n-2
M
[81,09M5- 1, 25N 5. iobn,z®12 1218

L

H, 12781201

] =
2°d 3

~ -

m . .
C2. ¢T2M12.1, ¢12N12.1 are extended symmetries of the hierarchy

-
9, = [ Qy.8,,00 N, .1.
PR PR S LR AR PR
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3. The KP hierarchy admits two hierarchies of t-dependent symmetries
of order r given by (3.56) where

(0) Slm) () (r)

_ . r
Ty = NppeHgp Hip  # (yg * y))
(m+2 3 ) ! ) )
. A(m+29n+3j - L 2s,+1 r- L.2s,+1
(23)_ . renty - 4 % 28145y,
212 = Zv(r,23,s)N12 =1 .H12 ,
23-1 23-1
(29-1) . ~(m+(23=1)n+3=1 = F_, 2s,+1) (- I, 2Sg*V)
212 = Zv(r,2]—1,s)M12 .H12 ,
the summation I 1is over 51’52""’Sj’ from zero to Pn' Pn = (n-1)/2
if n is odd, (n-2)/2 if n is even,
and
(0y _ ZS(m) ,(r)
Lip0 = My -Hiph
23 23
. A(m+23n+g =, E. 2s5,+1)  (r—gZ. 2s,+1)
(23) _ . 221478 =1 3
212 = Z\)(rlzjrS)M12 .H12 ,
2§-1 29-1
. ~(m+(23-1)n+j - I, 2s,+1) (r- L. 2s +1)
(29-1) _ . k1 %S L1 28
Zi5 = zvlr,23 1,5)N12 12
2 2
with j > 1, b, = 3 BT = (~4)® 2 275(}7%) ana
- ! s=0 s=0
_oyJ 3 j J A
vire # 58 (e tr - £ 2sn1)( 1 b 5o ) L
I = g =1 g=1 DréSy j
(r - I 2sz+1)'
=1

For

Equation (3.56) implies that constructing a symmetry of order r is equi-

valent to finding a function Zgg) with the property that its (r+1)St

commutator with 512K12 is zero. This can be easily achieved by using

suitable H,,'s. For example, let H,, = y;+ y,, then (3.57) implies:
a ° o 2 n m+n-g+17
[85075M1p- 10 @qpMyp(v ¥y g = = Z By p 94 N12284 g
since
[6%2,y]+y2]1 =25, , where 8§, ) = 0 if & #1 or 1 if 2 =1,
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. 2
Thus, using the fact that [612’61,111 = 0 it follows that ®12 12(y1+y2)

generates first order time-dependent symmetries

m+n

.
07 M- (v ¥y,y) = 2by L eelR Nt

Similarly, to generate r-order time- dependent symmetrles use om

12 12
(y1+y2)r, since the commutator of (y1+y2) with 612 produces (y1+y2)r .
and hence the r-th commutator of (y1+y2) with 612 produces 1 which
(2)

commutes with 6 :
s r _ _(_13S _ _rt r-s
[512,(y]+y2) ]I = (1-(=1)7)0(r-s) (r s) (y1+y2) ’

where ©0O(r-s) denotes the Heaviside function with ©(0) = 1.

~

4. The hierarchy q, = j dy3612¢?2N12.1 admits two hierarchies of
t R

t-dependent symmetries of order r given by (3.56) where

(0) _ {m) (r)
Lyt = Ny LHp . .
( j % 2 1) | ; 2 1)
~ +3jn- 7 s, + r -  F.2s +
(3) _ : o =1 Sy o215y
212 = Iv (r,j,s)N12 H12 ,
and by
(0) “(m) (r)
Lipg = Myp Hy
( j ; 2 1) ( ) 2 1)
. ~(m+jn - 3 s + r - I s +
23 = 5y (e, 5,e0m L

where the summation § is over Sq1Syre-.sS, from zero to Pn’

j >1, Pn = (n-1)/2 if n is odd and (n-2)/2 if n is even. Also,
_ 2,n

bn,z = (-4a) (2).

The above extended symmetries, under the reduction Yy = ¥4 yield
symmetries. This follows from the following theorem (see [27])

Theorem 3.2

A

Assume that the admissible operators ¢12, K?z, satisfy

(9,5,8:,0 = - B8,
o s
[Kipn81,0 = -BS,680,,
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where B, B are constants and 512 is such that 812 [.]H12 = 0. Then

d
(i) If o,, is an extended symmetry of (3.45), o0,, is a symmetry
1
of (3%45).
(ii) If 9,5 is an extended symmetry of (3.45) then Oy = o(q1,q1)=0

is an auto-Bdcklund transformation of (3.45), where a, and d,

are viewed as two different solutions of (3.45).

(iii) If y,, is an extended conserved covariant of (3.45), vy, is

a conserved covariant of (3.45).

(iv) If Y1 is an extended gradient function then Y11 is a gradient

function.

EXAMPLE
Consider the extended symmetry of the KP

" - _ -1, -1 B
M12.1 = q1x + q2X + (q1 qz)D (q1 qz) + aD (q1y1 q2y2).

Clearly (M12.1)1] = 2q1x which is a symmetry of the KP. Also, M12.1

= 0 is a well-known auto-Backlund transformation of the KP.

Remark 3.5
(i) It is quite interesting that both symmetries and Backlund trans-
formations of an equation in 2+1 come from the same basic entity,
the extended symmetry. 1Indeed, when o = 0 the recursion operator

¢12 for the KP equation reduces to an operator that Calogero and
Degasperis have introduced [30] and which generates the auto-

Backlund transformations of the KAV equation.

(ii) Using the interpretation that qtb % gb * bg, q, b matrices, the
recursion operator of the KP becomes the operator generating auto-
Backlund transformations for the equations associated with the
N x N matrix Schrodinger problem in one dimension (studied by
Calogero and Degasperis [30]). This important connection is ex-
plained from the fact that certain 2+1 dimensional systems can
be viewed as reductions of certain evolution equations non-local
in y. These equations are directly connected to matrix evolution

equations [28],{31].
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3.7 Extended Conserved Gradients

Lemma 3.2

Assume that 017 is a Hamiltonian operator. Then,
[012F12/0129120g = ©qp97ad, ( £150459,,) +

0 {(f - £%_)00,,9.,] - (g,, - g*, V[0, f 1}. (3.58)
12 12d 12d 127212 12d 12d 12712
Proof

See [28].

One way of proving that Q?Z generates gradient functions is to use
Theorem 3.1, (v). However, this requires that ¢12 is factorizable
in terms of Hamiltonian operators. Alternatively, we propose the follow-

ing constructive approach, which only uses one Hamiltonian operator:

Construct the Lie algebra of the starting operators, say M12 N12. Then
use this algebra and (3.58) to prove that all Q @ K?z 12 are

=17 0 2 Lo
gradlents, provided that @12 12 12 is a gradlent, where 12 is M12

or N12. Finally, use Theorem 3.2 to show that ((5)12K12H12)11 are gradients.

EXAMPLE
Consider the operators M12, N12 associated with the KP. Then
-1 n+1" (3) _ ¢ (1) -1 g (2)
D 87, M H5 = grad( ¢12 1,,H1,7, D@ N, Y (3.59)
-1, n+1_ (3) _ iy (1) —1“ (2)
DT e, iyt = grad( @My, . DTMpHG ) (3.60)

For

It is easy to verify that D 1M12 12 is an extended gradient. Then (3.58)

and (3.37¢) imply that D~ ¢12 12 12 is an extended gradient. Equation
(3.37b) implies
n _ (1) - (2) ’

n+1
12M12H12 0 ®oNg ol

oDt n, _g!3)

]d 12 12712

-1 -1 .
Since D @12 12 127 D M12H12 are extended gradients, the above equation
with n = 0 and (3 58) imply that D ¢12 12 12 is an extended gradient.

Similarly D~ ¢12 12 is an extended gradient. Equation (3.60) follows in
a similar manner using (3.37c);
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Remark 3.6

It was shown in §3.6 that time-dependent symmetries of order r are genera-

. m m . _ r
ted via ¢12M12H12, ¢12N12H12 with Hy, = (y]+y2) The above results

~

-1.m -1.m . . .
show that D ¢12M12H12, D ¢]2N12H12 are gradient functions for arbitrary
H12. Hence the time-dependent symmetries correspond to gradient func-
tions. However, the time-dependent symmetries are closely related to
master-symmetries 1t (see §2). Hence the master-symmetries Tt correspond

to gradient functions.

3.8 Non-gradient Master-symmetries

Lemma 3.3

Assume that the hereditary operator ®12 satisfies ¢12612 = 612¢¥2,
where 912 is a Hamiltonian operator (if ¢12 is factorizable, then this

equation follows). Assume for simplicity that @12 = 0. Then
d
(@™ T ). + 0., T, Ve =T (T + o, 5 ol)) +
12712°4d 12°7127127a%12 12 12d 12 12d 12
Moo m-r -1
r£1®12 012(¢?2) 8?2912, (3.61)
where
* =
ST, F 0%, [T,1 + [Ty, ,0,,]. (3.62)
d d
Proof
See [28].

The results of Lemmas 3.1-3.3 can be used to obtain non-gradient

master-symmetries T12. Such master-symmetries are explicitly related
to recursion operators RPN Indeed given ®12 one computes T12 and
given T12 one .computes ¢12. These formulae are the two dimensional
analogues of the formulae given in §2.1. The basic idea is to find
-1
* = * =

a T12 such that T]2d + ®]2T12d612 0 and 812 C.1, C constant.
EXAMPLE
A master-symmetry of the KP hierarchy is given by ¢$2612. Indeed

8., = 84 (82.8,.) . + D(s2.6..) D" B constant (3.63)

12 1271274 1271274 ! :

142



- _ n 2
®12 M12.1 = Bn{¢12M12'1' 612]d' B, constant (3.64)

-1, m+n-1 _ x yn—1° m
D ¢, My,.1 = grad,, ((83,)'D M,.1, ¢,,8,,) - {3.65)
For
®.5 and M,, are given by (3.8), (3.35a), ©,, =D. Let T, = 612.
Then T12 + 6 12 912 = 0 and 872 = 4 (see (3.62)). Thus, equation
(3.61) with m = 2 Smplies (3.63).
To derive equation (3.64) use Lemma 3.1 with Ksé) = M12.1, Kgg) =
512, m= 2, Sg;) = 0 (since L is a strong symmetry of ﬂ12.1) and
si2) =9, [6,,] = 4. Thus
n - 2 _ n+2 (2 n+l
[ogMyp- 1, @908 50 = @957 My, 8y50g + 4n 0y Myt

n+2 .- n+1.
However, ¢12 [M12.1, 612]d is proportional to @12 M12.1, hence the

above implies (3.64).

To derive equation (3.65), use Lemmas 3.1-3.3 to obtain the follow-
ing general result: Ifd>12 is a hereditary operator such that it is
= * i
a stong symmetry for M12 and ¢12612 612¢12, where @12 is a constant

invertible Hamiltonian operator then

n n
m n-r r-1 r-1 Mubde n+m
PR PR P PR PR PR PLL PIR P LI E R R
= 0,, grad,, @ 0" M, oM r 5 - eT (1., + 0 Tt 07))0"
12 12M7127127127 "12712 12 12d 12 12d 12 127
where
S,, = ¢ (r,,1 + (¢, ,,7,, 1, s*, % &x [T 1+ [T%, , &% ].
12 12d 12 12 12d 12 12d 12 12d 12
. = : vv i = * =
Using T, 612 in the abce and noting that S19 S%, ‘ 4, T12d +
-1 _ n+m n+m 1
@12T?2d 0, = 0, ¢, [M12’ 612]d is proportional to Q M,

we obtain (3.65).
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Painlevé Analysis and Integrability Aspects
of Nonlinear Evolution Equations

M. Lakshmanan! and K.M. Tamizhmani?
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Tiruchirapalli 620024, India

2Department of Mathematics, Pondicherry University,
Pondicherry 605001, India

A brief review of the singularity structure aspects of the solutions

of nonlinear ordinary differential equations and their generalization
to partial differential equations leading to the Painlevé (P) property
is given. It is pointed out that the Painlevé analysis leads naturally
to Lax pairs, Backlund transformations, linearizations and Hirota's
bilinearization of nonlinear evolution equations. Specifically we
treat the Burgers', Liouville, Korteweg-de Vries, coupled nonlinear
Schrodinger and Kadomtsev -Petviashvili equations as examples.

1. INTRODUCTION

During the past two decades or so, there has been considerable progress
in the understanding of classes of nonlinear evolution equations leading
to many fascinating new concepts such as solitons, Backlund transfor-
mations, generalized symmetries, etc. [1-3] (as exemplified by the
various articles in this book). However, in this process an important
question arises as to how to search, identify, characterize and classify
the integrable nonlinear equations systematically and then understand
the solution characteristics. 1In the last century, this question was
analysed for ordinary differential equations by various authors [4-6]
through the singularity structure analysis of the solutions in the
complex plane. With the recent developments in soliton equations this
analysis has again received much attention [3,7-19], and now many of

the integrable dynamical systems are associated with the so-called
Painlevé property, in that they are free from movable critical points/
manifolds. The development of the singularity structure analysis can

in fact be traced down to the following four main aspects:

1. The classification of first order and second order nonlinear ordinary

differential equations (odes) which are free from movable critical
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points achieved through the works of Fuchs, Painlevé and his co-
workers [5] in the last century.

2. S. Kovalevskaya's (1886) investigation for finding the integrable cases
of rigid body motion around a fixed point under the influence of
gravity [6] through the singularity structure analysis.

3. Ablowitz, Ramani and Segur's (ARS) [3] conjecture in 1978 that
every ode obtained by an exact reduction of a soliton system which
is solvable by the inverse scattering method is of Painlevé (P)
type (see below), a fact verified from the invariance point of
view by Lakshmanan and Kaliappan [7].

4. Weiss, Tabor, and Carnevale's (WTC) [8] generalized version of
the Painlevé property directly applicable to partial differential
equations (pdes). Here the solutions of the pdes are required-
to be single-valued around movable singular manifolds in order
that they be integrable.

In Sec. 2, we begin with a brief discussion of odes and their
singularities, and the application of Painlevé analysis to them. We
review the generalized WTC procedure for pdes and apply it to a class
of nonlinear evolution equations in (1+1) dimensions in Sec. 3 and
obtain the basic solitonic properties. Furthermore, in Sec. 4, we
extend the application of P-analysis to the (2+1) dimensional Kadomtsev-
Petviashvili (K-P) equation and derive the associated Backlund trans-

formation and Lax-pair straight forwardly through the P-analysis.

2. PAINLEVE PROPERTY AND ORDINARY DIFFERENTIAL
EQUATIONS: INTEGRABILITY

The singularities of an ode can be classified as (i) fixed and (ii)
movable [4,5]. While the location of the former is fixed by the nature
of the coefficients of the ode, the latter is a function of the integ-
ration constant or initial condition.

Consider for example the linear first order ode %% + z—1w = 0.
It has the solution, w = C exp(1/z), C, arbitrary. So z = 0 is the
fixed (essential) singular point. More generally, for an n-th order

linear ode

a? "y
C¥ s p(z) &+ .. .+P(2)w = 0, (1)
n 1 n-1 n
dz dz
where Pi(Z)’ i=1,2,...,n, are all analytic at z = zg, admits n
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linearly independent solutions in the neighbourhood of 2o SO that

the general solution may be written as

w(z) =

[ o =]

ciwi(z), (2)
1

i
where ci's are integration constants. Here the singularities of the
solution must be located at the singularities of the coefficients Pi(z)
which are all fixed and apriori known and that they do not depend

on the constants of integration Civ i=1,2,...,n, at all.

However, in the case of nonlinear odes the singularities have

the additional property that they can depend on the integration cons-
dw 2

tants and so, they can 'move'. Examples: S v = 0 has the solution
w= (z - zo)_1, where z is a constant of integration. Thus, at z = z
w has a singularity, a pole of order one; it is movable because its
location depends on Zg- Similarly, %% + w3 =0, w= 55(2 - zo)_T/z;
dw logzw =0 w = expl ! ); W'y exp(w) = 0, w = log ( )
dz ! z-z ' dz ! z-z '

which admit movable algebraic Branch point, essential singularityoand
logarithmic singularity respectively. In fact, Fuchs [4] had shown
that the only first order equation which admits no movable critical
points is the generalized Riccati equation
W = pylz) + Po(z)w + Pylz)wl. (3)
Following the work of Fuchs for first order 6des, Painlevé, Gambier,
Garnier and others classified 50 canonical nonlinear second order
odes which do not exhibit movable critical singularities and which
can be integrated in terms of elementary functions, including elliptic
functions, and Painlevé transcendentals [5]. Also the nature of entire
bounded functions and the constancy of integrals of motion, coupled
with the works of Euler (1780), Lagrange (1788) and Fuchs (1884) promp-
ted S. Kovalevskaya [6] to treat the dynamical problem of the motion
of a spinning top fixed to a point in terms of meromorphic functions.
She concluded that only for three parametric choices (including those
found by Euler and Lagrange earlier) the system is free from movable
critical points and hence integrable, a result which even today stands
undisputed.

The classification of integrable dynamical systems through the
singularity structure analysis was not utilized much for more than
eight decades or so. The ARS conjecture [3] on the connection between
the integrable soliton systems and the Painlevé equations (noted in

Sec. 1) revived the interest again in the singularity structure analy-
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sis for dynamical systems recently. Such a revival has also led to

the concept of strong and weak Painlevé properties [18] for dynamical
systems, which are then associated with the integrability aspect.

Here the strong P-property stands for solutions which are meromorphic
around a movable singular point while the weak P-property [18] allows
for a relaxation of the meromorphicity condition on the solution so
that under necessary circumstances determined solely by the nonlinearity
of the equation movable algebraic branch points are also allowed for
algebraic integrals of motion [17] to exist. Some of the typical
integrable dynamical systems which possess the P-property are (i)
Henon-Heiles system [18], (ii) coupled polynomial nonlinear oscillators

{191, and (iii) Toda-lattice, for specific parametric choices.

An n-th order ode of the form

n n-1
d_: = F[ler %I ey dn_‘%’]r (4)
dz dz
dn_1w
where F is rational in (*——H:T ) oeeer W ) and locally analytic in gz,
dz

can be analysed algorithmically for its singularity structure as follows.
Let us look for a Laurent series solution of (4) in the neighbourhood
of a movable singular point in the form
q. © m
° m—Z:Oaj’m(z - zo) , 0O0<z - z < R, j=1,2,...

(5)

and determine the allowed values of qj, aj m
14
(n-1) arbitrary constants enter into the series (5). 1In order to

and the powers at which

avoid inconsistencies, it may be necessary to introduce further logarith-
mic terms in the above series. Finally, after verifying the existence

of the above solution, one classifies the conditions under which the
solution is free from movable critical singularities to within trans-

formations, which are then the possible cases for integrability. The

latter may be proved often by finding the appropriate integrals of
motion by other methods.

3. THE PAINLEVE ANALYSIS FOR PARTIAL
DIFFERENTIAL EQUATIONS: INTEGRABILITY

The natural extension of the P-property discussed in Sec. 2 to pdes was
suggested by Weiss, Tabor and Carnevale (WTC) [8], who required that

the solutions be single-valued around movable singularity manifolds.
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The major difference between the P-analysis of odes and pdes is that
now the singularities of the latter are in general not isolated, as
the solutions are functions of several complex variables (z1,22,...,zn),

but rather lie on manifolds determined by the condition

¢(z1,22, vees Zn) = 0. (6)
Thus if u = u(z1,22,...,zn) is a solution of the pde
u + K(u) = 0, (7)

then we require that in the neighbourhood of the manifold
u = ¢ I u.e-, (8)

where u, # 0, uj = uj(z1,22,...,zn) and ¢ = @(21,22, . zn) are
analytic functions of (zj) in a neighbourhood of the manifold (6)

and that o is a negative integer. By Cauchy-Kovalevskaya's theorem
such an expansion of the general solution must have sufficient number
of arbitrary functions equal to that of the order of the pde. Impli-
mentation of this procedure is direct and follows algorithmically in

a manner similar to that of the odes.

There are essentially four steps involved in the P-analysis of pdes:
(i) Determination of the leading-order behaviours; (ii) Identification
of the powers at which arbitrary functions can enter into the Laurent
series called resonances; (iii) verifying that at the resonance values
sufficient number of arbitrary functions exist without the introduction
of movable critical manifolds; (iv) Establishing connections with
the soliton and other integrability properties. The remarkable feature
of the P-analysis, particularly for soliton equations, is that a natural
connection exists between the P-property and the linearization property,
Lax pairs, Bdcklund transformations, integrability, etc. [8-15]. 1In

the following subsections we will explain each of the stages succinctly.

3.1 Leading order analysis

The analysis starts with the determination of the all possible valuel(s)
of a and u, in the expansion (8), and under what conditions a is a
negative integer so that no movable critical manifolds enter at this
stage. For each value of @, the homogeneous terms with the highest
degree may balance each other. These terms are called leading terms

(or dominant terms). The value of u, can be determined by equating
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the coefficients of the dominant terms to zero and solving the resul-

ting algebraic equation for ug-

3.2 Resonance analysis

Next, one has to find the "resonance" values, j, that is the power(s)
at which the coefficient(s) uj of the term w3+a in the expansion (8)
is arbitrary. To find these, we substitute (8) into Eg. (7), and

obtain appropriate recursion relations for uj and extract the coefficient

Q(j) = Q(j)uj of the term wj+a_N, where N is the order of the pde. Then
Q(j) = 0 is called the resonance equation, for which -1 is always
a root, which corresponds to the arbitrary nature of ¢. In order

to avaoid any movable critical singular manifolds, we require that these

remaining roots are non-negative integers.

3.3 Arbitrary functions

Let jS be the highest of the allowed resonance values. Then we subs-

titue
3j .
u = ZS u. cpj+a (9)
j=0 J
into Eq. (7) and collect the coefficients of ¢J+a-N to obtain
j)Ju. + R. = 0, (10)
Q(3)uy + Ry
where R. is a polynomial in the partial derivatives of ¢ and uk's
(k = 0,1,...,3-1). Since Q(j) = 0, for any resonance value j, R

should identically vanish. In this case uj is arbitrary. In cgse

if it is not so, we have to introduce logarithmic terms of the form

aj + bj logy in the series. But due to this addition, logarithmic
singularities will appear in the solution manifold. Thus, R. = 0 is
the condition to ensure that the solution is free from movable critical
manifolds at a particular resonance value j. In this way, we can check

that the general solution is free from movable critical manifolds.

3.4 B&dcklund transformation (BT), Lax pairs, etc.
The Backlund transformation of Eqg. (7) can be obtained by truncating

the expansion (8) at the 'constant' level term, by setting

u=u ¢’n + u, @—n+1 ...t (11)

Then one can find an over-determined system of equations for ¢ and u.,

j=20,1...,n, where u, will satisfy Egq. (7). Upon solving the over-
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determined system, the other soliton properties of Eq. (7) such as

linearization, Lax pairs, etc., can also be obtained, in general [8-14].

4. EXAMPLES

In this section, we briefly illustrate the theory discussed above with

some typical examples [8-14].

4.1 Burgers' equation
The Burgers' equation is of the form [2]

u, + uwa, = ou, .- (12)

Using Eq. (8) in Eg. (12), we can easily find from the leading order
analysis that

o = -1, u = -200,. (13)

The recursion relations for u. are found to be

J
. j
Uyog,e * (j—2)uj_1 ot mfo u]._m[um_1'X + (m-1)¢xum]
_ . . sl 2
= 0[uj_2’xX + 2(3 Z)uj—T,x e+ (3 2)uj—1¢xx + (3-1)(3 2)uj¢X].
(14)
The resonance analysis shows that the resonances occur at j = -1,2.
In fact, j = -1 corresponds to the arbitrariness of the manifold
e(x,t) = 0.
From Eq. (14), we find that
j =0 ; u, = —20¢X, (15a)
=1 : P T U O, = 09y (15b)
. 3
j=2: §§(¢t tu, 9, -0 ¢Xx) = 0. (15c)
By (15b), (15c) is identically satisfied and hence u, is arbitrary.
The coefficients uj, j > 2 can then be obtained uniquely in terms of
Ugs Uy and u,. Therefore, the general solution of (12) contains

the required two arbitrary functions and that (12) possesses the
Painlevé property [8] in the sense of WTC.
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If now one sets the arbitrary function u2 = 0, then all uj =0,
j > 2, provided

Uge + uug = ouy (16)

which is just the Burgers' equation. Thus, we obtain the Backlund

transformation for Burgers' equation,

9
u = -20 X+ ag (17)

¢

where both u and u, satisfy the Burgers' equation and ¢ obeys (15b).

When we consider the vacuum solution u, = 0 in Eqg. (17), the well-

known Cole-Hopf transformation results, which is the linearizing trans-

formation for the Burgers' equation.

4.2 Liouville equation

We next consider the Liouville equation [11] in the form
u = e . (18)

Under the transformation
u = 1log V, (19)

(18) becomes

_ - = ; (20)
Vth Vth \Y 0
On expanding
@ .
v = (p—z 5 v.(P]' (21)
j=0
we find that
= = - 22a)
Yo 2¢x?t’ V4 205t (
and
VoVoxe ¥ VoVix®e T VoViePx T 3VoViPxe T ViVox®e

2
VorV19x + Viegoe * 6 VoVoo 00 = VouVor -
2 2
3.v0v2 - 3v0v1 = 0. (22b)
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After making use of Egs. (22a) in- (22b), we observe that v, is arbit-
rary and thus Eg. (18) passes the Painlevé test [11]. Furthermore,

a BT is obtained with

29,0
_ X7t
vV = —;5—— + v, (23)

provided v, satisfies Eq. (20) and the linearized wave equation is
true:

Oy = 0. (24)

The solution of (24) is given by

¢ = h(x) + g(t), (25)
where h(x) and g(t) are arbitrary functions. Consequently, we obtain
the general solution

2g.h
u = log |—% | . (26)
(g+h)

4.3 Korteweg-de Vries equation (K-dv)

The K-dV equation

u, +uu + o oou = 0 (27)

is easily shown to possess the Painlevé property. One can find the
leading order and the resonance values as a = -2 and j = -1,4,6 res-

pectively. From the recursion relations it is easy to check that

. 2

3 =0 :uy=-1200, (28a)

j=1:u, = 1209 (28b)

5=2:00. +uglitac - 3092 =0 (28¢)
) x¢t 2wx mx¢xxx Pyx

jo=3: +u - w9l + o =0 (284)
P %%t 2¢xx 3%x P yexxx

=4 : S (g + us.. - u.92 40 ) =0 (28e)

X Xt 27V Xx 3%x ¢xxxx
3 =5 3 Uy Ty, YOl gk TU3 O U Uy FU Uy ugu, fug utugug @t

2 2
u1u4(px+u2u3“°x+c(3u3xx(Px+6u4x(Px+3u3x(pxx+6u5(px+6u4(px(pxx+

) = 0.

U3Pyxx (28f)
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Now it is clear that by the condition (28d), the determining Eq.(28e)
is always satisfied. Similarly, we can verify that at j = 6 the com-
patibility condition is satisfied identically and so, ue is arbitrary.

Thus, we conclude that the K-dV equation possesses the Painlevé property

[81.

If the arbitrary functions Uy and u, are chosen identically to
be zero, and if we require that uy = 0, then we can verify that u. = 0,
j > 3, provided u, satisfies the K-dV equation. Thus, we get the BT
for the K-dV equation in the form

u = 33— logy + u (29)
3 2 2
X
with
2 2
P 0 t uye, *t 409 0 - 309 = 0, (30a)
Pop + 12u2¢xx t Pixx = 0, (30b)
and
Upe + upu,  + 0 u, 0= 0. (30c)

Eliminating u, from (30a) and (30b), we obtain after an integration
g
tolg x} = X, (31)
Px
where

2
(o7 xp = x| o1 |Txx (32)
(PX X (px

is the 'Schwarzian derivative' of ¢ and A is a constant parameter.

With the substitution ¢ = v1/v2, Eq. (31) can be rewritten in the form

vy 2y 20 v
Shrolles xp - B 4 KK 2K oy (33)
ex 2 X 2
where OX = VoV T VVoyr Wt = VoVie T VVoe- If (v1,v2) satisfy a
linear system (say)
v = av (34)
XX
v, = bv_ + cv (35)
t X
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then we can check that © x = 0 and Wt = b@x. Using these values

in Eq. (33) we get a = - g(u2 + A), b= - u2/3 +(2/3)x and ¢ = u2x/6.
With these values, Egs. (34) and (35) are just the Lax pair of the
K-dV equation.

4.4 Coupled nonlinear Schrodinger equations

Our next example is a system of two coupled nonlinear Schrodinger (NLS)
equations defined by

. 2 2
iXg = SXqxx * 2a|x1| Xp + 28|X2| X1 (36a)

. _ 2 2
iXpp = Cp¥opy * 2y|x2| X, + 28|X1| X - (36b)
The system (36) is known to be integrable [16] for the following

specific parametric restrictions

o =8 =Y c, = ¢, (37)
o= -B =y c, = - C,. (38)
Now we will show that for exactly the same parametric choices, (37)

and (38), the system (36) passes the Painlevé test [12].

We rewrite the Egs. (36) as

0 = c.p_ + 20(P% + @%)p + 28(R? + s%)p (39a)
t 17 xx
P = c.o_ + 2a(P? + 0%)0 + 28(R% + s%)Q (39b)
t 1%xx
2 2 2 2
pu— = +
St CZRxx + 2B(P° + Q)R + 2Y(R ST)R (39c¢)
2 2 2 2
Rt = CZSXX + 2R(P° + Q°)S + 2Y(R™ + S7)S, (394d)
where Xy = P + iQ and Xy = R + iS, P, Q, R, and S are reals. By

expanding P, Q, R and S about the singularity manifold ¢ as

P =9 I P, 0=¢ I 97, (40a)

@© . _,l @ .
R =g¢ b quﬂ, S = ¢ z Sj(p] (40b)
=0 j=0

one can easily find the following two possibilities:
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2 2 2 _
Case 1 cyc, g, = 2(Ry + 83) (cyy - c,B) (41)

and the associated resonances are

j=-1,0,0,1, 2,3, 3, 4. (42)
Case 2 (R® + 8%) (c,y - c.B) = 0O (43)
0 0 1Y 2
and
3 =-1,0,0,0,3, 3, 3, 4. (44)

We can verify that for case 1 the associated series solution will

have a lesser number of arbitrary functions only since none of the
functions P1, Q1, R1 and S1 is arbitrary and so it does not correspond

to the general solution. For case 2, the resonance values (44) require
that three of the four functions PO' QO' R0 and S, are arbitrary.

0
From the leading order analysis we have

2 2 2 2, _ 2
a(P0 + QO) + B(R0 + SO) = CiPyr (45)
(twice)
2 2 2 20 _ 2
B(P0 + QO) + Y(R0 + SO) = SPLM (46)
(twice)

and hence two, say P0 and QO’ of the four functions (PO,QO,RO,SO)
are arbitrary. Also, from Eqg. (43) we can show that R0 (or SO) is
arbitrary only for the conditions (37) and (38). Proceeding further
we can establish the required arbitrariness at the other resonance
values. Thus, Egs. (36) possess the Painlevé property for the para-

metric choices of Zakharov and Schulman only.

We will discuss the connection between the corresponding BT and
soliton solutions in Sec. 5. We remark that this analysis can be
extended straightforwardly to the case of a set of N coupled nonlinear
Schrddinger equations [12] as well.

4.5 Kadomtsev-Petviashvili equation

The Kadomtsev-Petviashvili (KP) equation is a two-dimensional genera-
lization of the well-known Korteweg-de Vries equation and describes
unidirectional weak (quadratic) nonlinear disturbances perturbed by
weak transverse balancing fourth order dispersion. The system admits

infinitely many non-trivial symmetries and constants of motion and
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a Lax pair exists. In this section, we will demonstrate the existence

of the Painlevé property for the KP equation and obtain its Lax pair
therefrom.

The KP equation is of the form [10]

ax(ut + 6uux + uxxx) + 30 uyy 0, © 1. (47)

@
. . +
Now, the Laurent series solution takes the form u = I u.w] o

-0 J
around the singularity manifold ¢(x,y,t) = 0, wherejug -2 and uy =
—2¢i. Substituting the above series solution into Eg. (47), we find
that the resonance values are j = -1,4,5 and 6. Then equating the

lowest order coefficients to zero, we obtain,

. 2
3 =0 : uy = -2, (48a)
j=1 u, = 12(pxX (48b)
=2 : g9, - 302 + 4g_¢.__ + 6u 0> + 36%¢ = 0 (48c)
PPy XX X TXXX 27x 3%

j =3 [0 + 6u,9 - 6u wz + 302¢ + @ =0 (484d)

Xt 2 'xx 37x vy XXXX
. . a 2 2 2 2 _
=4 ((px<pt 3(pxx Ao 0t 6u2(px + 30 (py)xx =0 (48e)
=5 1 (9. + 6up.. - 6usp> + + 3% ). =0 (48F)

) xt 27 xx 3%x P xxxx wyy XX
3= UsPut F Uoxt T U3p@Py o Ugy Py F 6u1u3xx * 6u2u2xx *
2
U3Up@uy * 6U3Uqyy * 12Upuz, 0, F T2ug uy, + bup, F
Ruu, ¢ _+ 12u2m2 + u + u + 4u +
3172x"x 3'x 2XXXX 3% xxxx 3xxx?x
6u [0) + 4u, o + 302u + 602u +
3xXx'xx 3x7TXXX 2yy 3y¢y
302¢ u = 0. (489g)
Yy 3

From the above sets of equations, one can verify that the functions

Uy ug and ug are arbitrary [9,10] and so the P-property holds.

If we choose the arbitrary functions Uys Ug and Ue identically

to be zero, it is easily seen that uj = 0, Jj>7 provided uy = 0,
in which case u, satisfies the KP equation
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3 2 _
3§(u2t + 6u2u2x + u2xxx) + 30 = 0. (49)

Accordingly, we have the B&acklund transformation
82
u = 2 —5 logg +u,, (50)
2 2
9x

where ¢ satisfies Egs. (48).

Eliminating u, from Egs. (48c) and (48d), it is found that

2
Q. ? P
3 (Ewie s x}+ 32+ 36% 2 = 0. (51)
X Q. 2 ¢2 Ay Py
X

Integrating (51) with respect to x and inserting ¢ = v1/v2, we require

that (v1,v ) satisfy

2

y 17 xx 27 Vo T f3Vxxx + f4Vx + f5v, (52)

where f1, f2, f3, f4 and f5 are functions of (x,t,y,u) to be determined.

Finding the fi's, we obtain finally the Lax-pair in the form

ovy + v +uv = 0 (53a)

X

- ' =
vt 4vXXX + 6uvx + 3(ux o J uy ax') 0 (53b)

-

the compatibility of which is the KP eq. (47).

5. INTERCONNECTION BETWEEN THE PAINLEVE PROPERTY
AND HIROTA'S METHOD

Among the direct methods, Hirota's bilinearization technique is the
most convenient one to construct soliton solutions of npdes. Essen-
tially, the method advocates transforming the given equation into
homogeneous bilinear forms and then by 'self-truncating' the series
to obtain a set of bilinear equations. In this process, the reasons
for both the choice of the initial transformation and the self-trun-
cation of the series is rather obscure. From the P-analysis, it

is clear that the truncation of the Laurent series at the constant
level term results in the BT. For the vacuum solutions using the BT
we can obtain in most cases the required Hirota's dependent variable

transformation to transform the given equation into the bilinear
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operator form [13-15]. As an example we consider [12], the coupled

nonlinear Schrdédinger eq. (39). The BT for Eq. (39)
P = Po | +P 0=0w | +0 (54a)
o? 17 o? 1
R =Rg | +R S=5. ¢ ' +s (54b)
0 1 0@ 1

in the vacuum case leads to the following set of equations:

2 _ _ -
[2c, (@) =00 ) + 20T TPy = 10, 0-0up, + < (Py 0% Pooy = 2Pg,0. ) o
(55a)
2 _ _ -
[2c1(¢x_¢¢xx) + 20LI\]QO - [Po¢t POt(p +C1(Q0xx(p+Q0(pxx 2Q0x¢x)]w
(55b)
2 _ _ _ -
[2c1(¢x—w¢xx) + 2OtF]RO - [SOt¢ SO<Pt+c1(R0xx(p 2RO(th 2R0x¢x)]w
(55c¢)

2 _ _ -
[2c1(¢x—w¢xx) + 20LI‘]SO - [Rowt R0t¢+c1(50xxw+so¢xx ZS0x¢x)](p’

(55d)
where
_ 52 2 2 2
r = PO + QO + R0 + SO.
Eqgs. (55) can be reexpressed in terms of the Hirota's bilinear opera-
tors and after decoupling we obtain the form
2 -
(c D, - We.9 = 2ol (56a)
2 -
DiQg@ + ciDyPg® ~H Pgo = 0 (56b)
2 =
-D Py¢ + c,D.Qn¢ - Qe = 0 (56c)
D, S + ¢, D2R ® - WR,0 = 0 (564)
t°0? 1°%°0 0
-D, R + c Dzs @ - uS,¢ = 0 (56e)
t70® 1°x°0 0 ’

where y 1is a constant to be determined and

n.m _ (9 _ 3 yn,3 _ 3 m )
DtDXf.g = (3; at') (ax 3;7) f(x,t)g(x’',t")
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In particular, from (56a), we get
82 u

(c;, —5 loge - 3), (57)
X

2 2 2 2 _ 1
PO + QO + RO + SO = a
and for the choice (45) we obtain

82 u
(c,"— logg - 7). (58)
Ix

+ Q5 - (R2

2y _
0+SO)-—

1
a
Now expanding the functions ¢, PO, QO’ RO and S0 as power series

[12] and using them in (57) we can construct the N soliton solutions.

Similar analysis can be applied to the other systems as well.

6. CONCLUSIONS

In this review, we have briefly pointed out how the Painlevé analysis
1s a useful and systematic procedure for investigating the integra-
bility properties of nonlinear partial differential equations. For
a class of physically important equations we have demonstrated that
this technique can in a straightforward manner lead to linearizations,
Lax pairs and Hirota's bilinearization, showing the deep interconnec-

tions between the Painlevé analysis and integrability.
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Generalised Burgers Equations
and Connection Problems
for Euler-Painlevé Transcendents

P.L. Sachdev

Department of Applied Mathematics, Indian Institute of Science,
Bangalore 560012, India

Some recent results on a class of generalised Burgers' equations (GBE)
are reviewed. Characteristically they reduce to nonlinear Euler-
Painlevé equations, on similarity reduction, possessing single hump type
solution. GBE's with variable viscosity coefficients are briefly dis-
cussed. It is pointed out that the Korteweg-de Vries type equations and
GBE's behave somewhat analogously in their self-similar forms.

1. INTRODUCTION

There has been a pervading and persistent interest for a couple of
decades in the study of the model nonlinear equation, called the Korteweg-

de Vries equation,
§ -
u, +uu + 5 ou = 0. (1)

This describes a certain balance between the (simplest) dispersion and
nonlinear convections. Equation (1) and its kindred class have three
main unifying features: (1) they exhibit clean soliton interaction;

(2) they can be exactly linearised through inverse scattering theory

to linear integral equations of Gelfand-Levitan type; (3) their self-
similar form, as it is or through some simple transformations, belongs
to the class of nonlinear ODE's whose only movable singularities are
poles; this characteristic of the ODE's (or PDE's) is called Painlevé
property, after Painlevé who first studied second order nonlinear ODE's

from their singularity structure point of view.

There is another distinguished model equation,

_ 6
u, + uu, = 5 Uy (2)

called the Burgers equation, which has a certain kinship with (1).

Ithad preceded the latter in its inception and investigation. Equation
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(2) represents a balance between linear diffusion and nonlinear convec-
tion. Equations (1) and (2) have the same convective term but different
higher order terms. Each of these equations has influenced the study

of the other. Equation (2) is simpler and can, in fact, be exactly
linearised to the heat equation by the Hopf-Cole transformation [1].

In contrast, Eg. (1) has no such simple transformation and attempts

to linearise it by a Hopf-Cole type transformation have led to its further
'non-linearization' [2]. Equation (2) does not display soliton behaviour;
indeed it has no solitary wave solution. Actually, Eq. (2) is a severe
idealisation of reality. The equations which actually occur in applica-

tions are invariably more complicated. We quote two such equations:
_ 8
u, + u"u_ + Au- = 5 Uy (3)
n ju _ ¢ I
u uau, + 2T 5 3 Uygyr I = 0,1,2. (4)

Equation (3) has a lower order damping term and describes stress waves

in a nonlinear Maxwell rod, while Eg. (4) has a spherical or cylindrical
term besides those in (2). Both these equations have more general non-
linear convective terms than (2). We shall mention other generalised

Burgers equations (GBE's) in the sequel.

It does not seem possible to linearise GBE's of the type (3) and
(4) through Hopf-Cole like transformations. The question arises whether
we can unify this class of equations in some manner. Since soliton
behaviour and exact linearisation do not seem possible, the one option
open is their characterisation through the ODE's obtained by similarity
transformations. This turns out to be possible. We find that there
is a class of nonlinear ODE's, which we refer to as Euler-Painlevé equa-
tions, which describes the self-similar single hump (and sometime other)
type solutions of several GBE's. A very special case of this equation
was studied by Euler and Painlevé [3], hence the name Euler-Painlevé

transcendents.

In the present paper, we summarise our work on GBE's and Euler-
Painlevé transcendents [4,5]. We first study the Burgers equation and
its self-similar single hump solution. The self-similar solutions of
(3) are then studied with reference to a connection problem with respect
to the 'reduced' nonlinear ODE's on the whole real line. This is followed
by a similar study for (4). Some current work on GBE's with variable
viscosity coefficients is then briefly discussed. Finally, we refer
to a large number of DE's, which have been categorised by Kamke [3]

according to their formal appearance and appended with geometrical or
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physical significance. These are special cases of the Euler-Painlevé
equations if the coefficients in the form of the latter are made to
vary with the independent variable. A reference to the connection pro-
blem for the K-dV equation as represented by the second Painlevé trans-
cendent is made again to show how K-dV type of equations and GBE's
behave somewhat analogously in their self-similar forms. However, we
caution that Euler-Painlevé equations are free from singularities on
the finite real line, unlike Painlevé equations, which, in general,

have an infinite number of poles.

2. SINGLE HUMP SOLUTION OF BURGERS EQUATION

We study in the following a specific self-similar solution which has

a single hump form and vanishes at x = t ». For the Burgers equation
(2), this solution can be written out as
u o= (s/0)2 ), n = xlase)” /2 (s)
where
1/2 B
f(n) = [—%gﬂl——- exp(nz) + (11/2)1/2 exp(n2).erfcn] !
e -1
1
= , say, (6)
HB(n)

where the function f(n) satisfies the DE

3/2

f£'' + 2nf'+ 2f - 2 ff' = 0 . (7)

The 'inverse' function HB(n) plays an important role for GBE's, as we
discusss subsequently. In the present case, it satisfies the DE,

HH'' - 2H'2 + 2nHH' - 2H2 - 23/2

H' = 0. (8)

We note a few properties of this single hump solution, which, in a sense,
is closest to the solitary wave. We emphasise that this solution is

not symmetric, in contrast to the solitary wave. The solution (5) arises
out of singular initial conditions u(x,0) = ¢yt A8 (x), where co=const.,
§(x) is the delta function—singular initial data are common to most
self-similar solutions. By integrating (2) from X = -o» to X = +w

’

one may easily conclude that the Reynolds number

_ 1 9
R = 3 J u dx (9)
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is constant. Here, we use the conditions that u and its x-derivatives
vanish at x = t«. The solution (5) vanishes exponentially as x-+ +x
and algebraically as Xx-+ -». One may further verify that in the limit

§+ 0, that is, R » », the solution reduces to
u = x/t, (10)

the solution of the inviscid Burgers equation with § = 0. For large

but finite R, the single hump consists of the inviscid solution for

E<y/2, followed by a thin shock ending in a diffusive tail. For R~ 0,

it easily follows from (6) that the solution (5) is essentially diffu-
sive; the nonlinear convective term plays no essential role. Hopf [12]
pointed out that the solution (5) represents a 'stationary' solution,

to which an infinite number of solutions, with essentially similar be-
haviour at x—+ t® in their initial conditions, converge as t -+ o. Such
self-similar solutions in Soviet literature are now referred to as inter-
mediate asymptotics [1].

3. SINGLE HUMP SOLUTIONS FOR GBE WITH DAMPING--
THE CONNECTION PROBLEM

Now we seek self-similar single hump solutions of (3) [4]. We find
that the solution has the form

t1/(1—0L) £(n)

u ' (11)
n = x(26t)~1/2,

provided
B = (a - 1)/2. (12)

Equation (3) then reduces to the ODE

1 -
d(o=1) g0 L ge® = o, (13)

R . I (PI B
T-a
The solutions (11) decay (explicitly with time) if o > 1 and grow if

a< 1. We employ the 'inverse' transformation (cf. (6))

Ho= §/2 g(1-a/2 (12)

and obtain the form

2 3/2

HH'' - 2(1+0.|)H'2+ 2pHH' - 2HY - 2°7°H' - 2 A, = 0 (15)
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of (13), free from fractional powers of f. Here,

_ 1 3-a _ _
SR T My )\1 = A1 o). (16)
Equation (15) generalises (8) in two ways: the coefficient of H' becomes

-2(1 + a1) instead of -2, and a constant —2A1 gets added on to (8).

These 'minor' changes represent a fairly general GBE (3). Before we
pose a connection problem for (13), we note two special solutions of
(13) and (15). First, (13) has a constant solution,

£ o= [A(a - 1)1/ 0Tma) £, say. (17)

It is easy to check that fm is the maximum value of f that the maxima

of the single hump solutions can attain. The other exact solution is

2/(1-a)
(A,n) . no> 0,
£ =
(-a_m /=) g, (18)
where
a, = (/)72 @i+ asran /2 40,
Al = (/)2 &hra s s+ a2 -0 (19)

The corresponding solutions for H(n) can be written with the help of
(14). Eguation (15) has the Taylor series solution

o0
H = % an (20)

1 2 1/2 2 2
a, = '3_'{(a + 2 a; + a1) + A1 +oaqay },
o
a = (a_a, + 23/2 a, +3a.,a,) + 4a.,a,a etc (21)
3 3a o1 2 172 19172 7 .
Here a and a, are two arbitrary constants. It is easy to check that

the solution Hp in (6), when exp(nz) and erfc n are suitab}y expanded,

is a special case of (20) with a =3, X = 0, and a,; = -22, For this

choice of a we obtain a single parameter family of solutions of Burgers

‘I ’
equation, the single parameter a, representing the amplitude at 'in-
finity' of the various curves, or their Reynolds number. In general,

it is difficult to identify the ranges of parameters a, and a, in (20),
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for which the series converges for - < n < ». For this purpose we
go back to the self-similar function f governed by (13), and pose for
the latter a connection problem. Since we require the solutions to

vanish at n = *+ », we linearise (13) for its asymptotic behaviour:
E'' 4 2f' - 2 f = 0 (22)
1-qo "

This equation has the solution

- 2 2 20y
f = A expl(-n )Hv(n)“‘A exp(-n“)(2n) as n t o (23a)

and

-201—1
f ~0(n

) as n -, (23b)
where Hv is the Hermite function of order v and A is the amplitude
parameter. Thus, the asymptotic behaviour is similar to that for Burgers

equation——exponential and algebraic for n ~ » and n ~-», respectively.

Equation (13) was solved numerically starting with the asymptotic
behaviour (23a) for large positive n. The main result of this study
was that in the decaying range o >1, the self-similar form of single
hump type exists if 1 < a < 3; the amplitude parameter A for each admis-
sible value of (a,B8) could at most reach a maximum value of A = A

max "’
For this value of A, the solution starting with (23a) would rise to

approach the special constant solution f = f (see Eq. (17)). For
A > Amax’ there is no single hump solution. The solution grows to become
unbounded at n = -». Sachdev et al. [4] carried out a thorough investi-

gation of the intermediate asymptotic nature of these self-similar solu-
tions by integrating the PDE (3) by pseudo-spectral and implicit schemes.
Here, we emphasize that the self-similar form of (3) is governed by

the equation (15) for H, the inverse function. Equation (15) is a special

case of Euler-Painlevé equation which we introduce in Sec. 6.
4. SINGLE HUMP SOLUTIONS OF NON-PLANAR GBE'S
Now we consider the self-similar solutions of (4) in the form

w o= £ V2%, n o= x(280)7 172, (24)

so that f(n) is governed by the ODE

£rv - 23/2 6—1/2fafl + 2nfl + M f = 0' (25)
a
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where o is a parameter. The 'inverse' transformation

H - 61/2 f—(l (26)
changes (25) to
EE - @ g2 4 onaE - 201 - of)E? - 232 w0 = 0. (27)

Equation (27) may be compared with (8) corresponding to the standard

Burgers equation (2): only the numerical coefficients in (27) differ
from those in (8) and the former reduces to the latter when j = 0 and
o = 1. Equation (27) belongs to the Euler-Painlevé class (see Sec. 6).

Equation (27) has a series solution (20) with two arbitrary parameters,
and the recurrence relation for the coefficients can be written out
[5]. To identify the single hump solutions for (25) and the inverted
hump solutions for (27), we again pose the connection problem for (25).

The linearised form of the latter,

£roo4 2ner 4+ 200 o )¢ = o, (28)

has the solution

2
f(n) = A e " Hv(n), n>20
1/2 .
f(n) ~ 2T " 37V o, (29)
V(-v)
provided aj < 1. Here v = 1/a - (j+1), Hv(n) is the Hermite func-

tion of order v, and A and B are the amplitude parameters. Thus, the
linear solution decays exponentially as n -+ o and algebraically as ns- ow.

The connection problem may thus be stated as follows:

groo- 23/2 712 gapn L oonEe g giliﬁil— £=0, (30)
2
f ~ A exp(-n") Hv(n), n+eo , (31)
f+ 0 (ni+- o), (32)
and
|f|<m,—m<n<m. (33)

Before we give the numerical results for the above problem, we dis-
cuss a class of special exact solutions which provides some clues to

the general case. If o = 1/(j+1), Eq. (30) reduces to

£+ onE 4 of' = (2/6) 1/ 2% (34)
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Integrating (34) and using vanishing conditions (31) at n = », we get

nf + 4 g

! (2/8)1/2 g0t (35)

1
(a+1)

The transformation G = £ & changes (35) to

. _ _ _2a 1/2
G 2anG = rre (2/6) . (36)

This equation can be integrated. We, thus, have
1

a’n _, 2 -1/a
£(n) = exp(-n?) { ¢ -2 (2a/)"/2 | et at .G
a+1 0
where ¢ = £ %(0). This solution generalises the solution (6) for Burgers
equation to other geometries, provided the parameter a equals 1/(j+1);
thus for j =1, o = 1/2 and j = 2, o = 1/3, we have explicit single

hump solutions of (4). We can infer more about the solutions of (4)
o

by deriving relations involving some integrals. Writing F = f , Eqg.(25)
can be transformed as
Trr -2l m2h (1 - apE? s oaEE - (2/6)/2 F7F =00 (38)
Integrating (38) from n = -« to n = «, and using vanishing conditions
there for F and F', we get
(s 2] oo
(20 - 1) [ F?dn = 122¢ [ pe2 gy, (39)
) a -0
Equation (39) implies the following:
(i) 3 = 0. The ratio
IF2 dn
-
r= — =- =200 4 g5 . (40)
4 F'2 an

Therefore, the single hump solutions in this case exist only if a >l

5-
(ii) j = 1. 1In this case (39) holds if a = %. This corresponds to
the exact solution (37).

(iii) j = 2. 1In this case, the ratio r of the integrals in (40) is

(1 - 2a)/ald4a - 1). This is positive if 1/4 < a<1/2. This is the
range for which the single hump solutions may exist.
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The numerical study of the connection problem (30)-(33) indicated
the existence of solutions for a < 1/(j+1), j = 0,2, which go to zero
at a finite point n = Ngr Say, instead of n = -, Indeed, one can
easily derive the relation

alj+1) - 1) [ fdn = - 1 f'(nO)

o = 3 (41)

for this case. Since, evidently, f‘(no) >0 and £ > 0, (41) implies

that a < 1/(j+1). Thus, single hump solutions of (30) vanishing at
n=®and n = Ngr 2 finite point, exist only if a < 1/(j+1). Combining
these results with those in (i)-(iii) and the inferences from the numeri-
cal solution of the connection problem (30)-(33), we arrive at the quali-

tative nature of the solutions, as summarised in Table 1.

Table 1 Single hump, monotonic and diverging solutions of Eq. (30)

Behaviour at left boundary

u
]

o
g
1]

-

=2

Solutions vanishing at a =1 a

1/2 1/3 <a< 1/2
n = -e

Solutions vanishing at 1/2 <o < 1

!

1/4 <a<1/3
r]=T‘|0
Solutions monotonically - o =1 a = 1/2

approaching a constant
at n= -«

Solutions diverging to - a > 1 a > 1/2
infinity at n = -

The details of the numerical study of the problem (30)-(33)may be seen

in Sachdev and Nair [5]. Apart from the results summarised in Table 1,
we note that, unlike the single hump solutions of GBE (3) with damping,
the nature of the solution depends on the parameters o and j. The
solutions exist for the permissible values of o and j for all values

of the amplitude parameter. The particular value a¢ = 1/j seems to
bifurcate the generality of solutions. For this value of o, f = fc,

a constant, is a solution of (30) so that, for a given value of A, the
solution starting at n = -o, tends to a constant nonzero value at n=-e
instead of vanishing there or at n = Ng- For example, for j =1, A =1,
fc = 0.41187, and for j =2, A =1, fc = 0.10197. The numerical solu-

tion of the connection problem agrees very closely with the series solu-
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tion for H, governed by (27), when the values H(0) and H'(0) are suitably
identified from the numerical solution. The intermediate asymptotic
nature of the self-similar solutions was verified by solving the PDE[4)]
numerically for the relevant values of the parameters a and j and 'appro-

priate' initial conditions vanishing at N= % w.

5. GENERALISED BURGERS EQUATION WITH
VARIABLE VISCOSITY

We consider the GBE

B _ 8
u +tuuw, = 3 g(t) uu, (42)

where g(t) is a smooth positive function, representing the dependence
of viscosity on time, Scott [6] considered a special case of (42) with
g = 1; the role of t and x, however, was interchanged in his study.

He considered a piston problem for this equation and proved the inter-
mediate asymptotic nature of the self-similar solution u = Q(t/x) for
cylindrical and sub-cylindrical cases. The latter case was defined
such that Séﬁl + 0 as X + ». Conversely, if Séil + ®, the GBE is
referred to as super-cylindrical. Here, we consider the cylindrical

and sub-cylindrical form

u, + ueu = %(1 + t)n u

t X ’ (43)

XX

where n is a parameter and 8 >0. We shall find that self-similar solu-
tions either decaying or oscillating at x = toexist for (43) only when
-1<n <1, i.e., when (43) is either cylindrical or sub-cylindrical.

We easily check that the self-similar form of the solutions of (43) is
w= 140" 611/ 2Be () 0 = [1eg) T (RFD) 57112, (44)
so that it becomes

£ - Zfo' + (n+1)nf' - iﬂ%ll f = 0. (45)

The inverse function
H = £P (46)
is, therefore, governed by

H'2 + (n+1)n HE' - 2H' + (n-1)H® = 0. (47)

v - BT 2
HH )
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For single hump solutions of (45), we enquire when f has a maximum:

f*' =0, f'' = E%l f < 0. A necessary condition for single hump solu-
tions for the case B > 0 is that n < 1. Equation (47), as we shall
see, again belongs to the class of Euler-Painlevé equations. Before

we pose a connection problem for (45), we note that it has a single
1-n

parameter family of exact solutions. Assuming 8 = T ve write (45)
in the form
£rro- 288 ¢ 2 (e 4 £) = 0 (48)
B+1 :

Integrating (48) and assuming that f and f' tend to zero (such that

nf - 0) as n + * », we have

-(B+1) ., 2 -8 _ 2

£ f' + BT.I n £ = '6—1—1 . (49)
Integrating (49), we get

£ = lexp@n? (A - /7 erfyazz n )17 "E, (50)

where a = 28/(B+1) and A is the constant of integration equal to f(O)—B.
For decaying solutions, we require that a > 0 so that n < 1. We also
note that the special case B = 1, n = 1, which was treated by Scott

[6] can be solved in a parametric form. The linearised form of (45) is
E'0 4 (n+1)n £' - Eél £ = 0. (51)

Its solution is simply the confluent hypergeometric function
@(iﬁ%%%HT—, %; z), where z = - E%l 2. The asymptotic form of ¢ im-
mediately suggests that the solutions vanish at n = t « provided

%E %%% >0, i.e., -1 <n<l1. The case n = 1 leads to the erfc(n) solu-
tion of (51). The series solution for (47) exists in the permissible
range of n and describes either the single hump solution or shock-like
solution or the solutions with oscillatory tail and/or front. The re-
sults of the connection problem for (45) and (47) and other details

will be published elsewhere [7].

6. EULER-PAINLEVE TRANSCENDENTS

In the compendium of nonlinear differential equations, compiled by Kamke
{31, the equation

yy'' o+ ay'2 + f(x)yy' + g(x)y2 = 0 (52)
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is attributed to Euler and Painlevé; the motivation for the study of
this equation is not clear. This equation is, in fact, exactly linearised

by the transformation

y v1/(1+a) (53)
to
v'' + fv' + (a+1)gv = 0. (54)
We have generalised Eg. (52) to the form
1 1 2 1 2 ¥ -—
yy' + al(x)y + f{x)yy' + g(x)y” + bi{x)y' + c(x) = 0, (55)

where the constant a in (52) has been made to vary with x and a linear
term in y' and a function c(x) have been added to (52). Our claim is
that Eqg. (55) characterises the GBE's in their self-similar form in

the same manner as the Painlevé type equations describe Korteweg-de
Vries and other model dispersive equations. Indeed, the three equations
corresponding to the GBE's (3), (4) and (42), namely (15), (27) and

(47) easily follow from (55) if special choices of the functions a(x),
f(x), g(x), b(x) and c(x) are made. We must, however, emphasize the
difference between the nature of Eq. (55) and the Painlevé type of equa-
tions. For the physically realistic cases of Eq. (55) which we have
studied, the solutions are either single hump type or shock-like or

have oscillatory tails, and there are no singularities of any kind in
the finite part of the real line. 1In contrast, the Painlevé equations
are typified by the property that their only movable singularities are
poles. That Euler-Painlevé equations should be 'nicer' than Painlevé
equations follows also from the nature of the BGE's and K-dV type of
equations; roughly speaking, diffusion is 'smoother' than dispersion.

We must also point out that Eq. (55) for general (smooth) coefficients
would need more extensive investigation than we have carried out for

the special cases, arising directly from GBE's.

It is remarkable that 65 nonlinear DE's in the compendia of Kamke
[3] and Murphy [8] are special cases of (55) directly or by simple
transformations. These equations are either autonomous or are lineari-
sable by a power law or logarithmic transformation. Alternatively,
they are reducible to first order equations of Riccati or Bernoulli
type. Most of these equations are either integrable explicitly or admit
at least one quadrature allowing their treatment in the phase plane.
Here we give a listing of these equations and refer the reader to Kamke
and Murphy for their physical importance and solution. In Kamke's book,
these are listed in Sec. 6, p. 542 as 104-111, 117, 122, 124-127, 129,
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131, 133-4, 136-9, 150-2, 155-8, 164, 166, 168-70, 173-9. In Murphy's
book, these are enumerated as 133, 140, 142, 150, 190, 195, 199, 201,
203-4, 219-22, 227-31, 233-4 in Part 2, Chapter 4. It would thus appear
that Eqg. (55) has a quite ubiquitous nature and deserves close study

and investigation.

7. CONCLUSIONS

We have shown with the help of 3 GBE's--(3), (4) and (42) that Eq.(55),
which we have referred to as Euler-Painlevé equation, seems to charac-
terise this class of equations. We have drawn an analogy with Painlevé
type of equations which unify the study of K-dV equation and its kindred
class. We have summarised the results of the connection problems for
some GBE's. Similar study for Painlevé second equation has been carried
out by Miles [9] and Rosales [10]. It is conceivable that not all GBE's
will be typified by (55). 1Indeed, self-similar form of solutions does
not always represent intermediate asymptotics. Besides, sometimesit

is the self-similar form of the linearised PDE which may represent inter-
mediate asymptotics to which a large class of solutions arising from

a certain set of initial conditions approach [11]. This is the case,

for example, for the super-cylindrical equation, as shown by Scott [6].
In this case, it is not the nonlinear Euler-Painlevé equation (55) which
describes the asymptotic behaviour of a certain class of initial wvalue
problems but the corresponding self-similar solutions of the heat equa-
tion with a variable coefficient. To conclude, we would have to investi-
gate other GBE's and study (55) more deeply to come to a firm under-

standing of the role of Euler-Painlevé equations.
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Using Darboux-Bargmann technique, we obtain (1) the Backlund trans-
formations for any nonlinear evolution equation (NLEE) solvable by

the inverse scattering method of Zakharov-Shabat—Ablowitz-Kaup-Newell-
Segur (ZS/AKNS) and (2) the ZS/AKNS wave functions corresponding to
the n-soliton solution of this NLEE.

1. BACKLUND TRANSFORMATIONS AND SOLITON WAVE FUNCTIONS

The ZS/AKNS scattering problem [1,2] is defined by the eigenvalue

equation
Vig t 1kv1 = q(x,t)vz, (1.1a)
Vox T 1kv2 = r(x,t)v1, (1.1b)
V1
where v = (_ ) is the two-component ZS/AKNS wave function and g and

r are functi%ns of x and t satisfying the NLEE of interest. The eigen-
value is k. Equations (1.1) give the space evolution of the wave func-
tion. Let us distinguish the quantities, wave function and potentials

g and r, referring to n solitons by primes and those referring to (n-1)

solitons by unprimed ones. Thus:

vl
1
[J— [ [— 1 [R—
v] v1(n), v v2(n), v (Vé)' q q,r T ro. (1.2a)
and
V1
v, = v1(n—1), vy, = v2(n-1), v = (vz); 4 =9q,_4r = rn_1.(1.2b)
vy oo satisfy egs. (1.1). vi 5 satisfy similar equations:
’ ’
1 : — [ PN, Pt
vig * 1kvi = q'vé, Vo 1kv2 r'vy. (1.3)

We appeal to Darboux's method [3] to expand the n-soliton wave

function v' in terms of (n-1)-soliton solution v:
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v = v =
v] Av, + Bv,, v, Cv, + Dv,, (1.4)

where A, B, C, D are functions of x and t. From egs. (1.1), (1.3) and
(1.4), we see that A,...,D satisfy the differential equations:
A = -rB+q'C, (1.5a)
B, = -aB - 2ikB + q'D, (1.5b)
Cx = r'A + 2ikC - rD, (1.5¢c)
D, = r'B - gC. (1.54d)

We next invoke an idea due to Bargmann [4]. It is well known that
the ZS/AKNS equation corresponding to the Korteweg-de Vries (Kdv)
equation is the Schrédinger equation [5]. 1In the context of the
Schrodinger equation, Bargmann has shown that for a potential capable
of giving n bound states, the solution of the Schrddinger equation

can be written in the form elkx

x{k,x), where x(k,x) is an n-th degree
polynomial in k. On the other hand, we know that n-soliton solution
of an NLEE envisaged by the ZS/AKNS eqgs. (1.1) can be looked upon as
a potential giving n bound states [5]. Thus the idea due to Bargmann
suggests that v and v' will differ by a linear function of k. We there-

fore write:

A

ak + ag, b1k + by, (1.6a)

w
]

c = c1k + cyr D = d1k + dO, (1.6Db)
where ai,...,di are functions of x and t through (g,r) and (gq',r').
The differential equations obtained for a,...,d by using egs. (1.6)

in egs. (1.5) are easy to solve and a partial solution is:

a, = a(t),

b, = 0, by = 2 -aql,

c, = 0, cg = - 5%[r' - (%)r],

a, = &), a; = -da,+ s, (1.7)

with ag satisfying the equation
= _g - 1t
Ao = 2i(qr q'r") (1.8)
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and, additionally, two equations of constraint need to be satisfied:

2day - a1 = -ta+ Dalag + sar, (1.9a)
-2y - Giel o= e+ Sirlag - e, (1.9b)

Here o, B, 8§ are constants of integration and in general depend on t.
Subsequently we shall see that to be able to describe the soliton solu-
tions they need to be taken as constants. From egs. (1.7)-(1.8), we
can see that we can obtain A,...,D in egs. (1.4) provided we can solve

eq. (1.8) for a, and be able to satisfy egs. (1.9).

0

It is easy to obtain a, as a function of (gq,r) and (q',r') and hence
to show that egs. (1.9) in fact represent the space part of Bdcklund
transformations (BTs). To see this, we first notice that the choice
of overall factor, o say, is at our disposal. We set a = -i and define
€ = —(g). We multiply eq. (1.9a) by r' and eq. (1.9b) by g, add the
resulting equations and use eq. (1.8) to obtain

2 , _ 2
e(qr')X + € (q;r + qrx) = 2(A0)X, (1.10)
where
A = ea, + B. (1.11)

Similarly multiplying eq. (1.9a) by r and eq. (1.9b) by g' and adding
the resulting equations and once again using eq. (1.8), we get
2
' (o] =
elg r)x +q.r +q'r) 2(a0)x. (1.12)

Adding egs. (1.10) and (1.12), we see that the resulting equation is
integrable only if

€ =1 or e = #£1. (1.13)
In all the subsequent discussion, we shall assume eq. (1.13) to hold.
The sum of egs. (1.10) and (1.12) when integrated gives a quadratic
equation for a, whose solution is
— 3 ) 1 ' 2 1 1 %
ag = in' ¢ 5[4v +(g'+eq) (r'+er)]2H(g). (1.14)
This solves eq. (1.8) consistent with egs. (1.9). Here p' and v' are

integration constants. They can in principle be functions of t and

178



may even be complex. Soon, however, we shall identify them with soli-
ton pole position which requires them not only to be constants but also
real. We believe that the present method can be extended to include
perturbed NLEEs and then this possibility of time dependence of pole
position parameters becomes necessary. The function H({) is the Heavi-

side function

[ 1, £>0
H(E) =
-1, & < 0. (1.15)

It can be shown that in the pure multisoliton case, the argument £ is
given by

E = x + %T mw(k') - x (1.16)

Ol

where w(k) is the dispersion function and x, is a constant. The Heavi-

0
side function is required to ensure the continuity of both the soliton

solutions and the wave functions [6].

Using a, from eq. (1.14) in egs. (1.9), we get the space part of
the BTs:
1
qy *eq, = —2iu'(q'+eq)i(q'—eq)[4v'2+(q'+€q)(r'+er)]2H(E), (1.17a)
1
r; +€rX = 2iu'(r'+€r)i(r'—€r)[4v'2+(q'+eq)(r'+er)]2H(€). (1.17b)

We see that the constants p', v' appearing in the above equations are
in fact the parameters of the n-th soliton. Since soliton solution
represents a pole in the complex k-plane at k = k' = p' + iv', we
require (p',v') to be both real and independent of time. If the NLEE
of interest is such that if (g,r) is a solution so is (-g,-r) then both
values of € ,t1, are permitted. Otherwise we would have either e=+1

or e=-1. The two possible signs accompanying the discriminant are
linked with two possible directions of incidence; positive (negative)
sign corresponds to the incidence from the left (right). These direc-
tions of incidence in their turn give rise to relevant analyticity
structure of the scattering amplitude or the transmission coefficient
in the upper half k-plane (right incidence) or in the lower half k-plane

(left incidence).

It is easy to show that egs. (1.17) reproduce the BTs in the stan-
dard cases of KdV, sine-Gordon (sG) and nonlinear Schrddinger equation

(NLSE) [6,7] corresponding to the three classes r = constant, r=-q and
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r=-gq* respectively. Our present treatment gives a unified treatment

of the BTs for all NLEEs encompassed by the ZS/AKNS scheme.

Using a, from eq. (1.14) in egs. (1.7) and substituting the results
into egs. (1.6), we get

1
A = —ilk-p')t 4[4yt PH(q+eq) (r'+er) 17 H(E), (1.18a)
B = E(q'+eq), (1.18b)
c = lrt+oen), (1.18¢)
p— > 1 ‘] |2 1 1 %
D = eli(k-p')t 5[4v +(q'+eq) (r'+er) ]2 H(E)), (1.184)

which solve the differential equations in egs. (1.5) and yield, when
used in egs. (1.4), the n-soliton wave function v' in terms of (n-1)-
soliton solution v and the n-th and (n-1)-th soliton solutions (q',r')
and (g,r) respectively. These results agree for the three cases (1)
r=-1, (2) r = -q, (3) r = —-g* discussed in our previous work [8].

The time evolution of ZS/AKNS wave functions is given by [2]
Vie =\)4 (k;q,r)v1 +@ (k;q,r)vz, (1.19a)

Vot =\,e (k;q,r)v1 —‘)4 (k;q,r)vz. (1.19b)

In the ZS/AKNS scheme one stipulates that kt = 0. The functions.)‘,@,a&
depend on particular NLEE of interest. Use of egs. (1.4) leads to

A, = ad'-d) - B4+ c@', (1.20a)
B, = B +d) - a@ + DB, (1.20b)
c, = -ce'+d) +ak - ok, (1.20¢)
b, = -pd'-d) + BL - c@, (1.204d)
where ' = v"(k;q',r'), etc. From egs. (1.18), we see that egs.

(1.20b,c) give the time part of the BTs.

2. RICCATI EQUATIONS
It is possible to extend the previous analysis further. To this end
let us denote A,...,D given by egs. (1.18) when evaluated at k=k' =

u'+iv' by A,...,D. Thus, we have
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E o= oot %[4\)'2+(q'+eq)(r'+sr)]%H(§), (2.1a)
B = %(q' + eq), (2.1b)
c = %(r' + er), (2.1¢c)
B = el-v't 204v'24(q'+eq) (r'+er) 13H(E) ), (2.1d)

and we note that

A.D = B.C. (2.2)

Also, we denote the wave functions in eqgs. (1.4) evaluated at k=k' by

51,52 and 3;,55 so that

-, - - == _ -
vy = Av1 + B vy o vy, = C v, + D v,. (2.3)
If we define
p— e o L} - o _l
I = v1/v2, T = v%/vz, (2.4)

then it is easy to see from egs. (1.1) and (1.19) that I' satisfies

the Riccati equations:

. = q- 2ik'T - rr?, (2.5a)

r, = @+ 2dr-412, (2.5b)

with I'' satisfying similar equations. If we now require that v

in egs. (2.3), then we obtain
r=-8A& =-D/C. (2.6)

The consistency of last equality coﬁing from eq. (2.2). It also follows

from egs. (2.3) that EG% -’ Gé = (BC-A 5)v2. The right-hand side
of this equation vanishes in view of eq. (2.2) giving
r = A/C = B/D. (2.7)

' and T' are particular solutions of the Riccati egs. (2.5) and their
primed counterparts.

Two useful relations between T and T'' can be easily established.
Using egs. (2.1) in eq. (2.6) and in eq. (2.7), it is seen that el and
I'' both satisfy the quadratic eqguation (r'+er)y2—4v'y - (g'+eq) = 0.
It therefore follows that
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el + T' = 4v'/(r'+er), (2.8)
and

(eT)T' = —-(g'+eq)/(r'+er). (2.9)

They can alternatively be written as

1

q'+eq -4v' (eT)T'/(eT+T"), (2.10)

and

r'+er 4v'/(eT+T"'). (2.11)

These equations are generalizations of those given by Konno,5anuki and Wadati
[7] and were employed by us in Ref. 8. 1In the present general case,

it is unfortunately not possible to go beyond this stage. In special
situations, however, we can make further predictions. As an illustration,
consider the situation where we stipulate a relationship between q and

r like

(a) r =r"'" = -1 (with e=+1); (b) r = -gq, r'=-q'; (c) r=-g*,r'=-q'*.
(2.12)
These then imply relationships between €I and I''. For instance,

corresponding to choice (a) in egs. (2.12), we get from eq. (2.8) that
rv =-r- 2v'; (2.13a)

for the choice (b), we obtain from eq. (2.9) that
r‘ = 1/¢er ; (2.13b)

and for the choice (c), we obtain from eqg. (2.9) that
I'' = 1/el*. (2.13c)

Equations (2.13) form important ingredients in the methods of Konno-Sanuki-
Wadati [7] and Chen [6]. The above process is reversible. If we sti-
pulate relationships in egs. (2.13),we obtain from egs. (2.9) and (2.10)

relationships between g and r given in egs. (2.12).

We now briefly outline the method of obtaining multi-soliton solu-
tions and corresponding wave functions in the cases where r is stipulated
as some known function of q as, for instance, in egs. (2.12). The
procedure is recursive and algebraic except for the starting zero-soliton
case where it requires solution of very simple differential equations.

We illustrate the procedure for the case of NLSE. Discussion for other
cases will be found in Ref. 8. For the NLSE case, on using eq.(2.12c)

in eq. (2.10), we get

r
1+|1‘|2

q' = - elg + 4v' 1, (2.14)
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which relates the n-soliton solution, g', to the (n-1)-soliton quantities,
q, 51 and 52. This leads to the following procedure. We begin with

the zero-soliton solution g(0) of NLSE which is g(0) = 0. This is sub-
stituted in eq. (1.1) to obtain the zero-soliton wave function v(0).

The time dependence of v(0) is obtained from egs. (1.19) withxl,@'.z
appropriate to the NLSE case. After this the procedure is purely

algebraic: We use these known g(0) and v(0) in eq. (2.14) to obtain
q(1). These g(1), g(0) and v(0) are now used in eqgs. (1.4) together
with egs. (1.18) to get v(1). This procedure can obviously be conti-
nued and furnishes in a simple manner all the higher order soliton

solutions and wave functions.
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Comparison of Some Numerical Schemes
for the K-dV Equation

A. Hasan and M.S. Kalra

Nuclear Engineering Program, Indian Institute of Technology,
Kanpur 208016, India

A numerical solution for the KdV equation has been obtained using a
finite element Galerkin scheme based on cubic splines in the space
variable. The results are compared with the finite difference schemes,
and the finite element Galerkin and Petrov-Galerkin schemes reported
in literature. It is found that the use of smoother trial and test
functions leads to much less L2 and L , errors. It is also seen that
quintic boundary polynomials used earlier are not necessary for obtain-
ing an accurate solution.

1. INTRODUCTION

It is well known that the initial and boundary value problems associated
with nonlinear partial differential equations are very difficult to
handle in a general way. The nonlinear evolution equations have recei-
ved particular attention over the past two decades or so. This is due
to the fact that they arise in a natural way in a large number of physi-
cal problems and in many cases possess special types of solutions which

may be of great practical use.

Our interest in the present work is in the numerical study of one

such evolution equation known as Korteweg-deVries (KAdV) equation

+ + = .

u uu K'u o 0 (1)

This equation and its generalizations play a major role in the study of
nonlinear dispersive waves. Examples range from water waves and lattice

waves to plasma waves [1].

The numerical solution of (1) has been the subject of many papers
over the last few years. Zabusky and Kruskal were the first to study
the KAV equation numerically through a leap-frog finite difference
scheme [2]. Greig and Morris [3] proposed a Hopscotch finite difference

method and compared it with the original scheme of Zabusky and Kruskal.
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Fornberg and Whitham [4] used spectral methods for x-variable and leap-
frog in t. The finite element Galerkin schemes and its modifications
have been used to solve the KAV equation by Alexander and Morris [5],

Sanz-Serna and Christie [6], and Mitchell and Schoombie [7], among others.

2. DETAILS OF THE PRESENT SCHEME AND
COMPUTATIONAL RESULTS

In this paper we present some numerical results obtained for the KdVv
equation through a finite element Galerkin scheme. For this purpose

we approximate u(x,t) in (1) as follows:

N-2
wlx,t) = Uk E) =) U(E) @y (x), (2)
i=2
where
X'Xo
g, (x) = @( —2 - i] ,oho= (xg - x /N, (3)
plx) = (24x)°, -2 < x < -1,
= 1431443 01+x) 223014003, -1 < x < 0,
= 14301-x+301-0%-301-03, 0 < x <1,
= (2-X)3, 1 < x < 2. (4)

The function ¢(x) above is the basic or cardinal cubic spline function
[8]. Here we have considered the range of interest of the x-variable

from x, to x,.. Since @1(x) as well as (x) extend beyond this

0 N
range, they have been omitted.

N-1

Now if we choose the test functions in the standard Galerkin scheme
[9] to be the same as the trial functions ¢i(x), the problem of approxi-
mately solving (1) reduces to obtaining a solution for the following

system of ordinary differential equations:
au,

1
Bik g8 * BigxUiUy + CpU; = 0, (5)

where summation over repeated indices is implied and

Bl = Loy )y
do -
= ]
Bj sk o g%~ » ox!v
2
e = (d ?i fi&)
ik -
dx
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Here we have used the standard notation for the L2 inner product,viz.,

(f,g9) = [f(x) g(x) dx,
and also used integration by parts in writing Cik'

For a given initial value uo(x), the initial values of Ui(t) are
obtained from the following:

(Uo, (pk) = (uo, (pk), k=2,3,...,N-2. (6)
Equations (5) are solved by using IMSL subroutine DREBS.

In order to compare the results we define the following errors
in the computed solution, U(x,T):

L = max |0(x,T) - ulx,T)|,
[XO,XN]
N 1/2
N 2
L, = [ J'@x vk, - uix,m) ] ' (7)
X0

where T is the time for which the solution is evolved and u(x,T) is
the exact solution. For the comparison of different schemes, we use

the same initial data and other parameters as used in the papers cited
in the Introduction.

Table 1 gives the L_ and L2 errors in the present scheme and compares
them with four other methods we have referred to previously.

3. CONCLUSION

It is seen from Table 1 that the L2 error in the Galerkin scheme used
here is almost an order of magnitude less than that in the other schemes.
L error is also found to be somewhat less. This can be attributed

to the use of smoother trial and test functions. We have used the
smoothest functions of degree 3. Here we may point out that Alexander
and Morris [5] used quintic boundary polynomials especially constructed
to maintain C2—continuity in addition to cubic splines as trial and test
functions. The use of these boundary functions does not appear to

be strictly necessary in view of the fact that the solution goes to

zero at the boundaries. 1In fact Table 1 shows that, if anything,
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Table 1

Comparison of Different Numerical Schemes for the KdV Equation
Error x 103

Zabusky-Kruskal Greig-Morris Alexander-Morris Sanz-Serna-Christic Present Method
(g = 0)* {Petrov-Galerkin)

T

L_ L, L, L, L_ L, L, L, L,
0.5* 63.5 122.7 67.4 122.4 57.0 S1.9 102.5 37.0 18.
1.0 161.4 298.2 141.6 228.1 --- 100.4 150.6 52.7 24.7
1.5 - - - -—- - --- - 50.7 30.4
2.0 -— - --- -—- -—- --- --- 53.6 31.6

*q is a parameter used by Alexander-Morris.

*Alexander-Morris L, error is for T = 0.3958.

lesser L_ error results if we omit these higher order boundary functions.
Finally we note that the computation time for the above scheme was

37 to 120 seconds for T = 0.5 to 2.0 seconds respectively.
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K-dV Like Equations with Domain Wall Solutions
and Their Hamiltonians

Bishwajyoti Dey
Institute of Physics, Bhubaneswar 751005, India

We consider K-dV like equations with higher order nonlinearity and show
that these have domain wall (kink) solutions for particular values

of the coefficient of the nonlinear terms. The solutions are compared
with the domain wall solutions of relativistic field theories. The

exact Hamiltonian densities are also evaluated for these equations,

using Dirac's constrained Hamiltonian formalism. The conservation of

the Hamiltonians is explained in terms of the contribution of the corres-
ponding fields from spatial infinities.

We consider certain nonlinear partial differential equations which
are Korteweg-de Vries (K-dV) like equations with higher order nonlinea-
rity. These equations are [1,2]

n, . n _ . _
u + a(l1+bu )u uy + auxxx =0, a,§ >0; n 1,2,3,... (1)

2 -
U, + bu u, - Guxxx = 0, b,§ >0, (2)

which can be derived respectively from the Lagrangian density

ab

Z=-loo +—2 — ot o221 50l (3)
X (n+1) (n+2) (2n+1)(2n+2)
and
1 1 4 142
L_—fexet+ﬁbex+26@xx' (4)
where u = OX, and the subscripts denote partial derivatives.

In order to look for travelling wave solutions we make the simple

transformation

£ =x - ct (5)
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where ¢ is the velocity of the solitary waves. Integrating equations
(1) and (2) we get respectively the domain wall solutions of these

equations as [1,2]

ulx,t) = { oot (nr2) }1/2[1 + tanh(c/a)% %ill/n, for n =1,3,5,...
% (6a)
ul(x,t) = i{ Eifilliﬁiil }1/2[1 + tanh(c/a)% %511/n’ for n=2,4,6,...
for e (6b)
a(2n+1)
b c(n+1)(n+2)2 7
and
ulx,t) = i(3c/b)% tanh[(c/2§)%(g+k)]. (8)

It can be noted that the solutions {(equations (6)) of equation (1)
resembles the solution of relativistic field theories with potential
[31]

V((\o) = C(p2n+2 + B(pn+2 + A(Pz + D. (9)

Similarly equation (8) (solutions of equation (2)) resemble the kink/
antikink solutions of X¢4 relativistic field theory.

A conservation law associated with a K-dV like equation is expressed

by an equation of the form
T, + X = 0. (10)

where T the conserved density and -X, the flux of T, are functions

of u(x,t). The K-dV equation (b = 0 and n = 1 case of equation (1))
has infinite number of conservation laws associated with it. However
for equation (1) we could write only first two conservation laws (see
[1] for n = 1 and 2 cases) and we are currently trying to find other
conservation laws (if any) which are not obvious. On the other hand,
equation (2) is a more interesting case, as one can write many conser-
vation laws for this equation [1]. The third conservation law associated
with K-dV type equations, usually describes the conservation of Hamil-
tonian. For example the Hamiltonian for equation (2) is conserved

by the third conservation law associated with this equation. However

for equation (1) we could not write the third conservation law. This
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led us to investigate the Hamiltonian nature of this type of K-dv like
equations. It may be noted that the Hamiltonian density for K-dv like
equations is not obvious, as these belong to degenerate Lagrangian

system [4]. There are constraints in the system and one has to use
Dirac's theory of constraints [5], for evaluating the correct Hamiltonian

density.

Now to avoid higher derivatives in the Lagrangian we introduce a
new field Y(x,t) and write the Lagrangian for equations (1) and (2)

respectively as

a ab
L = % 008, + —— e§+2 +—— g?n¥2
(n+1) (n+2) (2n+1)(2n+2) %
+ 80, + w60’ (11)
and
L=300, +15bol -2 sy’ -804 . (12)
where as before u(x,t) = 0

Considering independent variations with respect to ©(x,t) we get from

equations (11) and (12) respectively
n 2n _
Opt ¥ 30,0, *ab0, " Oy * Sy, = 0 (13)
and
2 -
O, * bexexx -8y ., = 0 (14)

while independent variations with respect to Y(x,t) give for both

equations (11) and (12)

Ogx = ¥ = 0. (15)

Thus equations (13) and (14) together with u = @X and equation (15)

gives equations (1) and (2) respectively. The canonical momenta are
Ty = 0 (16a)
.= 1o (16b)
C] 2 x°

Thus these are degenerate Lagrangian systemsas the canonical momenta
for the field V¥ is zero. So we use Dirac's theory [5] of constraints
for evaluating the exact Hamiltonian density for these systems. The

primary constraints
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c, = my =0 (17a)
C =T -.1.9 = (
5 ) 594 (17b)
(where = denotes weak inequality) satisfy the relations

{C1(x), C1(x')} = 0, (18a)

{C1(x), C2(x')} = 0, (18b)
and

{Cz(x),Cz(x')} = - Gx(x—x')l (18c)

where §(x) denotes Dirac delta function. The symbol { , } denotes

the Poisson bracket. The fields have their usual relationship

{v(x), ﬂw(x')}

§(x-x") (19a)

and

{o(x), no(x')} §{x-x'). (19b)
Equations (18) show that the constraints are second class. The total
Hamiltonian is defined as

[}

Hp = [ (& +7f1)dx.v (20)

—o

where the free part of the Hamiltonian density is given by

H, =

0 et-L (21)

W "o

and

1"1 = XC1 + 0C2 ' (22)

where the Lagrange multipliers A and o have to be determined from

the condition that the constraints are maintained in time, i.e.,

{c1, HT} = {cz, HT} = 0. (23)

This condition requires an extra constraint condition, which we denote

by a secondary constraint ¥, andq(] is thus modified as
#H, = AC, + 0C, + ux (24)
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where yp 1is another Lagrange multiplier. The Lagrange multipliers

are determined as [2],

[_ a4 ab 2n+1

6] - —_—0 - 80 ] (25)
(n+1) % (2n+1) X XXX

for Lagrangian in equation (11) and

= (- 2 3
g = ( 3 b OX + GGXXX) (26)
for Lagrangian in equation (12), and the multipliers
nwo=v - Oxx (27)
and
A= 0. (28)

The total Hamiltonian density is now obtained from equation (20) using

equations (17), (21), (24)-(28) which when evaluated for the Lagrangions

in equations (11) and (12) gives respectively, upto a surface term:
na n+2 nab 2n+2 | 1,42 10,2
?T = 9 e ex + 7éexx + 56\‘)
2(n+1) (n+2) ¥ (2n+1) (2n+2)
a n+1 ab 2n+1
600y To (6®3x + (n+1) ex (2n+1) "x )
n-1 .2 n
_“¢(695x + nao exx + a@x ®3x
2n-1 .2 2n
+ 2nab 0 S ab 0 @3X), (29)
where e3x denote exxx' etc., and

1 4 1,2 Y _ 1 el
:pT = 77 POy 380, ~ 80,0y 2807+ TTO(6®3x 3 bex)
+on (80.. - 2bO_02. - bOZ ©,.) (30)
"¢ 5x X~ XX x “3x°°

To check that the Hamiltonian densities obtained are correct ones,
we obtain the field equations (1) and (2) using the Hamiltonian equations

of motion
d(x,t) = {0 , Hp}. (31)
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Now to examine whether the Hamiltonian is a constant of motion it
is sufficient to consider only the free (ﬂﬂ) part of the total Hamilto-
nian density [5]. Thus the Hamiltonian H when expressed in ¢ ~rms of

the original field u(x,t) gives for equation (1)

a ab
H = i dx % 6u2 - —_— un+2 -—_— u2n+2 (32)
- X (n+1)(n+2) (2n+1) (2n+2)
and for equation (2)
_ 7 S 412
H = [ daxl T3 bu 5 Gux] (33)

—00

It is known that for a system, represented by K-dV type equation

u, = Suxxx + F"(u)ux (34)

which can be derived from the Lagrangian density

9 1 .2 ,
L= Je06 + 60y += 64° + F'(u) (35)
the Hamiltonian is given by
H o= faxl- 4 su2 + F(u)] (36)
_i 2 X .
The Hamiltoniars (32) and (33) for our systems (equations (1) and (2))
agree with equation (36). However it is to be noted that for describing

the correct dynamics of the systems one has to use the total Hamiltonian

density given by equations (29) and (30).
Now, the Hamiltonian H is a constant of motion if

xE - 0. (37)

For the Hamiltonian in equation (32) we get

dH _ J 1 n+1 n, n ab 2n+1
It - - dx I:————(n+1) au (6U3X + a(l+bu )u LIX) + m u (5U3X
n, n 2 3 n-1
+ a(1+bu )u ux) - 6 u U, - adnuxu - aGuquX

- 2nab5u2n_1u3 - abduznu u
X X XX
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Integrating by parts and using the fact that derivatives of u(x,t) are

zero at spatial infinities (see equations (6)) we get
2 2.2
dH  _ a’ 2n+2 a’b 3n+2 ab an+2 |7
ac - 2 ¢ e u t———u
2(n+1) (n+1)(2n+1) 2(2n+1)
~ 00
(38)

which is not zero as the contribution from spatial infinities do not
cancel, since the field configuration corresponding to equation (1)
is asymmetric (equation (6)). Thus the Hamiltonian corresponding to
equation (1) is not a constant of motion. This explains why we could

not get more than first two conservation laws for this system. However,

for the Hamiltonian (equation (33)) of equation (2) we get
i _ 1,25 1 3 3 2 2
i —I dx(§ b“u u 3 bdu us, 2b<SuuX + bdu wou § uxu4x).

Integrating by parts and using the fact that derivatives of u(x,t) are

zero at spatial infinities we get (see equation (8))

2
di _ b 6, «
@& - 18 W (39)
which is zero, as the field configuration corresponding to egquation
(2) is antisymmetric. Thus the Hamiltonian corresponding to equation

(2) is conserved. It should be noted that, this Hamiltonian is also
conserved by virtue of the third [1] among the many conservation laws

satisfied by equation (2).

In case of relativistic field theories however such problem does
not arise, where it can be shown by a simple calculation, that, if
the Lagrangian does not contain explicit time dependence (as in equations
(3) and (4)) then the Hamiltonian is conserved, even if the field con-
figuration is nonzero at spatial infinities (but its derivatives are

zero).
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Lattice Solitons and Nonlinear Diatomic Models
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Department of Physics, College of Basic Science and
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The Fermi-Pasta-Ulam problem together with the explanation by Zabusky
and Kruskal can be rightly considered as the origin of lattice soli-
tons. This problem is reviewed in some detail along with a nice integ-
rable nonlinear lattice, the Toda lattice. The recurrence phenomenon
in case of KdV system and FPU discrete limit is also discussed. Three
diatomic nonlinear lattice models as well as their solutions are con-
sidered. These are the simplest cubic nonlinear model in continuum
limit, diatomic Toda system and continuum model with nonlinear onsite
potential at one of the mass points and harmonic potential at the other,
connected by harmonic springs.

1. ORIGIN OF LATTICE SOLITON

Though solitary wave was first discovered in 1834, the present upsurge
of interest in solitons is mainly due to the attempts made to explain
a nonlinear lattice problem, the Fermi-Pasta-Ulam recurrence found from
computer experiments in 1955. Its explanation by Zabusky and Kruskal
signalled the birth of lattice solitons. I intend to discuss in some
detail this recurrence phenomenon not only because it supplied a major
impetus to the development of soliton-physics but also it combines past

excitement with present vigour.

2. FERMI-PASTA-ULAM PUZZLE

The equation of motion for a chain of mass points interacting through
a potential @&(r) can be written as
Y, = Q'(yn+1 - yn) -0 (yn - yn—1)' (1)
where the forcef(r) = -¢'(r) and ro= Yo T Yq and dot represents deri-
vative with respect to time and prime stands for spatial differentia-

. . 2
tion with respect to the argument. Linear lattice: &(r) =~%Y r
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so that

m§n = Y(yn+1 - 2yn + yn—1)' (2)

Solutions of eq. (2) with fixed boundary conditions (for n = 0,

n = N+1, Y, = 0) can be represented by

(2) _ Lo TR
Yo (t) = C, s1n(ﬁ¢Tn) cos(wlt+6l) (3a)
with
_ ; 3
w, = 2/y/m 51n2(g+1), g =1,2,...,N. (3b)

Now one can introduce normal coordinates

N
_ 2 . MY
N, T w47 n£1 Y, Singeg n (4a)
with
= 2/7/8 sintE
w, = 2y/y/m s insmeTy (4b)
such that energy
N
= _ o 1,22 22
E = e, = E 2(nr + wrnr). {4c)

The natural motion of the harmonic lattice can be expressed as a
superposition of these normal modes. The energy of each normal mode
remains always constant. It was widely believed that a mild nonlinearity
should bring the system to a state of statistical equilibrium. To veri-
fy this widely believed conjecture Fermi, Pasta and Ulam [1] considered
a chain of masses and varied their number from 16 to 64. The nonlinear

potentials considered were

d(r) = 1 yr2 + 1 Yar3 (5a)
2 3
1 2 1, 4

d(r) = 5 YLt g Byr (5b)
%Y1r2 lr] < 4,

d(r) =
1 2
FY,r° + 8r  |r| > 4. (5¢)

Their aim was to obtain the energy distribution among the normal
modes of the systems in the presence of weak nonlinearity and to deter-
mine the time of relaxation to equilibrium. The result they found

from computer experiments was least expected: if the initial data assig-
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ned all the energy to the lowest mode, only a few modes were excited

as time went on and almost all energy was eventually given back to

the lowest mode (Recurrence phenomenon). The aftermath of this finding
is really an exciting chapter in the history of soliton-physics. I
shall briefly discuss the two serious consequences of FPU puzzle:

(a) How to explain the recurrence?

(b) what happens to statistical equilibrium?

After FPU, extensive studies were carried out with the intention
of verifying and explaining the recurrence phenomenon. The conclu-

sions are as follows [2]: Recurrence time

N3/2
tp = 0.44 tn (6a)
vaB
with fixed boundary condition Yo = Yy = 0 and
. TN
y = B sin(w), vy = 0 (6b)
Ple=0 N "e=0

and t is the linear period defined by

1
2

tp, = 2N/(y/m)*. (6c)

3. EXPLANATION OF RECURRENCE

Zabusky in 1967 first showed that the continuum limit of FPU lattice

was the Korteweg-de Vries (KdV) equation. This was a major breakthrough
and signalled the birth of lattice solitons. It also became very use-
ful for providing an explanation to FPU recurrence. Subsequently,

the continuum approximation to lattice problems are used in many con-
texts because (i) continuum approximation is easier for analytical

as well as numerical study than its discrete counterpart; (ii) results
can be conveniently related to the discrete version in many cases;
continuum approximation is physically acceptable when wavelength is

very large compared to spacing of particles in a lattice. To illustrate
a continuum case I choose the following example which is not only the
first historical model but contains alll the essential features of

any nonlinear lattice problem in long wavelength limit.

Let

1 .2 1 3
olr) = gyr® +3yart, rpo= Yo -y, (7)
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then
(m/y)yn = (yn_‘_1 - 2yn + yn—l)“ + (1(yn+1 - yn_1)]. (8)

In continuum approximation wavelength being large compared to spacing
of particles, wave is very smooth so that one can make the following

Taylor expansion:

2 3
1.2 1.3
Yo =yih%§+§h i T (9)
- X X
where h is natural length of a spacing in lattice and y(x) = Ypr X =
nh. Substituting eq. (8) in (7) and keeping terms upto h?
1 32y 2 3 2 ay.2; , b2 aly
1,05 2411+ 200 AL+ 3s0% (D) + 33 (10)
c” ot IxX ax Ix
where ¢ = h/y/m.
1 2%y _ 82
For h = 0, — 8 ¥ -29Y . 1linear wave equation (10a)
2 2 2
c” 3t ax
Keeping terms ~ h,
132 3y, 2°
1.3 ¥ - (1 + 200 &y 24 (10b)
2 2 X 2
c” a3t 9x

This is hyperbolic equation, whose solutions become discontinuous
after a time ~(()Lhyoc)_1 where Yo is the maximum amplitude at t = 0
(obtained numerically), that is, the solutions break down. Zabusky's

conjecture is that this is not the solution in discrete case and hence

not physical. So, considering terms ~ h2, we have
2 2 2 .4
L2y - +edy iy iy (10c)
c” 3t ax ax

with e = 2qgh.

Let us consider waves travelling to the right:

_ 9y _ _ - » = 1
U= g £ = x ct, T = ¢*t and ¢ 5 €€
a_ - 3 3 _ % 8_ _ .3
so that T 3E T € 3T c T
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Now eq. (10c) takes the following form,

[z
+
o
[z
+
=
Qv
.
I
e

(11)

o8]
A
@

al

with y = h/24q.

This is the Kortweg de Vries equation as obtained by Zabusky. It
will not be out of place to mention that even when the potential is
of exponential type, the continuum limit of the discrete case is also
the KAV equation (Toda).

Recurrence phenomenon is now known to be due to the motion of soli-
tons which carry energy but the first explanation in this line was
advanced by Zabusky and Kruskal [4] using the continuum version of

the lattice equation of motion (11). FPU considered the initial condi-
tion
= i nI0
yn|t=0 = B sing (12a)
vy = 0. (12b)
nit=0

From (4a) the corresponding normal coordinate

N
TN T =

E B sing— singn B61r. (13)
From (12b) there is no initial kinetic energy, so total energy from
(4c)

- =1 2
E =1le =31 u’1:13611'

%Bm? (lowest mode is only excited).

Equation (12a) represents a sine-wave which remains confined in the
lattice. This can be thought of as a stationary wave which can be
approximated by the superposition of two progressive waves of half
amplitude:

= ) B sin%ﬂ. (14)

e
o}

{
~|

Writing £ = nh = x, 1 = % ect, u = 3y/9f and considering a cyclic
lattice of 2N particles one can find in the continuum limit

= A cosmx (15)
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with boundary condition

u(x) = ul(x+2) (16)
where AO = Bn/2.
4. RECURRENCE IN KdV CONTINUUM
KdV equation (11) has a solution (soliton)
_ 2
u = u_ + a sech"g(g - ct) (17)
where u_ and a are constants (a >0),
c=um+%and B = ya&/T2
Further with KdV equation (11) is associated an eigenvalue equation
2
6p2L24+ (A-we = 0 (18)
14
where U = -u, such that if u develops in time as in KdV, then )\ is

independent of time. Equation (18) is analogous to a Schrdédinger eigen-
value equation with ﬁz, the Planck's constant being replaced by 12u.
As ) 1is independent of time we can use Ul =g = 0 and find out eigen-

values which will remain same for all time. For a single soliton

A =u -2 and c¢ = constant -
® 2

w|N

X (19a,b)

For different eigenvalues, different 'a' values can be obtained and
so, each eigenvalue of eq. (18) is associated with a soliton. Now

from eq. (15) expanding near the bottom of the potential-well

. 1 2.2
U—AO+§AOTTE (20a)
and
_ 1, v 2
Ay = - Ao + (n+5) 12uAOn (20b)
where n = 0,1,2,...

Using eq. (19b) the velocities of the solitons associated with Ap form
~an arithmatic series with common difference
2 2 Y 2
= = - = = . 21
Ac 3(x P\ ) 3 12qu ™ (21)
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These are the solitons which move independently because actually these
solitons travel, interact as they collide and pass through one another
(here we neglect acceleration during interaction). When solitons move
in the periodic region (length = 2), the same configuration of solitons

as the initial one will come back again after a time interval

- 2 -
TR = iz = 0.364//iR (22)
when Ao =1, J/u = 0.0222
g = 40/%w . (23a)

Numerical experiment with the same values of p and AO gives

g = 224 (23b)

The discrepancy in between (23a) and (23b) may be ascribed to change

in velocities during interaction.

4.1 FPU Recurrence

From numerical experiments Zabusky obtained the recurrence time for

FPU lattices as

N37/2
tg = 0.44 t (24a)
voB
t, = 2N/Yy/m (24b)

using expressions 1 = % ect, € = 2ch, ¢ = WWy/m, Ao = Bn/2 and

p = h/240 in eq. (22), theoretical estimate for FPU discrete case gives

3/2

£ e (25)

_ N
t = 0.53 L

R /a8

The discrepancy between (25) and (24a) is still less.

This gives a very good account of the recurrence phenomena in both

discrete and continuum limit.

4.2 Statistical Equilibrium

Ford et al. and Saito et al. [2] advanced reasonable explanation to
the problem of statistical equilibrium, energy sharing, ergodicity
and the equipartition. It is now clear that there exists a critical
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value o of the coupling constant ¢ which determines ergodicity. For
a >a, the system will be stochastic and energy sharing would take
place. If q <agr the recurrence phenomena may occur and one may find
nonlinear normal modes which is a consequence of Kolmogorov, Arnold
and Moser theorem. Here again as suggested by Ford a resonance relation
exists: I nw, = 0, ny being integers, all not equal to zero. When
this condition is satisfied for small nonlinearity case there will be
energy sharing, otherwise recurrence phenomena will occur. Further

if the initial state is far from a normal mode the resonant nonlinear
system exhibits rapid energy sharing and equipartition of energy is
readily established.

5. TODA LATTICE

Previous sections give an account of the origin of lattice solitons

but the most remarkable model for their study is the Toda monatomic chain.
With the nearest neighbour interaction the Toda chain happens to be

the only integrable nonlinear model [3]. Here the nearest neighbour
interaction potential is given by

-br

P(r) = e + ar + const. (ab > 0) (26)

a
b

and the equation of motion becomes

msn/(1+sn) = s, + Spe1 ZSn, (27)
where
. —brn
s, = - a@(rn)/arn = ale - 1) (28)
or equivalently,
“bly_-vy__,) -bly_..-v._)
m(a’y_/at®) = a fe D P71V o TmElTnny (29)

The exponential potential (26) includes the linear harmonic case when
b - 0 and strongest nonlinear case of a system of hard spheres if b+ w.
The equation of motion (27) or (29) admits exact M-pulse solutions
whose form for M = 1 is given by

exp(~brn) -1 = (m/ab)stechz(an ¥ Bt+6) (30)

or with
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my =~ = S -8 (31)

n n-1
s, = (m/b) log {1+expl{2(an+Bt+8)1}, (32)
1
where B = (ab/m)? sinha. (B/a) gives the speed and eg. (30) is the

single pulse solution. The M-pulse solution can be obtained in closed

analytic form and is represented assymptotically (for t - + =) by

2 2 T
-b -1 = b)BY sech .n+B.t+8 . (33
exp( rn) (m/a )B] ec (a]n 8] Gj) )
with j = 1,2,..., N and constants Gj are related by
I8y = I 5;. (34)
] J

This last expression represents conservation of momentum.

These pulses move almost independently in the lattice. They emerge
after collisions with same shapes and velocities. So they behave like
particles and are called solitons or lattice solitons. Further it
can be seen from eq. (32) that when the soliton moves in the lattice

with a constant velocity it causes a contraction of the lattice.

In addition to this M-soliton solution the Toda lattice admits a

nonlinear periodic solution known as Cnoidal solution:
2 2 n E
exp(-br ) - 1 = (m/ab)(2kv)“[dn“{2(} - vt)K - £ }] 4 (35)

where K and E are elliptic integrals of the first and second kinds, and

dn is an elliptic function (Jacobian).

If the modulus k is small, k ~ 0, a cnoidal wave reduces to a sinu-

soidal wave,

2k2
r = - W cos(wt - 2mwn/X\) (36)
n 2
8ab
w = 2(::1b/m)1/2 sin{w/A) (37)

The cnoidal wave (eq. 35) can be written as

exp(-br ) - 1 = (m/ab)[ = g°sech’{a(n-)8)-gt} - 28v] (38)

L=e

with a = nK/K', B = wKv/K'.
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Equation (38) represents an infinite sequence of solitons at equal

intervals )\ and shifted downwards.

As a mathematical model for lattice-soliton Toda chain no doubt
occupies a unique place but its applications in different fields (like
wave propagation in nerve systems, ladder circuit, chemical reactions
in atoms and molecules, and ecological systems) make it very important

and interesting from physical point of view.

6. NONLINEAR DIATOMIC MODELS

Lattice solitons are extensively studied using monatomic models in both
discrete and continuum limits. One of the applications of these studies
is to explain certain important characteristics of structural phase
transitions. As many of the solids undergoing displacive type phase
transitions have a diatomic structure along (100) symmetry direction,

the study of diatomic nonlinear models attracts much attention. Besides,
some of these nonlinear diatomic lattices are very helpful in explaining

nonlinear flow of heat in solids.

In the literature mainly two types of models are available for non-
linear diatomic cases: one deals with nonlinear interactions between

nearest neighbours [4-6] and the other with nonlinear onsite potentials
connected by harmonic springs [7,8]. Study of diatomic Toda chain [6]

happens to be the first attempt in arriving at an exact solution to a
discrete nonlinear diatomic model. Now it is becoming gradually clear
that diatomic Toda chain represents a nonintegrable system [9]. How-
ever, very recently nonintegrable rational billiard systems are found
to be analytically tractable in terms of Fourier expansion [10] and
so the earlier study of diatomic Toda chain with the help of Fourier
series deserves some special mention. On the other hand, Bilittner and
Biltz [7] reported exact solutions to a lattice with nearest and a
next nearest interaction, having a nonlinear ¢4 onsite potential. I
wish to consider here the following three nonlinear lattices which
will involve all the techniques and characteristics of the available

models.

6.1 A Continuum Diatomic Model of First Kind

A large number of studies on diatomic models include nonlinear inter-
action between nearest neighbours. These are discussed in continuum

or long wavelength limit using a procedure by which solutions can be
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separated into optic and accoustic modes. The following nonlinear di-
atomic model is chosen to illustrate the main features of this type
of lattices. Here we consider a chain of alternate mass points m, and

m, connected by nonlinear springs, with potential energy,

_ 1 2 .1, .3
o(r) = 5 kot o+ §k3r (39)
and equation of motion for displacements Y1n and Yon of atoms m, and
m, of the n-th cell can be written as
- _ _ _ _ 2
MY T Koo = ¥qp) F Rplyon g m v kalyyn - ovgg)
-k -y, )2 (40)
3'¥on-1 T Yqp' v
. _ _ _ B _ 2
mp¥on = TKal¥on T Yiner) T Kplypn T ovy) + kglyy, - ovggyg)
- Koy, -y, )? (a1)
3'12n In® ~
To solve in the continuum limit the expansions used are
y =y % 2ny' o+ 2n%yr & A pdge g (42)
pnt1 pn ~ pn pn ~ 3 ypn cot
h2
Yon * a(y1n * 01hy%n o7 yqn o) (43)

Consideration of a harmonic lattice using these expansions suggests
that a = 1, corresponds to accoustic mode and a = —m1/m2 to optical
case. Now substitution of equations (42,43) in (41) yields (with

appropriate choice of variables), the following KAV equation for a=1:

Qo

228 = 0> (44)

au
T *u 3

Taat
QQ
m

Therefore in the accoustic region KAV type pulse solitons are obtained.
Now for a = -M1/M2 as in [4] we obtain travelling wave solutions of

the form exp(tio) whose amplitude satisfies the nonlinear Schrédinger

eqguation:

P

N
2
av)

A !

. 2w

Py
A A=o0. (45)

Q
p=]
[T
0,
~
Q
v
7]
N
<
|

It describes the motion of the amplitude as nonlinear wave modulation.
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6.2 Diatomic Toda Lattice

Using the notations of Section 5 and putting constants a = b = 1,

equations of motion for diatomic Toda chain becomes [6]

TmymyS, /S, ) = (myt my)syy T MySynoq T MpSon4 (46)
Smymy8, /S, ) = (mgk s, g - maSy L p T MySy,e (47)

We look for periodic solutions in the following form because this form

exists in the harmonic limit as well as in the equal mass limit.

_ ® . . 2n
Sop = E a. expli2rj(vt + K_)] (48)

_ 2 A 2n-1
Sop-1 = E bj expli2nj(vt + -7—_)]' (49)

Substituting expressions (48,49) in (47) and then integrating over

a time period we get

2
m1m2(2nv) -m,-m, e(1) a,
e(-1) m,m, (2 v)z—m -m b
gt em 17M2 1
M
- . (50)
N
where
M = i2nv(m1+m2) E jaja1_j - i2qmv E Jajb1_je(1—j) (51)
:]—-oo ]——oo
(e o
N = 12ﬂv(m1+m2)'§ jbjb1_j -i2mv .E jbja1_j e(j-1), (52)
J=" J=—w
with e(j) = m, exp(-i2wj/A) + m, exp(i2ni/A). (53)

Equation (50) can be solved for getting the coefficients of the Fourier
expansion, so that

21 S 293 .o . 2n
4m,m, sin b b 73 sin2wj(vt + X_)
= - j=1 1-g
Son ag 2 v : (54)
mlexp(i21r/)\)+m2exp(—i2n/)\)—m1—m2
© i R
4m1m25in2% z —293? sin2tj(vt + gﬂxl)
= - j=1 1-g
Syn-q = P T 2V .(55)

m1exp(-i2n/x) + m2exp(i2n/x) -m, - m,
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6.3 Henry and Oitma Diatomic Model

Let us consider a diatomic chain of harmonically coupled nearest neigh-
bour atoms m, and m, including a nonlinear @4 potential on mass M1.
The Hamiltonian is given by

2 1

g2 + 52 (u; - v, %+ 2 ylu-v )%+l

1
19 + g mpyy

1
2
(56)
where u;, vy oare displacements of the two types of atom in the i-th
unit cell. V(ui) is the nonlinear onsite potential at lattice points

with mass m, . With the following prescription, equations of motion

can be obtained in continuum limit in the displacive regime:

u; - u(x,t) -+ u

a a;r 12y2
v, > vix + 5 t) > v + 5V + 2(2) v
Vi o> vix - %, t)
57

5 ax (57)
» a
i

a - _1 2w v _
m, 4 + 2y(u-v) gy a’v" + o = 0 (58)

- 1 2 .
m,v + 2y(v-u) - Z yau" = 0. (59)

(a) If v = 0, the equations reduce to continuum equations of motion

for a harmonic diatomic chain.

(b) If v % 0, but instead is given by a ¢4 nonlinear single site
potential then the following three types of excitations are obtained

as exact solution to the field egs. (58) and (59).
(i) Linearized periodic solutions

Here

v(iu) = - x5 u +%u (A, B > 0) (60)
with potential minima at iuo (= *A/B). These linearized solutions
are low energy phonons and represent oscillation of m, atoms in one
of the double well potential (tuo) and oscillation of m, atoms about

tuo from their equilibrium position.
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u = iuo + up sin(kx - mLt + ¢), up << 1 (61)

v = iuo + v, sin(kx - w

L t + ®), v, << 1 (62)

L L

with the dispersion relation

2 2.2 y2a*k®
Am,+y (@, +m, ) (4Ay+y~a"k"- o Jmm, 41/2
2 _ 2 1772 _
mL(ti = = - 1+ 1 .
m,m 2
172 [Am2 + (m1+m2)]

(63)

(ii) Solitary wave solutions (large amplitude solutions)

Equations (61) and (62) represent low amplitude solutions. Besides,

the field equations (58) and (59) represent large amplitude solutions
also. v =u = iuo is the simplest large amplitude solutions with lowest
energy. It is the ground state and is taken as the reference level.

Other solutions are regarded as excitations above this level:

+oo 2
_ -(-i—x l .2 l 2 _ Ya Vet
E = {m 3 { m, +osmyvT o+ y(u-v)"~ + 7= u'v
A, 2 2 B, 4 4
7(u - vo) + Z(u - uo)}. (64)
Seeking, now, solutions in the form u(x,t) = f(s), v(x,t) = g(s) with

s = x-ct equations (58) and (59) becomes

2
ya~ 2 a9 2 a°t av
Y m,C + 2yf +
4 as? as? af
2 = a® a°t
m,c 2y g L LT RS 2y
2 4 2
ds
For ¢ = ¢_,where c_ = 'ya2/4m ,
o’ o 2
£
2 3 af
(s) = £ (s), s = [ci(m,~- m,)] —_—
° ° ot 2 [c -2V(£)]?

For a ¢4 potential depending upon the values of the integration
constant ¢ equal displacement field solutions can be obtained in the

form of a tanh-kink or a sech-pulse.

(iii) Nonlinear periodic solutions

For ¢ = Cqr the displacement fields are not equal and solutions may
become extended instead of localized. The exact solutions can be written

as
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£ = fO sin(ks), k = [(2y)/(9c2m2)]1/2
g = g, sin(ks) + g, sin(3ks)
with
_ (A 4.4 _ 2,2
fO { §§[m1m2c k (2y(m1+m2) Amz)c k
4 2.4
2AY + yzazk2 - —ET%—E— ]/(m2c2k2 - 2y) }1/2
- oy - AN oy - omck?) = (8£3)/(9ya%k2-ay)
9 7 Y 4 o Y mye r 99 T o Y Y
2 1/2 1
c = | 2* b, w=ck o= [(27)/(9m))]% -
9k m,

The linearized periodic solutions are low energy phonons whereas
these nonlinear periodic soclutions are high energy phonons. For dis-
crete diatomic case, Buttner and Biltz [7] found "periodon" solutions
and the above nonlinear periodic solutions are shown to be the long

wavelength (continuum) limit of these solutions.

7. CONCLUSION

In conclusion, it may be stressed that the history and development
of the soliton concept is intimately connected with the studies on
lattice solitons. Now it is known that further researches will help
understand among other things, some unexplained facts in the field
of ferro-electrics, conformational change in biological molecules and
chopping phenomenon. However, some challenging areas of research in-
clude mono and diatomic nonlinear lattices in higher dimensions [11],

scattering and destruction of solitons by impurities (thermal conduction

[12]), onset of chaotic behaviour (that is, how solitons and chaos
compete or compromise) [13], effect of perturbation on solitons and
quantization f14].
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Recent Results in Toda Lattice

Z. Popowicz

Institute of Theoretical Physics, University of Wroclaw,
ul. Cybulskiego 36, PL-50-205 Wroclaw, Poland

It is shown how different generalizations of Toda lattice problems occur
in the context of eighteenth and nineteenth century mathematics. A
possible classification and applications of different generalizations
of the Toda lattice aregiven, with special attention to gauge theory.

The topic of this paper will be the following system of equations

32 _ e¢n+1 T %n _ e¢n T Pn (1)
Ixdy ’n !

where ¢ = wn(x,y) and n € Z, and its different generalizations which
appear in the physics and mathematics. For our purpose, it will be

convenient to define the system (1) in a different manner as

2 r r r
9 _ n+1 _ n n-1
m rn = e 2e + e ’ (2)
a2 iknmhm
IxXIY hn = ¢ ! (3)
where IS 9. " 9, and hrl = hn(x,y),
2 forn=m
knm = -1 for n = mt?1 , (4)

0 for rest

(5)

]
=
Z

|
b=

(6)

where M = exp(cpn+1 - ¢n) and N = d¢n/dx.

Equations (1-6) are known to the physicist as the Toda lattice.

Toda defined equation (2) for x = y in 1967 [1,2] considering a one-
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dimensional lattice, which consisted of N particles of unit mass inter-

acting through the potential

o(r) = e T + r. (7)

Toda considered such a potential because it admitted analytic solutions
and it generalized the famous computer experiments of Fermi, Pasta

and Ulam [3]. Fermi, Pasta and Ulam considered a finite number of pen-
dula arranged in a line interacting with their nearest neighbour via
anharmonic forces. The system was started by displacing the end pen-
dulum with the other at rest. Soon all were moving but after a finite
time, the initial situation recurred. This meant that the system was

not ergodic. The same situation has been obtained for Toda lattice [4].

After introducing the Toda lattice its importance was quickly and
widely recognized by physicists. It appears that the Toda lattice
and its generalizations can describe different physical phenomena and
are contained among the soliton equations. These facts have given a

strong impetus for a deep investigation of these equations.

Surprisingly, recently [5-8] it has been noted that the Toda lattice
in the forms (1)-(6) has been "known" for the mathematicians of the
eighteenth and nineteenth centuries. Here one should specify the meaning
"known" and distinguish those mathematicians who used that system cons-
ciously [9] and those who were close to define it [10,11]. I do not
define here the meaning of "known". It is the problem for the histo-
rians and philosophers, similar to the question "Did ancient Greek
know the differential calculus?" On the other hand, I would like to
apply the Toda lattice to the eighteenth and nineteenth century mathe-
matics using the ideas of Euler and Sylwester.

First let us note that Euler solved the following linear differential

equation
9 = a9 + by, (8)

where g = g(x), a s b0 are arbitrary functions of x, differentiable

infinite times, and

n
=49 5 - §)1° 510 = 49

g =32, §=1Ig1% .. ., lg] o (9)
X

without using the series expansion of g. His method known now as the

Euler method is based on the following trick. Let us write down
equation (8) as

9/§ = b + a_(§/5)7" . (10)
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Using equation (8) we can compute
§/5 = b, + a (§/57 ", (1)

and similarly for

61" _ . .. |La™2 7 (12)
[g]n+1 n n [é]n+3 !

where the functions a, bn could be computed explicitly from (8),

differentiating n times. Substituting (11)-(12) into (10) we obtain
a a a a
d -1 [¢] 1 2 n
(== 1ln g) =b + = — . . . (13)
dx o b1+ b2+ b3+ bn+1+

In this way, Euler was able to represent g as a continuous fraction
[12], which is denoted by us by the use of the special notation in (13).
On the other hand, the investigation of the convergence of the continuous
fraction is equivalent to the investigation of the corresponding series.
It may be that this was the reason why Euler stopped these investigations
at this stage. Following the line proposed by Common and Roberts [8],
let us apply the Euler method to the Riccati equation
dgo(t) 2
— — = E (t) + g (t)F _(t) + g-(t), (14)
at o o o o
where E_, F_ are given functions of t. In [8], the authors proved the
following theorem.

Theorem If -1 satisfies the Riccati equation for some Ek—1’Fk—1’
then Iy + defined by

-1

Ipoq = Ug t (N - 9 ) My, (15)
where UO is an arbitrary constant and k = 1,2,...,satisfies the Riccati
equation for Ek’ Fk if

M = E + U_F + U2 (16)

k k-1 o k-1 o'

- ol

Nk = MkMk (Fk_1 + Uo), (17)

B, = Nk + N U+ M, (18)

F, = -N - U_. (19)
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Note that the initial functions M.I and N] are determined from the coeffi-
cients of the original Riccati equation (14) by using (16) and (17)

with k = 1. If we eliminate the functions E F, and the coefficient

'
UO from (16-17), we obtain Mk’ Nk satisfyingkthekToda equations (5-6),
where now n = 2,3,.... 1In this way, we have obtained the solution of
the Riccati equation (14) in the form of continuous fraction (15) which
is constructed from the solutions of the Toda lattice. It is surprising

that the "old is so new."

Quite a different application of the Toda lattice, with reference
to the nineteenth century mathematics, can be constructed using a work
of Sylvester [11]. Note that Sylvester is also well known for coining
many new words or jargons in mathematics, for example, the persymmetric
determinant. He defined it as the determinant which possesses the
same elements on the perpendicular line to the main diagonal. For

example, the persymmetric determinant of third order is defined by

df 9 91 92
D3(g) = det 9, 9, 95 . (20)
92 93 94

Assuming that

9, = T 9Yor 0= 1,2,.... (21)

Sylvester proved that

D,[D4(g)] = D,(g).D,(q) (22)

and in the general case that

D,[D (g)] D 49D, _;(g). (23)
Putting
DN+1(g) = 1, (24)

for some N we obtain a complicated nonlinear differential equation for
the function g. Probably, Sylvester would have fallen head over heels
to know that equations (23) and (24) are equivalent with the finite
one-dimensional Toda lattice with the free endpoints in the form (3).
This connection can be easily seen due to the following correspondence.

Let us rewrite the equation (3) for minus sign and for x =y = z as
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—2h1+h

2 _ 2

azz h1 = e R (25)
-2h.,+h.+h

2 _ 2 71 73

azz h2 = e , (26)
-2h. + h

2 _ N N-1

azz hN = e , (27)

from which we obtain

h1 dt h1 dt
e = D1(e ) = D1(g), (28)
h h h h h
2 _ .2 2h _ 1 .2 1_ 1 1 _
e = azz h1.e = e azze aze aze = Dz(g), (29)
by
e "D,(g) = D,I[D,(g)]. (30)

Using equation (23) we obtain

hs

e = D3(g) (31)

and by recurrence

h D,[D__.(g)]
e = 207t = D _(g), (32)
Dn_z(g)
for n = 3,4,...,N. In order to terminate this recurrence according
to (27), we assume (24). Hence, we have established the above mentioned
correspondence.

Surprisingly the Toda lattice (2) where r, = in fn can be seen in
the book of Darboux [9]. Darboux found the singular solutions of this
lattice in the form

2

£, = (n-a) (b-n) (x-y) %, (33)

where a, b are arbitrary constants.

In this way, we showed that the different forms of the Toda lattice
can be recovered in terms of the eighteenth and nineteenth century
mathematics. Furthermore, from both physical and mathematical points
of view, it is possible to generalize the Toda lattice in other ways
also. We will try to introduce a possible classification of such
generalized Toda lattices in the following. We call the one-dimensional

system introduced by Toda as the standard Toda lattice, which has been
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thoroughly investigated. We have three possibilities: finite, infinite
and periodic Toda lattices. Out of these infinite and periodic Toda
lattices are completely integrable Hamiltonian systems [13,14] and can
be solved by the inverse scattering transformation [15] or by the Hirota
method [16] or by the Backlund transformation [4]. The finite Toda
lattice has been considered by Kostant [17] and by Olshanetsky and
Perelomov [18].

One can also generalize the standard Toda lattice in one-dimensional
space to the two-dimensional space-time [19,20]. This model corresponds
to a non-trivial relativistic invariant model in field theory, the so-
called nonlinear Klein-Gordon equation and can be solved by the inverse
scattering method [19] or by the Bidcklund transformation. Barbashov
and Nesterenko in 1981 [21] showed that the relativistic string model
in a space-time of constant curvature (de Sitter universe) is described
by the system of equations

e? cosy - eV, (34)

¢xt
v, = e¥ siny (35)
xt °

Interestingly, this system is equivalent with the N = 4 periodic two-
dimensional Toda lattice. Indeed as was shown by Fordy and Gibbons [20]

that in this case the Toda lattice can be reduced to (34-35) if we make
the substitution

1 i
0= 50, ° = SV (36)

after rescaling the variables x and t.

Ueno and Takasaki generalized [22] the standard Toda lattice to the
multidimensional case using the idea of Kadomtsev-Petviashvilli hierar-
chies [23]. 1Its algebraic structure and bilinearization in terms of
the 1t function and some special solutions were investigated in detail
in [24]. '

The fourth generalization is a purely theoretical approach where
one generalizes the Toda lattice by including supersymmetry. Here, one
can distinguish between the non-extended [25] or extended [26] super-

‘symmetric Toda lattice.

In the next approach, one can utilize the connection, discovered

by Bogoyavlensky [27], between the Toda lattice and simple Lie algebras.
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It appears that for every simple Lie algebra one can associate a Toda
lattice which bears the name of the Lie algebra. For example, the SU(N)
one-dimensional finite, nonperiodic Toda lattice is exactly the standard
finite, nonperiodic Toda lattice with the free endpoints. The standard
periodic Toda lattice corresponds to contragradient Lie algebras. It
appears that these equations have important applications in the gauge
field theory, namely, in the construction of the spherically symmetrical
instantons or monopoles [28-31]. Let me briefly present how one can
recover the Toda lattice from the self-dual equation for the Yang-Mills
field theory. The instantons are defined as the finite action self-
dual of the Yang-Mills field theory [32]. The monopoles are defined

as the static solutions with finite energy of the self-dual Yang-Mills-

Higgs field assuming the so-called Bogomolny-Prasad-Sommerfeld limit

[32]. Here the self-dual condition means that

x - 1 =

Fuv = 2€uvaB FuB = Fuv' (37)
where

Fuv = auAv - aVAu + [Au,Av], (38)

and Au is a Lie algebra valued matrix function.

The self-dual conditions (37) are usually written down in the com-

plexified space-time. This is achieved by introducing new coordinates

}5 (x +ix,), z = 7% (x,-ix;) (39)

=
1]

y = 7% (xo-ix1), z = 7% (x2+ix3) (40)
in terms of which (39) takes the form

FyZ = F;/E = 0, (41)

F + F = 0. (42)

Notice that due to the complexification of the space-time the gauge
group is also complexified. Now let us consider the special ansatz

[33] for A , A_ assuming that u =y = gz, u=y = z.

u
A, = aéM+(ya exp[—g kanBE-a + auwa Ha), (43)
A = S - 7 44
- aéM+(yq expl g kaB¢8E+a + aawa Ha)' (44)
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where Yor §a'¢a’ $a are functions of z, z and Eia’ Ma are the genera-

tors of the gauge group which we choose in the Cartan-Chevalle basis

[34]. Hence they satisfy the following commutation relations
= +
[HB' Eia] "kBaEia ' (45)
= . 4
[Byqr E_g! Sap Mg (a6)

Here M+ denotes the set of the simple roots of a given Lie algebra
of a gauge group and kaB is the Cartan matrix. For the SU(N) gauge
group it has the form (4) with finite n. Substituting (43-46) after

equating the coefficients corresponding to the same generators we obtain
= = -z k +{ 47
Y Y exp( é aB(‘I’B \bB). (47)

+9,) = exp(-z kae("’B“T’B”‘ (48)

Equation (48) is the Toda lattice in the form (3) with the free endpoints.
for the SU(N) gauge group. For different groups, we have different
Cartan matrices and hence different Toda lattices. These equations

can be solved by pure algebraic method [31,33,35] or for the classical
semisimple gauge group by the non-auto Liouville-Backlund transformat-
ion [36]. This name follows from the fact that for the SU(2) gauge
group, equation (48) reduces to the Liouville equation which possesses
the non-auto Badcklund transformation which transforms the solutions

of the two-dimensional Laplace equation onto the Liouville equation.

The Liouville-Backlund transformation transforms N-1 solutions of the

two-dimensional Laplace equations onto the SU(N) Toda lattice.

On the other hand, equations (41-42) can be solved in a different
way. First, let us notice that equation (41) tells that the potentials

Ay, A§, Az, AE are pure gauge. This means that

A = D D A- = D -D 49
y ay ' 3 ay ' (49)
A = D_1a D A- = 6‘13—6 (50)
A z 2 z '
where D, D are arbitrary matrices. Introducing the new matrix R =
) equation (42) reduces to
(RTTR )= + (R7TR)= = 0 (51)
y'y z'z -
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In the special case when z = z one can show [32] that equation (51)
describes the monopole solutions for the Yang-Mills-Higgs field theory.
Surprisingly if we now consider the following equation
(R2'R_]1- = rRZ' R -=RrI'R (52)
n ny'y n+1 "n n n-1'
where Rn is the matrix-valued function of y, y belonging to SL(N,C),
then it can be considered as the lattice approximation of the equation

(51) for z = z, what can be easily seen [37] using the Taylor expansion
of

2
- €
R,, = Jted J+5p % . . .. (53)
In the special case when
¢
R = e ™. (54)

we obtain the equation (1) the Toda lattice. This generalization of
the Toda lattice is known as the nonabelian Toda lattice. Perk and
Capel [38] were the first to introduce this concept to physics. They
showed that the correlation between x and y components of the spin

in the inhomogenous X-Y model can be described by the one-dimensional
nonabelian Toda lattice. The present author has shown that this one-
dimensional nonabelian Toda lattice can be considered as the lattice
approximation of the chiral models [39]. This nonabelian infinite
Toda lattice possesses the inverse scattering tfansformation as well
as a Backlund transformation [37,39,40]. The multisoliton solutions
for the periodic nonabelian Toda lattice can be obtained from the inverse
scattering transformation [41] by the use of the so-called "soliton
correlation matrix" [42].

In order to show the basic difference between abelian and nonabelian
solutions of Toda lattice let us present a straightforward method [43]
of constructing the solutions of Toda lattice in both cases. Let us
define the B3cklund transformation and the inverse scattering transfor-
mation [37] respectively as

-1 1 -1

-1 -
— (] [ = (] - []
R aan R' 4 aan_1 a {Ry 'R - Rl . R .}, (55)

- 1 1_1 - _ -1 = L 1 - 1 -1
ay RiRn aanRn o {Ran+1 Rn—1Rn

—_

| (56)

where a is an arbitrary parameter, Rn and Ré are respectively the
known and unknown solutions of equation (52),
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3, b(n) = Y(n+1) - R-](n)ayR(n)\b(n), (57)

-1
3§ Y(n) Rn Rn—1 Y{n-1), (58)

-1 -1 -1
ay§ Y(n) = Ro1Ry Y(n) - a§(Rn aan) Y(n) - R aana§ Y(n),(59)

where equation (59) is obtained from (57) and (58) by differentiating
(57) by a§ and using (58). These formulae are obtained by the genera-
lization of the corresponding formulae in the abelian Toda lattice.
Notice that in (57) and (58) the absence of the so-called spectral

parameters. We can introduce these by scaling the matrix function
(/I exp(uy +uy) (60)

where U and U' are quite arbitrary parameters. We are now ready to
prove the following.

Theorem: If Rn and Yn) satisfy (52) and (57<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>