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Preface 

It is more than 20 yeal's since the concept of the soliton was introduced into 
nonlinear dynamics by Zabusky and Kruskal in their now famous numerical 
experiments on the Kortweg-de Vries equation. Since then the field has grown 
in an almost exponential manner and has now entered a period of stability and 
high respectability. It has attracted the attention of researchers in all mod­
ern areas of mathematics, physics, engineering and biology. On the one hand 
various mathematical concepts such as prolongation structures, jet bundles, 
space curves and surfaces, gauge-equivalence, Lie-algebraic properties includ­
ing Kac-Moody and Virasoro algebras, symplectic structures, Lie-Backlund 
symmetries, singularity structures, and so on have been attributed to soli­
ton properties, while on the other hand numerous applications have been 
found in such wide areas as fluid dynamics, lattice theory, plasma physics, 
condensed matter physics, superconductivity, magnetism, nonlineal' optics, 
particle theory, general relativity, aerodynamics, meteorology and electrical 
networks. 

The Science and Engineering Research Council of the Government of In­
dia, Department of Science and Technology (DST), has formulated a pro­
gramme of annual summer/winter schools to encourage research by younger 
scientists in the frontier al'eas of nonlinear phenomena. A winter school in 
this series on the topic "Solitons" was held at the Bharathidasan University, 
Tiruchirapalli, South India, January 5-17, 1987. This book contains the pro­
ceedings of this winter school. It includes eighteen articles by the speakers 
at the winter school (of which two articles were given in absentia) and six 
contributions by participants. 

The book consists of five sections. The first section (Part I) deals with 
introductory remarks on integrability and dynamics and historical aspects of 
the solitary wave which eventually led to the concept of the soliton. Part 
II deals with the mathematical theory of solitons in both 1+1 and 2+ 1 di­
mensions. The inverse scattering transform (1ST), Lie-Bacldund symmetry, 
singularity structure and integrability aspects of nonlinear evolution equa­
tions are discussed here. Then in the next section (Part III) lattice solitons 
are considered. The quantum field theoretical and statistical mechanical as­
pects of solitons are described in Part IV. Finally in Part V a few selected 
physical and biological applications are considered. 

We al'e extremely grateful to the DST for its financial support and to 
Professor A. Gnanam, Vice-Chancellor, Bharathidasan University for his en-
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thusiastic encouragement. The school was organized in collaboration with 
Professor P.K. Kaw, Institute for Plasma Research, Gandhinagar, and his 
support is also gratefully acknowledged. My colleagues offered me unflinch­
ing cooperation in this endeavour and I am particularly indebted to Dr. R. 
Sahadevan, Messrs. S. Raj as ekar, K. Porsezian, and S. Parthasarathy for 
their help. Finally, I record my appreciation of the very efficient typing of 
Mr. S. Venugopal of the entire manuscript. 

Tiruchirapalli, India 
August, 1987 
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Inaugural Address - The Dynamics of Dynamics 

E.G.G. Sudarshan 
The Institute of Mathematical Sciences, Madras 600113, India 

A dynamical system is defined by a collection of configurational coordi­

nates and equations of motion obeyed by them. These equations of motion 

may be generated by a suitable principle or may themselves be postulated. 

Given such equations of motion we would like to solve them so that the 

dynamical variables at any time may be determined as a function of 

the initial variables and time. For a system which is a generalization 

of a Newtonian system these would be even in number. The central problem 

of dynamics is the determination and characterization of the solutions. 

Naturally if we can solve the problem completely then we could consider 

various aspects of the solutions including the dependence of the solution 

on the initial" data. Except for the really trivial cases, even in 

relatively elementary examples there are interesting dependences and 

qualitatively new features emerging. For example if we consider the 

elementary problem of uniform acceleration, say a projectile moving 

vertically in terms of the initial position so' initial velocity u 

and the acceleration due to gravity -g, the distance s travelled in 

time tis: 

s (, ) 

But if we ask the time t, at which the distance s, is reached we have 

to solve a quadratic equation in which s,-so' g and u appear as coeffi­

cients. We ma~ get no solution, one solution or two solutions depending 

on the set of initial values. 

Returning to the question of a general dynamical system, wnat con­

stitutes a solution? Most of the time "reducing to quadratures" is 

considered as having solved the problem, though we may not get the 

solutions in terms of elementary functions. In most cases singular 

integrals and singularities may appear. One immediate consequence of 

this is that the solution may become multiple valued and thus imply 

an unexpected richness of the dynamics. 

2 



If the equations of motion of a system can be reduced to a polynomial 

in a single dynamical variable and its time derivative equated to zero, 

the problem is reducible to quadratures in terms of Abelian integrals. 

These have pole and branch point (including logarithmic) singularities. 

Correspondingly, the dynamical system develops qualitatively new physi­

cal behaviour. For simple harmonic motion the singularity corresponds 

to the limits of the simple harmonic motion. 

In a recent paper M. Lakshmanan and R. Sahadevan [1 ] have given 

a succinct exposition of nonlinear dynamics from the point of view of 

integrability and Painleve analysis with many standard examples and 

applied the method to two,three and N~oupled quartic anharmonic oscil­

lators [2]. 

There is a close connection between integrable systems and Lie 

groups. Gelfand and Kirillov have shown that under very general condi­

tions the generators of a Lie algebra of rank y and dimension N=2n+ y 

can be realized in terms of rational functions of n pairs of canonical 

variables and y unknowns. If one of these generators turns out to 

be the Hamiltonian, then the dynamical evolution can be viewed as a 

one-parameter group of transformations generating an orbit. Naturally 

this is true not only for polynomial Hamiltonians but also Hamiltonians 

which are rational functions. 

But few systems of practical interest are integrable; and so we 

must resort to a study of qualitative dynamics. The state of the system 

can be plotted as a point in phase space; and the evolution in a small 

but finite time maps this point to another point, unless singularities 

intervene. These phase space maps can be viewed as an alternate form 

of (discrete time!) dynamics, and one could ask questions about longtime 

behaviour and other qualitative aspects. Among dynamics so defined 

we may identify systems which "mix" (in which the long-time evolute 

is independent of the initial conditions) and those in which the number 

of constants of motion are much less than normally expected. 

Another class of questions of interest involve stability and secular 

behaviour. These questions are expected to be complicated for nonlinear 

systems, but they can become nontrivial even for innocent looking systems. 

For example, consider a Hamiltonian system with n degrees of freedom 

whose Hamiltonian is quadratic in the phase space variables. The equa­

tions of motion are all linear and finite time solutions all exist. 
However the diagonalization is nontrivial (though already done by 
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Williamson [3]). It is only in one of the Williamson classes is the 

solution properly bounded. 

Just because the equations of motion of a dynamical system have 

been integrated it does not follow that the system behaves in a satis­

factory manner. If we consider a system with a central inverse cube 

force added to an inverse square force, the orbit would be a rosette 

made from a precessing ellipse. There are more startling examples 

of integrable chaotic systems. In fact the most acceptable forms of 

chaos are generated by such mechanisms. 

We are thus led to the unexpected and unsettling recognition that 

the lawfulness and the determinism embodied in the orbits of an integ­

rable dynamical system does not automatically imply our intuitive notions 

of continuity and stability. Slight disturbances could dramatically 

alter the orbits; and the conserved quantities of dynamics vary irregu­

larly over the phase space. Long term trends cannot be predicted on 

ideas abstracted from simple dynamical systems. 

When a dynamical system has nonlinear equations Qf motion, the 

dynamic inertia of the system becomes dependent on the configuration. 

If it happens that this dynamic inertia tends to vanish these are points 

of maximum fluctuation where even a miniscule change in the configuration 

can cause a substantial change in the outcome. Gone is the smooth 

dependence of the outcome on the initial conditions. 

Such irregular configurations could also result from constraints. 

Given a system with holonomic constraints we can get rid of the cons­

traints, at least locally, by choosing generalized coordinates. But 

with nonholonomic constraints we have to evolve a whole new theory of 

constrained systems. The extraction of the true degrees of freedom 

and the true equations of motion are nontrivial tasks and the question 

of uniqueness must be investigated in each case. 

The elimination of constraints, even when they are holonomic, may 

not be possible globally. A simple example is provided by a charged 

particle moving in a monopole magnetic field. In this case the configu­

ration space is ]R3 with the origin deleted, and the equa·tions of motion 

can be written down and seen to be explicitly rotationally invariant. 

However, the Lagrangian formulation of the problem requires. the introduc­

tion of the vector potential. This vector potential cannot be chosen 

in a rotationally invariant manner; and any choice involves a "line 

singularity" along which the potential cannot be defined. The proper 
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way to handle this problem is to use fibre bundle formalism and identify 

the choice of any vector potential as a particular section of the fibre 

bundle. In this case the structure is quite simple; the group space 

of SU(2) may be seen as a fibre bundle on s2, the unit sphere, as base. 

Such dynamics on manifolds is not any longer a curiosity, but appropriate 

to many problems of dynamics particularly to gauge field theories con­

sidered as dynamical systems with infinite number of degrees of freedom. 

The invariance group of the differential equations of motion leads 

to integrals of motion, and serves to simplify the problem of complete 

integration of the equations of motion. In the Lagrangian form if 

the Lagrangian is invariant under a group of transformations, so will 

the equations of motion be invariant. The reverse is not necessarily 

true. The equations of motion may exhibit quasi-invariance and change 

of the Lagrangian by a total derivative which mayor may not require 

a redefinition of the generators of change. For example, the system 

moving in two dimensions having the Lagrangian 

1 ·2·2 .. 2 m(x + y ) + eB(xy - xy) (2 ) 

possesses a modified translation invariance with generators a +eBa , 
x Py 

a 
y 

which commute amongst themselves. 

system with Lagrangian 

..., 1··2 .. 1 2 
~= 2 m(x - y) + e(xy - xy) + 2(x - y) 

On the other hand the 

( 3 ) 

is only quasi invariant under the translation ax + a y ; but by 

the addition of ~t {;(x2 - y2)} this becomes strictly invariant under 

the same translation. Of course, the equations of motion are unchanged 

by this addition. 

In the study of mechanics we have come a long way. From the idealized 

free particles and the two-body celestial mechanics problems we get 

the impression that mechanics is an exact strictly casual discipline 

with solutions which may be difficult to compute but which are generally 

well behaved. This good behaviour includes smooth variations of the 

trajectory with regard to specification of initial data, and regular 

longtime behaviour. For nonlinear systems, even relatively simple 

ones, neither aspect of good behaviour may obtain. Catastrophes and 

singularities may vitiate the first tendency; and the discovery of 

completely integrable chaotic systems puts in evidence unexpected possi­

bilities in longtime behaviour. It is a classical result of celestial 
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mechanics that present knowledge is unable to predict whether the moon 

would escape or undergo capture in the moon-earth-sun system; but 

many more new features come to light in simple dynamical systems with 

nonlinear interactions, including the existence of mixing systems. 

The generalization of mechanics to general topological manifolds 

also introduces a new flavour to dynamics itself; and reminds us that 

we have not always been dealing with the most natural frameworks in 

mechanics. We are in a period where older results and problems are 

restudied with new insights and points of view. 

It is therefore appropriate that Bharathidasan University has 

organized this winter school on 'Solitons'. 

it. 

REFERENCES 
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R. Sahadevan and M. Lakshmanan, Phys. Rev. A33 (1986) 3563. 
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"The Wave" "Par Excellence", the Solitary Progressive 
Great Wave of Equilibrium of the Fluid: 
An Early History of the Solitary Wave 

R.IC Bullough 
Department of Mathematics, U.M.I.S.T., P.O. Box 88, 
Manchester M601QD, United Kingdom 

It is shown how in 1876 Rayleigh resolved the conflict between Russell 
on the one hand, and Stokes and Airy on the other, about the nature 
of the solitary ~ave and the formula for its velocity of propagation 
c. However, Boussinesq had already done this in 1872 when he published 
the Boussinesq equation and gave its solitary wave solution. The 
fundamental articles by Russell of 1840 and 1844 which first introduced 
the solitary wave and gave the formula c = !g(h+k) for its velocity 
are surveyed. They show that he understood the collision properties 
of solitons in 1835, though these objects and their mathematics emerged 
only some 130 years later. 

1. INTRODUCTION 

This lecture is concerned with a few points surrounding the early history 

of the solitary wave and of the soliton it gave birth to. 

Because the 1973 review of solitons [1] made its now well known 

quotation from John Scott Russell's 1844 paper [2], everybody knows 

how in the month of August 1834 he rode his horse along the banks of 

a certain Scottish canal [3] in pursuit of a disturbance of the water 

which in particular Stokes [4], and more latterly ourselves have called 

a 'solitary wave'. Recall Russell 'was observing the motion of a boat 

which was rapidly ~rawn along a narrow channel by a pair of horses 

when the boat suddenly stopped--not so the mass of water in the channel 

which it had put in motion: it accumulated round the prow of the vessel 

in a state of violent agitation, then suddenly leaving it behind, rolled 

forward with great velocity, assuming the form of a solitary elevation, 

a rounded smooth and well defined heap of water, which continued its 

,course along the channel apparently without change of form or diminution 

of speed. I (He) followed it on horseback and overtook it still rolling 

at some eight or nine miles an hour, preserving its original figure 

some thirty feet long and a foot to a foot and a half in height. Its 
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height gradually diminished and after a chase of one or two miles I 

lost it in the windings of the channel. Such, in the month of August 

1834, was my first chance encounter with the singular and beautiful 

phenomenon which I have called the Wave of Translation, a name which 

it now generally bears: which I have since found to be an important 

element in almost every case of fluid resistance, and ascertained 

to be of the type of that great moving elevation of the sea, which, 

with the regularity of a planet, ascends our rivers and rolls along 

our shore~. This 'first chance encounter' was actually reported first 

of all in an earlier paper [5] and in a rather more prosaic fashion 

( Re f. [5], p. 6 1 ) . 

Notice that Russell is using 'Wave of Translation' not 'solitary 

wave'. As we shall see it was certainly he who introduced the word 

'solitary' to describe it, and on the p. 61 of Ref. [5] he used 'a 

large solitary progressive wave' (Russell's italics) propably the 

first such use. But generally he preferred 'Wave of Translation', 

or 'The Wave' ([5], p. 61) as it is used in the title of this lecture. 

It was Wave of Translation he continued to use throughout his life 

and finally in the posthumous book [6], 'The Wave of Translation in 

the Oceans of Water, Air and Ether' published in 1885, on which I 

comment shortly. However, I shall follow Stokes [4], Rayleigh [7], 

and indeed current practice, and use the term 'solitary wave' for 

Russell's 'Wave' here; and this lecture is concerned with the history 

of the solitary wave from August 1834, when Russell first saw it, 

upto 1876 when Rayleigh [7] calculated its profile. 

Of course the history of the solitary wave, or even of this parti­

cular solitary wave, does not stop in 1876. In 1895 Korteweg and 

de Vries published their paper [8] in which they gave their now famous 

equation. And they also gave the solitary wave solution of that equation. 

It was probably only then, as we shall see, that the controversy sur­

rounding the whole idea of the solitary wave as Russell conceived it 

ceased, and during the period 1876-95 a number of papers contributed 

to its discussion--two by McCowan [9,10] amongst others. 

These days we usually quote the KdV equation in a scaled form 

such as [11] 

o , ( 1. 1 ) 

au where u t means at' etc. And its solitary wave solution is then 
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u = (1. 2) 

in which ~ is a free, real, parameter. Both the equation (1.1) and 

its solution (1.2) actually refer to a frame translating at the 'sound' 

speed, but Russell was not concerned with subtleties like that. However 

he was very much aware of the formula for that sound speed, namely 

(1. 3) 

in which g is the acceleration due to gravity and h, using Russell's 

terminology [2], is the depth of undisturbed water in the canal. 

Equation (1.1) is thus in a frame translating at Co with Co set equal 

to unity. 

Following the discoveries of Zabusky and Kruskal [12], and Gardner, 

Greene, Kruskal and Miura [13], we now know that (1.2) is not just 

a solitary wave: it is a soliton with the remarkable collision proper­

ties of solitons [12]. Viewed in these terms, and without any computer 

power at his disposal, Russell's mathematical capabilities were rela­

tively weak. He knew [2] Euler's 'general formula for the motion of 

fluids in the Memoirs of the Academy of Sciences of Berlin' [14]. And 

he seems to have had a useful knowledge of classical texts like 

Lagrange's [15] and Laplace's [16], and evert Poisson's [17], while 

he particularly appreciated [2] a work [18] by the two brothers Weber, 

Professors at Leipzig and Halle respectively. But it was On his acute­

ness of observation and a strong if variable physical insight and under­

standing on which he relied; and from his experiments on water waves 

in channels constructed in the laboratory during 1834-40 [2], as well 

as the earlier experiments he performed on the canal [5] in the period 

1834-35, he already knew that the solitary wave he had first seen 

generated in 1834 had this collision property. Perhaps what prevented 

him from stressing this particular, and to us so much more remarkable, 

feature was the m~re compelling need he faced to justify to his scienti­

fic peers the idea of the solitary wave itself. It is with this aspect 

that this historical note is concerned. 

2. JUSTIFICATION OF THE SOLITARY WAVE: 
BOUSSINESQ'S PAPER 

,Although, as I shall show, Rayleigh's paper [7] should have settled the 

whole argument in 1876, it was settled even before this in a remark­

able paper by Boussinesq presented in 1871 [19] and published in 1872 

[20]. Moreover, and despite the discussion between 1876 and 1895 cul-
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minating in the paper by Korteweg and de Vries [8], this paper might 

in one respect have opened up the problem again rather than closed it. 

This was because much of Russell's own case for the existence of the 

solitary wave rested on the exact truth of his formula for the velocity 

of propagation of that wave 

c = !g(h+k) ( 2 • 1 ) 

which he first gave as such in [2]: again the terminology is Russell's, 

and k is the height of the peak of the solitary wave above the surface 

of the undisturbed water. Obviously (2.1) is a natural generalisation 

of (1.3) and I believe this is how Russell found it. However he then 

went on to demonstrate its truth by experiment [2]. The point now 

is that the formula (2.1) is not quite the velocity of the solitary 

wave solution (1.2) of the KdV equation (1.1), even when that solution 

is placed in the laboratory, rather than the moving, frame. I establish 

the actual error shortly. Later I show how Korteweg and de Vries [8] 

really did settle the whole matter, however. 

Still the matter was settled by Boussinesq in 1871-72. For in his 

paper [20] he gave the analysis by which, starting from Euler's equation 

for the conservation of momentum under pressure gradients Vp and body 

forces vn in an incompressible fluid of density p 

DOt pu = p(ut + (u.V)u) = -V - vn, u 
- - - - p 

(u,v,w) (2.2) 

(in a modern notation), together with the equation for conservation 

of mass 

v.u o , (2.3) 

he reached the partial differential equation 

(2.4) 

h is the depth of undisturbed water and Co is given by (1.3). 

Boussinesq also gave the solitary wave solution of this equation, namely, 

u(x,t) = k sech2 (~ $ (x - ct») (2.5) 

The height at peak of this solitary wave is indeed k, while its velocity 

c proves to be given by (2.1) exactly. 
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One easily scales (2.4) to 

called the Boussinesq equation. The solitary wave solution of (2.6) is 

and 

2 c (2.8) 

The Boussinesq equation is integrable and (2.7) is a soliton; but the 

spectral problem which solves it is a third order (or 3 x 3 matrix) 

spectral problem [21], and so it is rather more complicated than the 
2 Schrodinger spectral problem -~xx + u~ k ~, already familiar from 

wave mechanics, which solves the KdV equation (1.2) [13]. It is there­

fore fascinating to speculate on the history of the soliton itself if 

Boussinesq's paper of 1872 had then, and subsequently, received the 

attention it deserved. It is just possible that this meeting at 

Tiruchirapalli would not have taken place had it done so! 

Of course the Boussinesq equation (2.6) 'contains' the KdV equation 

(1.1). ror in reaching (2.4) terms effectively of order O(k2/h2 ) are 

dropped. And to this order (2.4) can be 'factorised' so that (2.6) 

is written as 

A solution of 

U + u + 1 (l2U 2 + u I t X -2 
XX) X 

o 

solves (2.9), and such a solution is 

221 u = >,. sech 2" >,. (x - c 1 t ) 

with 

Evidently 

1+2.>,.2 
2 

o • (2.9) 

(2.10) 

(2.11) 

(2.12 ) 

(2.13) 

11 



and c~ differs from c 2 , equation (2.8), by O{A 4) = 0{k 2/h2 ). On the 

other hand in a moving frame, so that a/at + a/ax ~a/at, (2.10) easily 

scales to the KdV equation (1.1), so that (2.13) makes the point that 

the KdV soliton moves at a speed slightly different from Russell's 

formula (2.1)! Still it was at 0{A2 ) that the argument raged, as we 

shall see, and A2 ~ 1/5 in Russell's first experiments [5] on his canal. 

Larger values of A2 arise in the more detailed laboratory experiments 

reported in [2], however: the largest value quoted seems to be A2 = 1/3 

(Ref. [2] Table VII, p. 336) but values of A = 1 were examined for 

Russell [2] certainly knew that the waves broke in this case as he points 

out (e.g. [2], p. 340). Rayleigh [7] quotes Airy [22] as saying the 

wave always broke in this case and shows why. Rayleigh's actual remarks 

in this connection are given at the very end of this paper. 

In the remainder of this note I survey some aspects of Russell's 

work, that due to Airy [22] which disagreed with Russell's, some due 

to Stokes [4] which did likewise, and Rayleigh's paper [7] which confirmed 

both the solutions (2.5) or (2.7) (upto (k 2/h2 )!) for Russell's solitar~ 
wave and his key formula (2.1) for the velocity of that solitary wave 

exactly. 

3. THE BOOK 'THE WAVE OF TRANSLATION' AND 
RUSSELL'S PAPERS OF 1840 AND 1844 

Although almost everybody alive must now know of Russell's 1844 paper 

[2], few have read it, and only the well-known quotation from it survives. 

Still fewer people are aware that the 1844 paper was preceded by the 

longer paper [5] published in 1840 in the Transactions of the Royal 

Society of Edinburgh. These two papers, [2] and [5], contain Russell's 

permanent contribution to the evolution of our science. In a working 

lifetime of some 56 years (he was born in 1808, had studied at three 

of the four Scottish universities, Edinburgh, St. Andrews and Glasgow, 

before graduating from the last at the age of 16, and died in 1882) 

he published some 49 scientific articles [ll]--including 21 British 

Association Reports, 4 Edinburgh Royal Society Transactions or Pro­

ceedings, and one Royal Society (of London) Proceedings [23]. (He 

was elected FRS in 1847.) He also wrote at least three books, namely 

the posthumous [6], an original, and indeed seminal, contribution to 

Naval Architecture 'The Modern System of Naval Architecture' [24], 

and a pedagogical contribution a 'Systematic Technical Education' [25]. 

But he never had a permanent academic or scientific appointment {Sir 

w. R. Hamilton, the great Hamilton, wrote of Russell as a 'person of 

active and inventive genius' in support of his application for the 
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Chair of Mathematics at Edinburgh University in 1842; but this was 

not enough to get Russell the job). Russell spent the period upto 

1846 on his scientific researches often in his spare time [5). By 

1855 he was certainly building the great 12,000 ton iron ship 'The 

Great Eastern' at his own shipyard at Millwall on the Thames, for the 

engineer Isambard Kingdom Brunel; and in 1856 he published his major 

work on Naval Architecture 'The Modern System'. Further details of 

a remarkable life are given in the Appendix to [11) and the biography 

[26). He seems to have reflected on his solitary wave throughout that 

life and on June 16, 1881, one year before his death on June 8, 1882, 

he gave his paper [3) at the Royal Society entitled 'The Wave of trans­

lation and the work it does as the carrier wave of sound'. This was 

followed by the posthumous book [6) of 1885. 

In the paper [23) Russell apparently argued, as his book certainly 

does, that since in general dispersion will obviate any possibility 

of transmitting information by sound, the solitary wave, which, virtually 

by definition has permanent shape, must be used instead. The 'Wave 

of translation' is Russell's solitary wave so the formula (2.1) applies. 
-1 -2 From c - 1100 ft .sec g "" 32 ft sec , one finds h+k - 8 miles; 

Russell corrects for varying density by a factor 2/3 so the equivalent 

depth of the atmosphere is about 5 miles. From there Russell [6) used 

the velocity of light for c, the same g, and certain apparently arbitrary 

factors -5 x 10 4 , to reach a 'depth of the universe' of 5 x 10 17 miles: 

this is in error by only 5 orders of magnitude--quite a respectable 

estimate in my view given all the circumstances! 

The permanent work in the book [6) is the Appendix. This is simply 
a reprint of the 1844 paper [2). That paper is primarily concerned 

to report the formula (2.1) which it then validates pragmatically by 

showing that the speeds of the solitary waves actually measured by 

Russell in the laboratory fit to it: no theory leading to (2.1) is pre­

sented anywhere in Russell's work. The paper also contains a categori­

sation of waves wqich was very much Russell's concern at the time. He 

here gives four 'orders': First, the wave of translation--wave of 

first order and its two species, positive and negative, though Russell 

well recognised the important difference between the positive and nega­

tive cases--see below; second, oscillatory waves, positive and negative 

and second order; third, surfaces agitated to minute depth, that is 

papillary waves, third order; and fourth, corpuscular Waves, sound waves 

in fluids reflecting the existence of molecular forces. There appears 

the Table I "System of Water Waves". First order is as above: it is 

solitary in character, it can be free or forced, and includes the 'wave 
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of resistance', the 'tide wave', and the aerial sound wave (as explained 

already). Waves of the second and third orders are gregarious: order 

two includes stream ripples, wind waves, ocean swell, stationary or 

progressive, free or forced; third order includes 'dentate waves' and 

'zephyral waves', free or forced. The corpuscular wave of fourth order 

is solitary and includes the water and sound waves. 

That Russell knew about soliton break-up is evidenced by the Fig.6 

in the Plate 47 of the 1844 paper [2]: this Plate 47 is now reproduced 

here as the Fig. 1. One sees the first example of break-up is positive 

and so really is soliton break-up. However, the second example shows 

break-up into a pOlsitive wave leading and a negative one following. 

Still, Russell certainly knew the negative wave is not really a soliton 

at all--or even a solitary wave: its speed did not conform to the formula 

(2.1) as the experiments he reports in the Fig. 5 of Plate 48 of [2] 

showed, while in the Plate 52 of [2] he shows how the negative wave 

though at first solitary breaks up into gregarious oscillating waves 

of order two. The Plates 48 and 52 of [2] are here reproduced as the 

Figs. 4 and 7. 

The 'wave of resistance' of first order referred to in the Table I 

and appearing already in the quotation from [2], is a reference to 

Russell's work in the earlier paper [5]. In this long paper he is not 

so much concerned with the velocity formula (2.1), which he quotes in 

words only, but with the very practical problem of the resistance of 

boats towed (or travelling) through water of finite depth. One should 
recall that Russell was actually on his horse on the banks of canal 

in the month of August 1834 charged by the Union Canal Company to deter­

mine the efficiency of canals for the possible transport of steam driven 

barges £,3]. The conventional wisdom of the time, due to Newton, 

Bernouilli and d'Alembert to whom he refers, was that the resistance 

R was simply proportional to the square v2 , of the velocity V of the 

boat through t~e water. Being aware as he says [5] 'of the very imper­

fect state of that part of Theoretical Hydrodynamics which relates 

to the Resistance of Fluids to the Motion of Floating Bodies, and that 

there had been found in its application to the solution of practical 

questions, discrepancies so wide between predicted results and the 

observed phenomena, as render the principles of the theory exceedingly 

false guides, when followed as maxims of art' Russell determined to 

investigate the situation by a series of experiments which he carried 

out in the summers of 1834 and 1835. He found instead ·of R ocv2 that 

resistance X plotted against velocity Y followed curves like those 
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Fig. This Figure is the Plate 47 of Ref. [2]. This plate shows the 
ways in which Russell created solitary waves in troughs some 6 inches 
deep in the laboratory. For soliton theory the two most interesting 
Figures in this plate are the two at the bottom (Fig. 6) as explained 
in the text. Fig. 5 on the plate shows in its four diagrams the motion 
of individual water particles during the passage of a solitary wave 
(the particles were actually material particles suspended in the 
water). The first diagram describes simultaneous motions at different 
points; the second, motion of four particles throughout the whole pas­
sage of the solitary wave from A to X (the curves are semi-ellipses 
according to Russell and show that there is a net translation of posi­
tion which he takes to be the volume of water to create the wave divid­
ed by the breadth of the channel); the third shows the motions of ver­
tical planes during the passage (small particles were suspended from 
stalks in equally spaced vertical planes in the undisturbed water) ; 
the fourth shows movement of initially equally spaced horizontal planes 
of particles during the passage. 
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AX and A Y rectangular. co-ordinates. 
Velocity measured on A Y, and resistance on AX. 
AP the parabola resulting from tho;) squares of the velocities. 
AMm R the line of resistance, M the point of fll'st ma:wnum, and In the 

s;}cceeding point of minimum. 

Fig_ 2 Two sets of observations made by Russell on his canal 
of the resistance X of a boat plotted against its speed Y. The 
curves P are the parabola of the conventional view at the time 
and the curves R are what Russell found in 1834-35(taken from [5]). 

shown in Fig. 2: curves Pare R ocv2 curves R with a maximum at M and 

a minimum at m, both depending on the depth h of the fluid, are followed 

by the rising curves to R; but, later, for velocities -29 mph, he 

argues that these curves too fallaway from a second maximum. In this 

later discussion Russell gives an explanation of the whole form. Its 

essentials are these: a crucial feature is the emersion (i.e. emer­

gence) of the whole boat: this explains the second maximu~ of resis­

tance at V ~ 29 m.p.h. (which Russell [5] computes as 4g/3) and its 

subsequent fall where at 43.8 m.p.h. (V = 2g) the 'floating body emerges 

wholly from the fluid and skims its surface'. However, the more pro­

found influence arises, as Russell was the first to realise, from the 

generation and propagation of waves. These waves travelled with speed 

c given by (2.1), according to Russell, so were unconnected with the 

form of the vessel. It was this speed which coincided with the first 

maximum at M. When V < c the effect was to generate Russell's 'Great 

Anterior Wave' [5], a wholly positive disturbance, near the prow and 

a depression, the 'Great Posterior Wave' near the stern. Thus the 

vessel tilted and increased its resistance. But for V > c the vessel 

could ride horizontally on the water diminishing the resistance to m. 

Russell noticed that in this region the destructive power due to what 
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he called the 'stern surge', destructive to the banks of the channel 

and dangerous in navigating shallow water, disappeared. Whilst the 

great anterior wave of so called displacement was bell shaped, the great 

posterior wave of so called replacement was oscillatory, breaking into 

the 'surge' or 'breaking' wave. At this stage he therefore distinguished 

four species of wave, the 'Ripple or Dentate', the 'Oscillatory', the 

'Surge', and '"The Wave" "par excellence", the solitary progressive 

great wave of equilibrium of the fluid'. For the vessel itself the 

Great Primary Wave of displacement i.e. the great anterior wave, was 

the only example of 'The Wave'. 'The Wave' is the solitary wave as 

I use it here--so thus the title of this lecture! 

Russell noticed the independence of 'The Wave' from its mode of 

genesis and that its speeds (8 m.p.h. for the channel 5.5 ft deep he 

was concerned with) were independent of the speed of the generating 

bodies (e.g. 2, 5, 6 and 12 m.p.h.). Moreover 'Another observation 

equally simple served to show that a large or high wave had a greater 

velocity than a small one. When a small wave preceded a large one, 

the latter invariably overtook the other, and when the large wave was 

before the less, their mutual distance invariably became greater' (Ref. 

[5], p. 6). This remark certainly supports the formula (2.1), but it 

also supports the concept of the soliton also. Moreover, reference 

to Plate II of [5] shows that Russell had already drawn the shapes 

of different observed examples of his "Wave". And he also draws there 
three different examples of soliton break-up which he must therefore 

have known about in 1835, and strictly from his observations on the 

canal not from the experiments of [2]. 

Russell was naturally concerned with the problem of moving a boat 

into the minimum resistance region m and noted some of the possible 

difficulties. 'It appears', he says, 'that increased force applied 

gradually to the vessel for the purpose of rendering the velocity of 

the body equal to or greater than that of the wave, has the effect 

at the same time of increasing at a more rapid rate the retarding forces, 

and a limit is soon reached, which it has in many case been found impos­

sible to pass' (later he shows how a singularity may develop at M). 

'It is the circumstance of ~he very rapid increase of the resistance 

in approximating to the velocity of the wave that has led to the false 

idea that there is a final and low limit to velocity in shallow water. 

There are circumstances in which this limit is final, the channel being 

very shallow, and the boat very bluff in its formation, I have seen 

in such an extreme case, when the depth of the channel was about five 

feet, the channel laid bare in the stern hollow behind the wave, so 

17 



that the stern of the vessel no longer floated but rested on the bottom, 

while the bow was elevated and buried in a large anterior wave, rising 

more than two feet above the level, and overflowing the banks, and 

the posterior wave rushed furiously on behind, roaring and foaming, 

tearing up the banks of the channel, and threatening the destruction 

of the vessel, which, indeed, on stopping, it nearly accomplished, 

In such a case the persons in the vessel were not visible from the 

shore, being sunk in the hollow between the great anterior and posterior 

waves. ' 

He then goes on to discuss the passage beyond the point M, namely 

to m, where the boat rides horizontally upon the wave. Figures 7 and 

8 from [5] appearing in Fig. 3 show exactly what he intends. 

Fig.3. 
(UI rcsl.) 

.-........ _ .. _ .... __ .... --.......... ~.................. ~--... -.-.---.---.-----.. -

Fig. 4. 
(nl , miles un hour.) 

--=-==-~~-... -.. -.. --~-: ... = .. ~-
Fig.6. 

(n16 lIlil"" nn I,our.) 

.m .. _ .. _~~~=--._-
Fig.O. 

(AI7t mil .. IIlI bour.) 

Fig. 7.-llcbind lb. Wave. 

Fig •. B.--TJprn lb. Wave. 

_~.g=;=~ =====--~.= ___ .=. _=-n. ~_ ...... m:::;2: 

'But 

Fig. 3 Figs. 3-8 taken from Russell [5]. Figs. 7 and 8 show how a 
maximum resistance (Fig. 7) is replaced by a minimum as the vessel rides 
on the solitary wave. 
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it will be inquired, how is a vessel to be placed in such circumstances? 
How is the extreme resistance of the anterior wave to be vanquished, 
and the vessel planted on its summit? This is admitted to be a practical 

problem, often of extreme difficulty; sometimes it is impracticable. 

There are forms of vessel that do not admit of a position of stable 
equilibrium on the top of a wave. Still, however, it is a practical 

problem solved everyday on all canals navigated on the Scotch system. 
Vassels of greater length than the wave, having a fine entrance, built 

of light materials, and drawn by well trained highly bred horses, and 
guided by experienced postillions, are raised by a sudden and powerful 
jerk to the top of the wave (at from 6 to 8 m.p.h.) and are drawn along 

on the summit of the wave with greater ease at 10 or 12 m.p.h., than 

at 6 or 7.' (see §IX of [5]). 

I have given these various quotations from [5] at length in order 
to show Russell's grasp of the situation and incidentally to exhibit 
the lively and imaginative character of his writing: I hope it will 

stimulate others to search out his articles and read them. They reflect 

a much more leisured scientific age, and amaze, stimulate, and infuriate 
all at the same'time. In the rest of this paper I want to show- why 

Russell had such difficulty in establishing the existence of the object 
we now call the solitary wave. Herschel's comment "It is merely half 
of a common wave that has been cut off" [27] seems typical of his cri­
rl:ics. To simplify the account here I shall focus only on the objections 

raised by Airy [22] and Stokes [4]. This leads to some historical 

comment on the shape of Russell's wave. Then, in a final section, I 
shall quickly show how Rayleigh [7], in particular, fully justified 
Russell's position. 

4. THE OBJECTIONS OF AIRY AND STOKES AND 
SOME COMMENTS ON THE SHAPE OF THE WAVE 

In publishing the 1844 paper [2], which just preceded the appearance 

of Airy's treati~e [22], Russell already knew that Airy disagreed with 

his formula (2.1) for the velocity c of propagation of a wave of per­
manent shape. Such a wave is necessarily a wave u(x,t) = u(x - ct). 

Russell believed his 'Wave' was in this category and, by implication 

was the only such wave being necessarily positive and lump shaped i.e. 

solitary. Airy believed to the contrary. Rayleigh [7] quotes from 

Airy [22] "We are not disposed to recognize this wave as deserving 
the epithets 'great' or 'primary' .•. and we conceive that ever since 

it was known that the theory of shallow waves of great length was con­

tained in the relation d 2X/dt2 = gkd2X/dx2 , ... the theory of the solitary 
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wave has been well known". And again "Some experiments were made by 

Mr. Russell on what he calls a negative wave--that is, a wave which 

is in reality a progressive hollow or depression. But (we know not 

why) he appears not to have been satisfied with these experiments, 

and has omitted them in his abstract. All the theories of our IV Sec~ 

tion, without exception, apply to these as well as to positive waves, f 

the sign of the coefficient only being changed." That the second comment 

is unfair in the light of the material published in [2] is clear--

though Airy might not have seen that. However, it is immediately 

obvious that the linear equation given in the first quotation can only 

have harmonic solutions albeit, since it is not dispersive, they are 

unique in speed as well as of permanent shape: But they are nowise 

solitary. More generally Airy [22] found the velocity formula 

2 c 
.9. e mh - e-mh 

m emh + e-mh 
.9. tanh mh 
m 

(4.1) 

2 -1 which reduces to co' (1.3), for wave number m« h . However he also , 

included the effect of finite disturbance k to reach 

g(h + 3k) . (4.2) 

As we shall see Rayleigh [7] subsequently found an argument for the 

same result; but, finding it for a distorting wave, he then developed 

the very different argument that arrives at (2.1). Boussinesq [19,20] 

quotes Bazin as confirming (2.1), for (2.5), and (4.2) with ~k not 

3k, for a step function. But in 1844 Russell ~2] was simply very much 

concerned to show that Airy's formulae did not fit his actual observa­

tions. And the Fig. 4, reproduced from Plate 48 of [2] shows in its 

Figs. 3 and 4 how well he succeeds in doing this. Russell also knew 

a result by Kelland [28] quoted in [2] p. 333 as [29] 

{ 
ah -ah } ae - e 

1 - e: 
e ah + e-ah 

(4.3) 

in which e: is given as the semi-elevation, h the depth of water in 

repose, and A ~he length of the wave. He suggests (Ref. [2],p.334) 

that Airy [22] has simply followed Kelland 'over the same ground in 

an elaborate paper on waves' and concludes 'a theory of the first order 

accurately representing this characteristic phenomenon is still wanting, 

a worthy object for the enterprise of a future wave mathematician'. 

There proved to be at least two of these, Bousinnesq [19,20] and 

Rayleigh [7]. 
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Fig. 4 This Figure is the Plate 48 of [2]. Its Fig.l is a check of 
the formula (2 . 1) against observations for channels 1.0 to 8.0 inches 
deep and wave heights up to 0.54 inches; Fig. 2 is for depths 1.62-8.0 
inches deep and wave heights up to 0.96 inches. Figs. 3 & 4 compare 
experimental points against (2.1) (bold line) and against four different 
formulae due to Airy which Russell does not specifically quote (dotted 
lines). Fig. 5 compares the formula (2.1) (curve AB) against observa­
tions for a negative wave in a rectangular channel and formula c 2 = 
1 / 2 g(h+k) (curve AB') for a negative wave in a triangular channel. 
Fig. 6 plots general results for c (in units of one foot per second) 
against (h+k) (in units of five inches): AB is (2.1) for a rectangular 
channel; AB' is c 2 = 1/2 g(h+k) for a triangular one. 

At this stage it is useful to summarize what Russe ll appa r ent l y 

knew. Lagrange [15) f irst integrated the cons e rv . _ion of momentum 

equation (2.2) in the case of irrotational motion u = V~. This integra l 

is 

1 2 
~t(x,t) + F(t) + 2 ~ 

o 

(4.4) 

(4.5) 
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(by choosing the zero forn ) and this result contains both Bernouilli's 

theorem [30] and Torricelli's [31]. Russell well understood Torricelli's 

theorem, which he quotes in [5], as w,ell as (4.5) and its application 

in the pitot tube. He built a shallow bottomed boat 'The Skiff' [5] 

in which he placed a series of pitot tubes to measure the velocity 

profile of water passing a boat in connection with the 1834-35 experi­

ments. 

The formula (1.3) quoted by Russell in [2] is apparently due to 

Lagrange who used the 'method of long waves' to find it [15]. consider 

motion in the (x,y)-plane only with an undisturbed surface y = Yo' 

and a disturbed one y = n(x,t) + Yo. At an arbitrary point (x,y) within 

the disturbed fluid the pressure p there is Po the pressure at the 

disturbed surface enhanced by the potential term gp (y 0 + n -y) so that 

p - Po = gp(yo +n- y) (4.6) 

The content of the method of long waves is to identify y and Yo so 

that p is independent of y: then from (2.2), all particles in a plane 

perpendicular to x get the same acceleration, and all particles in 

this plane remain in the same plane and the horizontal velocity u depends 

on x, t only, u u(x,t). Equation (2.2) is 

u + uu = - l ap 
t x p ax (4.7) 

and the nonlinear term is simply dropped as being of the second order. 

Though this is not a priori a necessary feature of the method of long 

waves, there is no dispersion term left in the method to balance it. 

From (4.6) ap/ax = gp'ln/clx and so 

If E; = I u dt, E;tt = -gnx ' and continuity (2.3) means 

~(E; h b)ox 
ax n box, 

(4.8) 

(4.9) 

b being the breadth of the canal--both expressions being the volume 

of fluid which, up to time t, has entered the space between x, x+ox. 

From (4.9) 

gh E;xx and 

(4.10) 
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with c~ given by (1.3). This is the relation d 2X/dt 2 

Airy [22] quoted by Rayleigh [7]. 

2 2 gkd X/dx of 

The argument given here is really that as presented by Lamb [32]. 

George Green (of Green's Theorem) considered long waves in a rectangular 

canal with slowly varying breadth 8 and depth y and found a wave height 
1 1 

oc p-2y~' and the velocity formula (1.3) as c =;gy [33]. For a 
1 1 

triangular canal with one side vertical [35] Green found c = (2gy )2, 

a result Russell [2] also applies to the isosceles triangle and confirms 

experimentally (see Fig. 6 line AB' of the Plate 48 of [2] in our Fig.4). 

Kelland [28] found c = I9A7b for a canal of cross-sectional area A 

and breadth b at the surface. But this result Russell [2] apparently 

confirmed only for the rectangular and triangular cases disagreeing 

otherwise (Ref. [2], p. 355). Our Fig. 5, which is Plate 49 of [2], 

shows the different triangular cross-sections Russell worked with. 

Nevertheless Stokes [36] says Kelland's formula 'agrees with the experi­

ments of Mr. Russell' simply. 

We turn now to the work of Stokes himself. In the British Associa­

tion Report of 1846 [36] Stokes says "It is the opinion of Mr. Russell 

that the solitary wave is a phenomenon sui generis in nowise deriving 

its character from the circumstances of the generation of the wave. 

His experiments seem to render this conclusion probable. Should it 

be correct the analytical character of the solitary wave remains to 

be discovered". Note that he expects to agree with Russell, and that 

already he firmly uses the designation 'solitary wave'. However, in 

a paper read on 1 March 1847 and pubiished in the Trans. Camb. Phil. 

Soc. [4] "On the theory of oscillatory waves" he effectively concludes 

(for axes x horizontal and y vertically downwards) that 

y a cos m(x - ct) - Ka 2 cos 2m(x - ct) (4.11 ) 

-1 (with a = -m Ac g and m arbitrary, but K then fixed and depending 

on a, m and h, and c given by (4.1))" is the only form of wave which 

possesses the property of being propagated with a constant velocity 

and without change of form--so that a solitary wave cannot be propaga­

ted in this manner. Thus the degradation observed by Russell is not 

due to the imperfect fluidity of the fluid and its adhesion to the 

sides and bottom of the canal but is an essential characteristic of 

the solitary wave". 

Stokes's argumentation is as follows: He starts from (4.4) in 

the form 
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Fig. 5 This Figure is the Plate 49 of [2]. The Figs. 3,4,5 show the 
triangular profiles used by Russell in his experiments. The curves AB 
describe the crest of the wave and in Fig. 5 this crest is breaking in 
the regions aA and Bb. Fig. 1 is the smooth curves drawn through observ­
ed wave heights in order to remove observational error, and similar 
curves were drawn for the velocities. These smoothed results were then 
plotted in Fig. 2 and compared against (2.1) plotted as the curve AB. 

(4.12 ) 

with continuity 

o , (4.13 ) 

and with 

£5£. 0 when y 
dy 

h , (4.14 ) 

and 

~ + £5£. Q£ + ~ Q£ 
dt dx dx dy dy o when p 0 , (4.15 ) 
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the condition for the free surface remaining the free surface throughout 

the motion. The velocities u = d~/dx and v = d~/dy, and p, depend 

on x - ct, the condition for permanent profile, together with y. From 

(4.12) we can admit in ~ a term linear in t to fix p so 

f(x - ct) + Ct (4.16 ) 

and (x - ct) is called x, while C is set to -gk. Then (4.12) is 

(4.17) 

so that for u = v 

x - ct, (4.15) is 

0, p o when y -k. Also, from dependence on 

~~ _ c) dp + ~ dp o when p o , 
dx dx dy dy 

(4.18 ) 

and (4.17) into (4.18 ) gives 

2 d 2cp + 2c (~ 
2 2 -(~f d 2 

g ~- c i.....CfJ. + ~ d i) _..5e. 
dy 02 

dx 2 dx2 dx dx dy dy 

2 
_ (~)2 d 2p 2 ~ ~!LsL 0 dx dy dxdy dy2 

(4.19 ) 

when 

2 
(~)2} g(y+k) + c ~ - ~ {(~) + o . dx (4.20) 

At this stage the argument is exact, but Stokes now first of all 

neglects all the (nonlinear) terms in the second row of (4.19), retaining 

those in the first row however. He sets 

(4.21 ) 

(y 0 is the undisturbed surface) so that (4.20) implies 

( 1 ( 2 + 2) g(y + k) + c ~x + y~xy) - 2 ~x ~y o (4.22a) 

and by one iteration 

k c c (k + _cg '"x) + 1 ( 2 + 2 ) Y = - g ~x + g ~xy or 2g ~x ~y (4.22b) 
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in which y evidently describes the ordinate of the disturbed surface. 

He now puts y = -(k + (c/g)~x) in the first two terms of (4.19) and 

y = 0 in the second two terms so that 

g~y - c2~xx - g(~yy - c2~ ) (k + £~ ) + 2c(~ ~ + ~ ~ ) = O. xxy g x x xx y xy 
(4.23 ) 

Thus ~ satisfies (4.13), with (4.14) at y = h, and with (4.23) at y 

= O. When ~ is determined (4.22b) gives the ordinate y of the surface 

and k is fixed by the condition that the mean value of y shall be zero. 

The first approximation to (4.23) is 

g~ 
dy 

Put ~ 

c 2 d 2 <p = 0 , 
dx 2 

when y o . 

A e(mx+ny) which satisfies (4.13): the boundary 

m2+n 2=0 

(4.24) 

conditions are chosen to make m imaginary (so the behaviour along x 

is matched to a Fourier series and periodic boundary conditions have 

entered). Then 

~(em(h-Y) + e-m(h-y )) (A sin mx + B cos mx) (4.25) 

since the choice satisfies (4.14). Then one non-trivial contribution 

to (4.25) satisfies 

2 c 
mh -mh .<I e - e 

m emh + e mh ' 

which is of course the formula (4.1). Stokes then proves that 

d(log c 2 )/d (2mh) < 0 which implies a unique m satisfies (4.26). 

By choosing the origin of x 

( m(h-y) e-m(h-y)) 
~ = A e + sin mx , 

and this, put into (4.20), yields 

y -m Ac g-l (emh + e-mh ) cos mx 

(4.26 ) 

(4.27) 

(4.28 ) 

(he sets k = 0 since the mean value y 

for the free surface. 

0) and this is the equation 

For a second approximation he uses ~ from (4.28) in the small 

terms of (4.23) retained, so that 
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o . (4.29 ) 

Stokes continues "The general value of ~ given by (4.25), which is 

derived from (4.13) and (4.14), must now be restricted to satisfy (4.29). 

It is evident that no new terms in ~ involving sin mx and cos mx need 

be introduced, since such terms may be included in the first approximate 

value, and the only other term which can enter is one of the form 

B (e 2m (h-y ) + e- 2m (h-y )]sin 2mx . (4.30 ) 

Substituting this term in (4.29) and simplifying by means of (4.26) 

(4.31 ) 

Moreover, since the term in ~ containing sin mx must disappear from 

(4.29), the equation (4.26) will give c to a second approximation"-­

so the velocity formula (4.26) is actually unchanged. 

If we now set a for the coefficient of cos mx in the first approxi­

mation (4.28), 

a = (4. 32a) 

and 

A 
mh -mh -ca/(e - e ), (4.32b) 

while 

-ac 
em(h-y) + e-m(h-y) 2 (e 2m (h-y) + e- 2m (h-y)) . 

sin mx + 3ma c mh -mh 4 s~n2mx. 
em(h-y) _ e-m(h-y) (e - e ) 

(4.33 ) 

Thus the ordinate of the surface to the second approximation from (4.22b) 

is 

y 
2 a cos mx ~ Ka cos 2mx (4.34 ) 

with x ct, 2 given by (4.26) , and -+ x - c 

1 (e 2mh + -2mh + 4 ) e coth mh K 2m 
(emh -mh 2 - e ) 

(4.35 ) 

which is the statement (4.11). 

To proceed further Stokes simplifies to h » A(depth h »length A 

of the wave). Then (4.33), (4.34) and (4.35) are 
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cp 

y 

K 

- ace-my sin mx 

1 ma 2 cos 2mx a cos mx - "2 

1 
"2 m 11/>" (4.36 ) 

and c 2 = g>../211; the parameter k 

(with h »>..), 

o. He then finds at next order that 

cp -ac (1 

1 2 3 2 3 Y a cos mx - "2 rna cos2mx + 8 m a cos3mx 

c = (*) 1/2 (1 + 2:~a2) (4.37) 

and only at this order does the wave amplitude a enter the expression 

for c. Stokes draws the form of y for a = 7>../80 (for some reason) 

but notes the term in a retainer "is almost insensible". His most 

significant result is that the figure is not symmetrical above and 

below y = O. 

Stokes also notes that "It is remarkable that this expression(for 

y) coincides with that of the prolate cycloid, if the latter equation 

be expanded according to ascending powers of the distance of the tracing 

point from the centre of the rolling circle, and the terms of the fourth 

order be omitted. The prolate cycloid is the form assigned by Mr. 

Russell to waves of the kind considered here (Reprints of the British 

.Association Vol. VI p. 448 (Ref. [34], p. 448)". For h/>" not great 

the form of the surface is not a prolate cycloid even to second approxi­

mation. 

Before discussing further Stokes's results (4.11) and their exten­

sion (4.36) ang (4.37), it is interesting to take up his comment on 

the form of Russell's wave. The reference by Stokes to [34] is correct 

for 1837 but not for 1847. For in [2] (of 1844) Russell already des­

cribed the shapes of his waves as curves of versines not cycloids(see 

below). The paper [34] (of 1837) is the report of a "Committee on 

Waves" set up by the British Association in 1836. The committee had 

two members--Russell and Sir John Robinson, Secretary to the Royal 

Society of Edinburgh. It was charged to determine: first 'What is 

a Wave'; second what is the nature of the 'Waves of the Sea'; third 

does the behaviour of the 'Tidal Elevation' obey the same laws as other 

28 



waves; and is its propagation affected by 'Local Winds'. The report 

is plainly Russell's report on these questions. 

In it he was most concerned to establish what he had already believed 

to be true--namely that the tidal wave was an example of his solitary 

wave. In September 1836 he carried out experiments on the River Dee, 

near Chester, where there is a 5 mile channel of the river straight 

and uniform in depth and width. Then he carried out experiments on 

the Firth of Clyde, where conditions were less uniform. From these 

experiments, and a further series in the laboratory, the Committee 

concluded: 1. the certain existence of a 'Great Primary Wave' of 

fluid in its laws different from that of the oscillatory waves treated 

hitherto; 2. that its velocity c satisfied (2.1); 3. that c is indepen­

dent of the mode of generation; 4. the motion of the particles of 

water involves their actual net translation (refer Fig. 5 in our Fig.l); 

5. the form of the wave is cycloidal, being first a prolate cycloid, 

becoming a cusped 'common' cycloid as the height k increases to h, 

and breaking beyond that height; 6. in channels of arbitrary cross­

section c is 'that due to gravity acting through a height equal to 

the depth of the centre of gravity of the transverse cross-section 

(so (2.1) applies to a rectangular channel and c 2 = ~9(h+k) in a tri­

angular one (refer [35))); 7. that the increased height k in a wedge 

shaped narrowing of the channel may follow k.~ b- 1/ 2 (b the breadth 

(refer [33))); 8. in a uniformly shelving channel the wave breaks 

when k = h; 9. the solitary wave can be normally reflected without 

any change but reversal of direction; 10. the solitary waves cross 

each other without change of any kind (solitons again); 11. Waves 

of the Sea are not of this type but are second order oscillatory; 12. 

these waves nevertheless become solitary waves as they approach the 

shore and break for k < h; 13. waves at the surface of the sea do not 

move with the velocity due to the total depth h+k; 14. that at sea 

every 3rd or 7th or 9th wave can be the largest (this is in fact a 

reference to waves in deep water governed by the nonlinear Schrodinger 

equation) and these, in particular, will break on the shore; 15. the 

Tide Wave is the only wave of the ocean which is a wave of first order 

(is a solitary one); 16. the tide itself is a compound wave; 17. a tidal 

bore is created when the water is so shallow at low water that 'the 

first waves of flood tide move with velocity so much less than that 

due to the succeeding part of the tidal wave, as to be overtaken by 

the subsequent waves, or wherever the tide rises so rapidly, and the 
water on the shore or the river so shallow, that 

the height of the first wave of the tide is greater 
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than the depth of the fluid at that place. Hence in deep water vessels 

are safe from the waves of rivers which injure those on the shore'; 

18. that because the Tidal Wave is solitary (2.1) means that deepening 

a channel means an advance in the time of observation of high water; 

19. that likewise spring tides (large k) travel faster than neap tides 

(small k) with a consequent effect on tide tables. 

This report was followed (37) by a further brief note on the form 

of the tidal wave in the Firth of Forth. Again the note identifies 

the Tidal Wave with Russell's solitary wave, while 'It appears that, 

like the great wave of Translation, tidal waves could not only meet 

each other without losing their individuality, but they could pass 

over each other when going in the same direction'. 

Thus Russell confirms yet again that he had observed the soliton 

property. However, he never found the analytical sech 2 formula for 

the soliton's shape. His shapes are cycloids in (34); his Wave was 

a trochoid in [5], p. 85; and it becomes a 'curve of versines' in [2] 

whilst in that paper his cycloid refers to his gregarious oscillatory 

waves of order two. Russell shows some of his laboratory observations 

of wave shapes in the Plates 50 and 51 of [2]. 

here as the Fig. 6 and shows two waves breaking. 

The latter is reproduced 

The Plate 52 of [2], 

reproduced here as Fig. 7, shows that Russell's 'curve of versines' 
1 is a ik(l + cosB) curve, i.e. it is harmonic but rendered positive. 

At first sight Russell's insight has really failed him here. But note 

that for large k (Figs. 4 and 5 in the Plate) he is already correcting 

this harmonic shape by an effect due to the translation of the particles. 

The translation in the Fig. 4, AA', is the volume of water used to 

create the wave divided by the breadth of the channel, and Russell 

has already demonstrated this is the net translation of planes of water 

particles (cf. our Fig. 1). The Fig. 6 in our Fig. 7 shows a single 

particle path in the case of Fig. 5, where k~h, and three successive 

positions of the wave in regard to it. 

Evidently Russell would have been in a much stronger position in 

1844 if he could have given an analytical form to his wave by analytical 

methods. I now return to Stokes's [4] result of 1847, namely (4.11) 

and its extension, and indicate what was wrong with it. 

The passage to h»A (i.e. m h ~oo) involved in (4.36) and (4.37) 

prejudices any discussion with respect to Russell. But Stokes's results 

at second order are at first quite general and in particular, for the 
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Fig. 6 This Figure is Plate 51 of [2]. The waves are 'drawn by them­
selves' by using pairs of equal waves travelling in opposite directions 
and registering their wetting profile in collision. The second four 
curves are all drawn this way; the first two, which are breaking, are 
apparently found similarly. The last four curves are also apparently 
drawn in the same way but the troughs have the sloping bottoms gX, kX, 
tX and mX with gradients one in twelve. Otherwise h = 2 inche"s for all 
the curves. The dimensions were reduced by Russell by a factor 2/3 and 
the parallel lines are really one inch apart (the preceding Plate 50 is 
similar but is drawn full size). 

'long wave' condition mh small, Ka 2 in (4.35) reduces to 3a2/4m2h 3 . 

Since Stokes's Fourier series must converge he then requires 3a2/4m2h 3 

< a and (a/h)< m2/h2 . According to Stokes this resolves an apparent 

discrepancy with Airy [22] (Art. 198, etc.) who working under the long 

wave condition mh« 1 finds the form y of his wave alters at second 

order as the wave proceeds while c depends on wave height at that order 

(Airy may even reach his expression (4.2) for c at this point). Evidently 

Stokes has (a/h)< m2h 2 and Airy has mh small with a/h > (mh)2. Thus 

the two assume "different physical circumstances". 
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Fig. 7 This Figure is the Plate 52 taken from [2]. Figs. 3,4,5 show 
Russell's curve of versines description of the shapes of his Waves 
and Figs. 4,5 show the corrections he made for the translation of the 
particles. Fig. 6 shows the single particle path. Figs. 1 and 2 are 
each superb examples of soliton break up: Fig. 2 is generated from a 
long low column of water, Fig. 1 by a plate with variable force and 
longitudinal velocity. The lower Figs. show the creation of a solitary 
negative wave and its break-up into gregarious oscillatory waves of 
Order II. 

This is almost but not quite the nub of the matter. To second 

approximation Stokes has no error and everything depends on the approach 

to the long wave limit A =2TIm-1~ 00. In this respect both Stokes and 

Airy, who assume A = 00 a priori but then work incorrectly, are wrong. 

Certainly Stokes avoids the assumption of p independent of y, charac­

teristic of the method of long waves, and nonlinear terms are retained 

at sufficient accuracy in (4.19) at his second approximation. For mh 

small the two terms of (4.11) then prove to be the first two in the Fourier expansion 

of the square cn 2 of the Jacobian elliptic function cn. And in later 

work (see Stokes in [39]) Stokes finds the third term also. Since cn2 
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Fig. 8 This Figure is Plate 53 of [2] and is not referred to in the 
text. It shows reflex ion of a solitary wave from the surface R for dif­
ferent angles of incidence measured from R. The reflected wave decreases 
in amplitude with decreasing angle of incidence until at about 15° 
incidence it prefers to travel as a single wave by increasing its 
height in the plane of R. 

~ sech 2 as the period A finally goes to infinity Stokes's real error 

has been to impose periodic boundary conditions in all of his analyses. 

It was Korteweg ~nd de Vries [8] who pointed out that Stokes [4] had 

found the first two terms of the cn 2 function and it was in this way 

they finally settled the matter. No such escape seems available to Ai.ry 

however. The critically different physics described by periodic boundary 

conditions is still not always appreciated [38]. 

Later Stokes acknowledged his error [39] but Airy never did. His 

opinion carried weight well beyond Rayleigh's paper [7] and Korteweg 

and de Vries [8] seem to have written their paper in 1895 essentially 

for that reason. They quote Boussinesq [19,20], Rayleigh [7] and St. 
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Venant [40) as establishing the theory of the solitary wave but noted 

that (in 1895) treatises by Lamb ([32), 2nd edition 1895) and Basset 

still assert that Airy was correct in his opinion. The same is true 

of the Encyclopaedia Brittanica article on Russell of 1886. Moreoever, 

Korteweg and de Vries say that even Rayleigh [7) and McCowan [9) do 

not directly refute Lamb's and Basset's assertions and "It is the desire 

to settle this question definitively which has led us into the somewhat 

tedious calculations which are to be found at the end of this paper". 

The KdV equation itself, though noted as "very important" in [8) gets 

rather less discussion. 

5. RAYLEIGH'S PAPER AND HIS RESOLUTION OF THE PROBLEM 

These various remarks in [8) seem quite extraordinary when we actually 

look at what Rayleigh did in his paper [7) in 1876. It is somewhat of 

a relief to turn to this paper after those of Stokes which are also 

"somewhat tedious". The paper [7) is 'On Waves', and in it Rayleigh 

exploits his physical insight as usual rather than any extraordinary 

manipulative mathematical skills. In these terms his paper [7) should 

have settled the matter in England at least, and Russell, a Scot by 

birth should have benefitted for he had long since moved to London [26). 

Boussinesq [20) working in Paris could be ignored but Rayleigh scarcely. 

Yet he seems to have been if Korteweg and de Vries [8), working in 

Holland however, were right. McCowan's papers [9,10) suggest very much 

that they were. 

Rayleigh uses h for the height of the proposed solitary wave above 

the undisturbed water, and he uses t for the depth of undisturbed water. 

At the risk of confusing, I shall at first keep Rayleigh's usage and 

change it to Scott Russell's only when I turn, with Rayleigh, to his 

actual analysis for the solitary wave. 

Rayleigh first notes (in effect by appeal to (4.5)) that a steady 

water velocity Uo along x in the undisturbed region will lead to an 

increase in pressure inside the solitary wave where, by continuity, 

if h > 0, u drops to u. On the other hand the pressure will decrease 
91 

from the p n = gh, and the possibility of a balance exists. He first 

of all assumes the postulate of the theory of long waves, i.e., A»h, 

so that the velocity v (in the y-direction) is negligible and u (the 

velocity along x) is independent of y: u is of course uniform along 

z, i.e., across the canal. Continuity then means 

u = (5.1) 
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and 

(5.2) 

'The principle of hydrodynamics' (namely (4.5)) now means that the 

increase in pressure due to the fall from Uo to u is 

1 2 2 1 2 2th+h2 
2" p(uo - u ) 2" pUo 

(Hh)2 
(5.3) 

while the net gain is therefore 

2 1 + h/2R. 2 

r:o - gp} 0:. [P:o - gp Jh . 
(1+h/t)2 

(5.4) 

Implicitly he now moves to a frame where the velocity Uo is reduced 

to still water so the region where the velocity is u moves up the x­

direction (actually he treats a stationary wave and points out this 

also gives the velocity of the wave in still water). The condition 

for a free surface (no net gain in pressure) is to the order just realised 

then u~ = gt, which is Lagrange's (1.3). To second approximation how­

ever it follows that 

6p g ph { (1+h/2t) 
(1+h/t)2 

1}0:._lgPh2 
2 t (5.5) 

so that p is defective wherever h * 0, and it is impossible for a long 

wave of finite height to be propagated in still water 'without change 

of type'. Evidently (from (5.4)) if h > 0 one obtains a better result 

if Uo is increased, thus making the left hand expression less negative. 

But if h < 0 one obtains a better result if Uo is decreased, making 

the curly bracket there less positive. The wholly positive wave Russell 

conceived therefore has a velocity c >co ' while a negative wave has 

c < co. 

Rayleigh now notes that (5.1) is 

u' _ u - Uo (g/t)1/2h (5.6) 

(since he has just shown h is infinitesimal). For vanishingly small 

h, as required, (5.6) is the condition that the disturbance moves up 

the positive x direction. If the condition is violated the wave emerges 

in the negative x direction. Rayleigh adopts this condition as a local 
condition for the profile at any finite distance h above the undisturbed 
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water so that, with velocity and height changing gradually, the local 

condition for no negative wave is 

du' 19/tJl,+h) dh (5.7) 

and the resultant net condition at final height h is that the total 

discrepancy u' = u - Uo will be 

u' 2/9 Lh+h - II} (5.8) 

Now the formula (1.3) means that at total depth (h+JI,), Uo = /gth+JI,) 

so that u, the velocity of the peak relative to still water is 

'" ;g /H3h . (5.9) 

This is actually Airy's formula (4.2). However, the condition is an 

always positive moving profile and this profile necessarily distorts 

(as Rayleigh has proved already). 

Rayleigh next uses the same line of reasoning to regain Kelland's 

formula c ;gAlE as well as those of Green. Let A be the area of 

the cross section below the undisturbed level, b the breadth at that 

level. Then continuity means 

(A + bh)u Au 
o 

for small enough h; so instead of (5.2) 

But, 

2 2 
u - u 

o 

since 

is free, 

(2bh/A)u 2 
o 

'by dynamics' 

gAlb , 

(namely (4.5) 

which is Kelland's formula. 

2 
u 

o 
2 

u 

(5.10) 

(5.11 ) 

2gh if the upper surface 

(5.12 ) 

Rayleigh then goes on to argue as follows: "The energy of a long 

wave is half potential and half kinetic. If we suppose that initially 

the surface is displaced, but that the particles have no velocity, we 

shall evidently obtain (as in the case of sound) two equal waves tra-
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velling in opposite directions". Evidently the total energies of each 

are equal and make up the original energy of displacement, these derived 

waves have each one half the elevation of the original and potential 

energies one quarter. The energy of each wave is one half so potential 

and kinetic energies are equal in the two derived waves. Now apply 

this result to the case of gradually changing band A. The potential 

energy oc{length x breadth x (height)2} of the wave which is then true 

of the total energy. Since wave-length ~ propagation velocity bc/A75 
from (5.12)), energy 

EoclTA76T x (height) 2 x b (5.13 ) 

and, since this is constant for a slowly varying canal, 

(5.14 ) 

1 1 

This is oc ,-ib- i for a rectangular canal, namely Green's result [33] 

for a canal of slowly varying depth and breadth. Both (5.12) and (5.14) 

are also given by Airy [22] (Art. 260) and Stokes [36] points out that 

his proof of (5.12) is actually simpler than Kelland's in [28]. However, 

Rayleigh simply refers them jointly to Green, Kelland and Airy by 

reference to Stokes [36]. 

Next Rayleigh proves that h cannot exceed the value due to the velo­

city Uo by general ising (5.3), a result he notes as 'otherwise obvious' 

(which it is). 

the free wave 

depression of 

elevation the 

He then shows that if u is less than the velocity of 
2 0 

(gAo> buo ) a contraction of area Ao to A produces a 

the surface while an expansion from A to A produces an 
2 0 

effects being reversed for gAo < buD. He notes that a 

stationary wave can sustain itself "in a stationary position without 

requiring a variation in the channel; and the effects of such a variation 

are naturally much intensified" and goes on to show that the situation 
2 -1 when Uo > gAob is unstable. 

At this point Rayleigh starts a wholly new section entitled "The 

Solitary Wave". He says "This is the name given by Mr. Scott Russell 

to a peculiar wave described by him" (in [2]). Since Russell's wave is 

6 or 8 times the canal depth in length it should be treatable by the 

theory of longwaves. However "there are several circumstances observed 

by Mr. Russell which indicate it has a character distinct from that 

of long waves"--notably the different behaviours of positive and negative 

waves, the former having a "remarkable permanence", the latter being 

"soon broken up and dissipated". 
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Rayleigh remarks that Airy "appears not to recognize anything dist­

inctive in the solitary wave" and quotes from Airy [22] "We are not 

disposed . in the form of the two quotes given above. On the other 

hand he then also quotes the earlier view expressed by Stokes in [36] 

"It is the opinion of Mr. Russell (also given above). After dis-

missing a paper by Earnshaw [41], which appeals to experiment in order 

to validate the postulates of the theory of long waves and thereby runs 

into a problem of matching rotational motion in the wave to irrotational 

motion beyond it, Rayleigh goes on to consider whether there can be 

compensation between pressure variation at the surface from the finite­

ness of height and variation due to the departure from the law of uniform 

velocity proper to very long waves. This is the crucial consideration. 

To analyse this he introduces stream lines ~ 

potential ~ setting 

const. and a velocity 

F(x + iy} e iy d F(x} 
dx (5.15 ) 

this choice being motivated by the fact that one stream line, at the 

bottom of the canal, is straight. Thus 

F - ~ F" + ~ F(iv} 
2! 4! 

~ 

3 5 
yF' - L F'" + L F (v) 

3! 5! 
(5.16 ) 

~ = 0 on the bottom of the canal, and at this point by changing back 

to Russell's notation and choosing h for the depth of undisturbed water, 

~ = -ch at the free surface. On this surface p is uniform so that 

(from (4.5}) 

2 
+ 

2 2 - 2g(y-h) u v c (5.171 

Then 

2 4 
F (v) u F' - L F' II + L + 2 ! 4 ! 

(5. 18a) 

and 

v -yF" + (5.18b) 

so that 

(F' }2 y2F'F'" + i(F,,}2 + c 2 - 2g(y - h} (5.19 ) 

on the free surface. But the free surface is also ~ -ch so that 
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3 
yF' - L F'" + ••• 3! -ch . (5.20 ) 

The procedure now is to eliminate F from (5.19) and (5.20) to get 

a differential equation for y, the ordinate of the free surface. If 

F varies slowly one can solve these two equations for y by iteration 

so that 

F' ch + .1. y2F'" + 
Y 6 

-ch {l + 1 y2(.l)" + } y 6 Y ••• (5.21 ) 

and (5.19) becomes 

1 2 1 2 1 
- - -3 Y (-)" + Y (-)' 
/ y y 

(5.22 ) 

or 

2 
3 (y - h) (1 _ 9.Y ) 

h 2 c 2 
(5.23 ) 

2 2 from which, when y' = 0, Y h or y = c /g. Then if 1 - gy/c ~O, 

y = c 2/g is maximum, y = k + h (say). Thus 

2 = g(k + h) c (5.24 ) 

Also 

y - h k sech2 1 
2"(x/b) (5.25 ) 

and 

b 2 h 2 (h + k)/3k (5.26 ) 

The formula (5.24) for c 2 is of course precisely Russell's (2.1). Also 

(5.25) is 

u(x, t) y - h = k sech2 [ ~ ~~)i (~+~ ixJ (5.27 ) 

(at t = 0) and the maximum height is Russell's k. However the formula 
1 

differs from Boussinesq's result (2.5) by the scaling (h/h+k)2 on 

x. This scaling has the same order of discrepancy as does the KdV 
! 1 

solitary wave (2.11), for [1/(1 +k,th)P .. l - 2"(k/h). But now the exact 

result (5.24) is found for c 2 (to within the order worked). Thus, 

in this very direct way, Rayleigh further justifies Boussinesq's analysis 

·and wholly justifies (2.1) and therefore, for Russell, his whole position. 

It would be tempting now to trace the further developments to modern 

methods which, for example, identify symplectic manifolds and infinite 
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dimensional Lie algebras within the theory, quantise it and find Yang­

Baxter integrability conditions. I leave this fascinating series of 

developments to other contributions to this meeting. 

I therefore finish with Rayleigh's own summing up of his work on 

the solitary wave. He says [7] "The velocity of propagation is given 

by (5.24), which is Scott Russell's formula exactly. In words, the 

velocity of the wave is that due to half the greatest depth of water. 

Another of Russell's observations is now readily accounted for:­

'It was always found that the wave broke when its elevation above the 

general level became equal, or nearly so, to the greatest depth. The 

application of mathematics to this circumstance is so difficult, that 

we confine ourselves to the mention of the observed fact [22,42]' 

When the wave is treated as stationary it is evident from dynamics 

that its height can never exceed that due to the velocity of the stream 

in the undisturbed parts; that is, k is less than U~/2g. But u~ = 

g(h + k), and therefore k is less than ~(h + k) or k is less than h. 

When the wave is on the point of breaking, the water at the crest is 

moving with the velocity of the wave". 

Rayleigh then goes on to consider Periodic Waves in Deep Water. 

REFERENCES 

[1] A. C. Scott, F. Y. F. Chu, D. W. McLaughlin, Proc. IEEE 61 (1973) 
1443. 

[2] J. S. Russell, "Report on Waves", British Association Reports 
(1844). 

[3] The canal is believed to be the Union Canal which passes below 
the campus of Heriot-Watt University, Edinburgh, Scotland. The 
Union Canal Company certainly paid for the boats Russell construc­
ted in 1835 for the experiments described in [5] below. However, 
Encyclopaedia Brittanica 1886 says "Having been consulted as to 
the possibility of applying steam-navigation to the Edinburgh 
and Glasgow Canal, he replied that the question could not be ans­
wered without experiment, and that he was willing to undertake 
such if a portion of the canal were placed at his disposal". 
Still the 100th anniversary of Russell's death in 1882 was held 
at Heriot-Watt University. Despite perfect arrangements in all 
other respects, the organisers were unable to generate a It foot 
solitary wave on this occasion despite the several powerful boats 
stopped for this purpose! In the light of such difficulties, 
Russell's experiments on this canal in 1834-35 described in [5] 
below are astonishing. 

[4] Sir George Stokes, Trans. Camb. Phil. Soc. 8 (1847) 441. 
[5] J. S. Russell, "Experimental Researches into the Laws of Certain 

Hydrodynamical Phenomena that accompany the Motion of Floating 
Bodies and have not previously been reduced into conformity with 
the Laws of Resistance of Fluids" Trans. ROY. Soc. Edinburgh 
14 (1840) 47-109. 

[6] J. S. Russell, The Wave of Translation in the Oceans of Water, 
Air and Ether (Trubner, London, 1895). 

[7] Lord Rayleigh (J. W. Strutt), "On Waves", Philos. Mag. 1 (1876)257. 

40 



[8] D. J. Korteweg, G. de Vries, "On the Change of Form of Long Waves 
Advancing in a Rectangular Canal, and on a New Type of Long 
Stationary Waves", The London, Edinburgh, and Dublin Philosophical 
Magazine and Journal of Science Series 5, 39, No. 241, June 1895, 
pp. 422-443 (Philos. Mag. 39 (1895) 422). 

[9] J. McCowan, "On the Solitary Wave", Philos. Mag. 31 (1891) 45. 
[10] J. McCowan, "On the Highest Wave of Permanent Type", Philos. Mag. 

38 (1894) 351. 
[11] R. K. Bullough and P. J. Caudrey, eds., Solitons, Topics in 

Current Physics 17 (Springer, Heidelberg, 1980), Chap. 1. 
[12] N. Zabusky, M. D. Kruskal, Phys; Rev. Lett. 15 (1965) 240. 
[13] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, Phys. 

Rev. Lett. 19 (1967) 1095. 
[14] L. Euler, Memoirs of the Academy of Sciences of Berlin (1755). 
[15] J. L. Lagrange, Mechanique Analytique pp. XII, 512 (Chez La 

Veuve Desaint, Paris, 1788); Nouvelle Edition Augmente Par 
L'auteur 2 Vols. Paris 1811-15. 

[16] P. S. Laplace (Marquis de Laplace): Traite de Mechanique Celeste 
(Chez, J. B. M. Duprat, Paris an VII, 1798-1823). 

[17] S. D. Poisson, "Memoire sur la theorie des ondes" Mem. de l'Acad. 
Royale des Sciences (i) (1816). 

[18] E. H. Weber, W. Weber, Wellenlehre auf Experimente gegrunder,oder 
uber tropfbarer Flussigkeiten mit Adwendung auf die Schall und 
Licht-Wellen (Leipzig, 1825). 

[19] Reference [20] was presented on 13 Nov. 1871 and published in 1872. 
Rayleigh [7] refers to the note by Boussinesq (J. Boussinesq, 
"Theorie de l'intumesence liquid appelee onde solitaire ou de 
translation, se propagent dans un canal rectangulaire" Comptes 
Rendus LXX II, 755(1871)) and acknowledges Boussinesq's priority. 

[20] J. Boussinesq, "Theorie des ondes et des remous qui se propagent 
Ie long d'un canal rectangulaire horizontal, en communiquant au 
liquide contenu dans ce canal des vitesses sensiblement pareilles 
de la surface au fond" J. Math. Pures et Appliquees 2(1872)55. 

[21] P. J. Caudrey, "The Inverse Problem for a General N x N Spectral 
Equation", Physica 60 (1982) 51-66. 

[22] Sir G. B. Airy (Astronomer Royal), "Tides and Waves", Encyclo­
paedia Metropolitana (1845). 

[23] J. S. Russell, Proc. Roy. Soc. 32 (1881) 382. 
[24] J. S. Russell, The Modern System of Naval Architecture (Day & 

Son, London, 1865). 
[25] J. S. Russell, Systematic Technical Education for the English 

People (Day & Son, 1869). 
[26] G. S. Emerson, John Scott Russell: A Great Victorian Engineer 

and Naval Architect (John Murray, London, 1977). 
[27] Sir John Herschel, quoted by Russell [24], p. 208. 
[28] The Reverend P. Kelland, "On the Theory of Waves Par~ I" Trans. 

Roy. Soc. Edinburgh 14 (1839) 497-545. The result c 
-1 

gAb quoted below (4.10) appears on the p. 530. 
[29] Reference to Kelland [28] shows that Kelland's formula in his 

notation is~ first of all (p. 514) 

2lT 2 
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g eCLh + e -CLh 2 2 1 - (2~aJ [eCLh - e-CLh] 

(A.l ) 

CLh -CLh-l 
with a the amplitude of the wave given by a = (A/lT)(e +e ) . 
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Wl th the seml-elevation E: = (bl c a) (e CLh - e -CLh) where u (the velo­

city along x) defines b through u = b(eCLY - e-CLY )(l + sin(x - ct)). 
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the existence of absolutely permanent waves of finite height. 
In this supplement to [4) Stokes develops the analysis at finite 
depth to 3rd order. He finds 

2 mc 
y 

D 1 1 2 
+ (S + 2S2 + 12)b 

51 SO 4 1 1 
(A.2) 

where S. = e imk/ c -imkc (. _ ) _ imk/c -imkc 
~ +e ~-1,2, ... ,Di-e -e 

k = ch and bD 1 = a. In this paper he introduces the stream 

function ~ as well as the velocity potential ~ = -k (a different 
k) at the canal bottom. 
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Part II 

Mathematical Theory: 1ST, Symmetries, 
Singularity Structure and Integrability 



Topics Associated with Nonlinear Evolution Equations 
and Inverse Scattering in Multidimensions 

M.J. Ablowitz 
Department of Mathematics and Computer Science, Clarkson University, 
Potsdam, NY 13676, USA 

In recent years the basic structure required to implement the inverse 
scattering transform in 1+1 and 2+1 dimensions has been clarified and 
extended. Aspects involved with fully multidimensional problems have 
also been treated. In particular the inverse scattering associated 
with various multidimensional operators and generalizations of the 
sine-Gordon and self-dual Yang-Mills equations have been studied. A 
review of some of this work will be discussed in this review. 

The Inverse Scattering Transform (I.S.T.) is a method to solve certain 

nonlinear evolution equations. There has been wide ranging interest 

in this method for many reasons. A review of earlier work can be found 

in [1 J. A surprisingly large number of physically interesting nonlinear 

equations can be solved via 1ST; there are many applications in physics 

including: surface waves, internal waves, lattice dynamics, plasma 

physics, nonlinear optics, particle physics and relativity. Mathemati­

cally speaking the field is also quite rich, with nontrivial results 

in the areas of analysis, group theory, algebra, differential and alge­

braic geometry being used by various researchers. From our point of 

view, 1ST allows us to solve the Cauchy problem for these nonlinear 

systems. We shall concentrate on questions in infinite space. All of 

the nonlinear equations discussed below arise as the compatibility 

condition of certain linear equations, one of which is identified as 

a scattering (direct and inverse scattering is required) problem and 

the other(s) serves to fix the "time evolution" of the scattering data. 

In one spatial dimension the prototype problem is the (KdV) equation 

o. ( 1 ) 

The KdV equation is compatible with 

vxx + u(x,t)v AV (2 ) 

(3) 
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i.e., vxxt = v txx implies (1). Equation (2) is the time independent 

Schrodinger scattering problem, A the eigenvalue (y = const. in (3)). 

The solution of (1) on the line: -oo<x<oo for initial values u(x,t=O) 

vanishing sufficiently rapidly at infinity is obtained by studying 

the associated direct and inverse scattering problem of (2) and using 

(3) to fix the time evolution of the scattering data. It turns out 

that the inverse problem accounts to solving a matrix Riemann-Hilbert 

boundary value problem (RHBVP) whose jump discontinuity depends expli-
. 2 -ikx citly on the scattering data. Calling A =-k , v(x,k) = ~(x,k)e 

the RHBVP takes the following form, 

~ _ ( x , t , a ( k ) ) V ( x , t , k) on Eo ~ ± .... 1, 1 k 1 .... 00 , (4 ) 

where V(x,t,k) = r(k,t)e2ikx , a(k) = -k, ~ = {k:kEJR}, and ~± are 

the limiting boundary values, as Imk .... 0 ±, of meromorphic functions 

in the upper (+) lower (-) half plane. (4) may be converted into a 

linear integral equation by taking a minus projection and the potential 

is reconstructed via 

u(x,t) 1 a 
- 11 ax J 

C 
~ (x,t,-k)V(x,t,k)dk, (5 ) 

where the contour is taken above all poles of r(k,t); of which there 

is at most a finite number, k. = i~, KJ.> 0 , j = 1, ... ,N. 
J J 

The scattering 

data: the reflection coefficient, r(k,t) evolves simply in time 

r (k,t) r(k, 0) (6 ) 

The above scheme may be extended so as to solve a surprisingly large 

number of interesting nonlinear evolution equations. There are two 

scattering problems of particular interest in one dimension: 

(i) Scalar scattering problems: 

n 
~ 

j=2 

v(x,k), u j E a:: 

A v, 

(ii) First order systems - generalized AKNS 

dv 
dx i k J v + q v 

v(x,k), q(x) E a:NxN , J = diag(J 1 , ••• ,Jn ) 

Ji* Jj, i * j 

ii q O. 
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Via an appropriate transformation the inverse problem associated with 

(i), (ii) can be expressed as a matrix RHBVP of the form (4). The 

potentials u., q can be shown to satisfy nonlinear evolution equations 
J 

by appending to (i) and (ii), suitable linear time evolution equations. 

One then finds that the scattering data V(x,t,k) evolves simply in time. 

Well-known solvable nonlinear equations include the Boussinesq, modified 

KdV, sine-Gordon, nonlinear Schrodinger, and three wave interaction 

equations. The reader may wish to consult for example [2a-e] for a 

detailed discussion of some of this material. 

It is most significant that these concepts can be generalized to 

bospatial plus one time dimension. Here the prototype equation is the 

Kadomtsev-Petviashvili (K-P) equation: 

(7) 

which is the compatibility equation between the following linear problems: 

ov + v + u(x,y,t)v 
y xx o 

x 
v t + 4vxxx + 6uvx + 3(ux -0 f 

-00 

u dx')v + yv 
y o 

(8 ) 

(9 ) 

(y = const.). We shall consider the question of solving (7) for u(x,y,O) 

decaying sufficiently rapidly in the plane r2 x 2 + y2 ~ 00. Physi­

cally speaking, both cases 0 2 -1 (KPI) 0 2 +1 (KPII) are of interest. 

Whereas KPI can be related to a RHBVP of a certain type (nonlocal; see 

ref. [3]) I KPII turns out to require new ideas. Letting 

v ~(x,y,k) exp(ikx + k 2y/o) 

o = oR + i0 1 , OR * O. Then there exist functions ~ bounded for all 

x,y satisfying ~ ~ 1 as Ikl ~ 00. However such a function turns out 

to be nowhere ~nalytic in k, rather it depends nontrivially on both the 

real and imaginary parts of k(k=kR + ik I ). ~ = ~(x,y,kR,kI). 

In fact ~ satisfies a generalization of a RHBVP--namely a a(DBAR) 

problem where ~ satisfies, 

where 
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a 
ak 

( 10) 

l( a + i ~k ) and V has the structure 
2 akR a I 



~o 

sgn(k O) exp[i8(x,y,kR,kr'~0)1 

21TloRI 

k 
(x + 2y ~)(~ - k R ) 

OR 0 

( 1 1 ) 

(10-11) may be converted into a linear integral equation by employing 

the generalized Cauchy formula. T(kR,k r ) is viewed as the "nonphysical" 

data (i.e., inverse scattering data or inverse data) and the potential 

is reconstructed via 

u(x,y) 2i a ( 12) 

The basic ideas used in order to derive these equations is as follows. 

We convert the equation for ~ = ~(x,y,k): 

o 

into an integral equation 

~(x,y,k) 1 + G(u,~) 

where 

G( f) G*f = ffG(x-x', y-y' ,k) f(x' ,y' )dx'dy', 

the Green's function kernel being given by (k=kR+ik r ): 

where 

1 exp [ i (~ x+yy) 1 -ff 2 d~dy 
(211 f (ion-~ -2k~) 

sgn(y) fd~ exp[ix~+~(~+2k)y/ol 
2110 

{1: x > 0, 0: x < O} • 

( 13) 

( 14) 

( 15) 

( 16) 
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The a derivative of the Green's function is especially simple, 

sgn(kO) 
exp[i8(x,y,kR,k r )] (17 ) 

2nl ~ I 
where 

a 1 a 
i a "2(ak + ~), and 

ai< R r 

8(x,y,k ,k ) = -2(x 
kr 

+ 2y iJ)kO. 
R 

Taking the d derivative of ( 14) 

( 18) 

and using (17) shows that 

( 19) 

u(x' ,y' )w(x' ,y' ,kR,kr)dx'dy']. (20) 

Multiplying (20) by expr-i8(x,y,kR,k r )] and employing the following 

symmetry condition on the Green's function 

(21 ) 

where ~O 

(22 ) 

whereupon (10-11) follow. The eigenfunction Il is recovered with the 

generalized Cauchy formula 
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1 + (23 ) 
1T 

noting that using (10-11), (23) becomes a linear integral equation 

for~. The potential u(x,y) is recovered by taking k~oo in (13) or (14) 

and (23). For the K-P the evolution of the data obeys (Y=4ik 3 in (9)) 

where kO 

Special cases include 

aT 
at 

aT 
at 

° = oR + io I : 

(24 ) 

(25 ) 

1, ~I 

(26 ) 

These formulae allow us in principle to solve the Cauchy problem for 

K-P and in particular the limit (ii) discussed above allows us to give 

an alternative solution for KP I via a and not via a nonlocal RHBVP. 

Similar ideas apply to higher order scalar problems 

( iii) 

where v, u.E ~ and to first order systems 
J 

( .) a v + 'J a v () 0 
lV ° ay ax + q x,y v 

o 

Interested readers may consult reference 4a, and review 4b for more 

details. 

The notion of a extends to higher dimensional scattering and inverse 

scattering problems. However as we shall mention, despite the fact 

that the inverse scattering problem is essentially tractable there does 
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not appear to be any local nonlinear evolution equations in dimensions 

greater than 2+1 associated with multidimensional generalizations of 

( ii i) or (i v) . 

Our prototype scattering problem will be 

ov + ~v + u(x,y)v 0 y 

Letting 

v 

k 

k.x 

n a 2 
E --2' 

R,= 1 a XR, 

lJ(x,y,k) 

kR + ikr , 

n 
E kjX j , 
1 

exp( ikx 2 + k y/o) 

k E a:: n 

0 OR + iO r 

Then there exist functions lJ bounded 

as I kjl -+ 00, j 1, ..• ,n. When OR * 
in each of the var iables k, i. e., lJ 

( 27) 

for all x, y satisfying lJ -+ 1, 

0, lJ turns out to be nonanalytic 

lJ (x,y,kR , ••. ,kR ' kr , ..• ,kr ) 
1 n 1 n 

and satisfies a a problem linear in lJ , in each of the variables kji 

i.e., we shall show that lJ satisfies an equation of the form, 

j 1, ... ,n (28 ) 

where Tj is an appropriate linear integral operator. 

The basic idea in order to derive (28) follows a similar format to 

the two dimensional case described earlier. From the definition of 

lJ(x,y,k) below (27) we see that it satisfies 

o. (29 ) 

We convert to an integral equation 

(30) 

where the Green's function kernel is given by 
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exp [ i ( x . ~ +YTl ) 1 
---:-:;-, ff 2 d~ d Y 
(211)n+ iay-~ -2k.~ 

sgn(y) 

a 

Taking the a derivative of (30) 

and using 

where 

p(~) 

shows that 

where 

and w satisfies 

- -- laRlfexp[iS(x,y,kR,kI,~)l 
(211) n 

MUltiplying (37) by exp(-is) and using the symmetry condition 

yields 

(3' ) 

(32 ) 

(33 ) 

(34 ) 

(35 ) 

(36 ) 

(38 ) 

(39 ) 
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(40 ) 

and hence (36) gives 

We see that T. is an integral operator which depends on a scalar scat-
J 

tering function T = T(kR,kI'~)~ being effectively (n-1) integration 

parameters (due to the delta function in (41) in the nonlocal operator 

T j) . 

One can use a generalized Cauchy formula such as (23) in order to 

obtain a linear integral equation to reconstruct ~. However due to the 

redundancy of the data discussed below, we find that an alternative 

method is more useful. The inverse problem is redundant, i.e., we are 

given T(kR,kI'~) (3n-1 parameters) and we must reconstruct a local 

potential u(x,y) (n+1 parameters). A serious issue is how to characterize 

admissible inverse data T, i.e., data that really arises from a local 

potential (small generic changes in T(kR,kI'~) cannot be expected to arise 

from a local p~tential u(x,y)). Insight into this question is obtained 

by noting that T must satisfy a 
2 --tained by requiring a ~/aki ak j 

nonlinear constraint, one which is ob­

a2~/ak.ak. (it]). The form of this 
J l. 

constraint is given by 

(42 ) 

where £ iJ' is a linear operator and N .. a nonlinear (quadratic.) nonlocal 
l.J 

operator. These operators are given by 

:r ij (~.-k'R)(_a- +..!. a ) _ (~.-k. )(_a_ + ..!._a_) 
J J a k. 2 a ~ i l. l.R a k. 2 a ~ j 

l. J 

(43 ) 

(44 ) 

There is, in fact, an explicit transformation of variables 
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which simplifies (42). Namely, 

ko ° 
1) 

~, 

~j 

n w, 
E w)oXR)o + 2 

j=2 

transforms (42) into 

using the generalized Cauchy formula (23) we have 

~o o(T)(j(,w,wO) 
T ( X ,w ,wO) - fJ 1) , dX ' dX ' 

11 - R ·1 
X - X 

where 

SS exp[-i(ywO+x.w)]u(x,y)dxdy. 

(45) 

(46 ) 

(47) 

(48) 

We have used the fact that when Wo = 2k1.(~-kR)/crR and w = ~-kR are 

kept fixed, T(X'w,wO) ~ u(w,wO) (The Fourier Transform of u(x,y» for 

large Xj(w,*O); this is the analogue of the Born approximation. 

We expect that for suitably "small" u (i.e., no homogeneous solutions 

to the relevant integral equations) if 1 is independent of x,j and decays 
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sufficiently fast for Iwl ,lwol~oo , then T(kR,kI'~) is admissible. More­

over (47) gives a formula to reconstruct the potential by quadratures. 

Limits to case a = i and reductions to stationary potentials u(x,y) = u(x) 

can be carried out. Details can be found in Ref. [Sa,b]. It should also 

be noted that in recent work Nachman and Lavine [Sc] have extended their 

ideas to situations where there are homogeneous solutions to the relevant 

integral equations. (42) also suggests why simple local nonlinear evolu­

tion equations have not been associated with equation (27). Namely, in 

the previous lower dimensional (2+1 and 1+1) problems the time evolution 

of the scattering data obeyed a particularly simple equation (e.g., 

~~ = w(kR,kI)T). However in this case such a simple flow will not be 

maintained due to the nonlinear constraint (42). 

These ideas can be generalized to first order systems: 

(v) 
av n 
ay + a L 

j=l 
J. av 

J aX j 
qv 

k R. J.*J.,k*P, 
J J 

with many similar results obtained [6a,b,c};though there are some impor­

tant differences as well: see ref. [6c]. Again the scattering data 

satisfies a nonlinear constraint. In general, there is no compatible 

local nonlinear evolution equation associated with (v). However when 

certain restrictions are put on J. then the constraint equation becomes 
J 

linear and the so-called N wave interaction equations are compatible 

with the system (v). Nachman and Ablowitz [6a] showed that at most, 

the system would be 1+1 dimensional, and Fokas [6b] showed that indeed 

the system is reducible to 2+1 dimensions by a transformation of inde­

pendent variables (characteristic variables). In [6c] Fokas studies 

the inverse scattering of (v). For 0= i he finds an equation similar 

to (42). However its integrated form shows that in order for the poten­

tial to be reconstructed one must solve a reduced system of equations 

of the form (v): i.e., for N = 2. This is in contrast to the scalar 

problem where reconstruction is via quadratures. 

Beals and Coifman have an alternative but similar formulation [7a,b] 

for multidimensional scalar problems. 

There is an n-dimensional problem which also fits within the frame­

work of 1ST: The so-called generalized wave and generalized sine-Gordon 

equation (GWE and GSGE). These equations arise in the context of dif­

ferential geometry and serve to extend the classical results of Backlund 

for the sine-Gordon equation to n-dimensions [8]. The n-dimensional 

Backlund transformation is given by: 
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where 

A .. 
1J 

B .. 
1J 

t 
+ XA X A - XB, 

n lL 
L a dx·, 

j=' Xj J 

s . ( Z ) a. . dx . , 
1 1 J J 

(49 ) 

aa li 
-~-- dx., '.:::. i , j .:::. n, 

a'j aX j 1 
(50 ) 

and a = {a ij }ElRnxn . Equations (49-50) reduce to the Backlund trans­

formation for the generalized sine-Gordon equation (GSGE) when 

s . (z) 
1 

( z 2 + (28 i' - ,)) /2 z, 

and for the generalized wave equation (GWE) when 

s . (z) 
1 

_ At z) • 

( 5' ) 

(52 ) 

The compatibility condition required for the existence of solutions 

to these Backlund transformations results in a system of second-order 

partial differential equations for an orthogonal nxn matrix a = {a .. } 
1J 

in (49) which is a function of n independent variables a = a(x"x 2 , ... , 

x n ). The equation has the form 

where E 

(_, _ 5.J) + _a_(_,_ aa li 
a a ax a -ax.) 
'i xi j'k J 

aa ji aa'k 
a ax:-' i ~k, 

, i 1 

for the GSGE and E 

i ~ j, 

i,j,k distinct, 

(53 ) 

o for the GWE. 
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We observe that when n 2 and e: 1 (GSGE) , the orthogonal matrix 

a = {a .. } given by 
1J 

[ 1 

1 

1 
cos'2u sin'2u 

a (54 ) 
. 1 1 

-s1n'2u cos'2u 

for the function u = u(x,t) reduces the GSGE to the classical sine­

Gordon equation ( K=-1), 

U tt - uxx - Ksin u o. (55 ) 

On the other hand when n = 2 and K = 0, then with (54) the GWE reduces 

to the wave equation .( 55). When n > 3 the generalization of the wave 

equations discussed here is nonlinear. 

The Backlund transformations (49) described above are in fact matrix 

Riccati equations. Linearizations of such a system can be performed 

in a straightforward manner. Introducing the transformation 

x (56 ) 

where U, V and nxn matrix functions of x 1 , ... ,xn , the following linear 

system is deduced: 

with the components of A, B given by (50). 

the orthogonal matrix a = {a .. } satisfies 
1J 

with (52). Alternatively, if we call 

I/! , 

( 57) 

Compatibility ensures that 

the GSGE with (51) and GWE 

(58 ) 

the following'linear system of 2n o.d.e.'s are obtained: 

(59) 

where Aj , C j are 2nx2n matrices with the block structure 

A. (60 ) 
J 
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Here aj , Yj are nxn matrices having the following structure: 

ae. 
J 

where e. 
J 

{ej}ik is the unit matrix 

{~ 
i = k = j 

otherwise, 

and in component form y. takes the form 
J 

_1_~ 1 ~ (1 -6 ) 6 . - (1- 6 .)- 6kJ· . kj a~k aXk ~J ~J a1~ ax~ 

(61 ) 

(62) 

(63 ) 

In (61) a is the orthogonal matrixlRn-+SO(n) associated with the GWE 

when 6 = A and with the GSGE when 6 = ~(z + 1 /z) , A ~(z - 1 /z) , 

and y. is the matrix (63): lR -+ M (lR), y~ + y. = O. Equations (53) 
J n n J J 

arise as the compatibility condition associated with (58). More expli-

citly, for the GWE the scattering problem takes the form [~=~(x'A)l 

.2.lL AAj~ + C.~ 
aX j J 

with 

A. [ :~ :jJ 
, 

J 

and Cj given by (60,63). 

For the GSGE the scattering problem for ~ 

6(z) 

6(Z), A(Z), C. given above, or equivalently 
J 

+ + C.~ , 
J 

(64) 

(65 ) 

~(x,z) takes the form 

(66 ) 

(67 ) 
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where 

B. 
] 

( t
o ua j), 

aju 0 
u = diag(+l,-l, ... ,-l). (68 ) 

In [8] it is shown how these linear problems may be viewed as a direct 

and inverse scattering problem for the GWE and GSGE. Namely, the direct 

and inverse problem may be solved for matrix potentials, depending on 

the orthogonal matrix a, tending to the identity sufficiently fast in 

certain "generic" diiections. It should be noted that solving the n­

dimensional GWE and GSGE reduces to the study of the scattering and 

inverse scattering associated with a coupled system of none-dimensional 

o.d.e. 's. This is in marked contrast to other attempts described earlier 

to isolate solvable (local) multidimensional nonlinear evolution equation 

which are compatibility conditions of two Lax-type operators, e.g., 

L1jJ (69 ) 

(70 ) 

where L is a partial differential operator with the variable t entering 

only parametrically. Although as we have seen nonlinear evolution equa­

tions in three independent variables can be associated with such Lax 

pairs (e.g., the K-P, Davey-Stewartson, three wave interaction equations, 

etc.) little progress via this route has been made in more than three 

dimensions. As discussed earlier one has to overcome a serious constraint 

inherent in the scattering/inverse scattering theory for higher dimen­

sional partial differential operators in order to be able to isolate 

associated solvable nonlinear equations, i.e., the scattering data 

generally satisfies a nonlinear equation (eq. (42)). The analysis 

associated with the GWE and GSGE avoids these difficulties since the 

GWE and GSGE problems are simply a compatible set of nonlinear one­

dimensionalo.e.e.'s. The results in ref. [8] demonstrate that the 

initial value problem is posed with given data along lines and not 

on (n-1) dimensional manifolds. 

Similar ideas apply to certain n-dimensional extensions of the so­

called anti-self-dual Yang-Mills equations (SDYM) [9]. In two complex 

variables the self-dual Yang Mills equations take the form (see [10]) 

0, (71 ) 

2 where n is a positive matrix valued function of (x 1 ,X2 )E , • Alter-

natively SDYM takes the form 
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aA, 
+ 

aA2 
0 (72) -

ax, a X2 

aA, aA2 
+ [A, ,A2 ] 0, 

a X2 ax, 
(73 ) 

where 

-, an 
A. - n 

J ax. 
J 

(74) 

The SDYM may be obtained via the compatibility condition of the following 

linear system 

~ - z ~ A,m 
ax, -

a X2 

~ + z ~ A2m. (75 ) 
a X 2 -

ax, 

Multidimensional extensions may be obtained. For example, cOnsider 

the linear system 

', .•. ,n (76) 

+ zs. 
J 

a ( 77) 

and 

Compatibility (commutativity) implies: 

o (78 ) 

aAj 
+ [A. ,A.] 

aXi 1 J 
o (79) 

o. (80 ) 

A potential n may be introduced as before: 

A. 
J (8l) 
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to obtain 

a~ s ._a __ (~-l __ ) 
J - ax; aX j + 1 L 

o. (82 ) 

Clearly when n 2 this system reduces to the classical SDYM equation. 

Solutions to these equations may be constructed via the a method. 

Define 

with 

a 
ax.' J 

-

s. _a_ 
J -aX j + 1 

We shall show that the a integral equation 

m(x,z) r + 2lTi 
ff (mV)(x,s) dSAd~ 

s-z 

(83) 

(84 ) 

satisfies (76) (dSAd~ = -zidsRdsr). Operating on (84) with D~ yields, 

where 

J 
1 ZL~(mV) 

2 lTi f 
/;;-Z 

sL~(mV) 
+ 2lTi f ---=--- d s Ad~. 

s-z 

Putting (85),(86) together gives 

where 
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'A. (x) 
J 

f (D~m)V + m(D~V) 
A. j + 2lTi --"------.?---ds '\d~ 

s - Z 

(85 ) 

(86 ) 

(87 ) 

(88 ) 



We shall require V(x,z} to satisfy 

DjV 
Z 0 (89 ) 

in which case using (84 ) in ( 87) by writing 

'A. 'Aj(m f mV dr; Ad~} 
J - 2ni s-z 

(90 ) 

we find 

(Djm 
( (D~m) - 'A.(x}m}V 

'A.m} f J dt;l\d~. Z J 2ni r; - Z 
( 91) 

For V suitably chosen (84) has a unique solution in which case 

Djm - 'A.m 
Z J 

O. (92 ) 

Thus 'A. A. and solutions of the extended SDYM are obtained. 
J J 

The condition (89) is satisfied if we take V(x,z} = V(u(x},z}, 

n 

L V' (uR.'z) (ZOjR. + S j Sj+1 Z0 jR.) 
R.=1 

o 

Then 

(93 ) 

by virtue of s. = (-l}j. In ref. [9] other examples of multidimensional 
J 

extensions of SDYM and a rigorous derivation of the foregoing is given. 
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Inverse Problems and a Unified Approach 
to Integrability in 1, 1 + 1 and 2+ 1 Dimensions * 
A.S. Fokas and V. Papageorgiou 

Department of Mathematics and Computer Science and Institute for 
Nonlinear Studies, Clarkson University, Potsdam, NY 13676, USA 

A unified approach for solving initial value problems for equations in 
0+1, 1+1 (one spatial and one temporal), and 2+1 (two spatial and one 
temporal) dimensions is given. Illustrative examples in each of these 
cases are provided. Some remarks on inverse problems in higher than 
two spatial dimensions are made in the context of inverse scattering. 

1. INTRODUCTION 

The aim of this paper is to emphasize that there exists a unified ap­

proach for solving initial value problems for equations in 1, 1+1 (i.e., 

one spatial and one temporal), and 2+1 (i.e., two spatial and one tem­

poral) dimensions. Furthermore it remarks on inverse problems in higher 

than two spatial dimensions. Although these inverse problems are not 

related to physically significant nonlinear evolution equations, they 

are useful in the context of inverse scattering. In this presentation 

we emphasize the main ideas. The detailrofurmalisms can be found in 

the cited papers. 

It turns out that solving the initial value problem for some equa­

tions for q(t), or q(x,t), or q(x,y,t) is equivalent to solving an 

inverse problem for some related eigenfunction ~(z;t), or ~(Z;x,t), 

or ~(Z;Xly,t). The inverse problem takes the form of a Riemann-Hilbert 

(RH) problem for equations in 1 and 1+1, and the form of a non local RH 

problem or of a a(DBAR) problem for equations in 2+1 (a DBAR problem 

is generalization of a RH problem). To define the relevant RH or DBAR 

problems one needs to study the analyticity properties of' with 

respect to z. Furthermore those problems are uniquely defined in terms 

of certain asymptotic data of the underlying linear system satisfied 

by~: Monodromy data in 1, scattering data in 1+1 and some cases of 

*This article consists of expanded material of six lectures presented 
by one of us (A. S. Fokas) at this Winter School on "Solitons". 
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2+1, and inverse data in some cases of 2+1. We use the Painleve rV(PIV), 

modified KdV (mKdV) and the Davey-Stewartson (DS) as illustrative exam­

ples of equations in 1, 1+1, and 2+1 respectively. 

The above inverse problems can be naturally generalized to higher 

than two spatial dimensions. For example, the generalization of the 

inverse problem associated with the DS equation leads to an inverse 

problem for a matrix valued function 'I'(z,x O,x), z e: Cn , xOe:]R.1, 

x e: ]R.n, n > 1. However, while the associated potential q(xO'x) depends 

on n+1 variables, the inverse data T(zR,zI,m2 , ... ,mn ), zR e: ]R.n, zre: ]R.n, 

mR, e:]R., depends on 3n-1 var iables. This has important implications: (a) 

The inverse data must be appropriately constrained. This "characteri­

zation" of the inverse data is conceptually analogous to the charac­

terization of the inverse scattering data in the multidimensional 

Schrodinger equation [11. (b) The existence of "redundant" scattering 

parameters can be used to reduce the above problem to one in two spatial 

dimensions. This is in contrast to the case of the multidimensional 

Schrodinger equation where the inverse problem can be solved in closed 

form. (c) Since the inverse problem for 'I' is reduced to one in two 

spatial dimensions, it follows that, if one allows'!', q to d~pend 

parametrically on t, q(xO,x,t) satisfies an evolution equation reducible 

to two spatial dimensions. In particular, the N-wave interaction equa­

tion in n+1 spatial dimensions can always be reduced to two spatial 

dimensions. Thus a genuine three-spatial-dimensional nonlinear evolution 

equation, related to an inverse problem, remains to be found. (It should 

be noted that several other "multidimensional" problems can be reduced 

to one or two spatial dimensions, see M. J. Ablowitz's contribution 

in these proceedings.) 

We first define the standard RH and DBAR problems. 

2 • RH AND DBAR PROBLEMS 

Let C be a simple, smooth closed contour dividing the complex z-plane 

into two regions D+ and D (the positive direction of C will be taken 

as that for which D+ is on the left). 

A function ~(z) defined in the entire plane, except for points 

on C, will be called sectionally holomorphic if: (i) the function ~(z) 
+ -is holomorphic in each of regions D and D except, perhaps, at z = 00, 

(ii) the function ~ (z) is sectionally continuous with respect to C, 

approaching the definite limiting values ~+(~), ~-(~) as z approaches 
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Fig. 1 

a point ~ on C from D+, or D-, respectively. The classical homogeneous 

RH problem is defined as follows [2]. Given a contour C, and a function 

G(~) which is Holder on C and det G(~) * 0 on C, find a sectionally 

holomorphic function ~(z), with finite degree at ~ , such that 

(2.1) 

where ~±(~) are the boundary values of ~(z) on C. If G(~) is scalar, 

(2.1) is solvable in closed form. If G(~) is a matrix valued function, 

then (2.1) is in general solvable in terms of a system of Fredholm 

integral equations. Various generalizations of the above RH problem 

are possible. For example: (i) The contour C may be replaced by a 

union of intersecting contours. (ii) G(~) may have simple discontinui­

ties at a finite number of points; in this case one allows ~(z) to 

have integrable singularities in the neighbourhood of these points. 

(iii) RH problems may be considered in other than Holder spaces (e.g. 

[3]): (iv) One may consider inhomogeneous RH problems ~+(~) = G(~)~-(~) 
+ F(~) on C. 

The DBAR problem can be defined as follows: Given a~/az, find ~. 

If a~/az = 0 everywhere except on a curve, then the DBAR problem reduces 

to a RH problem (since a~/az = ~+ - ~-, in a distribution sense). The 

DBAR problem can be solved via the following extension of Cauchy's 

formula [4] 

-21 . f 2 d(; A d~ r -z 
7T~ lR .., 

(2.2) 

It is interesting that the first RH problem was formulated in connec­

tion with an inverse problem (see [12] for references). Actually RH 

problems are intimately related to solutions of inverse problems in 

1+1, 2+1, and 1 dimensions: 
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3. INVERSE PROBLEMS IN 1+1 

We recall that a necessary condition for a given nonlinear equation 

for q(x,t) to be solvable via 1ST is that this equation is the compati­

bility condition of a Lax pair of linear equations. Let us consider 

the modified KdV equation 

0, ( 3 • 1 ) 

as an illustrative example. Equation (3.1) is the compatibility condi­

tion of 

'¥x(z;x,t) iZ[J 2 , '¥(z;x,t)] + Q'¥(z;x,t); 

Q (3. 2a) 

[Uo,'¥(z;x,t)] + Q'¥(z;x,t) (3.2b) 

Q 

We first note that the above Lax pair is isospectral, i.e. , dz 
dt = O. 

Also it turns out that equation (3.2a) is of primary importance; equa­

tion (3.2b) plays only an auxiliary role. To solve the initial value 

problem for initial data decaying as Ixl~oo , one first formulates an 

inverse problem for '¥(z;x,t): Given appropriate scattering data 

reconstruct 'l'. 

By studying the analytic properties of '¥ with respect to z, where 

'¥ satisfies (3.2a) one establishes the existence of a '¥ which is 

a sectionally meromorphic function of z, with a jump along the Re z 

axis. This jump as well as the residues of the poles, are given in 

terms of appropriate scattering data. Thus the inverse problem is 

equivalent to a matrix, regular, continuous RH problem defined along 

the Re z axis and uniquely specified in terms of scattering data. 

Since in the above discussion we have only used (3.2a), it is evident 

that one may pose an inverse problem for any function q(x). However, 

this result is useful for solving the initial value problem for q(x,t) 
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only if q evolves in such a way in t, that the scattering data is known 

for all t. If ~ evolves in t according to (3.2b) (i.e., if q solves 

(3.1» then it turns out that the evolution of the scattering data with 

respect to t is simple. Hence, the above RH problem is specified in 

terms of initial scattering data; its solution yields ~(z;x,t) and 

then (3.2a) gives q(x,t). 

We summarize the results of(S,13] concerning mKdV in the case of 

solitonless potentials. 

Proposition 3.1 (Bounded eigenfunctions). A solution of (3.2a) bounded 

for all complex values of z = zR + iZ I and tending to I as Z ... co is 

given by 

~+( z;x), zI > 0 

",(z;x) { - (z;x) , ~ zI < 0 

(3.3) 

where ~±(z;x) satisfy the following integral equations: 

I +f X d~eiZ(X-~)J n±Q(~)~±(Z;~) 
-co 

(3.4) 

where if F and Yare 2 x 2 matrices then 

eYF Y -Y [ : :12) [ 0 0 ) e Fe , n+F T n F (3.5) 

F21 0 

nOF Diag(F 11 ,F 22 )· 

Proposition 3.2 (Departure from Holomorphicity-Scattering Equation). 

~+, ",- are holomorphic functions of Z for zI > 0, zI < 0 respectively. 

The departure from holomorphicity for z = zR is given by 

(3.6) 

where 

B(z) T I + f co d~e-iz~Jn+(Q~+), 
-co 

b(z) T I + f cod~e-iz~Jn_(Q~-) 
-co 

so, 

+ iz~J-1 
~ (z;x)e (B (z)b(z» (3.7) 
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Proposition 3.3 (Inverse Problem-Reconstruction of Q) 

Q(x) is obtained from 

[ 1 fco i z ' x; -1 Q(x) = J, 211 dz''I'(z';x)e (I-B (z')b(z'))], 
-co 

(3.8) 

where 'I'(z;x) solves the following Riemann-Hilbert boundary value problem: 

'I'(z;x) = I + 1 fco dZ''I'(z';x)e iz 'XJ(I-B- 1 (z')b(z')) 
211i -co z' - (z - i 0 ) 

(3.9) 

Using equation (3.2b) we obtain: 

Proposition 3.4 (Evolution of Scattering Data). The evolution of the 

scattering data from B(z;O), b(z;O) is given by 

B(z;t) b(z;t) 

Since B (resp. b) is a strictly upper (resp. lower) triangular matrix 

the evolution of the scattering data is given by 

(3.10) 

4. INVERSE PROBLEMS IN 2+1 

Let us consider the Davey-Stewartson equation (a two dimensional ana­

logue of the nonlinear SChrodinger equation) 

A = ± 1 (4.1) 

as an illustrative example. A Lax pair for (4.1) is given by 

'I'x iz (J'I',-'I'J) + q'l' + aJ'I'y' J -.- G -:J' q ~ (~A : J (4.2a) 

(4.2b) 

where A1 , A2 , A3 , A30 are appropriate matrix functions of Q, Q (The bar 

denotes complex conjugate). 

The situation is conceptually similar to the case of 1+1: To solve 

the initial value problem for q(x,y,t) one first formulates an inverse 
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problem for ~(z;x,y,t). Depending on the value of a there exist two 

different cases (for brevity of presentation we assume non-existence 

of poles, i.e., non-existence of lumps): (i) 0 1. There exists a 

~ which is a sectionally holomorphic function of z and which has a 

jump along the Re z axis. This jump is also given in terms of scattering 

data but it depends on them in a non-local way. Thus the inverse pro­

blem is equivalent to a non-local, matrix continuous RH problem defined 

along the Re z axis and uniquely specified in terms of scattering data. 

(ii) 0 = - i. There exists a ~ which is bounded for all complex z, 

but which is analytic nowhere in the complex z plane. However, its 

departure from holomorphicity a~/az can be expressed in terms of appro­

priate inverse data. Thus, now the inverse problem is equivalent to a 

a (OBAR) problem: Given a~/az reconstruct ~ . 

Using (4.2b), again one shows that the inverse scattering and the 

inverse data evolve simply in time. Hence, the above RH and a problems 

are specified in terms of initial data; their solutions yield ~(z;x,y,t) 

and then (4.2a) gives q(x,y,t). 

We summarize the results of [6) concerning OSI (0 

4.1.-4.4) and OSII (0 = -i, Propositions 4.5-4.8). 

1, Proposition 

Proposition 4.1 (Bounded Eigenfunctions) A solution of (4.2a) with 

o = 1 bounded for all complex values of z zR + iZ I and tending to I 

as z ..... 00 is given by 

~+(z;x,y), o 
~(z;x,y) { - (4.3) 

~ (z;x,y), o 

+ where ~-(z;x,y) satisfy the following integral equations: 

~±(z;x,y) = I + ~n fX d~ eiZ(X-~);foodnf~m eim[(y-n)I+(x-~)J). 
-00 -00- -00 

2n foo d~ eiZ(X-~);fOO dnfoo dm eim[(Y-n)I + (x-~)J) 
x -0) -co 

(cf. (3.5) for notation). 

+ 
Assuming that the linear integral equations (4.4)- have no homoge-

neous solutions, it follows that: 
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Proposition 4.2 (Departure from Holomorphicity). ~+, ~ are holomorphic 

functions of z for zI > 0, zI < 0, respectively. Hence the function 

~(z;x,y) defined by (4.3) is a sectionally holomorphic function of z. 

I . 1 H n partlcu ar, --az o for all z, with zI * a~ + o and -- = ~ (z;x,y) -
az 

~ (z;x,y) for z = zR. The departure from holomorphicity is given by: 

+ -
~ (z;x,y) - ~ (z;x,y) f OO d '\11- ( '. ) i z 'Jx+ i z 'y 

Z T Z ,x,y e 

-OOf (_' ) -izJx-izy 
L.. , Z e I (4.5) 

for z = zR' where the scattering data f(z' ,z) are given by: 

- foo dm f 1 2 ( z ' ,m) f 2 1 (m, z ) , 
- 00 

inf'" dsf'" dn Q~;2 e-(z+z' )s+i(z-z')n 
-00 -co 

(4.6) 

f21 (z' ,z) f'" f'" - + i(z+z' )s+i(z-z')n f =0 (4.7) - 2n ds dnA Q~ 11 e , 22 . 
-co -co 

Proposition 4.3 (Inverse Problem-Reconstruction of the potential q) 

q(x,y) is obtained from: 

1 f'" '" - iz'Jx -izJx+i(z'-z)Yj q(x,y) = - 2n[J, dz' f dz~ (z';x,y)e f(z',z)e , 
-00 -co 

(4.8) 

where ~-(z;x,y) solves the following integral equation: 

~-(z;x,y) + 2ni f'" dz" f'" dz' 

U/'(" ) iz"Jx f (" ') -iz'Jx+i(z"-z')y 
T z ;x,y e z ,z e 

-00 -00 z' - z + iO 

1. (4.9) 

Finally from (4.2b) we obtain the following: 

Proposition 4.4 (Evolution of the Scattering Data). The evolution of 

the scattering data from t = 0, f(z' ,z;O) is given by: 

f (z' ,z; t) 
,2 A z2 tA 

e- z t 30 f(z',z;O)e 30 (4.10) 

where 

f(z' ,z;O) is given by (4.7) and A30 diag(i,-i). 
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Proposition 4.5 (Bounded Eigenfunctions). A solution of (4.2a) with 

a = -i bounded for all complex values of Z = zR + iZ I and tending to I 

as Z ~ ~ satisfies the following Fredholm linear integral equation 

'I' (Zix,y) (4.11 ) 

where 

{(G zR ,ZI,q'l'(Zi·'·»}lj * ~(f:d~f~jZIdmr~dn -(d~l~jZIdmr~n) x 

{exp [ (m+ i ( 1- J j ) Z ) (x- ~) + im (y- n) 1 [q ( ~, n) 'I' ( Z i ~, n) 1 } 1 j' ( 4 . 1 2 ) 1 j 

and 

{exp [ - (m+ i ( 1+J . ) Z ) (x-~ ) + im ( y-n ) 1 [q ( ~ , n ) 'I' ( Z i ~ , n ) ]} 2 . , 
] ] 

(4.12) 2j 

Proposition 4.6 (Departure from Holomorphicity). For every Z E C 

where the matrix Q is defined by: Q11 o 

Qij * Tij(z)exp0ij(Zix,y), i * j (4.14 ) 

~Tl rd~r dn{q(~,n)'I'(Zi~,n)}ij exp{-0ij(Zi~,n)}, i * j 
-00 -co 

Propostion 4.7 (Inverse Problem-Reconstruction of q). q(x,y) is ob­

tained from 

(4.15 ) 

where 'I'(Zix,y) satisfies: 

'I'(Zi x ,y) 1 ff dz '" dz ' 2Tli 'I'C(Zi X ,y) Q (ZR,ziix,y) 
z'-z 

I. (4.16 ) 

Finally from equation (4.2b) we obtain: 
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Proposition 4.8 (Evolution of the Inverse Data). The inverse data 

at time t, n(zR,zI;x,y,t), is given by 

(4.17) 

where n(zR,zI;x,y,O) is given by (4.14) using the initial condition 

q(x,y,O) and A30 = diag(i,-i). 

5. 

The 

is 

INVERSE PROBLEMS IN 

Lax pair associated 

~ 
dt 2 

given 

Y (z) 
Z 

~(iY)2 
2y dt 

by 

+ 3 
"2 y 3 

Indeed Yzt = Ytz implies 

0+1 

with the PIV equation 

+ 4ty 2 + 2(t2 + cdy + 

+ [:,v-e -8 J 
u 0 co 

u 1 + 
-t 

[:'V-8 -9 J u 0 co 

B 
y' 

[
8 0-V 

2v -(v-28 ) uy 0 

Uo 1 Y( z). 

iY - 4v + 2 + 2ty + 480 , du -u{y+2t), 
dt y dt 

dv 2 2 48 

dt v + {_a - y)v + {8 0 + 8 co )y, y y 

where, 

B 

-~ 
2 

(5. 1 ) 

- Y(z), ]1] 
-(8 0-v) Z 

(5. 2a) 

(5.2b) 

(5.3 ) 

As in the cases of 1+1 and 2+1, solving the initial value problem 

of PIV reduces to solving an inverse problem for Y: Reconstruct Y(z;t) 

in terms of appropriate monodromy data. Again this inverse problem will 

be solved in terms of a RH problem. Thus it is essential to study the 

analytic properties of Y with respect to z. However, in contrast to 

the analogous problem in 1ST for 1+1 and 2+1, this task here is straight­

forward: Equation (5.2a) is a linear ODE in z, therefore its analytic 
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structure is completely determined by its singular points. In this 

particular case z = 0 is a regular singular point and z = is an irregu-

lar singular point of rank 2. Complete information about z = 00 is 

provided by the monodromy matrix Moo and by the Stokes multipliers 

a, b, c, d. Solutions of (5.2a), YO and Y" normalized at zero and 
infinity respectively are related via a connection matrix EO with 

entries u o' SO' YO' 00· Taking into consideration the above singula­

rities, there exists a sectionally holomorphic function Y, with jumps 
_ n n 3n 5n 

across the four rays, arg z - - 4' 4' ~, ~ and with singularities 

at z = 0, z = 00. The jumps are specified by a, b, c, d and the nature 

of singularities by MO' Moo. This leads to a matrix, singular, dis­

continuous RH problem, defined on the above rays and specified in terms 

of the monodromy data 

Monodromy Data (MD) 

A consistency condition of the above RH problem yields 

4 -1 -1 
II G.) M = EO MO EO' 

j= 1 J 00 

where G. are the Stokes matrices uniquely defined in terms of the Stokes 
J 

multipliers. Using (5.5) and certain similarity arguments it can be 

shown that all MD can be expressed in terms of two of them. Furthermore, 

equation (5.2b) implies that the MD are time invariant. Hence the 

above basic RH is specified in terms of two initial parameters (these 

two initial parameters are obtained from the two initial data of PIV). 

The solution of this RH problem yields Y(z;t) and hence (5.2a) yields 

y(t) . 

The above basic RH problem can be simplified considerably: (i) 

Assume 0 ~ 00 < 1, 0 ~ 000 < 1,°0 * ~; then the above RH problem is 

regular. It is interesting that the basic RH problem can be used to 

obtain Schlessing~r transformations which shift 00 and 000 by a half­

integer. By using these transformations the general case is reduced 

to the regular case. (ii) The basic RH problem can be mapped to a 

sequence of two RH problems, one on the line arg z = % and the other 

on the line arg z = - %. The first one is continuous (both at x = 0 

and x = 00); furthermore, it can be solved in closed form. The second 

one is discontinuous both at x = 0 and x = 00. By using standard auxi­

liary functions one maps the discontinuous problem to a continuous 

one. Then the theory of continuous RH problems on simple contours 

can be used to establish uniqueness and existence of solutions. Elemen-
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tary solutions of PIV, expressible in terms of Weber-Hermite functions 

are natually obtained within the above formalism. We summarize the 

results of [7] concerning PIV. 

Proposition S.l (Direct Problem). Let YO be the solution of (S.2a) 

analytic in the neighbourhood of z = 0 and normalized by the require­

ments that det YO = , and that YO also solves (S.2b). Let Yj , j = 
', ... ,4 be solutions of (5.2a) analytic in the neighbourhood of infinity 

such that det Y. = 1 and Y.- Y as Ixl ~ 00 in S., where denotes 
J J 00 J 

asymptotics, Yoo is the formal solution matrix of (5.2a) in the neigh-

bourhood of infinity, and the sectors 8. are given 
J 

8, : 11 arg 11 8 2 : 11 arg z 311 
4 < z < 4' 4 < < '4 , 

S3: 
311 arg z 511 8 4 : 511 arg z 711 
'4 < < '4 , '4 < < '4 

The rays C, , ... ,C 4 are defined by arg z = 11 11 311 
4' 4' '4 

Fig. S. 1 

Then the analytic functions YO' Y" ... 'Y 4 satisfy: 

(i) 

( i i) 

where YO(z) is holomorphic at z = O. 

a logarithmic singularity.) 

Y. (z) 
J 

D 
Y (z)eQ(z)(,/z) 00 

00 
as ~ 00, z 

by 

511 respectively. , '4 

n/2, YO(z) has 

'i' Diag(8 ,-8 ), 
00 00 

Q(z) ~ Diag(q,-q), q(z,t) 
2 z 

'i' 2 + zt, Yoo(z) is holomorphic at 

z = 00. 
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( iii) 

(iv) 

(vi) 

Yo(ze2in ) YO(z)MO' MO "" 
eXP (21 •• 0 ' 2i .Jexp( 21'·0 'j 

exp(-2in00 ) 

J o if n 
°0* 2' J 1 if n 

°0 = 2· 

Y2 (z) Y1 (z)G 1 , Y3 (z) Y2 (z)G 2 , Y4 (z) Y3 (z)G3 , 

Y 1 (z) 
2in 

Y4 (ze )G4M"", 

where 

G1 "" 
(1 J ' G2 

... ( J G3 (1 OJ, ... , ... 
a c 

G4 "" ( J M "" exp(2inD ). 
"" 

1. 

Furthermore, the parameters 

satisfy the following consistency condition. 

4 
(II G.)M 
j=l ] "" 

Proposition S.2 (Properties of Monodromy Data) 

, (5.4) 

(5.5) 

(5.6) 

(5.7l 

(5.8) 

(5.9) 

(i) The monodromy data, MD, given by (5.8) and defined in Proposition 

5.1, are time-invariant. 

(ii) All of the MD can be expressed in terms of two of them. 

(iii) (1+bc)exp(2in0J + [ad + (1+cd)(1+ab)]exp(-2in0",,) = 2 cos2n0", 

(5.10) 

In what follows we formulate a RH problem for the case that 

0< 00 <1, 0 < 0"" < 1. This assumption leads to a regular RH problem. 

The general case follows by considering this result and Schlessinger 

transformations. 
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Theorem 5.1 (Inverse Problem). Consider the following matrix, regular 

homogeneous RH problem along the four rays C1 , ... ,C4 (Figure 5.1): 

Determine the sectionally holomorphic function ~(z), ~(z) = ~j(z) if 

z is in Sj' j = 1, ... ,4, from the following conditions: 

1. ~,satisfy the jump conditions 
J 

2' ~1(Z;;) = ~4(Z;; e ~1T)g4(Z;;) 
along the rays C2 , C3 , C4 , C1 respectively, where 

gj 7 eQGje-Q, j = 1,2,3, g4 7 eQG4e-QM~. 

D 
2. ~(z) - (~) ~(I + o(~)) as I zl -+ ~. 

(5.11 ) 

(5.12 ) 

(5.13 ) 

3. ~(z) has at most an integrable singularity at the origin with a 

monodromy matrix given by 

(5.14 ) 

In the above, Gj , Q, M~, D~, MO are defined in Proposition 5.1. 

4. The monodromy data MD, given by (5.8), satisfy the properties given 

in Proposition 5.2(ii). Then: 

(i) The above RH problem is discontinuous both at the origin and at 

infinity. Actually 
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II g, 

j=l J 
z -+ 0; 

4 
II 

j=l 
g, - M , 

J ~ 
z -+ ex). (5.15 ) 

Fig. 5.2 



(ii) To obtain the solution of the above RH problem consider the 

following RH problem along the contour e, + e3 : Determine the 

sectionally holomorphic function K(z), K(z) = K,(z) if z in 

5, + 52' K(z) = K2 (z) if z in 53 + 54' from the following 

conditions: 

,. K. satisfy the jump condition 
J 

de 2q ) 

-ale 

-be'q ~ 

-ale 

-, h on e3 

p (z) f (5. '6) 

(If h" h2 denote h in 52 + 53 and 54 + 5, respectively then h=h, 

on e" h = h2 on e 3 .) 

2. K( z) (5.17) 

3. K(z) has at most an integrable singularity at the origin with a 

monodromy matrix given by 

(5. '8) 

The above RH is discontinuous both at the origin and at infinity. 

Actually if gK ,gK denote the jump matrices along e" e 3 respectively 
, 3 

then 

M , z ~(X) 
00 

(5. '9) 

However, the above RH problem can be mapped to a continuous one using 

the auxiliary functions 

(5.20 ) 

to remove the above singularities. 
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~ is related to K via: 

KhM, M 7 Diag(l,-a/c), (5.21 ) 

(i.e., ~ 1 

Proposition 5.3 (The Solution of PIV). Let ~(z) be the solution 

matrix of the inverse problem formulated ~n Theorem 5.1. Then y(t), 

1 du 
y(t) = -(u dt + 2t), 

solves PIV. 

u ~ -21im ~21(z)e-2q(Z), 
I zl"oo 

6. INVERSE PROBLEMS IN n SPATIAL DIMENSIONS, n > 2 

(5.22 ) 

Consider the inverse problem associated with the following system of 

N first-order equations in n+1 dimensions: 

n 
~ +0 L J j/, ~ 

Xo l/,=1 xl/, 
(6.1) 

where q(xO'x) is an N x N matrix-valued off-diagonal function in m n+ 1 

decaying suitably fast for large x o' x, and the Jl/, are constant real 
1 

diagonal 
N 

... ,J!I,). 

N x N matrices (we denote the diagonal entries of Jj/, by Jl/,' 

Alternatively, using the transformation 

n 
~(z,xO,x) = ~(z,xO,x)exp[i L z!l,(x!I,- oxOJ!I,)]' z €C n , 

j/,=1 
(6.2) 

equation (2.13) becomes 

n 
~x + 0 L (Jj/,~x + iZj/,[Jj/,'~]) 

o j/,=1 
(6.3) 

We assume tha~ n ~ N, otherwise the entries of the Jj/, matrices will be 

linearly related and one can always reduce n by a change of coordinates. 

An inverse problem in this case is defined as follows: Given appropriate 

inverse data T, where T is an N x N matrix-valued off-diagonal function 

of suitable inverse parameters, reconstruct the potential q. Again 

there exists a p which is bounded for all complex z, z €C n • a~/az 

depends on appropriate inverse data T(zR,zI,m2 , ... ,m ), 
a2T a 2T n 

mj/,€ R. T satisfies 

Born variables, 
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l. J J l. 

n n 
ZR€m, Z{m, 

introducing 



z, m <= =:> y E (6.4) 

one obtains a characterization equation for the inverse data: 

~ij 
T (wO,w) 7' 

ij 
T (w O ,w, X) 

11 

d Xp d Xp N ~ ~ [ T] (w 0 ' w , X P 
__ ~R~~I~ _________________ , (6.5) 

where N is a quadratic function of T. That is, Tij(z,m) is appropriate 

inverse data iff the right-hand side of (6.5) is independent of X. 
Hence, equation (6.5) serves as both characterizing Tij and defining 

;ij. This equation was first introduced by Nachman and Ablowitz [8]. 

Using equation (6.5) and taking the limit of )l as Ixl'" we show that 

the general problem of reconstructing an N x N potential q in n+' spatial 

dimensions, is reduced to one of reconstructing a 2 x 2 potential with 

entries qij, qji in two dimensions. The inverse data needed for this 

reconstruction is precisely ;ij,;ji. This reduction makes crucial use 

of the existence of redundant scattering parameters. In this sense it 

is the analog of the Born approximation. However, the crucial difference 

is that while in the inverse scattering of the multidimensional Schro­

dinger equation one can reconstruct the potential in closed form, here 

one can only reduce the general problem to one for 2x 2 matrices in 

two dimensions. This reduced problem was solved in [6]. In the follow­

ing, we summarize the results of [9]. 

Proposition 6.1 (Bounded Eigenfunctions). The function)l (xO,x,z) 

defined below, solves equation (6.3), is bounded for all complex values 

of z and tends to I for large ~: 

where Sij is defined by 

n 

l: 
~=, 

Ji-J j [ -L....& 
01 

f 2 dt; Odt;, 
JR 

exp [ is i j (xO -t; 0' x, -t; 1 ' z ) ] 

i 
(x,-t;,) - OJ,(xo-t;O) 

xl ( oz ~) I 

Ji 
1 
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Equivalently 

where 

\.I .. satisfies 
1J 

i 
oij + sgn(or J 1) 

2n i 

(6.7) 

(2n)n 
(6.8) 

Proposition 6.2 (Departure from Holomorphicity). Let \.Iij be defined 

byeq. (6.5). Then 

f n-1 JR 
2 . i ij ij dm exp[la (x,m)]T (z,m)\.I(xO,X,A (z,m))Eij , (6.9) 

i j i where B (x O,x 1 ,z), a (x,m) are defined by (6.6), (6.8) respectively; E .. 
. . .th . 1J 

is an N x N matrix with zeros in all its entr1es except the 1J , Wh1Ch 

equals 1; and Aij and Tij are given by 

Aij( )",,(ij 1 z,m .. zl 
R 

(z +m, zr ); 
r R r 1 

r=2, .. , n. 

Tij(z,m) '" fJR n+ 1 dsOds eXP[-iBij (sO,Sl,z)-iai (s,m)](q\.l)i j (so's,z). 

(6.10) 

Proposition 6.3 (Characterization of T) 

(a) Assume that a\.l/az p is given by Eq. (6.9) and the Tij(z,m) is given 

by (6.10). Then 

( 6 • 1 1 ) 
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where 

(6.12 ) 

(b) Assume that a~/azp is given by Eq. (6.9) and that a2~/az az 

is symmetric with respect to r, p. Then Tij(z,m) solves (6.11). r p 

Following A. Nachman and M. J. Ablowitz we introduce appropriate 

Born variables. Then equation (6.11) can be integrated. Furthermore, 

we can compute the limit of Tij in the new coordinates as IXpl ~ 00 

(see below): 

ij ij 
Let Wo ' w1 ' wI' 1 2, ... , n £ JR 1 and Xl £C 1 1 2" ••• ,n, be 

defined by 

ij n Ji-J j 
2 ij n Ji-J j n Ji 

... r r :i= E 
r r 

(ozr)r- E r 
Wo 'T E 10 1 zr ' w1 i m 

Ji' or r=1 r=2 r 
r=1 r °rJ 1 1 

2, ..• , n. (6.13 ) 

Assume that 

(J~-J?)(J~-Jg) ~ (J~-J?)(J~-Jg), for all distinct i,j,r and p~1. 

(6.14 ) 

For convenience of writing we usually suppress the superscripts, i,j 

in wO,w 1 ' X. Let z denote z1, ... ,zn' m denote m2 , ... ,mn , X denote 

X2"'" Xn ' w denote w1 , .•. ,wn ' Then we have the following. 

(a) The inverse of the transformation,z,m ~ wO' w, X is given by 

n 
+ E 

r=1 
(6.15 ) 

(b) rn the new coordinates, Eq. (6.11) with r = 1 becomes 

ij [ 1 -N1p T (wO,w,X), P - 2, ... ,n. (6.16 ) 
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(c) In the new coordinates, 

where 

(d) Let 

~.Q,j 
Then the Ili satisfy 

~.Q, j 
11· 

l 

(6.17) 

(6.18) 

dX O' dX ' dW2 exp[i{(xO-xO')wO+wO+(x-x')w}] .. .. 
lJ( I I)~lJ( I I ) . q xO,x 11· xo,x ,wo,w , 

I Jl ( ') l x 1-x 1- a 1 xO- Xo 

2 .. . . 
dx'dx'dw qJl(Xl x' )~lJ(X' x' w w) o O' .... i 0' , 0' 

(e) 
ij 

lim T (wO,w,X) 

IXpl-+oo 

~.Q,j 
11· 

l 

(f) The basic characterization equation is given by 

dX ' dX ' Nij[T](w W XPl ) 

(6.19 ) 

(6.20 ) 

PR PI 1 pO' '. 
------------------------, (6.21) 

X - X I 
P P 

where p' X denotes 
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It follows from the above that as Ix I~oo, the ~ij,s decouple. .... p 
Furthermore, the 07 J , O~J satisfy a system of two equations depending 

. . . . 1 1 

on qlJ, qJ1. It turns out that: (a) By introducing appropriate spatial 

variables ~,the 07J, 0 jj satisfy equations in two spatial dimensions. 
1 1 . . . . . . 

(b) The inverse data needed to reconstruct ~~J, ~IJ (and hence q1J, 

qji) can be obtained from ~ij: 

Proposition 6.4 (Reconstruction of q). Let 

JjJi - JjJi JiJj - JjJi 
2 r r 2 , r , r 

= 1, ... ,n, (6.22 ) {lr * 8 r JjJi' 
r 

JiJj - JjJi' JiJj -, 2 , 2 , 2 , 2 

where for convenience of writing we have suppressed the dependence of 

Q •• L t I;' lR I;' e: lR n , {l r'''' r on 1, J • e '" 0 e: , '" 

x = , ~, , x = 
2 

Then we have the following: 

(a) The system (6.'9) becomes 

i 
. . sgn (OI J ,) dJ ( ~) _ 

~i ~O,~,z - 2ni 

3, ... ,n. 

[ .~ij(1;' 1;" I;' 1;" ~)l ij~jj( , 1;" 

X exp 115 "'0-"'0'''''-'''' ,z q ~i ~O''''' '~2 -

where 

n Jj - Jj 
Z E (z (l + 

2 , 
zr 8r)' 

r=' r r Jj Ji , , 
Ji_ , Jj , 

°1 

(6.23 ) 

(6.24) 

(6.25 ) 
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(b) ;ij in the new coordinates becomes 

;ij(z,m) = fF n+1 d~Od~1 exp[-i~ij(~O'~l'z) + 

where 
n 

Ji 
~) + 
Jl 

1 

n 
m 'l]qijjJ~~j(" ,I z) re, r le,O'e", 

r=3 

3, ... , n. 

(6.26) 

(6.27) 

(c) The inverse data associated with (6.24) and the analogous problem 

for ~ji ~ii are given by fij, fji. Let ... j , ... j 

Ji 
",i j 2 
~. ( z , ~ 2 -~ 1 J i 

1 

Then 

+ i 

Ji 

x(qijcp)(~O'~1'~2 - (~1-~1) ), ~3'···'~n'z). 
1 

(6.28 ) 

(6.29 ) 

Equations (6.1 )-(6.3) with a -1 lead to a system which appears 

to be physically more interesting: (a) Since the system is hyperbolic one 

may consider the physically important question of inverse scattering (IS); 

i.e., given a scattering amplitude function S(\,k) find the potential 

q(xO'x). (b) A special case of the above system, namely if the JiS are 

constrained by 

J~ - Jj Ji - Jj 
p p p p 

JQ, - Jj Ji - Jj 
r r r r 

p, r 1, ... ,n, 1,j,~ 1 , •.• , N, (6.30) 

is associated with the N-wave interaction in n+1 spatial and one temporal 

dimensions [10]. The above system can be considered as a limiting case 

of (6.1)-(6.3) [8]. Alternatively, it can be considered on its own right 

[11]; the problem of reconstruction can be reduced to one for a 2 x 2 

matrix problem in two spatial dimensions. 
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Gauge Unification of Integrable Nonlinear Systems 

A. Kundu 

Theoretical Nuclear Physics Division, Saha Institute of Nuclear Physics, 
92 A.P.C. Road, Calcutta 700009, India 

Gauge equivalence of generalized NLS type equations is established with 
its possible application to find out soliton solutions and with the 
generation of new integrable systems. Through certain gauge choices 
some realistic models are exactly solved. Explicit auto BT for different 
classes of equations are also obtained by gauge transformation. 

1 • INTRODUCTION 

Some twenty years back discovery of nonlinear integrable field models 

created immense excitements. In fact when in 1967 Kruskal et ale [1] 

showed the Korteweg-de Vries (KdV) equation to be completely integrable 

with soliton solutions having beautiful properties, it was not considered 

by all to have any universal appeal. Subsequently, however, mainly 

with the works of Zakharov and Shabat [2] and AKNS [3] the existence 

of a whole class of such systems was revealed. Recent years have now 

witnessed a rapid growth of such members in the family of integrable 

systems. In the present day, however, the situation is somewhat reversed. 

There is already a large collection of members in the integrable circle, 

seemingly all with their own originality and independence, demanding 

individual care and analysis. Besides these bonafide members there 

is also a vast number of candidates from the real world with their 

nonlinearity, awaiting their recognition at least 'near' to some integ­

rable members. In this complicated affair of today, there is then a 

natural urgenoy to work out some sort of unification scheme to group 

together integrable members of the same class by finding out their inter­

relationship and pinpointing some genuine representatives, from which 

others originate. Thus individual treatment of each one of them, as 

is the standard practice of today, would become unnecessary and full 

information about only a few basic equations would be sufficient to 

solve the rest, generated from them. The aim of our article is to present 

such a unification scheme through gauge equivalence , to trace out 

genuinely independent equations, find out gauge relations between 

different systems and recognize real world candidates for their member-
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ship of the integrable family. Though our ambitious programme is not 

yet completed and we confine here only to nonlinear Schrodinger (NLS) 

type of equations, we are able to achieve a breakthrough in this line 

recently [4-8]. Thisscheme also enabled us to use the same machinary 

to generate a number of new integrable equations, some of them coinci­

ding with the known nonlinear realistic systems or coming near to them, 

thus solving exactly few long standing hydrodynamic problems. Along 

with the above idea of gauge transformation (GT) between different 

systems we also use it for another aspect, i.e., for finding Backlund 

transformation (BT) between different solutions of the same equation. 

Interest in gauge equivalence between different nonlinear dynamical 

systems and the corresponding models was boosted up after the remark­

able works of Lakshmanan [9], Pohlmeyer [10] and Zakharov and Takhtajan 

[11]. On the one hand, sine-Gordon (SG) and nonlinear a model was 

linked [10] and extended [12] and on the other hand Landau-Lifshitz 

equation (LLE) was gauge related to nonlinear Schrodinger equation (NLSE) 

and generalized [13-14]. However, besides the nonlinear systems men­

tioned above, there are various other NLS like equations in the integ­

rable family, e.g., NLSE of repulsive type [15], attra;tive-repulsive 

NLSE [16] and also systems like derivative NLSE [17], mixed NLSE [18], 

Chen-Lee-Liu equation [19], modified derivative NLS [20], Gerdjikov-

Ivanov equations [21], etc. It is natural to ask whether they are inter-

related and whether there exist any Landau-Lifshitz type equation, 

gauge equivalent to them. Besides, these integrable members, there 

are also some well-known hydrodynamic equations with high nonlinearity, 

such as Johnson equation [22], Beney's first [23] and second [24] kind 

of long-short wave interaction equations. Whether integrability of 

these real models, which mostly received approximate treatment, may be 

recognized? Our aim is to answer to the above questions (Fig. 1) by 

generalizing the gauge equivalence scheme and proposing a LLE with non­

compact Grassmannian manifold SU(p,q)/S(v(r,s) x v(u,v)). Through 

H-gauge transformation we are also able to connect realistic systems 

with integrable models and thus solve them exactly. 

The organization of the paper is as follows. In Sec. 2 the general 

scheme of gauge equivalence (GE) is outlined and demonstrated for NLS 

and LLE. In Sec. 3, GE is applied to noncompact manifolds recovering 

old and yielding new results. In Sec. 4 we demonstrate the applicabi­

lity of GE for extracting soliton solutions and other informations. 

Section 5 finds generalized LLE equivalent to derivative and mixed NLSE's. 

In Sec. 6 we generate through H-gauge transformation a hierarchy of 

higher-order equations, connecting a number of integrable systems. In 
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~ FAMILY 

Fig. 1 Are there 
any interrelation 
between these mem­
bers? Are there some 
genuinely fundamen­
tal members? 

Sec. 7 we connect realistic equatiomwith integrable systems and solve 

them exactly. Section 8 demonstrates the applicability of GE for finding 

BT even where earlier attempt [25] failed. 

section. 

2. GAUGE EQUIVALENCE OF NONLINEAR 
EVOLUTIONARY EQUATIONS 

Section 9 is the concluding 

Let the linear problem or Lax pair associated with the given integrable 

equation tq = 0 be expressed as 

¢ 
x 

U¢ , V¢, (2.1) 

where the Jost function ¢ and U, V are complex matrix functionsof the 

field q(x,t), qx,the independent variables x and t and the spectral 

parameter A. The compatibility of system (2.1), i.e., ¢xt = ¢tx: 

U t - Vx + [u,vl = 0 yields the original nonlinear system tq 0 by appro­

priate construction of U and V. For real A, ¢ E G, G being a compact 

or noncompact Lie group and under the local gauge transformation 

¢(x,t; A) lEG 
A =A o 

the Jost function c-hanges as 

-1 
g (x,t; AO) ¢ (X,t;A) 
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and the corresponding new linear system is 

<1>' x U'<I>' , <1>' t 
V'.j> , (2.4) 

with 

U' -1 -1 -1 -1 
9 Ug 9 gx 9 (U-Uo)g, gxg = U = U 

0 1\=\ 
0 

V' -1 -1 9 -1 (V VO)g, 
-1 V ( 2.5 ) 9 Vg 9 gt - gtg V 

0 1\=\ 
0 

The compatibility of (2.4) gives now the GE equation 

o 

(2.6) 

relative to a new field S. There exists also another type of spectral 

parameter dependent GT: $(x,\) G(q,q' ,A) <I>(x,\), which generates 

an auto Backlund transformation (BT) mapping a solution q to a different 

solution q' of the same system. 

Let us now look into the well-established [11] GE between NLSE and 

LLE to make the picture clear. Scalar attractive NLSE 

o (2.71 

is given by the Lax pair 

U V (2.8) 

where A1 = ia 3 , AO = ~a+-~a-, B1 = 2A O' B2 = 2A1 and BO = -i(l~fa3+ 
~x a+ +~xa-), where a± = a 1±ia2 and ai' i = 1,2,3 are Pauli matrices. 

If $ = g-l<1> with 9 =\~=\o ' where <I>± is the Jost functions with 

<I>± , exp(ia 3x) 
x -). ±ro 

S+ = 
-I 

get 9 a 3g we 

U' = -1 [(A 
9 0 

+ 

and 

V' 

where we have used 

SS x -S S x 

and 

the 

\A1 ) 

scattering matrix T(\) <1>-1<1> then defining + , 

GT Lax operators to be 

- (A + 
0 

\oA1) ]g i (\ \ ) S 
0 

(2.9) 
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1 
(2.9) yields the GE LLE: St = 2i[S,Sxx1 - 8A OSX. Note that for the 

-1 
choice g =~_(X'AO) one similarly gets (2.10) S g_ 03 g _ which is 

-1 -1 
related to S+ as S_ = To S+To. But if we try to set ~± = g± ~±, 

would satisfy different equations like ~±x - U±~± thus violating 

Jost function condition. On the other hand with the choice ~± = 

we immediately get the relation between the scattering matrices: 

T' (A) T(A) , ( 2 . 11 ) 

which helps to bypass the individualIST investigation of a system, if 

one knows the corresponding information of its gauge equivalent counter­

parts. The integrability property is also obviously preserved. Another 

way of looking at GT for 2x2 matrices is through the trihedral Ea' 

as used by Pohlmeyer, Eichenherr and others, where one introduces Ea= 

eo = g-1 0 g, a = 1,2,3 with the relation E Eb = g b + if bE, E+ = a a a a acc a 
03Eao3' where gab is a symmetric and fabc is an antisymmetric tensor 

and with the equation E A bEb' E t = B bEb. Hence in our case 
-1 ax ~T a a 

S = E3 So = g 03 g , E± g O±g with the equation 

S 2(~E+ + 1jJE), E+x -2iAE+ - 1jJS, E 2iAE - ~S x x 
(2. 12a) 

and 

St 2(-i~ + x 2A~)E+ +2 (i1jJx + 2A1jJ)E , 

E+t = 2i(11jJ 12 - 2A2)E+ - (i1jJx + 2A1jJ)S. (2.1 2b) 

The 0(3)-invariants are tr(s2), tr(St'S ) and tr(S2) Eliminating x x t . 

E± the final equation for S is again given by LEE (2.10'). 

3. GENERALIZED LLE WITH NONCOMPACT GRASSMANNIAN 
MANIFOLD AND GAUGE EQUIVALENT NLSE 

We propose a generalized Landau-Lifshitz equation (LLE) with non-compact 

manifold: 

SEM G/H, 

G SU(p,q), H S(U(u,v) ® U(r,s)), (3.1) 

where u+v = m, s+r = n, u+r p, v+s = q, p+q = m+n = N and find its 

gauge equivalent system using the above scheme. The corresponding 

linear system is 
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u i A5, v (m+n)/2mn (3.2) 

2 5-with 5 satisfying 5 = aI + b5, 

f, diag(Iu,-Iv ) and f2 = diag(Ir,-I s )' a, b are constants and Ii 

is a ixi matrix. G/H being a symmetric space, it is always possible -, to express 5 = gEg , 9 E G and E = diag(I 1m, -I In), which gives , _, , m n _, 
on using 5 = 9[E,L ]g- , L = 9 g, -2[5,5] = 29E[E,L,]g the trans-

)J )J )J )J x 
formed operators 

U' 
-, 

9 Ug 

V' 
-, 

9 Vg 

A 

iH - A, 

B. Taking A and B in the explicit form 

B 
~x +~A2-A, ~ 1 

b 2 

+ - i 
with W f,W f 2 , Ai = -Ai' tr(A,+A2 ) = 0, Ai = Hx and b, = 

b 2 = -(W~-)J(m/n)In) + H~. The compatibility of (3.3) yields 

equivalent matrix NL5E 

(3.3) 

- , (ww- )JIm) +H t , 

the gauge 

(3.4) 

It is worth mentioning that in deriving (3.4) we have set simply A,= 

iAoIm/m, A2 = -iAoIn/n. In general, contrary to the usual belief, 

LLE is GE not only to NL5E but also to all its H-gauge equivalent part­

ners (see Fig. 2), which may also be obtained by different choices of 

function Hi. We, therefore, conclude that LLE (3.') with noncompact 

manifold is gauge equivalent to matrix NL5E (3.4) with internal symmetry 

group U(u,v) ® U(r,s) along with all its H-GT systems. Note that for 

trivial boundary condition on fields W, AO is arbitrary real and may 

be trivial ["], but for a nontrivial boundary condition, which is impor­

tant in noncompact cases AO is nontrivial, since it should always be 

from the real spectrum [6]. The following particular cases recover 

old results, yield new relations and answer some of the questions raised 

in 5ec. ,. 
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G=SU(p,q) /r- ___ ~~ ___ H_L,S-

H= S(U(p)(x)U(q) ) • ~ 
r---------:--:::.-----=-:-::-'S"f--' - - - - - - ---- MNLS 

SE:G/H p= 1 

VNLS-

N= 2 

~-- - -------- SNLS 

H = S(U(m)(x)U(p,m,q» 
+ 

SNLS +_ 

Sf SU(p,q) ,-__ ~f~ _____ ~~* 

'---m-=--:1:--------
S
-( U-(-P--I .. ,q-s:)(-v,CO-- - - - -- ~:ts.LS·-

-'~~ -~---~~---~~~:-\_s-
Fig. 2 Gauge equivalence between generalized LLE with noncompact Grass­
mannian manifold and NLSE along with its H-gauge equivalent systems and 
their different reductions. (±) represents 'attractive' or 'repulsive' 
while (+-) represents 'attractive-repulsive' type cases 

3.1 Examples 

Let u = m, v = 0, r = p-m > 0, that is, 

S E SU(p,q)/S(U(m)xU(p-m,q» (3.5) 

We further suppose that (i) p = N, q = 0, r 1 = r 2 ~ 1, hence S = S+ 

recovering equivalence of LLE with compact manifold S E SU(N)/S(U(m)® 

U(n)) [12] and consequently for m = 1 with S E CpN [13] and for N = 1 

with standard S E S2 [11]. For extracting the relevance of noncompact-
- t ness we suppose that (ii) p = m, q = n giving r 1 = I, r 2 = -I, ~=-~ , 

that is LLE with SU(p,q)/S(U(F) ®U(q) is GE to matrix NLS of repulsive 

type. p = 1 connects LLE with SU(1,N-1)/U(N-1) and vector NLS (VNLS) 

of repulsive type 

o. (3.6) 

N=2 gives a SU(l,l )/U(l) version of LLE and related repulsive scalar 

NLS [15]. (iii) m = 1 reduces (3.5) to LLE with noncompact manifold 

SU(p,q)/U(p-1,q) and GE attractive-repulsive VNLS [16] 

0, (3.7) 
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which in limiting cases leads again to VNLS of attractive or repulsive 

type. The above equivalence is schematically depicted in Fig. 2. 

It may also be shown that [4] SU(2) LLE with easy axis (6)0) aniso­

tropy (ALLE) is gauge equivalent to attractive SNLS, while the aniso­

tropic SU(I,I) LLE to repulsive SNLS and easy plane (6<0) case to AKNS 

system. 

4. APPLICATION OF GE FOR SOLITON SOLUTION 

Most of the early works, besides establishing the GE, largely ignored 

the possible applications of such a beautiful relationship. We aim to 

utilize the GE for extracting information of LEE without the associated 

ted ius 1ST calculation but only using well-investigated properties of 

its GE NLSE. As shown in §2, the Jost function of LLE ¢± may be 
-1 

expressed through that of NLSE ¢a as ¢± = ¢o ¢±' where 

[ 
¢1 2* 

1 
¢± 

± E¢± 

¢2 1 * 
± ¢± 

is the Jost solution of spectral problems connected with NLSE and E =+1 
correspond to NLSE of attractive and repulsive type, respectively rela­

ting to LLE with S E SU(2)/U(1) and SU(l,l )/U(l) manifolds. As shown 

before the scattering matrices of GE system are identical. The field 

solution of LLE may be expressed through 

-1 1 ( S3 0 3 S - -
S ¢ 0+ 0 3¢ 0+ r + 0 

0 

S3 1 ¢ ~12 +E 1 ¢ 21 2, S _ 2¢ 1 ¢ 2 
o 0' 0 

4.1 SU(2)/U(1) LLE Solution from 
NLSE of Attractive Type 

NLSE Jost solutions as 

S+o+) , 6 det¢ + 0' 0 

S +* ES . (4.1) 

The solution to LLE is normally extracted through tedious 1ST calcula­

tions [26]. We, however, recover the soliton solution through GE using 

the known results of NLSE [2] given by the Jost function for N-soliton 

solution: 

N C ¢ 
n n 

L -x=x- exp(iAnx), 
n=l n 

(4.2) 
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where ~n ~(X.An)' An being the discrete spectrum. For simplicity 

we consider N = 1 giving 1-s01iton solution of NLSE as 

N 
l\I(x) -2 E C ~' (x)exp(iA x) I = -2in exp(iy)sech y, 

n=l n n n N=l 

where A1 = ~+in, y = 2~x + 4(~2-n2)t + ~o and y 

the other hand from (4.2) one obtains 

~1 _ ptA ) exp[i(A-A )x)sech y, o 0 0 

~2 
o 

(4.3) 

(4.4) 

with p(AO) 

solution 

in I(A-Ao )' which gives directly from (4.2) the LLE soliton 

arg(S+) 

2 sech y, 

2 A x - Y - tan -1{ [(A ~) In ) coth y } 
o 0 

(4.5) 

coinciding for AO =0 with the result of ref. 26 found through direct 1ST. 

4.2 Noncompact SU(l,l}/U(l} LLE Solution 
Through Repulsive Type NLSE 

The noncompact LLE model may be given by the Hamiltonian 

H 
2 

S 1 )dx 
x (4.6) 

1 and S = SaT E SU(l,l )/U(l). This is a new model, 
a 

which may have physical applications. For finding its soliton solution 

we may apply again the GE with NLSE of repulsive type established here 

and use the known 1ST information of the latter system [15). The 1ST 

programme of repulsive NLSE is rather complicated due to nontrivial 

b d d " l' 1 12 2 H (2 2)i oun ary con ltlon lm 1\1 ~~. ere ~ = ± A - ~ actually serves 

the role of spectrall~1tameter and ~(A) is defined on a 2-sheeted 

Riemann surface with cuts at (-oo,-~) and (~,oo). 

, (2 2)i ' 'h 1 12 2 glven at ~n = An - ~ = lV n Wlt An < ~ • 

ponding to 1-s01iton of NLSE is given by [15) 
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The Jost solution cor res-
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where 

K1 (y) = vf(y), K2 (y) = v(y-iv)f(y), f(y) = [1+exp(2y) ]-1, 

1',;2 = A2_ 1, 

l\I(x,t) 

2 2 
A1 = y, v = 1 - Y and y 

[ (y + i v ) 2 + exp ( 2 y) ] f ( y ) . (4.8) 

Using € = 1 and (4.7) one gets from (4.1) the soliton solution for (4.6) 

LLE in the form 

(4.9) 

where we have chosen AO - 1',;0 = y for simplicity, which, however puts 

restriction on the soliton velocity u 2y = 2(A O - 1',;0)' 2 >u > O. 

We also have the restriction I Ad> >L 1 since AO must be from the 

continuous spectrum. 

5. NLS TYPE EQUATIONS AND 
GAUGE EQUIVALENT EXTENDED LLE 

Using the technique similar to that applied above for standard NLSE, we 

may also find new extended LLE, gauge equivalent to various known NLS 

type equations [5]. 

5.1 DLL Gauge Generated from DNS 

The scalar derivative NLS (DNS) 

o a > 0 ( 5 • 1 ) 

may be given by the linear system 

U 

v (5.2) 

+ - - 2 + 2-where A = qo ± q*o , B = (iq + alql q)o + (±iq* +alql q*)o . 
-1 x x -1 2 

Defining as before S = g 03 g one gets SS = 2A a gAg, SS = 
2 2 1 2 2 ~1 0 x 

-4 Aoa g- 03A g and S(St-2aAoSx) = 2aAog Bg. Repeating now the 

above procedure for GT (2.5) one obtains the new system 
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U' 

V' 

+ i 

A-A 
+ __ 0 (SS - 2uA 2SS ) (5.3) 

21.. t 0 x 
o 

yielding the extended LLE (DLL) [5]: 

(DLL) : S3 --2 x 
4uAo 

0, U > 0 (5.4) 

with S E SU(2)/U(1 )[SU(1,1 )/U(1)] corresponding to +(-) signs. Note 

that the integrable system (5.4) has also been found recently through 

an altogether different method [27]. 

5.2 XLL Gauge Generated from XNS 

The known mixed NLS (XNS), a hybrid of DNS and NSE, 

(5.5) 

given by somewhat complicated U, V operators [18] is gauge trallsformed 

similarly to [5] 

U' 

V' 

-1 
g {o03 + aA}g 

oS + a SS 
c x 

-1 2 g .. { k03 + bA + aB +yo3A }g 

kS + E.ss 
c x 

(5.6) 

where c,o, a, k, b,y, b are different expressions depending on A, Ao'u 

and B [5]. The flatness condition of (5.6) yields gauge equivalent LLE 

type equation in the form (XLL)t 

tXLL given in refs. 5,6 may be simplified to this form. 
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0, (5.7) 

where y = 41. {/2B - 0.1. } and p 0./(20.1. - 12]3)2. The ± sign as before 
o 0 0 

corresponds to S E SU(2)/U(1) (SU(l,l)/U(l)) cases. One gets also 

the invariant relations 

(5.8) 

Note that XLL (5.7) has exactly the same form as DLL (5.4) but only with 

different coefficients, which clearly reduces to the corresponding coeffi­

cients of LLE and DLL in particular cases a = 0, a '" 0 and a '" 0, a = 0, 

respectively. The coincidence of XLL and DLL reflects the fact that 

their gauge equivalent Schrodinger type equations, e.g., XNS and DNS 

are U(l )-gauge related (see§6.1), which does not change the corresponding 

LLE system as shown in §6. 

5.3 MDLL Equivalent to DMNS 

A modified DNS [MDNS) given by 

(MDN~): iqt + (q/p)xx 0, 

corresponds to the linear system 

U 

with A as in (5.2) and 

B 

p 

D 
-1 

p 

(5.9) 

(5.10) 

[
-i q ]. 

±q* i 

Repeating the above procedure we now get the gauge transformed operators 

as 

U' 

( 5 . 11 ) 
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yielding a new LLE type integrable equation (MDLL) [5] 

(MDLL) : (5.12 ) 

2 2-! 
with X = (l+tr(Sx)/8Ao ) , with S E SU(2)/U(l)[SU(l,1)/U(l)] corres-

ponding to +(-) signs in (5.9). 

6. UNIFICATION THROUGH H-GAUGE TRANSFORMATION 

It is interesting to note that from the matrix NLSE (3.4) one can generate 
-1 

through the local H-gauge transformation ~ ~ h2 ~ hl relative to group 

element h = diag(h 1 ,h2 ) E H = S(U(u,v)® U(s,t» a class of new higher­

order equations 

0, ( 6 • 1 ) 

where Hi h~la h .. Since under h(x,t) E H-gauge transformation, the 
]1 1]1 1 1 1 1 

model field is invariant: S' = g'~ g'-l = gh~h- g- = g~g- = S, the 

LLE system remains unchanged under such transformation, whereas the 
, -1 . -1 

equivalent matrix NLSE changes as Ui = h Uih+(lA~-h hi). We consider 

below the simplest case of h = exp(i00 3 ) EU(l), G = SU(2)(SU(l,1» and 

show how certain new hierarchy of integrable equations can be generated 

unifying different systems for various particular choices. 

6.1 U(l)-Gauge Generated Higher Order 
Integrable Systems 

The XNS (5.5) is transformed to the higher-order equation 

Q 
2i0 e q. (6.2) 

It is evident, that a choice of 0 = ¥(x + ¥t) and a Galilian transfor­

mation with V = -28/a reduces (6.2) to DNS (5.1) and thus establishes 

gauge equivalence between XNS and DNS while for a = 0 we directly get 

NLS. We may, therefore, consider gauge generation from later two systems 

only. 
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interesting choice for B , 
~ 

(i) Gauge generation from NLS: One 

e.g., B~j) = P j , B~j) = ~j where (Pk)t 

laws from the Ricatti-equation generates 

systems [8] 

(~k)x yielding conservation 

a hierarchy of integrable 

iQt + Qxx+BIQI2Q + 2 {(~j-2P~-iPjx)Q - 2i P j Qx} 0, 

j = 1,2, .... 

One may easily construct for these systems exact solutions, Lax pairs, 

infinite conservation laws, etc. [8]. In the simplest case of j = 1 

we have a(l) = - olqI 2, a t(l) = io (qq* - q*q ) yielding the new integ-
x x x 

rable system with fifth-order nonlinearity 

reducible to a linear equation iqt + qxx = 0 for B = O. For choice 

a = a(x) one gets a NLS with variable dependent coefficients. Other 

choices of a will be discussed in the next section. 

(ii) Gauge generation from DNS: Similar choice as the above gives 

again another hierarchy of integrable systems generated from DNS [8]. 

The simplest case gives Johnson type equation 

which for the choice 0 - % reduces to Chen-Lee-Liu [19] equation (CLL). 

and for 0 ~ to Gerdjikov-Ivanov (GI) equation [21] 

Thus we have established the gauge relation between a large number of 

systems. Consequently, the soliton solutions and Lax pairs for these 

systems may also be trivially constructed from those of DNS thus avoiding 

lengthy sophistic,ated approaches [28,31]. 

7. EXACT SOLUTION OF REALISTIC MODELS THROUGH GE 

Johnson derived [22] the following fifth order nonlinear equation (JE) 

for the amplitude of the fundamental wave. 

(JE): iAT-alA~~-a2IAI2A + a 3 1AI4A + ia4 1AI2A -iaSA( IAI2)~-a6AaT=o, 
(7.1) 
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2 where 8~=oIAI and a i are real numbers. Previous attempt [22] to solve 

this equation was both tedious and approximate. We, however, notice 

that (7.1) may be gauge transformed to XNS 

(7.2) 

with a = oa 1 (a 6+4) + a 5 and a constraint oa 1+a 4+a 5+3a6+4 = O. Thus 

(7.1) can be solved exactly extracting the Lax pair and different soliton 

solutions [8]. 

In describing the mechanism of interaction between long and short 

waves Benney has derived the following famous equations. The first 

of this kind may be given by [23] 

(LS1): Qt = -iQxx + k 3AxQ + k3AQx-ik4A2Q+2isIQI2Q 0, (7.3) 

where A(x,t) describes the long wave, while Q(x,t) is associated with 

the short wave. The second equation due to Benney is [24] 

(LS2) : 2 d a ( I S I ) + cpLL ), x x 

St + C S - ioLS = E(iSS + iylsI 2s + mLS + nSLx )' l7.~) g x xx x. 

with Land S describing the long and short waves, respectively. We 

observe again through gauge equivalence, that for certain parameter 

choice both the above equations become exactly solvable and connected 

with the NLS equation. In particular, for the choice k3 = 2k3 = -2a, 
2 -2i8 k4 = -a by U(1) - GT described above (7.3) is reduced for q = Qe 

~A, 8 t = as( IQI2) to NLSE with 8 x 

where 5 
h- 1U.h 

1 

when 5 

A 

(7.3 ' ) 

-s(i+a), yielding easily the explicit Lax pair through Ui= 

- h- 1h i , h = exp(i8a3 ) and soliton solutions. For example, 

> 0 the exact 1-soliton solution of (7.3) may be given by 

______ 4~V __ sech22vz, Q 

vl1+ al 

2v 

Is 
2tanh2vz 

sech2vz expi( wt+kz 
2vP + exl 

where z = x - vt. Note that for a = -1 one gets s = 0 reducing (7.3) 

to a linear equation. It is worth mentioning that for a more restricted 

set of parameters the solvability of (7.3) has also been established[23] 
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2iG through much involved prolongation theory. A similar GT with q = Se , 

! 2 5Q 2 2 where Gx = L - C g/4 and Gt = -c l L + E(a!S + 2 L ) + cg/8 transforms 

(7.4) directly into the NLS equation of the form iqt+q + y!q!2 q=O 
xX_l 

the choice 8 = 2(cg -c l ), 4S=2n=m=4E and E~=4. with Y = E(y-2a) and 

However, if E~ - 4 = 

nonlinear term like 

p tOone should include in (7.4) a higher order 
2 . . . pL S to restore its gauge equivalence with the 

NLSE. 

Following the same line of argument one can show that the Langmuir 

type equation (LTE) with some additional nonlinearity 

n - n 
t x 

[(n 2+in )Q + 2inQ 1 x x o 

is also reducible to NLS for the choice 

G x 

Now we may depict the result of gauge unification scheme in Fig. 3. 

DLL 

XLl 

ALLE(.t:.>O) 
0-.. ..... 

G=SU(2)---

gEG 

gEG 

CLL 

gEH 

G 11 

CLL-NS 

XNS 
- - - - - - - --(::-.::::=~-----{) JE 

gEH 

LTE 

g~H 
- - - -- - - --~+E=-------OLS 1 

ALLE(.t:.~9L--~--------~S! HNLS-
LS 2 0-

G-SU(1,1) 

Fig. 3 Extended qauge equivalence scheme of different LLE and NLS type 
equations. This establishes the relationship between different members 
of the integrable family as well as real world candidates thus answer­
ing the questions raised in Fig. 1. Here H = U(l) and G = SU(2) (or 
SU(l,l) corresponds to attractive (+) (or repulsive (-)) case 
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8. EXPLICIT AUTO BT THROUGH GT 

As mentioned in Sec. 2, another interesting application of GT is the 

auto BT for integrable systems, which is otherwise a tricky problem 

[29] demanding 'guess' work. Here the parameter dependent gauge element 

G(q,q' ,\) satisfies the equation 

Gx , (q,q' ,A) = Ui (q' ,\)G(q,q' ,\)-G(q,q' ,\)U i (q,\), (8.1) 
1 

where xi = (x,t), i = 0,1. For finding out explicit Backlund Transform 

(BT) for some concrete systems like KdV, sG, NLS, DNLS, LLE, modified 
ab N ab , n 

DNLS, we may express the elements G = L (an )/(1\) and from (8.1) 
n=O n choose N by matching coefficients of equal powers in (i\) to get con-

ab sistent closed set of equations for a The value of N and explicit 

solutions would depend on particular form of U1[7]. 

:~: A::Sf::s:::Sw:
Y
:::: U1 =[!\ -{\] , which results in the choice 

11 2' 22 2' 12 21 h a = ao+ 1\, a = 00 - 1\, a ~ 80= a = Yo' were ao'So' Yo,oo 
c are independent of \. This leads to the relation a ov = ux- 2(u+v), 

1 a o = 2(r' (u+v)-r(u-v)) with u = q'+q, v = q'-q. For deducing now 

th~ BT for particular systems we have to imply different reductions 

of AKNS, e.g., for KdV r = -1, q = -wx ' for sG r = -q = ~x, for NLS 

r = ±q*, etc. leading to explicit BT's for these systems [7]. 

8.2 BT for Kaup Newell Problem 

11 2 22 We have U1 given by (5.2) dictating the choice a = 1 + a2\, a 

-1 +02\2, a 12 ~1\' a21 = Yl\ leading to the relation 

i(q~02-qx02) = -2(q'+q) + (q'r'-qr)(q'02+qa2)' 

which yields easily for r = ±q* the BT for DNS (5.2). Since the mixed 

DNLS (5.5) is shown in Sec. 6 to be GE to DNS, the BT for XNS is also 

easily obtained. 

8.3 BT for WKI Problem: Modified DNS 

Earlier attempt [25] for finding BT of modified DNS was not successful. 

We, however, notice that since LLE and NLS are gauge equivalent, one 

may construct the BT of the former system through the latter, which 
-1 takes the form [7] S' = B1SB 1 where S', S are different solutions 

-1 -1 
of LLE and Bl = ~o Go a3~0' where Go is the BT-gauge of NLS and ~o 

is its Jost function at \ \0. Using now the fact [30] that a change 

of variable iq = S-/S3, X = - Is3 dx transforms LLE to (5.9) we may 

derive BT for the latter system [7]. 
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9. CONCLUSION 

We have demonstrated that through gauge equivalence method it is possible 

to 'unify' a large number of integrable systems, pinpointing a few 

basic ones. Using this machinery one may also obtain full information 

of a system, for example, know its Lax pair, soliton solutions, and 

Jost functions without doing any tedious 1ST investigation, but from 
its gauge equivalent, well investigated counterpart. Application of GE 

also allows us to generate new integrable systems along with their Lax 

pair and sometimes solve exactly existing realistic systems. It also 

opens up an elegant way of finding explicit BT of a large class of 

systems. One of our interesting observations is that some realistic 

nonlinear equations may turn into exactly integrable systems and some­

times they do so when some still higher nonlinear terms are added, 

whereas the usual practice is to throwaway such terms in real models 

to give the equations some 'elegancy'. Our investigation shows however 

that in certain systems one may be able to gauge transform them to 

some known integrable models without neglecting any of their nonlinear 

terms (e.g., HNLS, LS1, LS2, Johnson equation), while in some other 

cases higher order nonlinear terms are necessary to add for restoring 

the integrability. Some models may even be linearized through such 

procedure. Therefore, in handling realistic equations the possibility 

of application of GE should be carefully explored. 

In spite of some encouraging achievements, our ambitious programme 

of gauge unification is far from being complete. The extension of 

such equivalence to the corresponding quantum models is indeed a challen­

ging problem, which is being taken up by us at present. 
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Prolongation Structure in One and Two Dimensions 

A. Roy Chowdhury 

High Energy Physics Division, Department of Physics, 
Jadavpur University, Calcutta 700032, India 

A computational basis for the prolongation theory applicable to soliton 
equations is given with several examples included as illustrations. 

1 • INTRODUCTION 

One of the most important developments in theoretical physics during 

the past twenty years is the understanding of the complete integrability 

property of a class of nonlinear partial differential equations(nlpde)[l]. 

The initial attempts for the systematic analysis of such equations 

started with the famous papers of Gardner, Greene,Kruskal and Miura [2], 

and also with that of Lax [3]. The observation of Lax, that these 

integrable equations are representable as the consistency condition 

of two linear equations was of utmost importance for the fast development 

of the theory of solitons. However for a long time there was no concrete 

way to arrive at a Lax pair for a given nlpde, though given the Lax 

pair the problem can be analysed exhaustively. Then the now famous 

work of AKNS (Ablowitz, Kaup Newell, Segur) [4] indicated a reverse 

way of getting a class of integrable evolution equations starting 

from a given Lax pair. The first detailed study of inverse scattering 

was also taken up in this paper. One should of course mention the 

pioneering work of Zakharov and Shabat [5] also. But the problem of 

getting a Lax pair from a given nlpde was still not solved. 

The basic problem was attacked and solved in the ingenious article 

of Whalquist and Estabrook [6]. Later a simplified version was also 

suggested by Corones [7], who showed how a pseudopotential can be asso­

ciated with a given nlpde. Later, different applications of the method 

have been given by Gibbon [8], Pordy [9], Dodd [10], Roy Chowdhury 

[11] and others [12]. 

2. RUDIMENTS OF THE THEORY OF DIFFERENTIAL FORMS 

The whole formalism of Whalquist and Estabrook is based on the Cartan's 

calculus of differential forms. Here we describe tersely the basic 
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rules for the operations on forms. Since we will be working mainly 

in two spatial dimensions, we will use (x,y,t) as the set of independent 

variables and u(x,y,t) as the dependent nonlinear field variable. 

We start with the definition of differential forms: 

(i) A differential dx, dt, du or an expression fdx, gdt, etc., is 

called one form. 

(ii) An expression of the form dXAdt, dUAdx, dyAdu is called two 

forms, where A is the antisymmetric wedge product. 

( iii) In fact one can also define the 1-form, 2-form, 3-form as the 

integrands in respectively of a single, double or triple integral. 

That is fdx of ffdx, gdxdy of ffgdxdy and hdxdydz of llfhdxdydz. 

(iv) The symbol "d" stands for exterior derivative and acts in the 

following manner: d(fdx) = dfAdx, d(gdxdt) = dgAdxAdt. 

(v) It possesses the basic antisymmetric property: dXAdt = -dtAdx, 

dXAdx = O. 

(vi) In general for any coordinate representation, df 
elf 

f'i = ~. 
1 

(vii) d(dw) 0, Poincare Lemma. 

(mii) For any vector v, and forms wand 0 

v. (wAo) (v.W)AO + (-1 )pwA(v.o). 

(ix) For forms wand 0 WAO = (-l)pq OAW, where p 

q = rank of o. 

3. nlpde AS THE SECTION OF A SET OF FORMS 

i 
f'i dx , 

rank of w, 

The starting point of the WE formulation is to write the nonlinear 

differential equation as a collection of differential forms. The process 

of obtaining a particular equation from a set of forms is called sec­

tioning. In short it means that if one chooses a particular coordinate 

representation then the "coordinate free" writing of the differential 

form will reproduce the particular equation. In order to use a minimum 

amount of abstraction we illustrate this with examples. Let us consider 

the KdV equation 

O. ( 1 ) 

The first step is to define a set of primary sets of variables by 

considering the derivatives of q, upto n-th degree (n being one less 

than the highest degree of derivative of q occurring in the equation), 

as independent set. In this case we consider, 
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(2 ) 

So (u,p,q) form the primary set. To recast these in the differential 

form language we set, 

al = UdXAdt - dqAdt, a2 pdXAdt - dUAdt (3 ) 

whence the equation (1) is 

o. 

So we have 

a 3 = dqAdx - qudxAdt - dpAdt 

and (1) is equivalent to {a 1 , a 2 , a 3} 

that 

dq 

(4 ) 

(5 ) 

if we choose a coordinate such 

(6 ) 

The above statement is quite easy to prove. From (6) and (3), we get, 

a 1 = udXAdt - (qxdx + qtdt)Adt = (u - qx)dxAdt. So a 1 = 0 implies 

u = qx. 

Consider a more complicated situation for an equation of the form 

[ 121 

o. (7) 

In this case we set 

o. 

(8 ) 

These forms can be wr i t ten as 

6 1 = duAdt - pdxAdt, 62 = dpAdt - rdxAdt, 

(9) 

The verification can be done following the same procedure as above. 

4 • CLOSED IDEAL 

The next stage of the prolongation analysis makes use of an important 

aspect of the differential forms, which is the closure of the set of 

forms under exterior differentiation. In mathematical language we 

write 
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n 
E 

j=l 
( 10) 

As an example, let us consider equations (3), (4) and compute da i . 

Using d(fdx) = dfAdx, d(dg) = 0, we get da 1 = dUAdxAdt = dx~ a 2 , 

da 2 = dpAdxAdt dXAa 3 and da 3 

either dx or udx or qdx. On the 

5. THE PROLONGATION ANALYSIS 

1 ua1Adx + q a2Adx. So the fj's are 

other hand for equations (9) we obtain 

0, 

After the closure property of the set of basis forms has been established 

the final stage is set for the computation of the prolongation structure. 

Here we actually search for a set of one forms wk ' 

( 13) 

where Fk and Gk depend on the premitive set (u,p,q, ... ), independent 

variables (x,t) and also on some new dependent variables Yk (which 

are called the prolongation variables), in such a way that 

m 
E 
i 

( 14) 

where n is the number of prolongation variables, m is the number of 

basic defining forms a's and n~ is some set of one forms. Equation(14)is 

actually an extension of the closure condition elaborated above. Ac­

tually they lead to an overdetermined set of partial differential 

equations for F and G which are not always linear. Fortunately the 

nonlinear part always has certain commutator-like structure and almost 

always solvable. We will be using these features in the following 

paragraphs by some explicit examples. Incidentally when Fk, Gk do 

not depend on j's themselves, wk is called a potential. However if 

F and G depend on the y's, they are called pseodopotentials. To illus­

trate the above ideas we consider again the case of KdV equation. 

An important observation at this stage is that n i can be chosen 

in various ways, on which depends the generality of the prolongation 

forms wk' 
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In the usual case we take 
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On the other hand, one can also set [13] ni = aidx + bidt + cidz + 

didp + eidq. Equating to zero the coefficients of basic two forms 

dXAdu, dUAdp, dpAdt, etc., in equation (14), with u 1 ' u 2 ' u 3 as in 

(3), (4), (5) we arrive at 

Fk 0; Fk 0; Fk + Gk 0 ,u ,p ,q ,p 
( 16a) 

uGk + Gk - 12uGk + Gi aFk _ Fi aGk 
o • ,q p ,u ,p aYi aYi 

( 16b) 

In (16 ) we have used 

dWk d(dYk + Fkdx + Gkdt) = dFkAdx + dGkAdt 

Equation (16) will determine the dependence of F and G on (u,p,q). 

Differentiating repeatedly (16b) and utilising (16a), we get F 0, qqq 
Fp Fu = 0; Gqqqq = 0; Guuu = 0; Gpp =kO. Th~n it is not diffi-

cult to envisage the following structure of F and G , 

k k k 2 k k 2 .k F = X1 (y) + qX 2 (y) + q X3 (y); G = -2(p+6q )X2 (y) + 

23 k k k k k 
3{u -9q -2qp)X 3 (y) + 8X 4 (y) + 8qX5 (y) + 4q X6 (y)+4uX 7 (y) ,(18) 

k where Xi's are dependent only on the prolongation variables. If we 

plugg in these Fk and Gk,s in equation (16b) and equate coefficients 

of q2, q3, uq, pq, etc., we then get the following incomplete Lie 

algebra 

( 19) 

As a next example, we consider the equation of a relativistic string 

in a curved space-time. The governing equations are [14] 

e 2rp . 2 Xtt = Sl.n X, (20 ) 

where K is the curvature of the embedding space. We can also write 

(2) as 
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B (2' ) 

when a special value of K is chosen. 

The basis variables are now defined to be ~2t = z, ~2x = p, ~'t q, 

~'x = r. Then it is easy to observe that the basic two forms are 

dqAdx + dpAdt - BdtAdx. (22) 

The closure of the ideal generated by ri's can again be tested and we 

search for w in the form 

Following the procedure laid down previously we get 

[F,G] 

F 
P 

o = F r 

-F Z - F q + G p + G r - AF2 - BFq . 
~2 ~, ~2 ~, 

We choose Fang G as 

Equation (23) then implies 

along with 

[F3 ,G 3 ] = -AX,(y) - BX2 (y), 

~ , -~ 2 - ( ~ , +~ 2 ) ~2 
G3 = e Y3(y) + e Y4 (y) + e Y5 (y) 

110 

(23 ) 

(24) 
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(26) 

(27 ) 



which immediately leads to the incomplete Lie algebra 

[X l 'Y3 1 X3 , [X 2 'Y3 1 -X 3 , [Xl' Y 11 = X4 ; 

[X 2 , Y4 1 X4 , [X2 ' YS 1 0, [X l , X3 1 Y3 ; 

[X l , X4 1 Y4 , [X 2 , XS 1 = 0, [X l , XS 1 = - Ys ; 

[X 3 , Y3 1 1 
[X 4 , Y4 1 1 + X2 ); 2(X l -X 2 ), = 2(X l 

[XS ' YS 1 1 
[X l , X2 1 0, [X 3 , Y4 1 [X 4 , Y3 1 0" - 2 Xl' = + , 

(28 ) 

Lastly let us consider a new integrable system, which is a generalisa­

tion of Liouville equation [15] written as 

q>xt - a+B-2q> e , 

2 eB-q>B a tt atq>t - (at) - x' 

Bxx Bxq>x - (B ) 2 
x 

- ea-q> 
at" (29) 

If we set at = q, Bx = r, q>t s, q>x = p, the basic two forms become 

(30 ) 

k k In this case F , G are seen to be 

(31 ) 

along with the Lie algebra 
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[X"Xs ] 0 , [X 3 ,X S ] = -2X 3 , [X, ,X6 ] = -X6 ; 

[X 3 'X6 ] 0, [X"X7 ] = 2X7 , [X 3 'X7 ] 0; 

[X, ,XS] -2X S ' [X 3 ,XS ] = X6 ' [X2 ,XS ] = X2 ; 

[X 4 ,XS] 2X 4 , [X 2 'X6 ] = X,- XS ' [X, ,X6 ] XS; 

[X 2 'X 7 ] 0, [X 4 'X7 ] -X 2 , [X2 ,XS ] - X4 ' [X4 ,XS ] o. (32 ) 

6. CLOSURE OF THE ALGEBRA 

In all the examples cited above it is pertinent to observe that the Lie 

algebra generated is never closed by itself. Of course there are some 

examples where an exception can be seen ['6]. In the former case 

there is no rule to attain this closure. However one may follow either 

one of the following two broad strategies: 

(,) First, to find a scaling, Galiean, Lorentz or conformal type 

of symmetry of the original nlpde. Then impose these on wk' to obtain 

on automorphism of F and G. This will have some nontrivial implications 

regarding the unknown part of the Lie algebra. As an example, let 

us consider the case of the extended Liouville equation (29). It remains 

invariant under the transformation 

x' ~ l;:x , 

a'~ a - 3 

t ' 

logl;:, 

-, 
~l;: t, 

S I ~ 

Then we impose these on wk 

to the automorphism 

X' X, , X' 2 , ~ , 2 ~ l;: X2 ' 

Xs ~ XS ' X6 ~ 
-2 

l;: X6 ' 

S 

cp' ~ cp; 

+ 3 logl;:. (33 ) 

and get k' F ~ 
-, k 

l;: F; 
k' G ~ 

k 
l;:G , which lead 

X' -, X' l;:X 4 , 3 ~ l;: X3 ' 4 -+ 

X7 ~ l;:X 7 , Xa -+ 
-, 

l;: XS· (34 ) 

Now equation (32) does not give any information about [X2 'X4 ]. If 

we study the transformation of [X2 'X 4 ] under (34) we get [X2'X4] -+ 

3 l;: [X2 'X4 ]· But there is no generator with such a scaling property in 

(34). So its immediate implication is [X2 'X4 ] = O. On the other hand, 

if we consider [X 3 ,X 4 ], under (34) we get [X3'X4] ~ [X3 'X4 ] and generators 
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with such scaling behaviour (with no factor of~), are Xl and XS. So 

we infer 

(3S) 

and a and S may be fixed by Jacobi identity. 

(2) The other route is the adhoc procedure adopted by WE who closed 

the algebra by hand. The main algebraic reason for the effectiveness 

of WE procedure was analysed by Shadwick [18]. Basically the procedure 

of closing off is to obtain the various forms of embedding of SL(2,R), 

SL(3,R) or SU(3), etc., in the incomplete Lie algebra. Such a procedure 

is described in detail in references [9] and [10]. 

Once the Lie algebra is closed, then one can successfully obtain 

the linearization, Lax pairs and Backlund transformations. For details 

see [6-19]. 

7. EQUATIONS IN TWO SPACE VARIABLES 

After the success of prolongation theory in (1+1) dimensions, extension 

was made for (2+1) dimensional systems such as the K-P equation, Davey­

Stewartson equation by Morris [19], though the 1ST equations for these 

were known a priori from the research of Dryuma [20] and Zakharov and 

Shabat [21]. Here we indicate the procedure by considering a novel 

application. We can summarize the basic rules for higher dimension 

as follows: 

(1) In n-dimension the nlpde's are equivalent to n-forms 

A a 

(2) They satisfy ,closure as before daAC I I 

i a , 

(3) Then we introduce the prolongation variables y's and (n-l) forms 

determined, s~ 
J 

1 2 3 dim yj, s~ are (n-2) forms to be , , , ••• , J 

and wi is the connection one form defined as wi 
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(4) We again impose the closure for the extended set I' 

An important and novel equation is the Benjamin-Ono equation [21], 

f ux'x' 
dx' 

XI_X 
o 

which can be written as a 3-d system following reference [22] as 

(36 ) 

u t + uUx + uxy = o. (37) 

The basic three forms are [24] 

We then set 

drAdyAdt + updxAdyAdt + duAdxAdy. 

(38 ) 

(39 ) 

F, G, H depend on (u,p,r,x,y,t'Yi) and 

(40 ) 

0; O. 

Then n j are written as 

We then demand dn j =Ea.f~ + (Adx + ~dy + Vdt)A n j which will then lead 
1 1 

to equations for L, M and N. Details of such a computation can be 

found in refs. [25]-[27]. 

8. THE CONCEPT OF CONSTANT COEFFICIENTS IDEAL 

A few years back an excellent method was suggested by K. Harrison [25] 

for circumventing the difficulty of fixing the arbitrariness in the 

form of F and G. He suggested that if it is possible to choose a special 
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class of two forms so that the nlpdes can be converted into an ideal 

of differential forms with constant coefficients (C.C. Ideal) then 

the process of obtaining the form of F and G can be streamlined and 

one can arrive at the incomplete Lie algebra quickly. Let us refer 

back to equation (22) and choose a new set of forms equivalent to the 

nlpde's, 

e: 1 = dt - dx, zdx + pdt, e: 3 = qdx + rdt, 

(40a) 

Then we can observe that 

0, de: 2 

de: 5 = - 2 [ e: 5 1\ e: 2 + e: 5 1\ e: 3 1 , e: 4 1\ e: 5 = e: 4 1\ e: 6 = e: 5 1\ e: 6 = O. ( 4 1 ) 

It is interesting to note that these closure conditions do not involve 

any variable coefficients so that (20) is equivalent to the C.C. ideal 

generated by (41). The one form w is now written as 

k 
w 

Bi being numerical matrices so that dw 

o 

which immediately implies 

(42 ) 

o leads to 

(43 ) 

(44 ) 

The same procedure can also be illustrated with the basis of sine-Gordon 

equation. It is written as, ~xt = sin~, Set r = ~x' r t = sin~. 
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The usual two forms are CY. = dcp 1\ dt - rdxl\dt and 13 = drl\dx - sincp dXl\dt. 

But a set of C.C. ideals can be constructed by choosing the basis given 

by 

is closed but with constant coefficients. We again write 
k i k k 

-dy + (B ~i)Y' Then dw = a implies 

leading to a Lax pair for sine-Gordon equation. 

9. USE OF PROLQNGATION STRUCTURE FOR 
OBTAINING BACKLUND TRANSFORMATION 

k w 

a 

(45 ) 

(46) 

Lastly we only mention another important use of prolongation theory. One 

can use the forms wk to deduce a B.T. [26] of the particular equation. 

The basic principle is to assume that the new field variable depends 

on the old one and also on the primitive variables along with the pro­

longation variables Yk' That is, u' = u' (cp, u, p, ... , x, t, Yk)' 

For KdV, we write for the new set of forms as 

dz'l\dt - p'dxl\dt, CY. 3 = -du'l\dx 

and demanding that these be in the ring of the prolonged ideal, we 
2 can obtain the BT, u' = -u - y + \. Detailed discussions can be 

found in refs. [26]-[29] for other systems. 

10, • CONCLUSION 

In our above exposition we have tried to give a computational basis 

for the prolongation theory that may be useful for a beginner. There 

are many references for the geometric or differential geometric back­

ground for the prolongation structure, which we have not touched at 

all. Finally, it is pleasure to thank the organisers, Prof. M. Lakshmanan 

and Prof. P. K. Kaw for giving me this opportunity to deliver this talk 

at the Winter School organized by SERC (DST, Government of India). 
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Integrable Equations in Multi-Dimensions (2+1) 
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Recent developments by the authors in finding the recursion operators 
and the bi-Hamiltonian formulation of a large class of nonlinear evo­
lution equations in (2+1)-dimensions is reviewed. The general theory 
associated with factorizable recursion operators in multidimensions 
is discussed. Both gradient and non-gradient master-symmetries are 
simply derived and their general theory is developed, using the 
Kadomtsev-Petviashvili equation as an example. 

1. INTRODUCTION 

Ablowitz, Kaup, Newell and Segur [1], following ideas of Lax [2] were 

the first to solve in the concrete case of the Dirac problem the follow­

ing question: Given a linear eigenvalue problem find all nonlinear 

equations that are related to it. They found that associated with a 

given eigenvalue problem there exists a hierarchy of infinitely many 

equations. This hierarchy is generated by a certain linear operator. 

This operator is the squared eigenfunction operator of the underlying 

linear eigenvalue problem. The operator generating the KdV hierarchy 

(i.e., the squared eigenfunction operator of the SChrodinger eigenvalue 

problem) was found by Lenard. For other eigenvalue problems see [3]­

[10]. 

Olver [11] established the group theoretical origin of the above 

hierarchy: Finding the hierarchy associated with a given equation is 

equivalent to finding the non-Lie point symmetries of the given equation. 

He thus interpreted the squared eigenfunction operator as an operator 

mapping symmetries onto symmetries; this lead to a simple mathematical 

characterization of the recursion operator~. Olver was thus the first 

to establish that certain integrable nonlinear equations possess infi­

nitely many symmetries. This motivates the following question: Is 
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there an algorithmic way for generating equations possessing infinitely 

many symmetries? Fuchssteiner [12] discovered such a way: If an operator 

~ has a certain mathematical property called hereditary then the equa­

tions u t = ~nux' n integer, possess infinitely many symmetries. From 

the above discussion it follows that both linear eigenvalue problems 

and hereditary operators yield hierarchies of equations possessing in­

finitely many symmetries. Actually Anderson and the author [13], follow­

ing ideas of Fuchssteiner, have shown that eigenvalue problems algorith­

mically imply hereditary operators. 

Equations solvable by the Inverse Scattering Transform are Hamil­

tonian systems. Magri, in a pioneering paper [14], realized that integ­

rable Hamiltonian systems have additional structure: They are bi-Hamil­

tonian systems. Actually the underlying hereditary operator can be 

factorized in terms of the two associated Hamiltonian operators. The 

theory of factorizable hereditary operators has been further developed 

by Fuchssteiner and the author [15] and by Gel'fand and Dorfman [16]. 

The understanding of the central role played by factorizable heredi­

tary operators for equations in 1+1, motivated a search for hereditary 

operators for equations in 2+1. However, in this direction several 

negative results have appeared in the literature. For example, Zakharov 

and Konopelchenko [17], in an interesting paper proved that recursion 

operators (of a certain type naturally motivated from the results in 

1+1) did not exist in multidimensions. A similar result has been proved 

for the Benjamin-Ono (BO) equation [18]. It should be noted that the 

BO equation has more similarities [19] with the Kadomtsev-Petviashvili 

(KP) equation than with the KdV equation. Fuchssteiner and the author 

[18] after failing to find a recursion operator for the BO introduced 

the concept of the master-symmetries T. Subsequently Oevel and 

Fuchssteiner [20] found a master-symmetry for the KP equation. The T 

theory for equations in 2+1 has been developed by Dorfman [21] and 

Fuchssteiner [22]. However, the T is not related to the underlying 

isospectral problem and also cannot be used to construct a second Hamil­

tonian operator. This is a serious drawback: several prominent investi­

gators, for example Gel'fand [23] have considered the existence of a 

bi-Hamiltonian formulation as fundamental to integrability. Without 

finding a recursion operator ~, one cannot find the second Hamiltonian 

operator. Several investigators have noticed that master-symmetries 

also exist for equations in 1+1. The theory for the master-symmetries 

T in 1+1 was developed by Oevel [24] (see also [25]) and is more satis-

factory than the theory in 2+1: If one assumes that an equation is 

invariant under scaling then there exists a one-to-one constructive 

relationship between T and the recursion operator ~. 
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Recently P. M. Santini and the author [26]-[28] have found the 

recursion operator and the bi-Hamiltonian formulation of a large class 

of equations in 2+1. They have also established the general theory 

associated with factorizable recursion operators in multidimensions. 

Furthermore, both gradient and non-gradient (the 2+1 analogue of T) 

master-symmetries are simply derived and their general theory is deve­

loped. 

2. MASTER SYMMETRIES 

In this section we review certain aspects of non-gradient master-symme­

tries in 1+1 and gradient master-symmetries in 2+1. 

Definition 2.1 

A function ,is a master-symmetry of the equation qt K iff the map 

a' [b] - b' [a] (2.1) 

maps symmetries onto symmetries (prime denotes Frechet derivative). 

The first example of a master-symmetry was given for the Benjamin­

Ono equation 

(l-lf) (x) (2.2) 

It was shown in [18] that if , ~ x(Hqxx + 2qqx) + q2 + ~ Hqx and on 

is a symmetry then ~9+1 ~ [On"] is also a symmetry. It was further 

shown in [18] that D , is a gradient function (,'D + D,'* = 0). 

Master-symmetries are intimately related to time-dependent non­

Lie-point symmetries [25]. Indeed, the first non-Lie-point time-dependent 

symmetry is a natural candidate for a master-symmetry: Consider the 
l ' , K(l) dl K(2) K(3) d 't' evo utLon equatLon qt = an et , ,... enote L s tLme-

independent n6n-Lie-point symmetries. Let 

, (2.3) 

be a time-dependent non-Lie-point symmetry. Then 

and ,is a candidate for a master-symmetry. 
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2.1 Master-symmetries for equations in 1+1 

Lemma 2.1 

Let 

1 ,2. (2.4) 

If ~ is hereditary, i.e., if ~I [~vlw - ~~I [vlw is symmetric with respect 

to v, w, then 

n 
~m( E ~n-rS2~r-1)K1' 

r=l 
(2.5) 

m,n are non-negative integers. 

Proof 

See Theorem 2.1 of [281. 

Corollary 2.1 

Assume that LO is a scaling of both K and of the hereditary operator ~, 

i.e. , 

aK , ~ I [ L 0 1 + [~, L 0 1 8~. (2.6) 

Then 

(i) (2.7) 

i.e., ~LO is a master-symmetry for qt K. 

(ii) (a + n8)~ n+mK n m 
[~K, ~ LOlL' (2.8) 

m i.e., ~ LO is a master-symmetry of order m for qt = K. 

(i iil n+1 n 
(a + n8)U K + ~LO is a symmetry of qt = ~ K. 

Proof 

(i) Apply Theorem 2.1 with 

8~.· 

(ii) Similar to (i). 

(iii) Use the definition of a symmetry. 

In the above we derive T from ~. Now we obtain ~ from T. 
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Lemma 2.2 

Let ~ be a hereditary operator such that ~8 =8~+, where 8 is a constant, 

invertible, skew-symmetric operator. Then 

where 
S+ 

Proof 

See [28]. 

Theorem 2.1 

(2.9) 

(i) If the hereditary operator ~ admits the scaling TO then~TO 

is a master-symmetry for the hierarchy generated by ~. 

(ii) Assume that the hereditary operator ~ admits the scaling TO 

and that it also satisfies ~8 =8~+, where 8 is a constant, inver­

table, skew-symmetric operator which also admits the scaling TO. 

Then 

(2.10) 

Proof 

(i) If ~ admits a scaling and K is generated from ~ then K also admits 

a scaling. Hence Corollary 2.1 implies (i) above. 

(ii) Since ~ admits a scaling, ~+ also admits a scaling, hence S+ is 
. ",+ 8S+8- 1 . . 1 '" h proport10nal to ~ ,thus - - 1S proport10na to ~. Furt er-

more, since 8 admits the scaling TO' T08 + 8TO+ = ~8, thus 
+ -1 TO + 8(TO) 8 equals a constant. Hence (2.9) implies (2.10). 

EXAMPLES 

1. ~ = 0 + q + qxo-1 is the hereditary operator associated with Burgers 

equation. It admits the scaling q .... ~q, x ..... ~-lx, i.e., TO = q + xqx 
2 Thus x(qxx + 2qqx) + q is a master-symmetry of Burgers equation. 

2. ~ = 02 + 4q + 2qxo-1 admits the scaling q ..... ~, x ..... ~-2x, i.e., 

TO = q + 2xqx· Thus T = ~TO is a master-symmetry of the KdV. 

3. If TO = q + 2xqx' then TO + O(TO)+o-l 

master-symmetry of KdV, 

is the recursion operator of the KdV. 
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2.2 Gradient Master-Symmetries for Equations in 2+1 

A straightforward generalization of Theorem 2.1 to equations 2+1 fails: 

(i) ~ could not be found; (ii) the known master-symmetries T were 

gradient functions, hence T' + e(T' )+e- 1 = O. It will be shown in §3 

that for equations in 2+1: (i) suitable generalizations of ~ , denoted 

by ~12 can be found; (ii) there exist non-gradient master-symmetries 
2 

T12 (for example for the KP T12 ~12Q(Y1-Y2)' where 0 denotes the Dirac 

delta function). Hence a generalization of Theorem 2.1 to equations 

in 2+1 is given in §3. 

One can still develop a theory for master-symmetries without using 

the connection with the recursion operator~: see [21],[22]. 

3. SYMMETRIES FOR EQUATIONS IN 2+1 

In this section we review the theory recently developed by Paolo Santini 

and the author. We use the KP as an illustrative example and quote 
the basic theorems when needed. We hope that this form of presentation 

will aid the non-expert reader to become familiar with the notions and 

methods developed in [26]-[28]. We advise the non-expert reader to 

read [15] before reading this paper since many of the results presented 

here are two dimensional generalizations of results given in [15]. 

3.1 Derivation of Recursion Operators 

Given an isospectral eigenvalue problem there exists a simple algorith­

mic way of obtaining a recursion operator. This approach involves three 

steps: compatibility, an integral representation of a certain differen­

tial operator, and an expansion in terms of delta functions. Let us 

consider the eigenvalue equation 

w xx + q(x,y)w + aW y 
0, a is a constant ( 3 • 1 ) 

and for convenience of notation we suppress the t-dependence. Using 

vector notation, (3.1) yields 

w • [:1 
x 

W x 

1 

o J W, q 
a 
a-y' (3.2) 
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3.1a Compatibility 

Associated with W x 

2C ) , 
E 

UW we look for compatible flows Wt 

A, B, C, E polynomials in 0y. 

Compatibility implies the operator equation 

or 

U = V - [U,V), 
t x 

C J t 
[C 

VW where 

Solving in the above equation for A, B, E in terms of C we obtain the 

following operator equation: 

qt = C + [q,C]+ + [q,C ]+ + [q,o-l[q,C]] + AOq - qA O' 
xxx x x 

where 

[ , ] is a commutator, [ , ]+ is an anticommutator, AO 

is an operator such that 

-1 o and (0 f)(x,y) 
x 

= f f(~,y)d~. 
""IX> 

(3.3) 

In what follows we take AO = 0 (the general case is considered in [27]). 

3.1b An Integral Representation 

The crucial step is to use an integral representation for the differen­

tial operator C: 

(Cf) (x'Y1) 

Let 

O. 
1 

(3.4) 

(3.5) 

Equation (3.4) implies similar integral representations for all quanti­

ties appearing on the RHS of (3.3). For example 

124 



For 

Thus 

Similarly 

+ 
where the operators q12 are defined by 

(3.6) 

Using the above integral representations in (3.3) we obtain 

or 

Let us introduce the operator ~12 via 

(3.8) 

Thus 

D'I'12T12 (3.9) 

3.1c Expansions in terms of delta functions 

We expand T12 in .the form 

(3.10) 

It turns out that '1'12 admits a simple commutator relationship with 

respect to h12 = h(Y1- Y2). Actually the following operator equation is 

valid 

4ah 12 , ( 3 • 1 1 ) 
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Hence equation (3.7) yields 

Thus 

T(n) = 0, T(j-1) 
12 12 x 

Letting T~~) = we have the following proposition: 

Proposition 3.1 

The isospectral equation 

0, q * q + aD; a constant y 

is associated with the equations 

where 

~'2 

(3.12 ) 

(3.13 ) 

(3.14 ) 

(3.15 ) 

and '1'12' ~ 12 are related via D'I'12 
by 

+ 
~12D. The operators q12 are defined 

(3.16 ) 

(The notation qi is justified, since qi is indeed the adjoint of q1' 

see §3.2) 

EXAMPLE 

1. Equation (3.14) with n 

2. Equation (3.14) with n 

Remark 3.1 

o and 8 0 

and 8 1 

1/2 implies q1 = q1 . 
t x 

1/2 implies the KP equation 

(3.17) 

(i) The operators ~12 and '1"2 with Y2 = Y1 and a = 0 reduce to ~ and 

~+ respectively, where ~ is the recursion operator of the KdV. 
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( i i) The starting symmetry (~'2D)., is given by q, + 
x 

Thus it reduces to q, • 
x 

the starting symmetry of the KdV, when Y2 = y,. 

3.2 A New Directional Derivative and a New Bilinear Form 

Recall that ~ generates symmetries and ~+ generates conserved covariants. 

Similarly, it will turn out, that ~'2 and ~i2 generate extended symmet­

ries and extended conserved covariants respectively. To define these 

extended notions we need to introduce a new bilinear form and a new 

directional derivative: 

(i) A new bilinear form 

(3. '8) 

where f'2 and g'2 are matrix valued functions of x, y" Y2 and obviously 

the trace is dropped if f'2' g'2 are scalars. In association with the 

above form we define Li2 to be the adjoint of L'2 iff 

( 3 . '9) 

We recall that the usual bilinear form and the usual adjoint are defined 

by 

(g,f) * f 2 dx dy trace gf, 
R 

(g ,Lf) , 

where f, g are matrix valued functions of x, y. 

EXAMPLE 

,. The adjoint of q, is given by qi 

2. 

3. ~* = 
'2 

'l"2 • 

(3.20 ) 

( 3.2' ) 

Note that the fastest way to compute the adjoint of an operator L'2 

is to evaluate the adjoint as usually and then interchange , +-+ 2. 

Let I be a functional given by 

f 3 dx dy, dY 2 6 '2 trace P'2' 
R 

(3.22 ) 
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The extended gradient of this functional is defined by 

(3.23 ) 

where subscript d denotes a suitable directional derivative. It is 

easily seen that a function Y12 is an extended gradient function, i.e., 

it has a potential I, iff 

(3. 24) 

Also 

(grad I, .) * I f [.] (3.25 ) 

and Y is a gradient function iff Yf 

(ii) A new directional derivative 

Recall the crucial integral representation 

Allowing f also to depend on Y2 we obtain 

The above mapping between an operator and its kernel induces a mapping 

between derivatives: Let subscript d denote the new directional deri­

vative. Then 

The integral representation for q1 also induces, via (3.18) an integral 

representation for the adjoint of q1: 
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Thus 

Furthermore, the qi mapping induces a mapping between derivatives. 

Thus 

(3.27 ) 

The above derivatives with respect to q1 and qi imply the following 
+ derivatives with respect to q12' q12: 

(3.28 ) 

Furthermore, using the chain rule and (3.28), if an operator K12 depends 

only on q~2' q~2 its directional derivative L12 [° 12] is well defined. 

This derivative is linear, and satisfies the Le~bnitz rule. Also, using 

(3.28) it follows that the directional derivative in the direction of 

012 reduces to the usual total Frechet derivative: 

K12 [F] 
f 

where the subscript f stands for a Frechet derivative and 

a 
,,"e: K12(Q1,+F .. ,q,)\ ' 
o 11 J e:=0 

1 ,2, 

+ 

(3.29 ) 

(3.30 ) 

Operators which depend only on Q'2 are called admissible. Similarly, 

a function K12 is called admissible if it can be written in the form 

K12 = R12 H12 , where R12 is an admissible operator and H12 is an appro­

priate function (for the KP, H12 = H(Y1'Y2)). 

EXAMPLE 

The function A12 012 ~ 

since the operator A12 

is easy to compute its directional derivative: 
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2Da 1 2 . 

3.3 Isospectral Problems Yield Hereditary Operators 

Using the same methods as in 1+1, it can be shown that if the extended 

gradient (GA)12 of the eigenvalue A of an isospectral problem satisfies 

'¥ 1 2 (GA ) 12 ].l (A ) (GA ) 12' (3.31 ) 

then ~12 ~ '¥;2 is a hereditary operator. (One must again assume complete­

ness, a proof of which should follow a two dimensional version of the 

method developed in [6].) 

EXAMPLE 

Consider the isospectral problem 

V 1 + (q1 - A)V 1 o. (3.32 ) 
xx 

Taking the directional derivative of the above it follows that 

Multiplying the above by 

integrating with respect 

we obtain 

V~, where V~ satisfies the adjoint 

to dx dY1' and assuming f 2 dx dY1 
R 

Using (3.26) to evaluate q1 [f 12 ] it follows that 
d 

It is easy to show that ~;2 as defined by (3.7) satisfies 

Hence ~12 is a hereditary operator. 
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Remark 3.2 

Konopelchenko and Dubrovsky [29) were the first to establish the impor­

tance of working with V(x'Y1)v+(x'Y2)' as opposed to V(x,y)v+(x,y). 
+ They also found a linear equation satisfied by V1V2 . However, they 

failed to recognize that this equationcould actually yield the recursion 

operator of the entire associated hierarchy of nonlinear equations. 

Indeed, they used the above equation to obtain "local" recursion opera­

tors. Thus the question of studying the remarkably rich structure 

of these recursion operators in particular its connection to symmetries, 

conservation laws, and bi-Hamiltonian operators were not even posed. 

3.4 Starting Symmetries 

The theory of 

of "starting" 

symmetries 

symmetries 

for equations in 1+1 is based on the existence 

KO, which via ¢ generate infinitely many 

symmetries. For example, for the KdV KO = q For equations in 2+1 
x 

we find that the starting symmetries K~ 2 have the following important 

properties: (i) Can be written in the form R~2H12' where R~2 is an 

admissible operator and H12 is an appropriate function. (ii) The start-

° ing operators R12 have simple commutator properties with respect to 

° h12 = h(Y1-Y2)· (iii) The Lie algebra of the starting operator R12 
acting on functions H12 is closed. (iv) Using (ii) and the fact that 

¢12 also admits a simple gommutator relationship with h 12 , it can be 
n ,,0 n-Q, ° Q, 

shown that 012¢12~12.1 =Q,:Ob n ,Q,¢12 R12 · 012' where bn,Q, are appropriate 

constants; hence 0 12 ¢72 R~2· 1 are admissible functions. It is thus 

clear that in 1+1 one considers the Lie algebra of functions KO, while 

° in 2+1 one considers the Lie algebra of operators R12 . This richer 

algebraic structure of equations in 2+1 can be exploited in a variety 

of ways. For example, different choices of H12 yield both time-indepen­

dent and time-dependent symmetries. Furthermore, all these symmetries 

correspond to gradient functions. 

We now discuss (i)-(iv) above for the concrete case of the KP: It 

should be first noted that given an operator ¢12 there exists an algo­

;ithmic way of~finding its starti~g symmetries: One looks for operators 
~O 

8 12 such that 5 12 H12 = ° but ¢12512H12 = K12H12 ~ 0. It can be shown 

that if a starting symmetry is constructed in the above way and ¢12 

is hereditary then ¢12 is a strong symmetry for this starting symmetry. 

(i) For the KP there exist two starting symmetries: 

(3.35 ) 

corresponding to 5 12 
- -1 

D and 5 12 = D(q12) D respectively. 
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(ii) The following operator equations are valid: 

o. (3.36 ) 

(iii) The Lie algebra of M12 , N12 is given by 

~ ( 1) ~ ( 2 ) 
[M 12H12 ,M 12H12 )d (3.37) 

where 

( 3.38 ) 

(3.39 ) 

Let us derive (3.37a): 

Hence 

Remark 3.3 

The bracket (3.39) can also be traced back to the integral representation 

of q1 (see [27)). 

(iv) Equations (3.36) and the operator equation (see (3.11)) 

(3.40 ) 

(3.41 ) 

n 9 Q, r b ~n-" M12 0 12 , bn,n 
Q,=1 n,Q, 12 )(, 
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Let us indicate how the above equations can be derived: ~ntroducing an 

operator ID, which commutes with all admissible operators K'2 and which 

has the property that 

it follows that 

To derive equation (3.42) note that 

n J!. n n J!. J!. n J!. n n-J!. J!.+' 
E (-4a) ( )~ - M. 6'2 - 2a E (-4a) (n)~'2 D.6,2 . 

J!.=O J!.' 2 J!.=O '" 

(3.43 ) 

j j' A 

The next step is to express ~'2D in terms of ~'2 M'2' where j, j' 

are integers. This can be achieved as follows: It can be shown that 
n+' n 

~'2 D.' ~'2M.'. This equation implies 

n 
E 

j=O 
(2N)j,,,n-j MA h j 

~ ""2 , 2· , 2; (3.44 ) 

For example, multiplying ~'2D.' M'2.' by h'2' it follows that 

(~'2-4a ID)h,2 D.' = (M'2-2a ID) .h, or ~'2D.h'2 = M'2.h'2. Similarly, 

2 2 
~'2D.' = ~'2M'2·' implies ~'2D.h'2 = ~'2M'2·h'2 + 2aM'2· h '2' etc. 
Using (3.44) into (3.43) yields (3.42). 

3.5 Basic Notions and Results 

We consider exactly solvable evolution equations in the form qt = K(q), 

q(x,y,t), on a normed space M of vector-valued functions on~; K is a sui­

table COO vector field on M. We assume that the space of smooth vector 

fields on M is some space S of COO functions on the plane vanishing 

rapidly as x, y .... ± 00. The above equation is a member of a hierarchy 

generated by ~'2' hence more generally we shall study qt = K(n)(q). 

Fundamental in our theory is to write these equations in the form 
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K(n) 
1 1 ' 

(3.45 ) 

(in the matrix case, 1 is replaced by the identity matrix I), where 

K;~)(q1,q2) belongs to a suitably extended space S, and S* denotes the 

dual of S. In the extended spaces Sand S* we define the new directional 

derivative (3.28) and the new bilinear form (3.18); the notions of the 

adjoint and of a gradient are well defined with respect to (3.18) (see 

(3.19), (3.23), (3.24)). In analogy with definition 2.1 we have: 

Definition 3.1 

(i) A function °12 £ S is called an extended symmetry of 

(3.46 ) 

iff 

o. (3.47 ) 

(ii) A function Y12£ S* is called an extended conserved gradient 

(i.e., it is the extended gradient of a conserved functional I) 

of (3.46) iff 

0, (3.48 ) 

Functions which satisfy (3.48a) are called extended conserved 

covariants. 

(iii) An operator valued function ~12: S ~ s, is a recursion operator 

for (3.46) (or it is a strong symmetry for K12 ) iff 

(3.49 ) 

(iv) An operator valued function ~12: S ~ S, is a hereditary operator 

(or Nijenhuis or regular) iff 

( 3.50) 

(v) An operator valued function 0'2: S* ~ S is a Hamiltonian operator 

iff it is skew symmetric, i.e., °12 = - 012' and it satisfies 

(a'2,0,2 [012b,21c1) + cyclic permutation = O. (3.51) 
d 
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(vi) Equation (3.46) is a Hamiltonian system iff it can be written 

in the form 

(3.52 ) 

where 012 is a Hamiltonian operator and 

gradient function, i.e., f12 = f12 . 
d d 

we define the following Poisson bracket 

{I, H } 

f12 is an extended 

Associated with (3.52) 

(3.53 ) 

In the above, subscripts f and d denote total Frechet (see (3.29)) 

and directional (see (3.28)) derivatives respectively. 

Remark 3.4 

(i) Equation (3.47) can also be written as 

Similarly, 4>12 [K] 
f 

(ii) Some of the above notions are well defined only if (o12K12)d 

is well defined. However, for equations (3.45) 

n 
~ 

J!,=O 

Furthermore, by construction 4>12 and 

+ 
depend on the basic operators q'2. 

~o 

the starting operators K12 
~ (n) 

Hence (012 K12 )d is well 

defined. 

In analogy with the basic results in 1+1: 

Theorem 3.1 

(i) If 4>12 is a recursion operator for (3.46) then 4>'2 maps extended 

symmetries onto extended symmetries and 4>12 maps extended con­

served covariants onto extended conserved covariants. 

(ii) If (3.46) is a Hamiltonian system then 0'2 = 0'2Y'2· 

( iii) If 4>12 is 
~O 

K'2.' then 

a hereditary operator and a recursion operator for 

f n ~O 

4>'2 is a recursion operator for q1 = dY2o'24>12K,Z'· 
t R 
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(iv) If ~12 * e~~)(e~~))-1, where e~~) + ve~~) is a Hamiltonian 

operator for all values of the constant v and e~~) is invertible, 

(v) 

EXAMPLE 

then ~12 is hereditary. 

If ~12 as in (iv) and Y~2 * 
function then all (~i2)mY~2 

(e(1))-1~O 1 is an extended gradient 12 12· 

are extended gradient functions. 

The hereditary operator ~12 of the KP equation is factorizable in terms 

of the Hamiltonian cperators D and ~12D. Hence each member of the KP 

hierarchy is a bi-Hamiltonian system, with respect to the following two 

Poisson brackets 

{I,H} i = 1,2 

D, 

3.6 Extended Symmetries 

Lemma 3.1 

(i) Let ~12 be hereditary, then 

where 

(3.55 ) 

m, n are non-negative integers. 

(ii) o~~) is a time-dependent extended symmetry of order r of equation 

(3.46) iff 

o. (3.56 ) 
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Proof 

See [28]. 

We propose the following constructive approach to extended symmetries: 

Given an isospectral problem construct a recursion operator ~'2. This 

operator must be hereditarYA(seeA§3.3). Then construct its starting 

symmetries operat~rs, say M'2' N'2. The operator ~'2 is a s~rong 

symmetry of M'2' N'2 (see [27]). Compute the commutators of M'2~ON'2' 

~'2 with h'2· Use the commutator relationships to derive o'2~'2K'2.' 
n n-R,AO R, 

R,:obn,R,~'~ K'2· o '2' K'2 is M'2 or N'2· Finally, compute the Lie 

algebra of M'2' N'2. This Lie algebra together with (3.54)-(3.56) yield 

infinitely m~ny time-independent and time-dependent extended symmetries. 

EXAMPLE 

, . m A m 
~'2M'2." ~'2N'2·' are extended symmetries of the KP hierarchy 

q, = J dY2o'2~72 M'2·' (recall KP corresponds to n 
A t R 

,). M'2' 

N'2 are defined in (3.35). 

For 

m+n-R,+' R, 
~'2 N'2[O'2,H,2]d' 

(3.57) 

where we have used (3.54) (~'t is hereditary and it is also a strong 

symmetry for M'2H'2' thus S~~ = 0), and (3.37c). Taking H'2 = , 

and using 

n A m m 
equation (3.57) implies [O'2~'2M'2·" ~'2M'2·']d = 0, i.e., ~~2~12·' 
is an extended symmetry of the KP hierarchy. Similarly for ~'2N'2·" 
since 

2. ~~2M'2." ~~2N'2.' are extended symmetries of the hierarchy 
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3. The KP hierarchy admits two hierarchies of t-dependent symmetries 

of order r given by (3.56) where 

E (2j-l ) 
12 

~(m) H(r) 
12 . 12 ' 

H(r) • ( )r 
12 T Yl + Y2 

2j-l 2j-1 2s +1) 
A(m+(2j-l )n+j-l - t=l 2s t +l) (r- t gl t 

Ev(r,2j-l,s)M12 .H 12 

the summation E is over sl,s2, ... ,Sj' from zero to Pn , Pn 
if n is odd, (n-2)/2 if n is even, 

(n-l )/2 

and 

E(2j-l) 
12 

~(m) H(r) 
12 . 12 ' 

2j 2j 
A(m+2jn+j -t~12st+l) (r-t~l 2s t +l) 

Ev(r,2j,s)M 12 .H 12 

wi th j > 1, b n,t 

v( r, j, s) (-2) j ( j j ~( j ) * -J'-'- ne (r - E 2s+1) n b 
. ll= 1 t = 1 ~ = 1 n , 2 s t + 1 

For 

(r 

r! 

j 
- E 2s +1)! 

t=l t 

Equation (3.56) implies that constructing a symmetry of order r is equi­

valent to finding a function E~~) with the property that its (r+l)st 

commutator with 012K12 is zero. This can be easily achieved by using 

suitable H12 's. For example, let H12 = Yl+ Y2' then (3.57) implies: 

since 
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t 
[012'Yl+Y2 1r 

- ~ b m+n-t+l~ 20 
t=O n,t ~12 12 1,t' 

o if t '" 1 or 1 if t 1. 



!I, m ~ 

Thus, using the fact that [012,01,!1,]1 = a it follows that ~12M12(Yl+Y2) 

generates first order time-dependent symmetries 

m Similarly, to generate r-order time-dependent symmetries use ~12M12' 

(Yl+Y2)r, since the commutator of (Yl+Y2)r with 0~2 produces (Yl+Y2)r-!I, 

and hence the r-th commutator of (Yl+Y2)r with a~2 produces 1 which 

commutes with 0;;): 

where 0(r-s) denotes the Heaviside function with 0(0) = 1. 

4. The hierarchy ql = J, dY 3 °12 ~~ 2N12' 1 admits two hierarchies of 
t R 

t-dependent symmetries of order r given by (3.56) where 

and by 

~(m) H(r) 
12 . 12 

j 
(m+jn- !l,J1 2s!l, +1) (r 

Ev (r,j,s)N 12 .H 12 

j 
~(m+jn - !l,J:l 2s + 1) 

Ev (r,j,s)M . !I, 

where the summation E is over sl,s2, ... ,Sj from zero to Pn , 

> 1, Pn = (n-l )/2 if n is odd and (n-2)/2 if n is even. Also, 

b n,!I, 
!I, n 

(-4a) (!I,)' 

The above extended symmetries, under the reduction Y2 = Y1 yield 

sym~etries. This follows from the following theorem (see [27]). 

Theorem 3.2 

Assume that the admissible operators 
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where S, l3 are constants and 5 12 is such that 5 12 [.)H 12 
d 

o. Then 

(i) If 012 is an extended symmetry of (3.45), 
of (3.45). 

011 is a symmetry 

(ii) If 012 is an extended symmetry of (3.45) then 012 = o(ql,ql )=0 

is an auto-Backlund transformation of (3.45), where ql and q2 

are viewed as two different solutions of (3.45). 

( iii) If Y12 is an extended conserved covariant of (3.45), Yll is 

a conserved covariant of (3.45). 

(iv) If Y12 is an extended gradient function then Yll is a gradient 

function. 

EXAMPLE 

Consider the extended symmetry of the KP 

Clearly (M 12 .1 )11 2qlx which is a symmetry of the KP. Also, M12 ·1 

= 0 is a well-known auto-Backlund transformation of the KP. 

Remark 3.5 

(i) It is quite interesting that both symmetries and Backlund trans-

formations of an equation in 2+1 come from the same basic entity, 

the extended symmetry. Indeed, when a = 0 the recursion operator 

~12 for the KP equation reduces to an operator that Calogero and 

Oegasperis have introduced [30) and which generates the auto­

Backlund transformations of the KdV equation. 

(ii) Using the interpretation that q±b ~ qb ± bq, q, b matrices, the 

recursion operator of the KP becomes the operator generating auto­

Backlund transformations for the equations associated with the 
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N xN matrix 5chrodinger problem in one dimension (studied by 

Calogero and Oegasperis [30)). This important connection is ex­

plained from the fact that certain 2+1 dimensional systems can 

be viewed as reductions of certain evolution equations non-local 

in y. These equations are directly connected to matrix evolution 

equations [28), [31 ). 



3.7 Extended Conserved Gradients 

Lemma 3.2 

Assume that 6 12 is a Hamiltonian operator. Then, 

[612f12,612g12]d = 6 12grad 12 < f12,612g12) + 

612{<f12d- fhd)[612g121 - (g12d- ghd)[612f121}. 

Proof 

See [28]. 

(3.58) 

One way of proving that ~i2 generates gradient functions is to use 

Theorem 3.1, (v). However, this requires that ~i2 is factorizable 

in terms of Hamiltonian operators. Alternatively, we propose the follow­

ing constructive approach, which only uses one Hamiltonia~ ope:ator: 

Construct the Lie algebra of the starting operators, s~y M12 , N12 . Then 
m -1 0 

use this algebra and (3.58) t~ prove that all ~i2 612K12'AH12 ar~ 
d " "d d h -1 0 H" d" h 0" M gra A1ents, prov1 e t at 612K12 12 1S a gra 1ent~1~Oere K12 1S 12 

or N12 . Finally, use Theorem 3.2 to show that (612K12H12)11 are gradients. 

EXAMPLE 

Consider the operators M12 , N12 associated with the KP. Then 

For 
_l A 

It is easy to verify tha: 1D ~12H12 

and (3.37c) imply, that 0 ~12N12H12 

(3.37b) implies 

is an extended gradient. 

is an extended gradient. 

(3.59) 

(3.60 ) 

Then (3.58) 

Equation 

Since D-l~12N12H12' D-1M12H12 are exte~ded gradients, the above equation 

with n = 0 and (~.58) imply that D-l~12M12H12 is an extended gradient. 

Similarly D-l~~2M12 is an extended gradient. Equation (3.60) follows in 

a similar manner using (3.37c). 
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Remark 3.6 

It was shown in §3.6 that time-dependent symmetries of order r are genera­

ted via ~~2~12H12' ~~2~12H12 with H12 = (Y1+ Y2)r. The above results 

show that D-1~~2~12H12' D-1~~2N12H12 are gradient functions for arbitrary 

H12 . Hence the time-dependent symmetries correspond to gradient func­

tions. However, the time-dependent symmetries are closely related to 

master-symmetr ies T (see §2). Hence the master-symmetries T correspond 

to gradient functions. 

3.8 Non-gradient Master-symmetries 

Lemma 3.3 

Assume that the hereditary operator ~12 satisfies ~12812 = 812~i2' 
where 8 12 is a Hamiltonian operator (if ~12 is factorizable, then this 

equation follows). Assume for simplicity that 8 12 O. Then 
d 

(3.61 ) 

where 

(3.62 ) 

Proof 

See [28]. 

The results of Lemmas 3.1-3.3 can be used to obtain non-gradient 

master-symmetries T 12 . Such master-symmetries are explicitly related 

to recursion operators ~12. Indeed given ~12 one computes T12 and 

given T12 one .computes ~12. These formulae are the two dimensional 

analogues of the formulae given in §2.1. The basic idea is to find 
-1 

a T12 such that T12 + 8 12Ti2 8 12 = 0 and Si2 = C.1, C constant. 
d d 

EXAMPLE 

2 A master-symmetry of the KP hierarchy is given by ~12012. Indeed 

B constant (3.63 ) 

142 



(3.64) 

(3.65 ) 

For 

(3.8), (3.35a), 8 12 = D. Let T12 = 8 12 . ~12 and M12 are given by 
-1 

Then T12 + 8 12Ti2 8 12 
(3.61) w~th m = 2 ~mplies 

o and Si2 = 4 (see (3.62». Thus, equation 

(3.63) • 

( 1 ) A (2) 
To derive equation (3.64) use Lemma 3.1 with K12 M!2· 1 , K12 

8 12 , m = 2, sl~) = 0 (since ~12 is a strong symmetry of M12 .1) and 

sl~) ~12f[8121 = 4. Thus 

n+2 A 1 n+1 A 

However, ~12 [M 12 ·1, 8 12 d is proportional to ~12 M12 ·1, hence the 

above implies (3.64). 

To derive equation (3.65), use Lemmas 3.1-3.3 to obtain the follow­

ing general result: If~2 is a hereditary operator such that it is 

a stong symmetry for M12 and ~12812 = 812~i2' where 8 12 is a constant 
invertible Hamiltonian operator then 

where 

Using T12 8 12 in the abc"e and noting that S 12 = Si 2 

812Ti2 8~~ 0, ~~;m[M12' 8 12 1d is proportional to 
d 

we obtain (3.65). 

ACKNOWLEDGEMENTS 

This work was partially supported by the Office of Naval Research under 

Grant Number N00014-76-C-0867 and the National Science Foundation under 

Grant Number MCS-8202117. One of the authors (A.S.F.) would like to 

thank Professor Lakshmanan and his colleagues for their kind hospitality. 

143 



REFERENCES 

[1] M. J. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur, Stud. Appl. 
Math. 53 (1974) 249; Phys. Rev. Lett. 30 (198~ 1262; Phys. Rev. 
Lett. 31 (1973) 125. 

[2] P. D. Lax, Comm. Pure Appl. Math. 21 (1968) 467. 
[3] W. Symes, J. Math. Phys. 20 (1979) 721. 
[4] A. C. Newell, Proc. R. Soc. London Ser. A365 (1979) 283. 
[5] H. Flaschka and A. C. Newell, Lecture Notes in Physics, Vol. 38 

(Springer, Berlin, 1975), p. 355. 
[6] V. S. Gerdjikov, Lett. Math. Phys. 6 (1982) 315. 
[7] M. Boiti, F. Pempinelli, G. Z. Tu, 11 Nuovo Cimento 79B (1984)231. 
[8] M. Leo, R. Leo, G. Soliani, L. Solombrino, Lett. Al Nuovo Cimento 

38 (1983) 45; M. Boiti, P. J. Caudrey, F. Pempinelli, 11 Nuovo 
Cimento 83B (1984) 71. 

[9[ F. W. Nijhoff, J. Van der Linden, G. R. Quispel, H. Capel, and 
J. Velthnizen, Physica 116A (1983) 1. 

[10] B. G. Konopelchenko, Phy~. Lett. 75A (1980) 447; 79A (1980) 39; 
95B (1980) 83; 100B (1981) 254; 108B (1987) 26. 

[11] P. J. Olver and P. Rosenau, On the 'Non-Classical' Method for 
Group-Invariant Solutions of Differential Equations, Univ. of 
Minnesota Math. Re. No. 85-125, 1985. 

[12] B. Fuchssteiner, Nonlinear Anal. TMA 3 (1979) 849. 
[13] A. S. Fokas and R. L. Anderson, J. Math. Phys. 23 (1982) 1066. 
[14] F. Magri, J. Math. Phys. 19 (1979) 1156; Nonlinear Evolution 

Equations and Dynamical Systems, ed.M. Boiti, F. Pempinelli and 
G. Soliani, Lecture Notes in Physics, Vol. 120 (Springer, 
New Yor~, 1980), p. 233. 

[15] A. S. Fokas and B. Fuchssteiner, Lett. Nuovo Cimento 28 (1980) 299; 
B. Fuchssteiner and A. S. Fokas, Physica 4D (1981) 47. 

[16] I. M. Gel'fand and I. Ya. Dorfman, Funct. Anal. Appl. 13(1979)13; 
14 (1980) 71. 

[17] V. E. Zakharov and B. G. Konopelchenko, Comm. Math. Phys. 94 
(1984) 483. 

[18] A. S. Fokas and B. Fuchssteiner, Phys. Lett. A86 (1981) 341. 
[19] A. S. Fokas and M. J. Ablowitz, Stud. Appl. Math. 68 (1983) 1. 
[20] W. Oevel and B. Fuchssteiner, Phys. Lett. A88 (1982) 323. 
[21] I. Y. Dorfman, Deformation of Bamiltonian Structures and Integrable 

Systems (preprint). 
[22] B. Fuchssteiner, Prog . Theoret. Phy. 70 (1983) 150; I. Ya Dorfman, 

Deformations of Hamiltonian Structures and Integrable Systems 
(preprints). 

[23] I. Gel'fand (private communication). 
[24] W. Oevel, A . Geometrical Approach to Integrable Systems Admitting 

Scaling Symmetries (preprint, 1986). 
[25] H. H. Chen, Y. C. Lee, J. E. Lin, Physica 9D (1983) 439; Phys. Lett. 

91A (1982) 381. 
[26] A. S. Fokas and P. M. Santini, Stud. Appl. Math. 75 (1986) 179. 
[27] P. M. S~ntini and A. S. Fokas, Recursion Operators and Bi-Hamil­

tonian Structures in Multidimensions I , INS #65, preprint 1986. 
[28] A. S. Fokas and P. M. Santini, Recursion Operators and Bi-Hamil-

tonian Structures in Multidimensions II, INS #67, preprint 1986. 
f?Ol B. G. Konopelchenko and V. G. Dubrovsky, Physica 16D (1985) 79. 
[30] F. Calogero and A. Degasperis, Nuovo Cimento 39B (1977) 1. 
[31] P. Caudrey, Discrete and Periodic Spectral Transforms Related 

to the Kadomtsev-Petviashvili Equation, preprint UMIST (1985). 

144 
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A brief review of the singularity structure aspects of the solutions 
of nonlinear ordinary differential equations and their generalization 
to partial differential equations leading to the Painleve (P) property 
is given. It is pointed out that the Painleve analysis leads naturally 
to Lax pairs, B~cklund transformations, linearizations and Hirota's 
bilinearization of nonlinear evolution equations. Specifically we 
treat the Burgers', Liouville, Korteweg-de Vries, coupled nonlinear 
Schrodinger and Kadomtsev-Petviashvili equations as examples. 

1 • INTRODUCTION 

During the past two decades or so, there has been considerable progress 

in the understanding of classes of nonlinear evolution equations leading 

to many fascinating new concepts such as solitons, Backlund transfor­

mations, generalized symmetries, etc. [1-3] (as exemplified by the 

various articles in this book). However, in this process an important 

question arises as to how to search, identify, characterize and classify 

the integrable nonlinear equations systematically and then understand 

the solution characteristics. In the last century, this question was 

analysed for ordinary differential equations by various authors [4-6] 

through the singularity structure analysis of the solutions in the 

complex plane. With the recent developments in soliton equations this 

analysis has again received much attention [3,7-19], and now many of 

the integrable dynamical systems are associated with the so-called 

Painleve property, in that they are free from movable critical points/ 

manifolds. The development of the singularity structure analysis can 

in fact be traced down to the following four main aspects: 

1. The classification of first order and second order nonlinear ordinary 

differential equations (odes) which are free from movable critical 
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points achieved through the works of Fuchs, Painleve and his co­

workers [5] in the last century. 

2. S. Kovalevskaya's (1886) investigation for finding the integrable cases 

of rigid body motion around a fixed point under the influence of 

gravity [6] through the singularity structure analysis. 

3. Ablowitz, Ramani and Segur's (ARS) [3] conjecture in 1978 that 

every ode obtained by an exact reduction of a soliton system which 

is solvable by the inverse scattering method is of Painleve (P) 

type (see below), a fact verified from the invariance point of 

view by Lakshmanan and Kaliappan [7]. 

4. Weiss, Tabor, and Carnevale's (WTC) [8] generalized version of 

the Painleve property directly applicable to partial differential 

equations (pdes). Here the solutions of the pdes are required­

to be single-valued around movable singular manifolds in order 

that they be integrable. 

In Sec. 2, we begin with a brief discussion of odes and their 

singularities, and the application of Painleve analysis to them. We 

review the generalized WTC procedure for pdes and apply it to a class 

of nonlinear evolution equations in (1+1) dimensions in Sec. 3 and 

obtain the basic solitonic properties. Furthermore, in Sec. 4, we 

extend the application of P-analysis to the (2+1) dimensional Kadomtsev­

Petviashvili (K-P) equation and derive the associated Backlund trans­

formation and Lax-pair straight forwardly through the P-analysis. 

2. PAINLEVE PROPERTY AND ORDINARY DIFFERENTIAL 
EQUATIONS: INTEGRABILITY 

The singularities of an ode can be classified as (i) fixed and (ii) 

movable [4,5]. While the location of the former is fixed by the nature 

of the coefficients of the ode, the latter is a function of the integ­

ration constant or initial condition. 

Consider for example the linear first order ode 

It has the solution, w = C exp(1/z), C, arbitrary. 

fixed (essential) singular point. More generally, 

linear ode 

n n-1 
d w + P 1 (z) ~ + ... + Pn(z)w 
dz n dz n - 1 

0, 

where Pi(z), i = 1,2, ... ,n, are all analytic at z 
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dw 
dz 
So 

for 

+ -1 
O. z w 

z = 0 is the 

an n-th order 

(1 ) 

admits n 



linearly independent solutions in the neighbourhood of zo' so that 

the general solution may be written as 

w(z) 
n 
r ciwi(z), 

i=1 
(2 ) 

where ci's are integration constants. Here the singularities of the 

solution must be located at the singularities of the coefficients Pi(z) 

which are all fixed and apriori known and that they do not depend 

on the constants of integration c i ' i = 1,2, ... ,n, at all. 

However, in the case of nonlinear odes the singularities have 

the additional property that they can depend on the integration cons­

tants and so, they can 'move'. Examples: ~~ + w2 = 0 has the solution 

w = (z - z )-1, where z is a constant of integration. Thus, at z = z 
o 0' 

w has a singularity, a pole of order one; it is movable because its 

location depends on z. Similarly, ~w + w3 = 0, w = ~2(z - z )-1/2; 
dw 2 0 1 dw z 1i' L. 0 1 
dz + w log w = 0, w = exp(z=z-); dz + w exp(w) = 0, w = log (z=z-)' 

which admit movable algebraic 8ranch point, essential singularityOand 

logarithmic singularity respectively. In fact, Fuchs [4] had shown 

that the only first order equation which admits no movable critical 

points is the generalized Riccati equation 

dw 
dz 

(3 ) 

Following the work of Fuchs for first order odes, Painleve, Gambier, 

Garnier and others classified 50 canonical nonlinear second order 

odes which do not exhibit movable critical singularities and which 

can be integrated in terms of elementary functions, including elliptic 

functions, and Painleve transcendentals [5]. Also the nature of entire 

bounded functions and the constancy of integrals of motion, coupled 

with the works of Euler (1780), Lagrange (1788) and Fuchs (1884) promp­

ted S. Kovalevskaya [6] to treat the dynamical problem of the motion 

of a spinning top fixed to a point in terms of meromorphic functions. 

She concluded that only for three parametric choices (including those 

found by Euler and Lagrange earlier) the system is free from movable 

critical points and hence integrable, a result which even today stands 

undisputed. 

The classification of integrable dynamical systems through the 

singularity structure analysis was not utilized much for more than 

eight decades or so. The ARS conjecture [3] on the connection between 

the integrable soliton systems and the Painleve equations (noted in 

Sec. i) revived the interest again in the singularity structure analy-
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sis for dynamical systems recently. Such a revival has also led to 

the concept of strong and weak Painleve properties [18] for dynamical 

systems, which are then associated with the integrability aspect. 

Here the strong P-property stands for solutions which are meromorphic 

around a movable singular point while the weak P-property [18] allows 

for a relaxation of the meromorphicity condition on the solution so 

that under necessary circumstances determined solely by the nonlinearity 

of the equation movable algebraic branch points are also allowed for 

algebraic integrals of motion [17] to exist. Some of the typical 

integrable dynamical systems which possess the P-property are (i) 

Henon-Heiles system [18], (ii) coupled polynomial nonlinear oscillators 

[19], and (iii) Toda-lattice, for specific parametric choices. 

An n-th order ode of the form 

( d d n - 1W) 
F z,w, d~' ... , n-1 

dz 
(4 ) 

n-1 
where F is rational in (:zn-~ , ... , w) and locally analytic in z, 

can be analysed algorithmically for its singularity structure as follows. 

Let us look for a Laurent series solution of (4) in the neighbourhood 

of a movable singular point in the form 

w 
q. 

(z - z ) J 
o 

"" I: a. (z - z )m 
m=O J,m 0' 

j 1,2, .•• 

(5 ) 

and determine the allowed values of q., a. and the powers at which 
J J,m 

(n-1) arbitrary constants enter into the series (5). In order to 

avoid inconsistencies, it may be necessary to introduce further logarith­

mic terms in the above series. Finally, after verifying the existence 

of the above solution, one classifies the conditions under which the 

solution is free from movable critical singularities to within trans­

formations, which are then the possible cases for integrability. The 

latter may be ,proved often by finding the appropriate integrals of 

motion by other methods. 

, 
3. THE PAINLEVE ANALYSIS FOR PARTIAL 

DIFFERENTIAL EQUATIONS: INTEGRABILITY 

The natural extension of the P-property discussed iO Sec. 2 to pdes was 
suggested by Weiss, Tabor and Carnevale (WTC) [8], who required that 

the solutions be single-valued around movable singularity manifolds. 
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The major difference between the P-analysis of odes and pdes is that 

now the singularities of the latter are in general not isolated, as 

the solutions are functions of several complex variables (zl,z2, ... ,zn)' 

but rather lie on manifolds determined by the condition 

o. (6 ) 

Thus if u = u(zl,z2, ... ,zn) is a solution of the pde 

ut + K(u) 0, (7 ) 

then we require that in the neighbourhood of the manifold 

u ,na. ~ j 
T uJ'cp , 

j=O 
(8 ) 

where u o 
analytic 

* 0, u j = u j (zl,z2, ... ,zn) and cp = CP(zl,z2' ... , zn) are 

functions of (z.) in a neighbourhood of the manifold (6) 
J 

and that a. is a negative integer. By Cauchy-Kovalevskaya's theorem 

such an expansion of the general solution must have sufficient number 

of arbitrary functions equal to that of the order of the pde. Impli-

mentation of this procedure is direct and follows algorithmically in 

a manner similar to that of the odes. 

There are essentially four steps involved in the P-analysis of pdes: 

(i) Determination of the leading-order behaviours; (ii) Identification 

of the powers at which arbitrary functions can enter into the Laurent 

series called resonances; (iii) verifying that at the resonance values 

sufficient number of arbitrary functions exist without the introduction 

of movable critical manifolds; (iv) Establishing connections with 

the soliton and other integrability properties. The remarkable feature 

of the P-analysis, particularly for soliton equations, is that a natural 

connection exists between the P-property and the linearization property, 

Lax pairs, Backlund transformations, integrability, etc. [8-151. In 

the following subsections we will explain each of the stages succinctly. 

3.1 Leading order analysis 

The analysis starts with the determination of the all possible value(s) 

of a. and Uo in the expansion (8), and under what conditions a. is a 

negative integer so that no movable critical manifolds enter at this 

stage. For each value of a., the homogeneous terms with the highest 

degree may balance each other. These terms are called leading terms 

(or dominant terms). The value of Uo can be determined by equating 
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the coefficients of the dominant terms to zero and solving the resul­

ting algebraic equation for uo . 

3.2 Resonance analysis 

Next, one has to find the "resonance" values, j, that is the power(s) 

at which the coefficient(s) u. of the term ~j+a in the expansion (8) 
J 

is arbitrary. To find these, we substitute (8) into Eq. (7), and 

obtain appropriate recursion relations for u. and extract the coefficient 
j+a-N J 

Q(j'u. of the term ~ , where N is the order of the pde. Then 
J 

Q(j) o is called the resonance equation, for which -1 is always 

a root, which corresponds to the arbitrary nature of~. In order 

to avaoid any movable critical singular manifolds, we require that these 

remaining roots are non-negative integers. 

3.3 Arbitrary functions 

Let js be the highest of the allowed resonance values. Then we subs­

titue 

u 
js j+a 
E u J' ~ 

j=O 
(9 ) 

into Eq. (7) and collect the coefficients of ~j+a-N to obtain 

Q(j)u. + R. 
J J 

0, ( 10) 

where Rj is a polynomial in the partial derivatives of ~ and uk's 

(k = O,l, ... ,j-l). Since Q(j) = 0, for any resonance value j, R. 
J 

In this case u. is arbitrary. In case 
J 

should identically vanish. 

if it is not so, we have to introduce logarithmic terms of the form 

a. + b. log~ 
J J 

in the series. But due to this addition, logarithmic 

singularities will appear in the solution manifold. Thus, R. = 0 is 
J 

the condition to ensure that the solution is free from movable critical 

manifolds at a particular resonance value j. In this way, we can check 

that the general solution is free from movable critical manifolds. 

3.4 Backlund transformation (BT), Lax pairs, etc. 

The Backlund transformation of Eq. (7) can be obtained by truncating 

the expansion (8) at the 'constant' level term, by setting 

u 
-n -n+l 

Uo ~ + u 1 ~ + . ( 11 ) 

Then one can find an over-determined system of equations for ~ and u., 
J 

j = O,l, ... ,n, where un will satisfy Eq. (7). Upon solving the over-
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determined system, the other soliton properties of Eq. (7) such as 

linearization, Lax pairs, etc., can also be obtained, in general [8-14]. 

4. EXAMPLES 

In this section, we briefly illustrate the theory discussed above with 

some typical examples [8-14]. 

4.1 Burgers' equation 

The Burgers' equation is of the form [2] 

au xx ( 12) 

Using Eq. (8) in Eq. (12), we can easily find from the leading order 

analysis that 

a. ( 13) 

The recursion relations for u j are found to be 

j 
u]'-2,t+ (j-2)u]'_1 q>t+ E u, [u 1 + (m-l)q>u] m=O ]-m m- ,x x m 

a[u, 2 + 2(j-2)u, 1 m + (j-2)u, 1m + (]'-1)(]'-2)u,m2 ]. ]- ,xx ]- ,x "'x ]- "'xx ] "'x 

( 1 4 ) 

The resonance analysis shows that the resonances occur at j -1,2. 

In fact, j = -1 corresponds to the arbitrariness of the manifold 

q>(x,t) = O. 

From Eq. (14), we find that 

0 u -2aq>x' 0 

j q>t + u 1 q>x aq>xx' 

a 
j 2 ilx(q>t + u l q>x - a q>xx) = O. 

( lSa) 

( lSb) 

( lSc) 

By (lSb), (lSc) is identically satisfied and hence u 2 is arbitrary. 

The coefficients u" j > 2 can then be obtained uniquely in terms of 
] 

uO' u l ' and u 2 . Therefore, the general solution of (12) contains 

the required two arbitrary functions and that (12) possesses the 

Painleve property [8] in the sense of WTC. 
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If now one sets the arbitrary function u 2 
j > 2, provided 

oU lxx ' 

0, then all u. 
J 

0, 

( 16) 

which is just the Burgers' equation. Thus, we obtain the Backlund 

transformation for Burgers' equation, 

u ( 17) 

where both u and u l satisfy the Burgers' equation and ~ obeys (lSb). 

When we consider the vacuum solution u l = 0 in Eq. (17), the well­

known Cole-Hopf transformation results, which is the linearizing trans­

formation for the Burgers' equation. 

4.2 Liouville equation 

We next consider the Liouville equation [11] in the form 

Under the transformation 

u log V, 

(18) becomes 

On expanding 

V 
-2 

~ 

we find that 

and 
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V 
o 

l: 
j=O 

j 
V.~ , 

J 

O. 

O. 

( 18) 

( 19) 

(20 ) 

(21 ) 

(22a) 

(22b) 



After making use of Eqs. (22a) in·, (22b), we observe that V2 is arbit­

rary and thus Eq. (18) passes the Painleve test [11]. Furthermore, 

a BT is obtained with 

v (23 ) 

provided V2 satisfies Eq. (20) and the linearized wave equation is 

true: 

o. (24 ) 

The solution of (24) is given by 

h(x) + g(t), (25 ) 

where h(x) and g(t) are arbitrary functions. Consequently, we obtain 

the general solution 

u (26 ) 

4.3 Korteweg-de Vries equation (K-dV) 

The K-dV equation 

o (27) 

is easily shown to possess the Painleve property. One can find the 

leading order and the resonance values as ~ = -2 and j = -1,4,6 res­

pectively. From the recursion relations it is easy to check that 

j o -12C1q>~ (28a) 

j u = 1 
( 28b) 

j 2 o (28c) 

j 3 (28d) 

j 4 o (28e) 

j 5 
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Now it is clear that by the condition (28d), the determining Eq. (28e) 

is always satisfied. Similarly, we can verify that at j = 6 the com­

patibility condition is satisfied identically and so, u 6 is arbitrary. 

Thus, we conclude that the K-dV equation possesses the Painleve property 

(8 ). 

If the arbitrary functions u 4 and u 6 are chosen identically to 

be zero, and if we require that u 3 = 0, then we can verify that u j 0, 

j ~ 3, provided u 2 satisfies the K-dV equation. Thus, we get the BT 

for the K-dV equation in the form 

u (29 ) 

with 

0, (30a) 

o , (30b) 

and 

O. (30c) 

Eliminating u 2 from (30a) and (30b), we obtain after an integration 

<P ... 
----'- + 0 {<pi x} = A, 
<Px 

where 

{<p i x} 

( 3' ) 

(32 ) 

is the 'Schwarzian derivative' of q> and A is a constant parameter. 

With the substitution <p v,/v 2 , Eq. (3') can be rewritten in the form 

'¥ t [ 2v 2xx e-+0 {<pi x} - --v--- + 
x 2 

A, (33 ) 

where ex = v 2v'x - v,v 2x ' '¥t = v 2V,t - v,v2t · If (v"v2 ) satisfy a 

linear system (say) 
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v xx av 

v = bv + cv t x 

(34 ) 

(35 ) 



then we can check that e 0 and 'I't = be Using these values 
lfx x 

in Eq. (33 ) we get a = - 6(u 2 + A) , b u 2/3 +(2/3lA and c = u 2x/6. 

With these values, Eqs. (34 ) and (35 ) are just the Lax pair of the 

K-dV equation. 

4.4 Coupled nonlinear Schrodinger equations 

Our next example is a system of two coupled nonlinear Schrodinger (NLS) 

equations defined by 

2 2 
c1X1xx + 2alx11 Xl + 2Slx21 Xl' (36a) 

c 2X2xx + 2ylX 2 12 X2 + 2Slxl12 X2 · (36b) 

The system (36) is known to be integrable [16] for the following 

specific parametric restrictions 

a Y ( 37) 

a = -S = Y (38 ) 

Now we will show that for exactly the same parametric choices, (37) 

and (38), the system (36) passes the Painleve test [12]. 

We rewrite the Eqs. (36 ) as 

-Qt c 1Pxx + 2a(p2 + Q2)p + 2S(R2 + S2)p (39a) 

Pt c 1Qxx + 2a(p2 + Q2)Q + 2S(R2 + S2)Q (39b) 

-St C 2Rxx + 2S(p2 + Q2)R + 2y(R2 + S2)R (39c) 

Rt = c 2Sxx + 2S(p2 + Q2)S + 2y(R2 + S2)S, (39d) 

where Xl = P + iQ and X2 = R + is, P, Q, R, and S are reals. By 

expanding P, Q, R and S about the singularity manifold cp as 

-1 
00 

j -1 cpj , P ep ~ P . ep , Q cp ~ Qj (40a) 
j=O J j=O 

00 
j -1 

00 

S . epj R -1 
~ S ~ (40b) ep Rjep , ep 

j=O j=O J 

one can easily find the following two possibilities: 
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Case 1 

and the associated resonances are 

j = -1, 0, 0, 1, 2, 3, 3, 4. 

Case 2 

and 

j - 1, 0, 0, 0 ,3, 3, 3, 4. 

(41 ) 

(42 ) 

o (43 ) 

(44) 

We can verify that for case 1 the associated series solution will 

have a lesser number of arbitrary functions only since none of the 

functions P l , Ql' Rl and 51 is arbitrary and so it does not correspond 

to the general solution. For case 2, the resonance values (44) require 

that three of the four functions Po' QO' RO and So are arbitrary. 

From the leading order analysis we have 

2 + Q2) a(P o 0 

6(p2 
0 

+ Q2) 
0 

and hence two, 

are arbitrary. 

arbitrary only 

+ 6(R~ + 52) 
0 

2 
- c l q>x' (45 ) 

(twice) 

+ Y(R~ + 52) 2 (46) 
0 - c 2q>x 

(twice) 

say Po and QO' of the four functions (PO,QO,RO'SO) 

Also, from Eq. (43) we can show that RO (or SO) is 

for the conditions (37) and (38). Proceeding further 

we can establish the required arbitrariness at the other resonance 

values. Thus, Eqs. (36) possess the Painleve property for the para­

metric choices of Zakharov and Schulman only. 

We will discuss the connection between the corresponding BT and 

soliton solutions in Sec. 5. We remark that this analysis can be 

extended straightforwardly to the case of a set of N coupled nonlinear 

Schrodinger equations [12) as well. 

4.5 Kadomtsev-Petviashvili equation 

The Kadomtsev-Petviashvili (KP) equation is a two-dimensional genera­

lization of the well-known Korteweg-de Vries equation and describes 

unidirectional weak (quadratic) nonlinear disturbances perturbed by 

weak transverse balancing fourth order dispersion. The system admits 

infinitely many non-trivial symmetries and constants of motion and 
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a Lax pair exists. In this section, we will demonstrate the existence 

of the Painleve property for the KP equation and obtain its Lax pair 

therefrom. 

The KP equation is of the form [10] 

1-(u + 6uu + u ) + 30 2u ax t x xxx yy ± 1. (47) 

Now, the Laurent series solution takes the form u = ~ u,~j+a 
'-0 J 

around the singularity manifold ~(x,y,t) = 0, whereJu= -2 and Uo = 

-2~~. Substituting the above series solution into Eq. (47), we find 

that the resonance values are j = -1,4,5 and 6. Then equating the 

lowest order coefficients to zero, we obtain, 

j 0 2 (48a) Uo -2~x 

j u 1 12~xx (48b) 

j 2 3 2 + 4~x~xxx + 
2 30'2~ 0 (48c) ~x~t - ~xx 6u2~x + 

Y 

j 3 6u2~xx 
2 302~ + 0 ( 48d) ~xt + 6u3~x + yy ~xxxx 

j 4 o (48e) 

j 5 6 2 + + 3 2 ) u3~x ~xxxx 0 ~yy xx o (48f) 

j 6 

2 30 ~ u 3 yy o. (48g) 

From the above sets of equations, one can verify that the functions 

u 4 ' Us and u 6 are arbitrary [9,10] and so the P-property holds. 

to 

If we choose the arbitrary functions u 4 ' Us and u 6 identically 

be zero, it is easily seen that u j = 0, j >7 provided u 3 = 0, 

in which case u 2 satisfies the KP equation 
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o. 

Accordingly, we have the Backlund transformation 

u 

where ~ satisfies Eqs. (48). 

Eliminating u 2 from Eqs. (48c) and (48d), it is 

2 
a ~t 

+{~ x} + 3 2 ~ 30 2 1-(2) o. -(- ; 2" 0 2 ) + 
ax ~x 

~x 
ay ~x 

Integrating (5') with respect to x and inserting ~ 

that (v, ,v2 ) satisfy 

ov y f,vxx + f 2 , 

(49 ) 

(50 ) 

found that 

( 5' ) 

v,/v 2 ' we require 

(52 ) 

where f" f 2 , f 3 , f4 and f5 are functions of (x,t,y,u) to be determined. 

Finding the fi's, we obtain finally the Lax-pair in the form 

ov + v + uv Y xx 
o 

x 
v t + 4vxxx + 6uvx + 3(ux - 0 f u y dx') o 

the compatibility of which is the KP eq. (47). 

5. INTERCONNECTION BETWEEN THE PAINLEVE PROPERTY 
AND HIROTA'S METHOD 

(53a) 

(53b) 

Among the direct methods, Hirota's bilinearization technique is the 

most convenient one to construct soliton solutions of npdes. Essen­

tially, the method advocates transforming the given equation into 

homogeneous bilinear forms and then by 'self-truncating' the series 

to obtain a set of bilinear equations. In this process, the reasons 

for both the choice of the initial transformation and the self-trun­

cation of the series is rather obscure. From the P-analysis, it 

is clear that the truncation of the Laurent series at the constant 

level term results in the BT. For the vacuum solutions using the BT 

we can obtain in most cases the required Hirota's dependent variable 

transformation to transform the given equation into the bilinear 
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operator form [13-15]. As an example we consider [12], the coupled 

nonlinear Schrodinger eq. (39). The BT for Eq. (39) 

P Q (54a) 

R 
-1 

S = So 'P + S 1 (54b) 

in the vacuum case leads to the following set of equations: 

where 

r 

[QOt'P-Qo'P t + c 1 (POxx'P+ PO'Pxx - 2P Ox'P x )]'P 

(55a) 

[PO'Pt-POt'P +c 1 (QOxx'P+QO'Pxx-2QOx'Px)]'P 

(55b) 

[SOt'P-SO'Pt+c1(ROxx'P-2RO'Pxt - 2ROx'Px)]'P 

(55c) 

[RO'Pt-ROt'P+C1(SOxx'P+SO'Pxx-2S0x'Px)]'P, 

(55d) 

Eqs. (55) can be reexpressed in terms of the Hirota's bilinear opera-

tors and after decoupling we obtain the form 

).I) 'P. 'P 2 ar (56a) 

DtQO'P + 
2 

c1DxPO'P -).I PO'P 0 (56b) 

-DtPO'P + 
2 C1DxQO'P ).IQO 'P 0 (56c) 

DtSO'P 
2 ).IR O 'P 0 + c1D~RO'P - (56d) 

-DtRO'P + 
2 

).ISO 'P 0, C1DxSO'P - (56e) 

where ).I is a constant to be determined and 

a a n a a m 
(at - at,) (ax - ax') f(x,t)g(x' ,t') 

x'=x 

t'=t 
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In particular, from (56a), we get 

p2 + Q2 + R2 S2 l( c 
a2 

+ 
ax 2 

log cp _ ..l:!) 
0 0 0 0 CI. 1 2 ' 

( 57) 

and for the choice (45 ) we obtain 

p2 + Q2 (R 2 + S2) 1 a 2 
log cp ~). -(c -0 0 0 0 CI. 1 ax2 

(58 ) 

Now expanding the functions cp, PO' QO' RO and So as power series 

[12] and using them in (57) we can construct the N soliton solutions. 

Similar analysis can be applied to the other systems as well. 

6. CONCLUSIONS 

In this review, we have briefly pointed out how the Painleve analysis 

lS a useful and systematic procedure for investigating the integra­

bility properties of nonlinear partial differential equations. For 

a class of physically important equations we have demonstrated that 

this technique can in a straightforward manner lead to linearizations, 

Lax pairs and Hirota's bilinearization, showing the deep interconnec­

tions between the Painleve analysis and integrability. 
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Generalised Burgers Equations 
and Connection Problems 
for Euler-Painleve Transcendents 
P.L. Sachdev 

Department of Applied Mathematics, Indian Institute of Science, 
Bangalore 560012, India 

Some recent results on a class of generalised Burgers' equations (GBE) 
are reviewed. Characteristically they reduce to nonlinear Euler­
Painleve equations, on similarity reduction, possessing single hump type 
solution. GBE's with variable viscosity coefficients are briefly dis­
cussed. It is pointed out that the Korteweg-de Vries type equations and 
GBE's behave somewhat analogously in their self-similar forms. 

1. INTRODUCTION 

There has been a pervading and persistent interest for a couple of 

decades in the study of the model nonlinear equation, called the Korteweg­

de Vries equation, 

o. ( 1 ) 

This describes a certain balance between the (simplest) dispersion and 

nonlinear convections. Equation (1) and its kindred class have three 

main unifying features: (1) they exhibit clean soliton interaction; 

(2) they can be exactly linearised through inverse scattering theory 

to linear integral equations of Gelfand-Levitan type; (3) their self­

similar form, as it is or through some simple transformations, belongs 

to the class of nonlinear ODE's whose only movable singularities are 

poles; this characteristic of the ODE's (or POE's) is called Painleve 

property, after Painleve who first studied second order nonlinear ODE's 

from their singularity structure point of view. 

There is another distinguished model equation, 

(2 ) 

called the Burgers equation, which has a certain kinship with (1). 

Ithad preceded the latter in its inception and investigation. Equation 

162 



(2) represents a balance between linear diffusion and nonlinear convec­

tion. Equations (1) and (2) have the same convective term but different 

higher order terms. Each of these equations has influenced the study 

of the other. Equation (2) is simpler and can, in fact, be exactly 

linearised to the heat equation by the Hopf-Cole transformation [1]. 

In contrast, Eq. (1) has no such simple transformation and attempts 

to linearise it by a Hopf-Cole type transformation have led to its further 

'non-linearization' [2]. Equation (2) does not display soliton behaviour; 

indeed it has no solitary wave solution. Actually, Eq. (2) is a severe 

idealisation of reality. The equations which actually occur in applica­

tions are invariably more complicated. We quote two such equations: 

+ u 8u + Aua 0 u t 2" u xx' x (3 ) 

+ a + ju 0 j 0,1 ,2. u t u u 2t 2" u xx' x (4 ) 

Equation (3 ) has a lower order damping term and 

in a nonlinear Maxwell rod, while Eq. (4 ) has a 

describes stress waves 

spherical or cylindrical 

term besides those in (2). Both these equations have more general non­

linear convective terms than (2). We shall mention other generalised 

Burgers equations (GBE's) in the sequel. 

It does not seem possible to linearise GBE's of the type (3) and 

(4) through Hopf-Cole like transformations. The question arises whether 

we can unify this class of equations in some manner. Since soliton 

behaviour and exact linearisation do not seem possible, the one option 

open is their characterisation through the ODE's obtained by similarity 

transformations. This turns out to be possible. We find that there 

is a class of nonlinear ODE's, which we refer to as Euler-Painleve equa­

tions, which describes the self-similar single hump (and sometime other) 

type solutions of several GBE's. A very special case of this equation 

was studied by Euler and Painleve [3], hence the name Euler-Painleve 

transcendents. 

In the presen,t paper, we summar i se our work on GBE' sand Euler­

Painleve transcendents [4,5]. We first study the Burgers equation and 

its self-similar single hump solution. The self-similar solutions of 

(3) are then studied with reference to a connection problem with respect 

to the 'reduced' nonlinear ODE's on the whole real line. This is followed 

by a similar study for (4). Some current work on GBE's with variable 

viscosity coefficients is then briefly discussed. Finally, we refer 

to a large number of DE's, which have been categorised by Kamke [3] 

according to their formal appearance and appended with geometrical or 
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physical significance. These are special cases of the Euler-Painleve 

equations if the coefficients in the form of the latter are made to 

vary with the independent variable. A reference to the connection pro­

blem for the K-dV equation as represented by the second Painleve trans­

cendent is made again to show how K-dV type of equations and GBE's 

behave somewhat analogously in their self-similar forms. However, we 

caution that Euler-Painleve equations are free from singularities on 

the finite real line, unlike Painleve equations, which, in general, 

have an infinite number of poles. 

2. SINGLE HUMP SOLUTION OF BURGERS EQUATION 

We study in the following a specific self-similar solution which has 

a single hump form and vanishes at x = ± 00. For the Burgers equation 

(2), this solution can be written out as 

u (6/t) 1/2 f(n), n = x(26t)-1/2 (5 ) 

where 

f ( n ) 
(2Tf)1/2 2 1/2 2 1 

[ R exp(n ) + (Tf/2) exp(n) .erfcnl-
e - 1 

, say, (6 ) 

where the function f(n) satisfies the DE 

f" + 2nf' + 2f - 23/2 ff' o . (7 ) 

The 'inverse' function HB(n) plays an important role for GBE's, as we 

discusss subsequently. In the present case, it satisfies the DE, 

o. (8 ) 

We note a few properties of this single hump solution, which, in a sense, 

is closest to the solitary wave. We emphasise that this solution is 

not symmetric, in contrast to the solitary wave. The solution (5) arises 

out of singular initial conditions u(x,o) = Co + A6(x), where co=const., 

6(x) is the delta function--singular initial data are common to most 

self-similar solutions. By integrating (2) from x = -00 to x = +00 , 

one may easily conclude that the Reynolds number 

R 
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is constant. Here, we use the conditions that u and its x-derivatives 

vanish at x = too. The solution (5) vanishes exponentially as x~ +00 

and algebraically as x~ -00. One may further verify that in the limit 

6 ~ 0, t,hat is, R ~ 00, the solution reduces to 

u x/t, ( 10) 

the solution of the inviscid Burgers equation with 6 = O. For large 

but finite R, the single hump consists of the inviscid solution for 

~</2, followed by a thin shock ending in a diffusive tail. For R~ 0, 

it easily follows from (6) that the solution (5) is essentially diffu­

sive; the nonlinear convective term plays no essential role. Hopf [121 

pointed out that the solution (5) represents a 'stationary' solution, 

to which an infinite number of solutions, with essentially similar be­

haviour at x ~ ± 00 in their initial conditions, converge as t ~ 00. Such 

self-similar solutions in Soviet literature are now referred to as inter­

mediate asymptotics [11. 

3. SINGLE HUMP SOLUTIONS FOR GBE WITH DAMPING-­
THE CONNECTION PROBLEM 

Now we seek self-similar single hump solutions of (3) [41. We find 

that the solution has the form 

u t 1 / ( 1 -0: ) 
f( n), 

n x{26t)-1/2, 

provided 

B {o: - 1 )/2. 

Equation (3) then reduces to the ODE 

f" + 2nf' - _4_f - 4(26)-1/2 f}{O:-l) f' - 4Ho: 
'1 -0: 

( 1 1 ) 

( 12) 

O. ( 13) 

The solutions (11) decay (explicitly with time) if 0: > 1 and grow if 

0:< 1. We employ the 'inverse' transformation (cf. (6)) 

H 61/ 2 f ( 1- 0:) /2 ( 14) 

and obtain the form 

o ( 15) 
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of (13), free from fractional powers of f. Here, 

1 3-a 
"2 a-1' ).1 )./)(1 - a). ( 16) 

Equation (15) generalises (8) in two ways: the coefficient of H' becomes 

-2(1 + ( 1 ) instead of -2, and a constant -2).1 gets added on to (8). 

These 'minor' changes represent a fairly general GBE (3). Before we 

pose a connection problem for (13), we note two special solutions of 

(13) and (15). First, (13) has a constant solution, 

f f m, say. (17 ) 

It is easy to check that fm is the maximum value of f that the maxima 

of the single hump solutions can attain. The other exact solution is 

11 > 0, 

f 

11 < 0, (18 ) 

where 

A+ (2/6) 1/2 (a-1) [ (1 + )./) ( l+a) ) 1/2 + 1 1 , 
a+1 

A (19 ) 

The corresponding solutions for H(11) can be written with the help of 

(14). Equation (15) has the Taylor series solution 

H (20 ) 

for the decaying case a >1, where 

(21 ) 

Here a o and a 1 are two arbitrary constants. It is easy to check that 

the solution HB in (6), when eXP(11 2 ) and erfc 11 are suitab;y expanded, 

is a special case of (20) with a = 3, ). = 0, and a 1 = _22. For this 

choice of a 1 , we obtain a single parameter family of solutions of Burgers 

equation, the single parameter a o representing the amplitude at 'in­

finity' of the various curves, or their Reynolds number. In general, 

it is difficult to identify the ranges of parameters a o and a 1 in (20), 
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for which the series converges for -00 < n < 00. For this purpose we 

go back to the self-similar function f governed by (13), and pose for 

the latter a connection problem. Since we require the solutions to 

vanish at n = ± 00, we linearise (13) for its asymptotic behaviour: 

4 
f" + 2n f' - 1 -a f o. (22 ) 

This equation has the solution 

f 
2 2 2a 1 

A exp (-n ) Hv (n ) - A exp (-n ) ( 2n ) as n t 00, (23a) 

and 

-2Cl 1-1 
f - 0 (n ) as n .. -00 , 

where H v is the Hermite function of order v 

(23b) 

and A is the amplitude 

parameter. Thus, the asymptotic behaviour is similar to that for Burgers 

equation--exponential and algebraic for n - 00 and n --00, respectively. 

Equation (13) was solved numerically starting with the asymptotic 

behaviour (23a) for large positive n. The main result of this study 

was that in the decaying range a >1, the self-similar form of single 

hump type exists if 1 < a 2 3; the amplitude parameter A for each admis­

sible value of (a,S) could at most reach a maximum value of A = Amax 

For this value of A, the solution starting with (23a) would rise to 

approach the special constant solution f = fm (see Eq. (17)). For 

A > Amax' there is no single hump solution. The solution grows to become 

unbounded at n = -00. Sachdev et al. [4] carried out a thorough investi­

gation of the intermediate asymptotic nature of these self-similar solu­

tions by integrating the PDE (3) by pseudo-spectral and implicit schemes. 

Here, we emphasize that the self-similar form of (3) is governed by 

the equation (15) for H, the inverse function. Equation (15) is a special 

case of Euler-Painleve equation which we introduce in Sec. 6. 

4. SINGLE HUMP SOLUTIONS OF NON-PLANAR GBE'S 

Now we consider the self-similar solutions of (4) in the form 

u t- 1/ 2a f(n), n = x(2tSt)-1/2, (24 ) 

so that f(n) is governed by the ODE 

f' , 23/2 o-1/2 f a f , + 2n f ' + 
2 ( 1 - aj) f 0, - (25 ) 

a 

167 



where a is a parameter. The 'inverse' transformation 

H 

changes (25) to 

HH" - a+1 H,2 + 2n HH ' - 2{1 - aj)H 2 - 23/2 H' 
a 

(26 ) 

O. (27 ) 

Equation (27) m3Y be compared with (8) corresponding to the standard 

Burgers equation (2): only the numerical coefficients in (27) differ 

from those in (8) and the former reduces to the latter when j = 0 and 

a = 1. Equation (27) belongs to the Euler-Painleve class (see Sec. 6). 

Equation (27) has a series solution (20) with two arbitrary parameters, 

and the recurrence relation for the coefficients can be written out 

[5]. To identify the single hump solutions for (25) and the inverted 

hump solutions for (27), we again pose the connection problem for (25). 

The linearised form of the latter, 

f I' + 2n f ' + 2 ( 1 

has the solution 

f ( n ) 

f (n) -

A e- n 

B 1\1/2 

I{-v) 

2 

- aj) f 0, 
a 

Hv (n) , n > 0 

Inl j - 1/ a , n « 0, 

provided aj < 1. Here v = l/a - (j+1), 

(28 ) 

(29) 

H (n) is the Hermite func­
v 

tion of order v, and A and B are the amplitude parameters. Thus, the 

linear solution decays exponentially as n ~ooand algebraically as n~- 00. 

The connection problem may thus be stated as follows: 

and 

fll - 23/2 8- 1/ 2 faf' + 2n f ' + 2{1-aj) f = 0, 
a 

f 
2 

A exp{-n ) Hv{n), n t 00 

f ~ o (n .j.- 00), 

I f I < 00, -00 < n < 00 • 

(30 ) 

( 31 ) 

( 32) 

( 33) 

Before we give the numerical results for the above problem, we dis­

cuss a class of special exact solutions which provides some clues to 

the general case. If a = 1/{j+1), Eq. (30) reduces to 

168 

f + n f I + If' I 
2 

( 34) 



Integrating (34) and using vanishing conditions (31) at n 

f 1 f' n + 2 

The transformation G = f- a changes (35) to 

G' - 2anG a~~ (2/0) 1/2. 

This equation can be integrated. We, thus, have 

f (n) 
2 exp(-n ) { c _ ~2 

a+1 
(2a/6) 1/2 

-l/a 
dt} , 

00, we get 

(35 ) 

(36 ) 

( 37) 

where c = f-a(O). This solution generalises the solution (6) for Burgers 

equation to other geometries, provided the parameter a equals 1/(j+1); 

thus for j = 1, a = 1/2 and j = 2, a = 1/3, we have explicit single 

hump solutions of (4). We can infer more about the solutions of (4) 

by deriving relations involving some integrals. Writing F = fa, Eq.(25) 

can be transformed as 

1 FF' - a-1 F,2 + (1 - a]')F 2 + nFF' _ (2/6) 1/2 F2F' 
2 ~ 

O. (38 ) 

Integrating (38) from n = -00 to n 

there for F and F', we get 

00, and using vanishing conditions 

(2aj - 1) 1-2a 
a 

Equation (39) implies the following: 

( i ) j O. The ratio 

fF2 dn 
( 1 - 2a) 0 r - > 

-Z F,2 
a 

dn 

(39 ) 

if 
1 

a > 2· (40 ) 

1 Therefore, the single hump solutions in this case exist only if a >2. 

( i i) j 1. In this case (39) holds if a 1 2. This corresponds to 

the exact solution (37). 

(iii) j = 2. In this case, the ratio r of the integrals in (40) is 

(1 - 2a)/a(4a - 1). This is positive if 1/4 < a<1/2. This is the 

range for which the single hump solutions may exist. 
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The numerical study of the connection problem (30)-(33) indicated 

the existence of solutions for a < 1/(j+1), j = 0,2, which go to zero 

at a finite point n = nO' say, instead of n = -co. 

easily derive the relation 

a( j+1 ) 1 ) co 
1 -

I f dn f I ( nO) a 
no 

- "2 

for this case. Since, evidently, f I ( nO) 

Indeed, one can 

( 4 1 ) 

Table 1 Single hump, monotonic and diverging solutions of Eq. (30) 

Behaviour at left boundary j 0 j j 2 

Solutions vanishing at a = a 1/2 1/3 <a < 1/2 

n = -co 

Solutions vanishing at 1/2 <a < 1 1/4 < a < 1 /3 

n = nO 
Solutions monotonically a = a 1/2 
approaching a constant 
at n= -co 

Solutions diverging to a > 1 a > 1/2 
infinity at n = -00 

The details of the numerical study of the problem (30)-(33)may be seen 

in Sachdev and Nair [5J. Apart from the results summarised in Table 1, 

we note that, unlike the single hump solutions of GBE (3) with damping, 

the nature o~ the solution depends on the parameters a and j. The 

solutions exist for the permissible values of a and j for all values 

of the amplitude parameter. The particular value a l/j seems to 

bifurcate the generality of solutions. For this value of a, f = fc' 

a constant, is a solution of (30) so that, for a given value of A, the 

solution starting at n = -00, tends to a constant nonzero value at n =-co 

instead of vanishing there or at n = nO. For example, for j = 1, A = 1, 

fc 0.41187, and for j = 2, A 1, fc = 0.10197. The numerical solu­

tion of the connection problem agrees very closely with the series solu-

170 



tion for H, governed by (27), when the values H(O) and H' (0) are suitably 

identified from the numerical solution. The intermediate asymptotic 

nature of the self-similar solutions was verified by solving the PDE[4] 

numerically for the relevant values of the parameters a and j and 'appro­

priate' initial conditions vanishing at n = ± 00. 

5. GENERALISED BURGERS EQUATION WITH 
VARIABLE VISCOSITY 

We consider the GBE 

6 2" g(t) uUx ' (42 ) 

where g(t) is a smooth positive function, representing the dependence 

of viscosity on time, Scott [6] considered a special case of (42) with 

a = 1; the role of t and x, however, was interchanged in his study. 

He considered a piston problem for this equation and proved the inter­

mediate asymptotic nature of the self-similar solution u = nIt/x) for 

cylindrical and sub-cylindrical cases. The latter case was defined 

such that ~ ~ 0 as x ~ 00. Conversely, if. 9l!l ~ 00 the GBE is 
x x ' 

referred to as super-cylindrical. Here, we consider the cylindrical 

and sub-cylindrical form 

.§.( 1 + tIn u 
2 xx' (43) 

where n is a parameter and a >0. We shall find that self-similar solu­

tions either decaying or oscillating at x = ±ooexist for (43) .. only when 

-1 < n ::. 1, i. e., when (43) is, ei ther cylindrical or sub-cylindrical. 

We easily check that the self-similar form of the solutions of (43) is 

u = 

so that it becomes 

f" - 2f a f' + (n+1 )n f ' (n-1) f --a- O. 

The inverse function 

H 

is, therefore, governed by 

HH" - a+1 H,2 + (n+1)n HH' - 2H' + (n-1 )H 2 -a-

(44 ) 

(45 ) 

(46) 

O. (47 ) 
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For single hump solutions of (45), we enquire when f has a maximum: 

f' = 0, f" = nS 1 f < O. A necessary condition for single hump solu­

tions for the case S > 0 is that n < 1. Equation (47), as we shall 

see, again belongs to the class of Euler-Painleve equations. Before 

we pose a connection problem for (45), we note that it has a single 
1-n . parameter family of exact solutions. Assuming S l+n' we wrIte (45) 

in the form 

f" - 2f Sf' + 2 (nf' + f) 
S+l O. (48 ) 

Integrating (48) and assuming that f and f' tend to zero (such that 

nf 4 0) as n 4 ± 00, we have 

Integrating (49), we get 

f a 2 [exp(2 n {A - ;2a 

2 
S+l 

erf(/a72 n )}]-l/S, 

(49 ) 

(50 ) 

where a = 2S/(S+1) and A is the constant of integration equal to f(O)-S. 

For decaying solutions, we require that a > 0 so that n < 1. We also 

note that the special case S = 1, n = 1, which was treated by Scott 

[6] can be solved in a parametric form. The linearised form of (45) is 

n-1 fll + (n+1)n f' - f -S- O. ( 51 ) 

Its solution is simply the confluent hypergeometric function 
1-n 1 

~(2S(1+n) , 2; z), 
n+1 2 . 

where z = - --2- n. The asymptotIc form of ~ im-

mediately suggests that the solutions vanish at n = ± 00 provided 
1 1-n 
2j3 1+n > 0, i.e., -1 < n<1. The case n = 1 leads to the erfc(n) solu-

tion of (51). The series solution for (47) exists in the permissible 

range of n and describes either the single hump solution or shock-like 

solution or the solutions with oscillatory tail and/or front. The re­

sults of the connection problem for (45) and (47) and other details 

will be published elsewhere [7]. 

6. EULER-PAINLEVg TRANSCENDENTS 

In the compendium of nonlinear differential equations, compiled by Kamke 

[3], the equation 

yy' , 2 2 + ay' + f(x)yy' + g(x)y o (52 ) 
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is attributed to Euler and Painleve; the motivation for the study of 

this equation is not clear. This equation is, in fact, exactly linearised 

by the transformation 

y v l/( 1+a) 
(53 ) 

to 

v" + fv' + (a+1 )gv o. (54 ) 

We have generalised Eq. (52) to the form 

2 2 yy' + a(x)y' + f(x)yy' + g(x)y + b(x)y' + c(x) = 0, (55 ) 

where the constant a in (52) has been made to vary with x and a linear 

term in y' and a function c(x) have been added to (52). Our claim is 

that Eq. (55) characterises the GBE's in their self-similar form in 

the same manner as the Painleve type equations describe Korteweg-de 

Vries and other model dispersive equations. Indeed, the three equations 

corresponding to the GBE's (3), (4) and (42), namely (15), (27) and 

(47) easily follow from (55) if special choices of the functions a(x), 

f(x), g(x), b(x) and c(x) are made. We must, however, emphasize the 

difference between the nature of Eq. (55) and the Painleve type of equa­

tions. For the physically realistic cases of Eq. (55) which we have 

studied, the solutions are either single hump type or shock-like or 

have oscillatory tails, and there are no singularities of any kind in 

the finite part of the real line. In contrast, the Painleve equations 

are typified by the property that their only movable singularities are 

poles. That Euler-Painleve equations should be 'nicer' than Painleve 

equations follows also from the nature of the BGE's and K-dV type of 

equations; roughly speaking, diffusion is 'smoother' than dispersion. 

We must also point out that Eq. (55) for general (smooth) coefficients 

would need more extensive investigation than we have carried out for 

the special cases, arising directly from GBE's. 

It is remarkable that 65 nonlinear DE's in the compendia of Kamke 

[3] and Murphy [8] are special cases of (55) directly or by simple 

transformations. These equations are either autonomous or are lineari­

sable by a power law or logarithmic transformation. Alternatively, 

they are reducible to first order equations of Riccati or Bernoulli 

type. Most of these equations are either integrable explicitly or admit 

at least one quadrature allowing their treatment in the phase plane. 

Here we give a listing of these equations and refer the reader to Kamke 

and Murphy for their physical importance and solution. In Kamke's book, 

these are listed in Sec. 6, p. 542 as 104-111, 117, 122, 124-127, 129, 
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131, 133-4, 136-9, 150-2, 155-8, 164, 166, 168-70, 173-9. In Murphy's 

book, these are enumerated as 133, 140, 142, 150, 190, 195, 199, 201, 

203-4, 219-22, 227-31, 233-4 in Part 2, Chapter 4. It would thus appear 

that Eq. (55) has a quite ubiquitous nature and deserves close study 

and investigation. 

7. CONCLUSIONS 

We have shown with the help of 3 GBE's--(3), (4) and (42) that Eq.(55), 

which we have referred to as Euler-Painleve equation, seems to charac­

terise this class of equations. We have drawn an analogy with Painleve 

type of equations which unify the study of K-dV equation and its kindred 

class. We have summarised the results of the connection problems for 

some GBE's. Similar study for Painleve second equation has been carried 

out by Miles [9] and Rosales [10]. It is conceivable that not all GBE's 

will be typified by (55). Indeed, self-similar form of solutions does 

not always represent intermediate asymptotics. Besides, sometimesit 

is the self-similar form of the linearised POE which may represent inter­

mediate asymptotics to which a large class of solutions arising from 

a certain set of initial conditions approach [11]. This is the case, 

for example, for the super-cylindrical equation, as shown by Scott [6]. 

In this case, it is not the nonlinear Euler-Painleve equation (55) which 

describes the asymptotic behaviour of a certain class of initial value 

problems but the corresponding self-similar solutions of the heat equa­

tion with a variable coefficient. To conclude, we would have to investi­

gate other GBE's and study (55) more deeply to come to a firm under­

standing of the role of Euler-Painleve equations. 
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USing Darboux-Bargmann technique, we obtain (1) the Backlund trans­
formations for any nonlinear evolution equation (NLEE) solvable by 
the inverse scattering method of Zakharov-Shabat--Ablowitz-Kaup-Newell­
Segur (ZS/AKNS) and (2) the ZS/AKNS wave functions corresponding to 
the n-soliton solution of this NLEE. 

1. BKcKLUND TRANSFORMATIONS AND SOLITON WAVE FUNCTIONS 

The ZS!AKNS scattering problem [1,2] is defined by the eigenvalue 

equation 

v -2x 

q(x,t)v 2, 

r(x,t)v 1, 

(1. la) 

(1. lb) 

v 1 
where v = ( ) is the two-component ZS!AKNS wave function and q and 

v 2 
r are functions of x and t satisfying the NLEE of interest. The eigen-

value is k. Equations (1.1) give the space evolution of the wave func­

tion. Let us distinguish the quantities, wave function and potentials 

q and r, referring to n solitons by primes and those referring to (n-l) 

solitons by unprimed ones. Thus: 

v' 
1 

and 

vi 
( I); q' 
v 2 

r' 

v 1 ,2 satisfy eqs. (1.1). v1,2 satisfy similar equations: 

v' - ikv ' 2x 2 r'vi· 

(1. 2a) 

(1. 3) 

We appeal to Darboux's method [3] to expand the n-soliton wave 

function v' in terms of (n-l)-soliton solution v: 
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v' 
1 v' 

2 CV l + DV 2 , ( 1 .4 ) 

where A, B, C, D are functions of x and t. From eqs. (l.l), (1.3) and 

(1.4), we see that A, ... ,D satisfy the differential equations: 

A x 

B x 

C 
x 

D 
x 

-rB + q'C, 

-qA - 2ikB + q'D, 

r'A + 2ikC - rD, 

r'B - qC. 

(1. Sa) 

(1.5b) 

( 1 .Sc) 

( 1 • 5d) 

We next invoke an idea due to Bargmann [4]. It is well known that 

the ZS/AKNS equation corresponding to the Korteweg-de Vries (KdV) 

equation is the Schrodinger equation [5]. In the context of the 

Schrodinger equation, Bargmann has shown that for a potential capable 

of giving n bound states, the solution of the Schrodinger equation 

can be written in the form e ikx X(k,x}, where X(k,x} is an n-th degree 

polynomial in k. On the other hand, we know that n-soliton solution 

of an NLEE envisaged by the ZS/AKNS eqs. (l.l) can be looked upon as 

a potential giving n bound states [5]. Thus the idea due to Bargmann 

suggests that v and v' will differ by a linear function of k. We there­

fore write: 

A B (1. 6a) 

C D (1. 6b) 

where ai, ... ,d i are functions of x and t through (q,r) and (q' ,r'). 

The differential equations obtained for a, ... ,d by using eqs. (1.6) 

in eqs. ( 1 .5) are easy to solve and a partial solution is: 

a, a.(t} , 

b, 0, b O ~[(i}q' - q], 
21 a. 

c l 0, Co - 2~[r' (~) r], 

d l 6 (t), dO -(i}a 
a. 0 + B (t) , ( 1 .7 ) 

with a O satisfying the equation 

a. q' r'} a Ox 2i(qr - (1. 8) 
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and, additionally, two equations of constraint need to be satisfied: 

~ [ (.Q.) q' - qx 1 
21 CL X 

- [q + (~) q' 1 a 0 + Sq', (1. 9a) 

(1. 9b) 

Here CL, S, 0 are constants of integration and in general depend on t. 

Subsequently we shall see that to be able to describe the soliton solu­

tions they need to be taken as constants. From eqs. (1.7)-(1.8), we 

can see that we can obtain A, ... ,D in eqs. (1.4) provided we can solve 

eq. (1.8) for a O and be able to satisfy eqs. (1.9). 

It is easy to obtain a O as a function of (q,r) and (q' ,r') and hence 

to show that eqs. (1.9) in fact represent the space part of Backlund 

transformations (BTs). To see this, we first notice that the choice 

of overall 

€ = -(.Q.). 
CL 

resulting 

where 

factor, CL say, is at our disposal. We set CL = -i and define 

We multiply eq. (1.9a) by r' and eq. (1.9b) by q, add the 

equations and use eq. (1.8) to obtain 

( 1. 10) 

( 1. 11 ) 

Similarly multiplying eq. (1.9a) by rand eq. (1.9b) by q' and adding 

the resulting equations and once again using eq. (1.8), we get 

( 1. 12) 

Adding eqs. (1.10) and (1.12), we see that the resulting equation is 

integrable only if 

2 
€ or € ± 1 • ( 1. 13) 

In all the subsequent discussion, we shall assume eq. (1.13) to hold. 

The sum of eqs. (1.10) and (1.12) when integrated gives a quadratic 

equation for a O whose solution is 

1 2 !. 
± 2[4v' +(q'+€q) (r'+n) J2H(~). ( 1. 14) 

This solves eq. (1.8) consistent with eqs. (1.9). Here~' and v' are 

integration constants. They can in principle be functions of t and 
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may even be complex. Soon, however, we shall identify them with soli­

ton pole position which requires them not only to be constants but also 

real. We believe that the present method can be extended to include 

perturbed NLEEs and then this possibility of time dependence of pole 

position parameters becomes necessary. The function H(s) is the Heavi­

side function 

H( s) ( 
1, 

-1 , 

s > 0 

s < o. (1. 15) 

It can be shown that in the pure multisoliton case, the argument s is 

given by 

x + ~ Imw(k') - xO' v' ( 1. 16) 

where w(k) is the dispersion function and Xo is a constant. The Heavi­

side function is required to ensure the continuity of both the soliton 

solutions and the wave functions [6]. 

Using a O from eq. (1.14) in eqs. (1.9), we get the space part of 

the BTs: 

2 l 
-2ill' (q'+Eq)±(q'-Eq) [4v' +(q'+Eq) (r'+Er) ]2H(S), (l.17a) 

2 ! 
r~ +Erx = 2ill' (r'+Er)±(r'-€r) [4v' +(q'+€q) (r'+€r) ]2H(s). (1.17b) 

We see that the constants 11', v' appearing in the above equations are 

in fact the parameters of the n-th soliton. Since soliton solution 

represents a pole in the complex k-plane at k = k' = 11' + iv', we 

require (11' ,v') to be both real and independent of time. If the NLEE 

of interest is such that if (q,r) is a solution so is (-q,-r) then both 

values of € ,±1, are permitted. Otherwise we would have either E=+l 

or €=-1. The two possible signs accompanying the discriminant are 

linked with two possible directions of incidence; positive (negative) 

sign corresponds to the incidence from the left (right). These direc­

tions of incidence in their turn give rise to relevant analyticity 

structure of the scattering amplitude or the transmission coefficient 

in the upper half k-plane (right incidence) or in the lower half k-plane 

(left incidence). 

It is easy to show that eqs. (1.17) reproduce the BTs in the stan­

dard cases of KdV, sine-Gordon (sG) and nonlinear Schrodinger equation 

(NLSE) [6,7] corresponding to the three classes r = constant, r=-q and 
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r=-q* respectively. Our present treatment gives a unified treatment 

of the BTs for all NLEEs encompassed by the ZS/AKNS scheme. 

Using a O from eq. (1.14) in eqs. (1.7) and substituting the results 

into eqs. (1.6), we get 

A 

B 

c 

D 

121 
-i(k-Il')± 2[4\1' +(q'+e:q)(r'+e:r)2 HU;), 

~(q'+e:q) , 

~(r' + e:r), 

121 d i ( k -11 ' ) ± 2 [ 4 \I' + ( q , + e: q )( r ' + e: r)2 H U; )], 

( 1 . 18a) 

( 1 . 18b) 

( 1 . 18c) 

( 1 . 18d) 

which solve the differential equations in eqs. (1.5) and yield, when 

used in eqs. (1.4), the n-soliton wave function v' in terms of (n-l)­

soliton solution v and the n-th and (n-l)-th soliton solutions (q' ,r') 

and (q,r) respectively. These results agree for the three cases (1) 

r = -1, (2) r = -q, (3) r = -q* discussed in our previous work [8]. 

The time evolution of ZS/AKNS wave functions is given by [2] 

Vlt 

V2t 

In the 

depend 

At 

Bt 

Ct 

Dt 

=:.4 (k;q,r)v l + (B (k;q,r)v2 , 

=~ (k;q,r)v l -~ (k;q,r)v2 · 

ZS/AKNS scheme one stipulates that k = t 
on particular NLEE of interest. Use of 

A(.A' -cA) B~ + dB' , 

B(cA' +J) - A(B + D(B' , 

-c (oA ' +04) + A~' D..e, 

-D(,4 '-.,4) + B.&' - c<il, 

( 1 . 19a) 

(1. 19b) 

O. The functions.A ,(B,~ 
eqs. (1.4) leads to 

(1.20a) 

( 1 .20b) 

(1.20c) 

( 1 . 20d) 

where .A' = .A '(k;q' ,r'), etc. From eqs. (1.18), we see that eqs. 

(1.20b,c) give the time part of the BTs. 

2. RICCATI EQUATIONS 

It is possible to extend the previous analysis further. To this end 

let us denote A, ... ,D given by eqs. (1.18) when evaluated at k=k' = 
Il'+i\l' by A, ... ,D. Thus, we have 
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A v' ± 
1 2 1 "2[4v' +(q'+e:q)(r'+n)]2H(F,;), (2.1a) 

B ~(q' + e:q) , (2.1b) 

C 1 ( , "2 r + e:r) , (2.1c) 

0 e:{-v'± 
1 2 1 "2[4v' +(q'+e:q)(r'+e:r)12H(~)}, (2.1d) 

and we note that 

A.D B.C. (2.2) 

Also, we denote the wave functions in eqs. (1.4) evaluated at k=k' by 

v 1 ,v2 and vi,v2 so that 

If we define 

r r' -'1-' v 1 v 2 , 

(2.3) 

(2.4) 

then it is easy to see from eqs. (1.1) and (1.19) that r satisfies 

the Riccati equations: 

q 2ik'r - rr2, 

with r' satisfying similar equations. 

in eqs. (2.3), then we obtain 

r = - BIA D/C. 

(2. Sa) 

(2.Sb) 

If we now require that v'=O=v' 1 2 

(2.6) 

The consistency of last equality coming from eq. (2.2). It also follows 

from eqs. (2.3) that cvi - A v2 = (13 C - A D)v2 • The right-hand side 

of this equation vanishes in view of eq. (2.2) giving 

r' A/C BID. (2.7) 

rand r' are particular solutions of the Riccati eqs. (2.5) and their 

primed counterparts. 

Two useful relations between rand r' can be easily established. 

Using eqs. (2.1) in eq. (2.6) and in eq. (2.7l, it is seen that e:r and 

r' both satisfy the quadratic equation (r'+e:r)y2-4v'Y - (q'+e:q) = O. 

It therefore follows that 
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e:r + r' 4\1'/(r'+e:r), (2.8 ) 

and 

( e:rlr' -(q'+e:q)/(r'+e:r). (2.9) 

They can alternatively be written as 

q'+e:q -4\1' (e:rlr' /(e:r+r'), (2.10) 

and 

r'+e:r 4\1'/(e:r+r'). (2.11 ) 

These equations are generalizations of those given by Konno,Sanuki and Wadati 

[7] and were employed by us in Ref. 8. In the present general case, 

it is unfortunately not possible to go beyond this stage. In special 

situations, however, we can make further predictions. As an illustration, 

consider the situation where we stipulate a relationship between q and 

r like 

(a) r = r' -1 (with e:=+1); (b) r = -q, r'=-q'; (c) r=-q*,r'=-q'*. 

(2.12 ) 

These then imply relationships between e:r and r'. For instance, 

corresponding to choice (a) in eqs. (2.12), we get from eq. (2.8) that 

r' = - r - 2\1'; (2.13a) 

for the choice (b), we obtain from eq. (2.9) that 

r' l/e:r ; (2.13b) 

and for the choice (c), we obtain from eq. (2.9) that 

r' 1/e:r*. (2.13c) 

Equations (2.13) form important ingredients in the methods of Konno-Sanuki­

Wadati [7] and Chen [6]. The above process is reversible. If we sti­

pulate relationships in eqs. (2.13),we obtain from eqs. (2.9) and (2.10) 

relationships between q and r given in eqs. (2.12). 

We now briefly outline the method of obtaining multi-soliton solu­

tions and cor,responding wave functions in the cases where r is stipulated 

as some known function of q as, for instance, in eqs. (2.12). The 

procedure is recursive and algebraic except for the starting zero-soliton 

case where it requires solution of very simple differential equations. 

We illustrate the procedure for the case of NLSE. Discussion for other 

cases will be found in Ref. 8. For the NLSE case, on using eq.(2.12c) 

in eq. (2.10), we get 

q' r - e:[q + 4\1' ---2]' 
1+1 r I 

(2.14 ) 
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whi.ch relates the n-soliton solution, q', to the (n-l)-soliton quantities, 

q, v1 and v2 . This leads to the following procedure. We begin with 

the zero-soliton solution q(O) of NLSE which is q(O) = O. This is sub­

stituted in eq. (1.1) to obtain the zero-soliton wave function v(O). 

The time dependence of v (0) is obtained from eqs. (1.19) with.A, (jJ , ~ 
appropriate to the NLSE case. After this the procedure is purely 

algebraic: We use these known q(O) and v(O) in eq. (2.14) to obtain 

q(l). These q(l), q(O) and v(O) are now used in eqs. (1.4) together 

with eqs. (1.18) to get v(l). This procedure can obviously be conti­

nued and furnishes in a simple manner all the higher order soliton 

solutions and wave functions. 
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Comparison of Some Numerical Schemes 
for the K-dV Equation 

A. Hasan and M.S. Kalra 

Nuclear Engineering Program, Indian Institute of Technology, 
Kanpur 208016, India 

A numerical solution for the KdV equation has been obtained uSing a 
finite element Galerkin scheme based on cubic splines in the space 
variable. The results are compared with the finite difference schemes, 
and the finite element Galerkin and Petrov-Galerkin schemes reported 
in literature. It is found that the use of smoother trial and test 
functions leads to much less L2 and L co errors. It is also seen that 
quintic boundary polynomials used earlier are not necessary for obtain­
ing an accurate solution. 

1 • INTRODUCTION 

It is well known that the initial and boundary value problems associated 

with nonlinear partial differential equations are very difficult to 

handle in a general way. The nonlinear evolution equations have recei­

ved particular attention over the past two decades or so. This is due 

to the fact that they arise in a natural way in a large number of physi­

cal problems and in many cases possess special types of solutions which 

may be of great practical use. 

Our interest in the present work is in the numerical study of one 

such evolution equation known as Korteweg-deVries (KdV) equation 

o. ( 1 ) 

This equation and its generalizations playa major role in the study of 

nonlinear dispersive waves. Examples range from water waves and lattice 

waves to plasma waves [1]. 

The numerical solution of (1) has been the subject of many papers 

over the last few years. Zabusky and Kruskal were the first to study 

the KdV equation numerically through a leap-frog finite difference 

scheme [2]. Greig and Morris [3] proposed a Hopscotch finite difference 

method and compared it with the original scheme of Zabusky and Kruskal. 
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Fornberg and Whitham [4] used spectral methods for x-variable and leap­

frog in t. The finite element Galerkin schemes and its modifications 

have been used to solve the KdV equation by Alexander and Morris [5], 

Sanz-Serna and Christie [6], and Mitchell and Schoombie [7], among others. 

2. DETAILS OF THE PRESENT SCHEME AND 
COMPUTATIONAL RESULTS 

In this paper we present some numerical results obtained for the KdV 

equation through a finite element Galerkin scheme. For this purpose 

we approximate u(x,t) in (1) as follows: 

N-2 

u(x,t) U(x,t) L Ui (t) (jli (x), (2 ) 

i=2 

where 

( x-xo 
iJ h (xN - xo)/N, (jl -h- - , (3) (jli(x) 

(jl(x) (2+x)3, -2 < x < -1, 

1+3(1+x)+3(1+x)2_3 (1+x)3, -1 < x < 0, -
2 3 0 1, 1+3(1-x)+3(1-x) -3(1-x) , < x < - -

(2-x)3, < x < 2. (4 ) -
The function (jl(x) above is the basic or cardinal cubic spline function 

[a]. Here we have considered the range of interest of the x-variable 

from Xo to xN· Since (jl1(x) as well as (jlN_1(x) extend beyond this 

range, they have been omitted. 

Now if we choose the test functions in the standard Galerkin scheme 

[9] to be the same as the trial functions (jli(x), the problem of approxi­

mately solving (1) reduces to obtaining a solution for the following 

system of ordinary differential equations: 

dU i 
Aik dt + B. 'kU,U, + c. U. 

1 J. 1 J 1k 1 
0, 

where summation over repeated indices is implied and 

2 
d (jl l' rI •• k 

( _'"'1'_) 
--2-' dx . 
dx 

(5 ) 
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Here we have used the standard notation for the L2 inner product,viz., 

(f , g) f f ( x) g ( x) dx, 

and also used integration by parts in writing Cik . 

For a given initial value uo(x), the initial values of Ui(t) are 

obtained from the following: 

2,3, ... ,N-2. (6 ) 

Equations (5) are solved by using IMSL subroutine DREBS. 

In order to compare the results we define the following errors 

in the computed solution, U(x,T): 

L IU(x,T) - u(x,T)I, 

[ 
xN ] 1/2 
f (dx U ( x , T) - u ( x , T) ) 2 
Xo 

(7 ) 

where T is the time for which the solution is evolved and u(x,T) is 

the exact solution. For the comparison of different schemes, we use 

the same initial data and other parameters as used in the papers cited 

in the Introduction. 

Table gives the Loo and L2 errors in the present scheme and compares 

them with four other methods we have referred to previously. 

3. CONCLUSION 

It is seen from Table 1 that the L2 error in the Galerkin scheme used 

here is almost an order of magnitude less than that in the other schemes. 

L error 1s also found to be somewhat less. This can be attributed 
00 

to the use of smoother trial and test functions. We have used the 

smoothest functions of degree 3. Here we may point out that Alexander 

and Morris [5] used quintic boundary polynomials especially constructed 

to maintain C2-continuity in addition to cubic splines as trial and test 

functions. The use of these boundary functions does not appear to 

be strictly necessary in view of the fact that the solution goes to 

zero at the boundaries. In fact Table 1 shows that, if anything, 
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Table 1 

Comparison of Different Numerical Schemes for the KdV Equation 

Error x 10 3 

Zabusky-Kruskal Greig-Morris Alexander-Morris Sanz-Serna-Christic Present Nethod 
(q = 0)* ~Petrov-Galerkinl 

T 
L L2 L 

~ L2 
~ 

.0.5 t 63.5 122.7 67.4 122.4 

1.0 161. 4 296.2 141.6 226.1 

1.5 

2.0 

*q is a parameter used by Alexander-Morris. 

tAlexander-Morris L~ error is for T = 0.3956. 

L~ L 
~ L2 

57.0 51.9 102.5 

100.4 150.6 

L 
~ L2 

37.0 16.1 

52.7 24.7 

50.7 30 .. 4 

53.6 31.6 

lesser Loo error results if we omit these higher order boundary functions. 

Finally we note that the computation time Eor the above scheme was 

37 to 120 seconds Eor T = 0.5 to 2.0 seconds respectively. 
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K-dV Like Equations with Domain Wall Solutions 
and Their Hamiltonians 
Bishwajyoti Dey 

Institute of Physics, Bhubaneswar 751005, India 

We consider K-dV like equations with higher order nonlinearity and show 
that these have domain wall (kink) solutions for particular values 
of the coefficient of the nonlinear terms. The solutions are compared 
with the domain wall solutions of relativistic field theories. The 
exact Hamiltonian densities are also evaluated for these equations, 
using Dirac's constrained Hamiltonian formalism. The conservation of 
the Hamiltonians is explained in terms of the contribution of the corres­
ponding fields from spatial infinities. 

We consider certain nonlinear partial differential equations which 

are Korteweg-de Vries (K-dV) like equations with higher order nonlinea­

rity. These equations are [1,2] 

a,o >0; n 1,2,3, ... 

b,o > 0, 

which can be derived respectively from the Lagrangian density 

1.. 

and 

where u 

l8 8 + 2 x t 
a 

(n+1) (n+2) 

1 8 8 + l- b84 + l082 
2 x t 12 x 2 xx 

ab 

(2n+1) (2n+2) 

8x ' and the subscripts denote partial derivatives. 

(1 ) 

(2 ) 

( 3 ) 

(4 ) 

In order to look for travelling wave solutions we make the simple 

transformation 

x - ct (5 ) 
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where c is the velocity of the solitary waves. Integrating equations 

(1) and (2) we get respectively the domain wall solutions of these 

equations as [1,2] 

{ 
c(n+l}(n+2} }1/2 1 

.!2.I]l/n [ 1 ± tanh(c/6}2 for n = 1 ,3,5, ... 
2a 2 ' 

u(x,t} 

(6a) 

u(x,t} ±{ 

c(n+l} (n+2) }1/2 1 
.!2.I]l/n [ 1 ± tanh(c/6}2 for n=2, 4,6, ... 

2a 2 

for 
(6b) 

a (2n+l ) 
b 

c(n+l} (n+2}2 
(7 ) 

and 
1 1 

u(x,t} ±(3c/b)2 tanh[(c/26)2(s+k)]. (8 ) 

It can be noted that the solutions (equations (6)) of equation (1) 

resembles the solution of relativistic field theories with potential 

[ 3] 

(9 ) 

Similarly equation (8) (solutions of equation (2)) resemble the kink/ 
4 antikink solutions of A~ relativistic field theory. 

A conservation law associated with a K-dV like equation is expressed 

by an equation of the form 

o I ( 10) 

where T the conserved density and -X, the flux of T, are functions 

of u(x,t). The K-dV equation (b = 0 and n = 1 case of equation (1)) 

has infinite number of conservation laws associated with it. However 

for equation (1) we could write only first two conservation laws {see 

[1] for n = 1 and 2 cases} and we are currently trying to find other 

conservation laws (if any) which are not obvious. On the other hand, 

equation (2) is a more interesting case, as one can write many conser­

vation laws for this equation [1]. The third conservation law associated 

with K-dV type equations, usually describes the conservation of Hamil­

tonian. For example the Hamiltonian for equation (2) is conserved 

by the third conservation law associated with this equation. However 

for equation (1) we could not write the third conservation law. This 
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led us to investigate the Hamiltonian nature of this type of K-dV like 

equations. It may be noted that the Hamiltonian density for K-dV like 

equations is not obvious, as these belong to degenerate Lagrangian 

system [4]. There are constraints in the system and one has to use 

Dirac's theory of constraints [5], for evaluating the correct Hamiltonian 

density. 

Now to avoid higher derivatives in the Lagrangian we introduce a 

new field ~(x,t) and write the Lagrangian for equations (1) and (2) 

respectively as 

and 

a 
en+2 + 

(n+1)(n+2) x 

where as before u(x,t) e . x 

ab 

(2n+1) (2n+2) 
e 2n+2 

x 

( 1 1 ) 

( 12) 

Considering independent variations with respect to e(x,t) we get from 

equations (11) and (12) respectively 

o ( 13) 

and 

o ( 14) 

while independent variations with respect to ~(x,t) give for both 

equations (11) and (12) 

o. ( 15) 

Thus equations (13) and (14) together with u = ex and equation (15) 

gives equatio~s (1) and (2) respectively. The canonical momenta are 

1T = e 

o 

~ e 
2 x 

(16a) 

( 16b) 

Thus these are degenerate Lagrangian systemsas the canonical momenta 

for the field ~ is zero. So we use Dirac's theory [5] of constraints 

for evaluating the exact Hamiltonian density for these systems. The 

primary constraints 
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"" 0 

lie - 1e "" 0 2 x 

(where "" denotes weak inequality) satisfy the relations 

0, 

{C 1 (x), C2 (x')} 0, 

and 

(17a) 

( 17b) 

(18a) 

( 18b) 

(18c) 

where 6(x) denotes Dirac delta function. The symbol { , } denotes 

the Poisson bracket. The fields have their usual relationship 

6 (x-x') (19a) 

and 

6 (x-x'). ( 19b) 

Equations (18) show that the constraints are second class. The total 

Hamiltonian is defined as 

00 

f (~o + 1(1 ) dx J 

where the free part of the Hamiltonian density is given by 

'Ito 

and 

-;It 1 

11 e -f.. e t 

(20 ) 

(21 ) 

(22 ) 

where the Lagrange multipliers A and a have to be determined from 

the condition that the constraints are maintained in time, i.e., 

o. (23 ) 

This condition requires an extra constraint condition, which we denote 

by a secondary constraint X, and~l is thus modified as 

"1 (24 ) 
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where ~ is another Lagrange multiplier. The Lagrange multipliers 

are determined as [2], 

a 
ab 

- 68 J xxx (2n+1 ) 

for Lagrangian in equation (11) and 

a = (_ 1 b 8 3 + 68 ) "3 x xxx 

for Lagrangian in equation (12), and the multipliers 

and 

a xx 

8 xx 

(25 ) 

(26 ) 

(27 ) 

(28 ) 

The total Hamiltonian density is now obtained from equation (20) using 

equations (17), (21), (24)-(28) which when evaluated for the Lagrangions 

in equations (11) and (12) gives respectively, upto a surface term, 

a;J/T 
na 

__________ ~On+2 + 

2(n+1) (n+2) x 

nab 

(2n+1) (2n+2) 

n-1 2 + a8 n 8 -n (68 + na8 x 8 -
ljJ 5x xx x 3x 

where 8 3x denote 8 xxx ' etc., and 

1 b84 
TI x 

(29 ) 

(30 ) 

To check that the Hamiltonian densities obtained are correct ones, 

we obtain the field equations (1) and (2) using the Hamiltonian equations 

of motion 

~(x,t) ( 31 ) 
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Now to examine whether the Hamiltonian is a constant of motion it 

is sufficient to consider only the free (~) part of the total Hamilto­

nian density [5]. Thus the Hamiltonian H when expressed in:'rms of 

the original field u(x,t) gives for equation (1) 

H 

and for equation (2) 

H 

a 

(n+1) (n+2) 

n+2 
u ab ] u 2n+2 

(2n+1) (2n+2) 
(32 ) 

(33 ) 

It is known that for a system, represented by K-dV type equation 

ou + F"(u)u xxx x (34 ) 

which can be derived from the Lagrangian density 

(35 ) 

the Hamiltonian is given by 

H (36 ) 

The Hamiltoniam (32) and (33) for our systems (equations (1) and (2)) 

agree with equation (36). However it is to be noted that for describing 

the correct dynamics of the systems one has to use the total Hamiltonian 

density given by equations (29) and (30). 

Now, the Hamiltonian H is a constant of motion if 

dH 
dt o. 

For the Hamiltonian in equation (32) we get 

( 37) 

dH 
dt -f dx [1 n+1(o a(l+bun )unu ) + ab 2n+1(" ""(i1+T) au u 3x + x (2n+1) u uU 3x 

+ a(l+bun )unu ) - o2u u - aonu 3u n- 1 - aou u 
x x 4x x x xx 

- 2nabou 2n - 1u 3 - abou 2nu u ]. x x xx 
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Integrating by parts and using the fact that derivatives of u(x,t) are 

zero at spatial infinities (see equations (6)) we get 

dH 
dt 

2 2 

[ 
a 2n+2 a b 

= 2(n+1)2 u + (n+1) (2n+1) 
3n+2 

u + 4n+2 
u ]

00 

_00 

(38 ) 

which is not zero as the contribution from spatial infinities do not 

cancel, since the field configuration corresponding to equation (1) 

is asymmetric (equation (6)). Thus the Hamiltonian corresponding to 

equation (1) is not a constant of motion. This explains why we could 

not get more than first two conservation laws for this system. However, 

for the Hamiltonian (equation (33)) of equation (2) we get 

dH 
dt I dX(~ b2u 5ux - ~ bcu 3u 3x + 2bCUU~ + bcu 2ux uxx 

Integrating by parts and using the fact that derivatives of u(x,t) are 

zero at spatial infinities we get (see equation (8)) 

dH 
dt (39 ) 

which is zero, as 

(2) is antisymmetric. 

the field configuration corresponding to equation 

Thus the Hamiltonian corresponding to equation 

(2) is conserved. It should be noted that, this Hamiltonian is also 

conserved by virtue of the third (1) among the many conservation laws 

satisfied by equation (2). 

In case of relativistic field theories however such problem does 

not arise, where it can be shown by a simple calculation, that, if 

the Lagrangian does not contain explicit time dependence (as in equations 

(3) and (4)) then the Hamiltonian is conserved, even if the field con­

figuration is nonzero at spatial infinities (but its derivatives are 

zero) . 
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Lattice Solitons and Nonlinear Diatomic Models 

P.C. Dash 
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Bhubaneswar PIN 751003, India 

The Fermi-Pasta-U1am problem together with the explanation by Zabusky 
and Kruska1 can be rightly considered as the origin of lattice soli­
tons. This problem is reviewed in some detail along with a nice integ­
rable nonlinear lattice, the Toda lattice. The recurrence phenomenon 
in case of KdV system and FPU discrete limit is also discussed. Three 
diatomic nonlinear lattice models as well as their solutions are con­
sidered. These are the simplest cubic nonlinear model in continuum 
limit, diatomic Toda system and continuum model with nonlinear onsite 
potential at one of the mass points and harmonic potential at the other, 
connected by harmonic springs. 

1. ORIGIN OF LATTICE SOLITON 

Though solitary wave was first discovered in 1834, the present upsurge 

of interest in solitons is mainly due to the attempts made to explain 

a nonlinear lattice problem, the Fermi-Pasta-Ulam recurrence found from 

computer experiments in 1955. Its explanation by Zabusky and Kruskal 

signalled the birth of lattice solitons. I intend to discuss in some 

detail this recurrence phenomenon not only because it supplied a major 

impetus to the development of soliton-physics but also it combines past 

excitement with present vigour. 

2. FERMI-PASTA-ULAM PUZZLE 

The equation of motion for a chain of mass points interacting through 

a potential ~(r) can be written as 

(1 ) 

where the force.f( r) = -~, (r) and r n = y n+ 1 - Y n and dot represents der i­

vative with respect to time and prime stands for spatial differentia­

tion with respect to the argument. Linear lattice: ~ (r) = ~ y r2 
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so that 

{2 } 

Solutions of eq. {2} with fixed boundary conditions {for n 0, 

n = N+1, Yn = O} can be represented by 

with 

2/YTm 1,2, ••. ,N. 

Now one can introduce normal coordinates 

with 

w r 21YTm 

such that energy 

E 

{3a} 

{ 3b} 

{ 4a} 

{4b} 

{ 4c} 

The natural motion of the harmonic lattice can be expressed as a 

superposition of these normal modes. The energy of each normal mode 

remains always constant. It was widely believed that a mild nonlinearity 

should bring the system to a state of statistical equilibrium. To veri­

fy this widely believed conjecture Fermi, Pasta and Ulam [1] considered 

a chain of masses and varied their number from 16 to 64. The nonlinear 

potentials considered were 

<P{r} 1 2 + 1 3 
"2 yr "3 yar {5a} 

<P {r} 1 2 1 Byr 
4 

"2 yr; + "4 { 5b} 

1 2 I r I < d, 
<P{r} "2Y1r 

[, 2 
+ or I r I > d. "2Y2 r { 5c} 

Their aim was to obtain the energy distribution among the normal 

modes of the systems in the presence of weak nonlinearity and to deter­

mine the time of relaxation to equilibrium. The result they found 

from computer experiments was least expected: if the initial data assig-
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ned all the energy to the lowest mode, only a few modes were excited 

as time went on and almost all energy was eventually given back to 

the lowest mode (Recurrence phenomenon). The aftermath of this finding 

is really an exciting chapter in the history of soliton-physics. I 

shall briefly discuss the two serious consequences of FPU puzzle: 

(a) How to explain the recurrence? 

(b) what happens to statistical equilibrium? 

After FPU, extensive studies were carried out with the intention 

of verifying and explaining the recurrence phenomenon. The conclu­

sions are as follows [2]: Recurrence time 

(6a) 

with fixed boundary condition Yo o and 

Yn!t=O 
B sin(N71n ), y! 

n t=O 
o (6b) 

and tL is the linear period defined by 

1 

2N/(y/m)'. (6c) 

3. EXPLANATION OF RECURRENCE 

Zabusky in 1967 first showed that the continuum limit of FPU lattice 

was the Korteweg_de Vries (KdV) equation. This was a major breakthrough 

and signalled the birth of lattice solitons. It also became very use­

ful for providing an explanation to FPU recurrence. Subsequently, 

the continuum approximation to lattice problems are used in many con­

texts because (i) continuum approximation is easier for analytical 

as well as numerical study than its discrete counterpart; (ii) results 

can be conveniently related to the discrete version in many cases; 

continuum approximation is physically acceptable when wavelength is 

very large compared to spacing of particles in a lattice. To illustrate 

a continuum case I choose the following example which is not only the 

first historical model but contains alII the essential features of 

any nonlinear lattice problem in long wavelength limit. 

Let 

~ (r) (7 ) 
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then 

(8 ) 

In continuum approximation wavelength being large compared to spacing 

of particles, wave is very smooth so that one can make the following 

Taylor expansion: 

a 1 2 :\2v 
= y+h fl + -h .£.......L 

- aX 2 ax2 
+ •.• , 

where h is natural length of a spacing in lattice and y(x) 
2 nh. Substituting eq. (8) in (7) and keeping terms upto h 

where c h/YTm. 

For h '" 0, linear wave equation 

Keeping terms - h, 

(9 ) 

( 10) 

(lOa) 

(lOb) 

This is hyperbolic equation, whose solutions become discontinuous 
-1 

after a time -(ahyoc) where Yo is the maximum amplitude at t = 0 

(obtained numerically), that is, the solutions break down. Zabusky's 

conjecture is that this is not the solution in discrete case and hence 
2 not physical. So, considering terms h, we have 

(10c) 

with E = 2ah. 

Let us consider waves travelling to the right: 

u - ~ ~ x - ct, T E*t and E* 
a~' 

1 
"2 EC 

that a a a E* a - c a so ax - ~' at - at ~. 
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Noweq. (10c) takes the following form, 

0, ( 11 ) 

with 11 h/24a. 

This is the Kortweg de Vries equation as obtained by Zabusky. It 

will not be out of place to mention that even when the potential is 

of exponential type, the continuum limit of the discrete case is also 

the KdV equation (Toda). 

Recurrence phenomenon is now known to be due to the motion of soli­

tons which carry energy but the first explanation in this line was 

advanced by Zabusky and Kruskal [4] using the continuum version of 

the lattice equation of motion (11). FPU considered the initial condi­

tion 

Ynlt=o B sin1Tn 
N 

O. 

From (4a) the corresponding normal coordinate 

2 
N+1 

N 
B sl'n1Tn ,1Tr B~ 1: N slnN+1n = u1r· 

n=l 

(12a) 

(12b) 

( 13) 

From (12b) there is no initial kinetic energy, so total energy from 

(4c) 

E 

~Bw~ (lowest mode is only excited). 

Equation (12a) represents a sine-wave which remains confined in the 

lattice. This can be thought of as a stationary wave which can be 

approximated,by the superposition of two progressive waves of half 

amplitude: 

( 14) 

Writing ~ = nh = x, T ~ Ect, u = ay/a~ and considering a cyclic 

lattice of 2N particles one can find in the continuum limit 

( 15) 
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with boundary condition 

u(x) 

where A 
o 

u(x+2) 

Bn/2. 

4. RECURRENCE IN KdV CONTINUUM 

KdV equation (11) has a solution (soliton) 

u 
2 

Uoo + a sech S(s - c,) 

where u and a are constants (a > 0) , 

c a 
u 00 + "3 and S = ,.&7TT 11· 

(16 ) 

(17 ) 

Further with KdV equation (11) is associated an eigenvalue equation 

lcp 
611-- + (A- U)cp 

a( 
o ( 18) 

where U = -u, such that if u develops in time as in KdV, then A is 

independent of time. Equation (18) is analogous to a Schrodinger eigen­

value equation with 02 , the Planck's constant being replaced by 1211. 

As A is independent of time we can use ul T=O = 0 and find out eigen­

values which will remain same for all time. For a single soliton 

A = u 
a 

- "2 and c = constant - ~ A. (19a, b) 

For different eigenvalues, different 'a' values can be obtained and 

so, each eigenvalue of eq. (18) is associated with a soliton. Now 

from eq. (15) expanding near the bottom of the potential-well 

U A + 1 A n 2s2 (20a) 
0 "2 o. 

and 

1 .; 1 211A n 2 (20b) An = - A + (n+2") 
0 0 

where n = 0,1,2, ... 

Using eq. (19b) the velocities of the solitons associated with An form 

.an arithmatic series with common difference 

( 21 ) 
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These are the solitons which move independently because actually these 

solitons travel, interact as they collide and pass through one another 

(here we neglect acceleration during interaction). When solitons move 

in the periodic region (length = 2), the same configuration of solitons 

as the initial one will come back again after a time interval 

2 
0.364/v\IAO 'R f1c 

when A 1, III 0.0222 
0 

40/n . 

Numerical experiment with the same values of Il and Ao gives 

30.4 
n 

(22) 

(23a) 

(23b) 

The discrepancy in between (23a) and (23b) may be ascribed to change 

in velocities during interaction. 

4.1 FPU Recurrence 

From numerical experiments Zabusky obtained the recurrence time for 

FPU lattices as 

(24a) 

(24b) 

using expressions ,= ~ €ct, € = 2ah, c = h/y/m, Ao = Bn/2 and 

Il = h/24a in eq. (22), theoretical estimate for FPU discrete case gives 

(25 ) 

The discrepancy between (25) and (24a) is still less. 

This gives a very good account of the recurrence phenomena in both 

discrete and continuum limit. 

4.2 Statistical Equilibrium 

Ford et ale and Saito et ale [2] advanced reasonable explanation to 

the problem of statistical equilibrium, energy sharing, ergodicity 

and the equipartition. It is now clear that there exists a critical 
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value a c of the coupling constant a which determines ergodicity. For 

a >ac ' the system will be stochastic and energy sharing would take 

place. If a <ac ' the recurrence phenomena may occur and one may find 

nonlinear normal modes which is a consequence of Kolmogorov, Arnold 

and Moser theorem. Here again as suggested by Ford a resonance relation 

exists: r nkwk = 0, nk being integers, all not equal to zero. When 

this condition is satisfied for small nonlinearity case there will be 

energy sharing, otherwise recurrence phenomena will occur. Further 

if the initial state is far from a normal mode the resonant nonlinear 

system exhibits rapid energy sharing and equipartition of energy is 

readily established. 

5. TODA LATTICE 

Previous sections give an account of the origin of lattice solitons 

but the most remarkable model for their study is the Toda monatomic chain. 

With the nearest neighbour interaction the Toda chain happens to be 

the only integrable nonlinear model [3]. Here the nearest neighbour 

interaction potential is given by 

4l(r) 
a -br b e + ar + const. (ab > 0) (26 ) 

and the equation of motion becomes 

( 27) 

where 

-br 
a(e n - 1) (28) 

or equivalently, 

(29 ) 

The exponential potential (26) includes the linear harmonic case when 

b ~ a and strongest nonlinear case of a system of hard spheres if b~oo. 

The equation of motion (27) or (29) admits exact M-pulse solutions 

whose form for M = 1 is given by 

(30) 

or with 
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(31 ) 

(m/b) log {1+exp[2(an+Bt+6)JL (32 ) 

1 

where B = (ab/m)2 sinha. (B/a) gives the speed and eq. (30) is the 

single pulse solution. The M-pulse solution can be obtained in closed 

analytic form and is represented assymptotically (for t ~ + 00) by 

with j 

H-: 
j J 

1 , 2 , ••• , 

2: 6~. 
j J 

22+ (m/ab)B· sech (a.n+B .t+6.) 
J J J J 

N and constants 6. are related by 
J 

This last expression represents conservation of momentum. 

(33 ) 

(34 ) 

These pulses move almost independently in the lattice. They emerge 

after collisions with same shapes and velocities. So they behave like 

particles and are called solitons or lattice solitons. Further it 

can be seen from eq. (32) that when the soliton moves in the lattice 

with a constant velocity it causes a contraction of the lattice. 

In addition to this M-soliton solution the Toda lattice admits a 

nonlinear periodic solution known as Cnoidal solution: 

2 2 n E (m/ab) (2kv) [dn {2('I - vt)K - k } J I ( 35) 

where K and E are elliptic integrals of the first and second kinds, and 

dn is an elliptic function (Jacobian). 

If the modulus k is small, k ~ 0, a cnoidal wave reduces to a sinu­

soidal wave, 

(36 ) 

w 2(ab/m) 1/2 sin(n/A) . (37 ) 

The cnoidal wave (eq. 35) can be written as 

00 2 2 
B sech {a(n-A~)-Bt} - 2BvJ (38 ) exp(-br n ) - (m/ab) [ 2: 

~=-oo 

with a nK/K I , B nKv/K I • 
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Equation (38) represents an infinite sequence of solitons at equal 

intervals A and shifted downwards. 

As a mathematical model for lattice-soliton Toda chain no doubt 

occupies a unique place but its applications in different fields (like 

wave propagation in nerve systems, ladder circuit, chemical reactions 

in atoms and molecules, and ecological systems) make it very important 

and interesting from physical point of view. 

6. NONLINEAR DIATOMIC MODELS 

Lattice solitons are extensively studied using monatomic models in both 

discrete and continuum limits. One of the applications of these studies 

is to explain certain important characteristics of structural phase 

transitions. As many of the solids undergoing displacive type phase 

transitions have a diatomic structure along (100) symmetry direction, 

the study of diatomic nonlinear models attracts much attention. Besides, 

some of these nonlinear diatomic lattices are very helpful in explaining 

nonlinear flow of heat in solids. 

In the literature mainly two types of models are available for non­

linear diatomic cases: one deals with nonlinear interactions between 

nearest neighbours [4-6) and the other with nonlinear onsite potentials 
connected by harmonic springs [7,8). Study of diatomic Toda chain [6) 

happens to be the first attempt in arriving at an exact solution to a 

discrete nonlinear diatomic model. Now it is becoming gradually clear 

that diatomic Toda chain represents a non integrable system [9). How­

ever, very recently non integrable rational billiard systems are found 

to be analytically tractable in terms of Fourier expansion [10) and 

so the earlier study of diatomic Toda chain with the help of Fourier 

series deserves some special mention. On the other hand, Buttner and 

Biltz [7) reported exact solutions to a lattice with nearest and a 

next nearest inte!action, having a nonlinear ~4 onsite potential. I 

wish to consider here the following three nonlinear lattices which 

will involve all the techniques and characteristics of the available 

models. 

6.1 A Continuum Diatomic Model of First Kind 

A large number of studies on diatomic models include nonlinear inter­

action between nearest neighbours. These are discussed in continuum 

or long wavelength limit using a procedure by which solutions can be 
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separated into optic and accoustic modes. The following nonlinear di­

atomic model is chosen to illustrate the main features of this type 

of lattices. Here we consider a chain of alternate mass points m1 and 

m2 connected by nonlinear springs, with potential energy, 

~(r) (39) 

and equation of motion for displacements Y1n and Y2n of atoms m1 and 

m2 of the n-th cell can be written as 

m1Y1n k 2 (Y2n - Y1n) + k 2 (Y2n-1 Y1n) + k 3 (Y2n - Y1n) 
2 

- k 3 (Y2n-1 
2 (40 ) - Y1n ) , 

m2Y2n -k2 (Y2n - Y1n+ 1 ) k 2 (Y2n Y1n) k 3 (Y2n -
2 - + Y1n+ 1 ) 

(41 ) 

To solve in the continuum limit the expansions used are 

Ypn ± 2hy' + 2h2y" ±! h 3y m + ... pn pn 3 pn (42) 

(43 ) 

Consideration of a harmonic lattice using these expansions suggests 

that a = 1, corresponds to accoustic mode and a = -m 1/m2 to optical 

case. Now substitution of equations (42,43) in (41) yields (with 

appropriate choice of variables), the following KdV equation for a=l: 

o . (44) 

Therefore in the accoustic region KdV type pulse solitons are obtained. 

Now for a = -M 1/M2 as in [4] we obtain travelling wave solutions of 

the form exp(±ie) whose amplitude satisfies the nonlinear Schrodinger 

equation: 

p p p 

+ --21(~ + -----2N ) IAI2A + 2w1 
w D2 v - 1 

q 

A o. (45 ) 

It describes the motion of the amplitude as nonlinear wave modulation. 
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6.2 Diatomic Toda Lattice 

Using the notations of Section 5 and putting constants a b , , 
equations of motion for diatomic Toda chain becomes [6] 

(46 ) 

We look for periodic solutions in the following form because this form 

exists in the harmonic limit as well as in the equal mass limit. 

L a. exp[i2TIj(vt + 2n)] 
j=-oo J " 

L b. exp[i2TIj(vt + 2~-' )]. 
j=-oo J 

(48) 

(49 ) 

Substituting expressions (48,49) in (47) and then integrating over 

a time period we get 

(50) 

where 

M i2TIv(m,+m2 ) L ja .a, . - i2TIV L ja.b, .e('-j) 
j=-oo J -J j=-oo J -J ( 5' ) 

N i2TIv(m,+m2 ) . L jb .b, . -i2TIV L jb .a, . e(j-'), 
J=-oo J -J j=-oo J -J 

(52 ) 

with e(j) m, exp(-i2TIj/,,) + m2 exp(i2TIj/,,). (53 ) 

Equation (50) can be solved for getting the coefficients of the Fourier 

expansion, so that 

a - 2 TIV 
o 

2 00 2n j 2 
4m,m2 sin ~ L ~ sin2TIj(vt + ~) 

" j=' '_q2j " 

00 i 
L ~ sin2TIj(vt + 2n-') 

j=' ,_q J " 

(54 ) 

• ( 55) 
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6.3 Henry and Oitma Diatomic Model 

Let us consider a diatomic chain of harmonically coupled nearest neigh­

bour atoms m, and m2 including a nonlinear ~4 potential on mass M,. 

The Hamiltonian is given by 

H 2' 2 ( u i-v i _,) + 2 y ( u i -v i) + V( u i ) 1 , 

(56 ) 

where u i ' vi are displacements of the two types of atom in the i-th 

unit cell. V(u i ) is the nonlinear onsite potential at lattice points 

with mass m1 • With the following prescription, equations of motion 

can be obtained in continuum limit in the displacive regime: 

u i -+ u(x,t) -+ u 

a 
vi -+ v(x + 2' t) 

a 
v i _, -+ v(x - 2' t) 

1: -+ 
i 

Jdx 
a 

(57 ) 

(58 ) 

(59) 

(a) If V = 0, the equations reduce to continuum equations of motion 

for a harmonic diatomic chain. 

(b) If V * 0, but instead is given by a ~4 nonlinear single site 

potential then the following three types of excitations are obtained 

as exact solution to the field eqs. (58) and (59). 

(i) Linearize'd periodic solutions 

Here 

V(u) (A, B > 0) (60 ) 

with potential minima at ±uo (= ±A/B). These linearized solutions 

are low energy phonons and represent oscillation of m1 atoms in one 

of the double well potential (±uo ) and oscillation of m2 atoms about 

±uo from their equilibrium position. 

208 



u (61 ) 

v (62 ) 

with the dispersion relation 

W~(ir 

(63) 

(ii) Solitary wave solutions (large amplitude solutions) 

Equations (61) and (62) represent low amplitude solutions. Besides, 

the field equations (58) and (59) represent large amplitude solutions 

also. v = u = iuo is the simplest large amplitude solutions with lowest 

energy. It is the ground state and is taken as the reference level. 

Other solutions are regarded as excitations above this level: 

+00 

E f 
-00 

dx 
a 

Seeking, now, solutions in the form u(x,t) 

s = x-ct equations (58) and (59) becomes 

f(s), v(x,t) g(s) with 

[ ~2 ::ll ::i } [ 
For c c ,where o· c lya2/4m2 

0 

2 1 

g(s) fo (s) , s = [co (m 1- m )]2 
2 

f 
0 

f 

av 
+ 2yf + at 

+ 2yf 

df 
I 

[c -2V( f) ]2 

l 

For a ~4 potential depending upon the values of the integration 

constant c equal displacement field solutions can be obtained in the 

form of a tanh-kink or a sech-pulse. 

(iii) Nonlinear periodic solutions 

For c = co' the displacement fields are not equal and solutions may 

become extended instead of localized. The exact solutions can be written 

as 
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f fo sin(ks), k 

g go sin(ks) + gl sin(3ks) 

with 

f 
o 

c 

(2y 
2 2 
~ )f /(2y 

4 0 

2y 1/2 
} w 

1 

ck [(2y)/(9m2 )]2 

The linearized periodic solutions are low energy phonons whereas 

these nonlinear periodic solutions are high energy phonons. For dis­

crete diatomic case, B~ttner and Biltz [7] found "periodon" solutions 

and the above nonlinear periodic solutions are shown to be the long 

wavelength (continuum) limit of these solutions. 

7. CONCLUSION 

In conclusion, it may be stressed that the history and development 

of the soliton concept is intimately connected with the studies on 

lattice solitons. Now it is known that further researches will help 

understand among other things, some unexplained facts in the field 

of ferro-electrics, conformational change in biological molecules and 

chopping phenomenon. However, some challenging areas of research in­

clude mono and diatomic nonlinear lattices in higher dimensions [11], 

scattering and destruction of solitons by impurities (thermal conduction 

[12]), onset of chaotic behaviour (that is, how solitons and chaos 

compete or compromise) [13], effect of perturbation on solitons and 

quantization (14]. 
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Recent Results in Toda Lattice 
Z. Popowicz 

Institute of Theoretical Physics, University of Wroclaw, 
ul. Cybulski ego 36, PL-50-205 Wroclaw, Poland 

It is shown how different generalizations of Toda lattice problems occur 
in the context of eighteenth and nineteenth century mathematics. A 
possible classification and applications of different generalitations 
of the Toda 1 a t tice are gi ven, with special a t ten tion to gauge theory. 

The topic of this paper will be the following system of equations 

where ~n = ~n(x,y) and nEZ, and its 

appear in the physics and mathematics. 

convenient to define the system (1) in 

e 
±k h nm m 

r r 
2e n + e n-l 

( 1 ) 

different generalizations which 

For our purpose, it will be 

a different manner as 

(2 ) 

(3 ) 

where rn ~n+l - ~n and h = hn(x,y) , n 

[-; 
for n = m 

for n = m±l (4 ) 

for rest 

and for x = y as 

9.....M 
dx n 

(5 ) 

(6 ) 

where Mn 

Equations (1-6) are known to the physicist as the Toda lattice. 

Toda defined equation (2) for x = y in 1967 [1,2] considering a one-
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dimensional lattice, which consisted of N particles of unit mass inter­

acting through the potential 

4> ( r ) -r 
e + r. (7 ) 

Toda considered such a potential because it admitted analytic solutions 

and it generalized the famous computer experiments of Fermi, Pasta 

and Ulam [3]. Fermi, Pasta and Ulam considered a finite number of pen­

dula arranged in a line interacting with their nearest neighbour via 

anharmonic forces. The system was started by displacing the end pen­

dulum with the other at rest. Soon all were moving but after a finite 

time, the initial situation recurred. This meant that the system was 

not ergodic. The same situation has been obtained for Toda lattice [4]. 

After introducing the Toda lattice its importance was quickly and 

widely recognized by physicists. It appears that the Toda lattice 

and its generalizations can describe different physical phenomena and 

are contained among the soliton equations. These facts have given a 

strong impetus for a deep investigation of these equations. 

Surprisingly, recently [5-8] it has been noted that the Toda lattice 

in the forms (1)-(6) has been "known" for the mathematicians of the 

eighteenth and nineteenth centuries. Here one should specify the meaning 

"known" and distinguish those mathematicians who used that system cons­

ciously [9] and those who were close to define it [10,11]. I do not 

define here the meaning of "known". It is the problem for the histo-

rians and philosophers, similar to the question "Did ancient Greek 

know the differential calculus?" On the other hand, I would like to 

apply the Toda lattice to the eighteenth and nineteenth century mathe­

matics using the ideas of Euler and Sylwester. 

First let us note that Euler solved the following linear differential 

equation 

g a 9 + b g, o 0 
(8 ) 

where g = g(x), a o ' bo are arbitrary functions of x, differentiable 

infinite times, and 

-~ ~ - dx' 
.. [ • ]2 g = g , . , (9 ) 

without using the series expansion of g. His method known now as the 

Euler method is based on the following trick. Let us write down 

equation (8) as 

g/g = b + a (~/g)-1 
o 0 

( 10) 
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Using equation (8) we can compute 

( 1 1 ) 

and similarly for 

b + a 
n n 

( 12) 

where the functions an' bn could be computed explicitly from (8), 

differentiating n times. Substituting (11 )-(12) into (10) we obtain 

(~ In g)-l 
dx 

a 
b + 0 

o b 1+ 

a 
n 

b n+ 1+ 
( 13) 

In this way, Euler was able to represent g as a continuous fraction 

[12], which is denoted by us by the use of the special notation in (13). 

On the other hand, the investigation of the convergence of the continuous 

fraction is equivalent to the investigation of the corresponding series. 

It may be that this was the reason why Euler stopped these investigations 

at this stage. Following the line proposed by Common and Roberts [8], 

let us apply the Euler method to the Riccati equation 

( 14) 

where Eo' Fo are given functions of t. In [8], the authors proved the 

following theorem. 

Theorem If gk-1 satisfies the Riccati equation for some Ek _ 1 ,Fk _ 1 , 

then gk ' defined by 

where Uo is an arbitrary constant and k 

equation for Ek , Fk if 

Mk Ek - 1 + Uo Fk _ 1 + u2 
0' 

Nk 
. -1 

(Fk - 1 + Uo )' MkMk -

Ek Nk + NkUo + Mk , 

Fk -Nk U o' 
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( 15) 

1,2, ... ,satisfies the Riccati 

( 16) 

(17 ) 

( 18) 

( 1 9 ) 



Note that the initial functions M1 and N1 are determined from the coeffi­

cients of the original Riccati equation (14) by using (16) and (17) 

with k = 1. If we eliminate the functions Ek , Fk and the coefficient 

Uo from (16-17), we obtain Mk , Nk satisfying the Toda equations (5-6), 

where now n = 2,3, .... In this way, we have obtained the solution of 

the Riccati equation (14) in the form of continuous fraction (15) which 

is constructed from the solutions of the Toda lattice. It is surprising 

that the "old is so new." 

Quite a different application of the Toda lattice, with reference 

to the nineteenth century mathematics, can be constructed using a work 

of Sylvester (11). Note that Sylvester is also well known for coining 

many new words or jargons in mathematics, for example, the persymmetric 

determinant. He defined it as the determinant which possesses the 

same elements on the perpendicular line to the main diagonal. For 

example, the persymmetric determinant of third order is defined by 

Assuming that 

Sylvester proved that 

and in the general case that 

Dn+1 (g)Dn- 1 (g). 

Putting 

DN+1 (g) 1 , 

(20 ) 

( 21 ) 

(22 ) 

(23 ) 

(24 ) 

for some N we obtain a complicated nonlinear differential equation for 

the function g. Probably, Sylvester would have fallen head over heels 

to know that equations (23) and (24) are equivalent with the finite 

one-dimensional Toda lattice with the free endpoints in the form (3). 

This connection can be easily seen due to the following correspondence. 

Let us rewrite the equation (3) for minus sign and for x = y = z as 
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a2 h1 
-2h 1+h 2 

e zz 

a2 h2 
-2h2+h 1+h 3 

e zz 

. 

a2 hN 
-2hN + h N_ 1 

e zz 

from which we obtain 

h1 dt h1 dt 
e D1 (e ) D1 (g) , 

h2 
a2 h 1 ·e 

2h h1 2 e e azz e zz 

Using equation (23) we obtain 

and by recurrence 

e 
h 

n 

(25) 

(26 ) 

(27 ) 

(28) 

h1 
(29 ) 

(30 ) 

(31 ) 

(32 ) 

for n = 3,4, ... ,N. In order to terminate this recurrence according 

to (27), we assume (24). Hence, we have established the above mentioned 

correspondence. 

Surprisingly the Toda lattice (2) where rn = ln fn can be seen in 

the book of Darboux [9). Darboux found the singular solutions of this 

lattice in the form 

-2 (n-a)(b-n)(x-y) , 

where a, b are arbitrary constants. 

(33 ) 

In this way, we showed that the different forms of the Toda lattice 

can be recovered in terms of the eighteenth and nineteenth century 

mathematics. Furthermore, from both physical and mathematical points 

of view, it is possible to generalize the Toda lattice in other ways 

also. We will try to introduce a possible classification of such 

generalized Toda lattices in the following. We call the one-dimensional 

system introduced by Toda as the standard Toda lattice, which has been 
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thoroughly investigated. We have three possibilities: finite, infinite 

and periodic Toda lattices. Out of these infinite and periodic Toda 

lattices are completely integrable Hamiltonian systems [13,14] and can 

be solved by the inverse scattering transformation [15] or by the Hirota 

method [16] or by the Backlund transformation [4]. The finite Toda 

lattice has been considered by Kostant [17] and by Olshanetsky and 

Perelomov [18]. 

One can also generalize the standard Toda lattice in one-dimensional 

space to the two-dimensional space-time [19,20]. This model corresponds 

to a non-trivial relativistic invariant model in field theory, the so­

called nonlinear Klein-Gordon equation and can be solved by the inverse 

scattering method [19] or by the Backlund transformation. Barbashov 

and Nesterenko in 1981 [21] showed that the relativistic string model 

in a space-time of constant curvature (de Sitter universe) is described 

by the system of equations 

CPxt 
eCP cos1/! - e-1/! , (34 ) 

1/!xt eCP sin 1/! (35 ) 

Interestingly, this system is equivalent with the N = 4 periodic two­

dimensional Toda lattice. Indeed as was shown by Fordy and Gibbons [20] 

that in this case the Toda lattice can be reduced to (34-35) if we make 
the substitution 

e 1 
'2 cP , 4> = (36 ) 

after rescaling the variables x and t. 

Veno and Takasaki generalized [22] the standard Toda lattice to the 

multidimensional case using the idea of Kadomtsev-Petviashvilli hierar­

chies [23]. Its algebraic structure and bilinearization in terms of 

the T function and some special solutions were investigated in detail 

in [24]. 

The fourth generalization is a purely theoretical approach where 

one generalizes the Toda lattice by including supersymmetry. Here, one 

can distinguish between the non-extended [25] or extended [26] super­

symmetric Toda lattice. 

In the next approach, one can utilize the connection, discovered 

by Bogoyavlensky [27], between the Toda lattice and simple Lie algebras. 
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It appears that for every simple Lie algebra one can associate a Toda 

lattice which bears the name of the Lie algebra. For example, the SU(N) 

one-dimensional finite, nonperiodic Toda lattice is exactly the standard 

finite, nonperiodic Toda lattice with the free endpoints. The standard 

periodic Toda lattice corresponds to contragradient Lie algebras. It 

appears that these equations have important applications in the gauge 

field theory, namely, in the construction of the spherically symmetrical 

instantons or monopoles [28-31]. Let me briefly present how one can 

recover the Toda lattice from the self-dual equation for the Yang-Mills 

field theory. The instantons are defined as the finite action self­

dual of the Yang-Mills field theory [32]. The monopoles are defined 

as the static solutions with finite energy of the self-dual Yang-Mills­

Higgs field assuming the so-called Bogomolny-Prasad-Sommerfeld limit 

[32]. Here the self-dual condition means that 

where 

F 
jJV 

a A 
jJ v 

FjJV' 

a A + [A ,A ], v jJ jJ v 

and A is a Lie algebra valued matrix function. 
jJ 

(37 ) 

(38 ) 

The self-dual conditions (37) are usually written down in the com­

plexified space-time. This is achieved by introducing new coordinates 

y 

y 

z 

z 

n- (x 2-ix3 ) 

n- (x 2+ix 3 ) 

in terms of which (39) takes the form 

F yz 

F + F 

F-­yz 

yy zz, 

0, 

o. 

(39 ) 

(40 ) 

(41 ) 

(42) 

Notice that due to the complexification of the space-time the gauge 

group is also complexified. Now let us consider the special ansatz 

[33] for Au' A_ assuming that u = y = z, u = y = z. 
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A 
u 

A 
u 

u 

E +(y exp[-E k B~BE + a ~ H), 
oEM 0 B 0 -0 u 0 0 

(43 ) 

E +(y exp[-E k B~BE+ + a ~ H ), 
oEM 0 BOO U 0 0 

(44 ) 



where Ya' Ya,$a' ~a are functions of z, z and E±a' Ma are the genera­

tors of the gauge group which we choose in the Cartan-Chevalle basis 

[34]. Hence they satisfy the following commutation relations 

(45 ) 

(46 ) 

Here M+ denotes the set of the simple roots of a given Lie algebra 

of a gauge group and kaa is the Cartan matrix. For the SU(N) gauge 

group it has the form (4) with finite n. Substituting (43-46) after 

equating the coefficients corresponding to the same generators we obtain 

exp(-~ kaa($a+~a)' 

exp(-~ kaa($a+~a». 

(47 ) 

(48 ) 

Equation (48) is the Toda lattice in the form (3) with the free endpoints. 

for the SU(N) gauge group. For different groups, we have different 

Cartan matrices and hence different Toda lattices. These equations 

can be solved by pure algebraic method [31,33,35] or for the classical 

semisimple gauge group by the non-auto Liouville-Backlund transformat­

ion [36]. This name follows from the fact that for the SU(2) gauge 

group, equation (48) reduces to the Liouville equation which possesses 

the non-auto Backlund transformation which transforms the solutions 

of the two-dimensional Laplace equation onto the Liouville equation. 

The Liouville-Backlund transformation transforms N-1 solutions of the 

two-dimensional Laplace equations onto the SU(N) Toda lattice. 

On the other hand, equations (41-42) can be solved in a different 

way. First, let us notice that equation (41) tells that the potentials 

Ay' Ay' Az ' Az are pure gauge. This means that 

A D- 1a D A- 5- 1 a-5 y y y y , (49 ) 

A D- 1a D A- --1 -
z z z D azD, (50 ) 

where D, 5 are arbitrary matrices. Introducing the new matrix R 

5- 1D equation (42) reduces to 

o. (51 ) 
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In the special case when z = z one can show [32] that equation (51) 

describes the monopole solutions for the Yang-Mills-Higgs field theory. 

Surprisingly if we now consider the following equation 

(52 ) 

where Rn is the matrix-valued function of y, y belonging to SL(N,C), 

then it can be considered as the lattice approximation of the equation 

(51) for z = z, what can be easily seen [37] using the Taylor expansion 

of 

In the special case when 

R 
n 

<jln 
e .1 

(53 ) 

(54) 

we obtain the equation (1) the Toda lattice. This generalization of 

the Toda lattice is known as the nonabelian Toda lattice. Perk and 

Capel [38] were the first to introduce this concept to physics. They 

showed that the correlation between x and y components of the spin 

in the inhomogenous X-Y model can be described by the one-dimensional 

nonabelian Toda lattice. The present author has shown that this one­

dimensional nonabelian Toda lattice can be considered as the lattice 

approximation of the chiral models [39]. This nonabelian infinite 

Toda lattice possesses the inverse scattering transformation as well 

as a Backlund transformation [37,39,40]. The multisoliton solutions 

for the periodic nonabelian Toda lattice can be obtained from the inverse 

scattering transformation [41] by the use of the so-called "soliton 

correlation matrix" [42]. 

In order to show the basic difference between abelian and nonabelian 

solutions of Toda lattice let us present a straightforward method [43] 

of constructing the solutions of Toda lattice in both cases. Let us 

define the Backlund transformation and the inverse scattering transfor­

mation [37] respectively as 

R- 1 a R - R,-l a R' 
n y n n-1 y n-1 

a {R,-l R - R,-l R } 
n n n-1 n-1 ' (55) 

a- R'R,-l - a-R R- 1 
y n n y n n 

1 {R'R - R' R- 1} 
a n n+1 n-1 n (56) 

where a is an arbitrary parameter, Rn and R~ are respectively the 

known and unknown solutions of equation (52), 
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a y ljJ(n) IjJ (n+ 1 ) -1 R (n)a R(n)ljJ(n), y 
( 57) 

a- ljJ(n) R- 1R 
n-1 IjJ (n-1 ) , (58) y n 

ljJ(n) -1 ljJ(n) a-(R- 1a R ) ljJ(n) R- 1a R a 1jJ( n), (59) a - Rn+ 1Rn - -
yy y n y n n y n y 

where equation (59) is obtained from (57) and (58) by differentiating 

(57) by ay and using (58). These formulae are obtained by the genera­

lization of the corresponding formulae in the abelian Toda lattice. 

Notice that in (57) and (58) the absence of the so-called spectral 

parameters. We can introduce these by scaling the matrix function 

(60 ) 

where ]1 and ]1' are quite arbitrary parameters. We are now ready to 

prove the following. 

Theorem: If Rand 
n 

ljJ(n) satisfy (52) and (57-59) respectively, then 

R' 
n 

-1 IjJ (n+ 1 ) , ( 61 ) 

where a is an arbitrary parameter, satisfies (52). The proof is ele­

mentary; it is enough to substitute (61) into (52) and use (57-58). 

In order to generate new solutions from (57-59), we should specify 

the seed solution Rn and then solve (57-59). First let us consider 

the abelian case for which we choose 

R 
n const. 1, 

then equations (57-59) read as 

a 1jJ( n) 
y 

a-- 1jJ( n) 
y 

a - 1jJ( n) 
yy 

1jJ( n+ 1 ) , 

1jJ( n-1 ) , 

IjJ (n). 

(62) 

(63) 

(64 ) 

(65) 

The system (63-65) is well known in physics because it is the special 

case of the telegraph equation. Kametake [44) studied this system 

in the context of the soliton solutions of the Toda lattice and the 

present author has shown [45) that the Kametake method is equivalent 

to the Bicklund transformation. Kametake showed that the base of the 

solutions of (63-65) can be chosen as 
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An exp ( AY + i y), (66) 

where A * 0 is an arbitrary constant. The one soliton solution is 

obtained from (61) where 

I/J(n) (67) 

and are reduced to the well-known one (anti) soliton solutions for 
the one-dimensional infinite Toda lattice for y = y. For the non­
abelian case we made the following choice of Rn for the SL(2,C) group 

R 
n 

[ -nS 

i 

1-inS 

detR 
n 1 , s E R, 

which satisfies the nonabelian Toda lattice. Indeed 

[
l-iS ~ 1 
s 1 +lS 

(68 ) 

(69 ) 

Substituting (68) and (69) into (57-59) one can quickly realize that 

these equations constitute a system of linear partial differential 

equations with constant coefficients. We can solve that system using 

its characteristic equation. In our case this equation is 

det [l-iS-]J ~ 1 
s 1+1S-]J 

2 ( ~ - ]J) 0, (70 ) 

and possesses a two-fold root only. According to the general theory 

of linear partial differential equations the solution can be represented 

as 

I/J .. (n) 
1, J 

.1. Y 
o 1 - 2 Ai y+ Ai 

(A .. (n)y + A .. (n)y+ A .. (n)~ 
1,J 1,J 1,J ( 71 ) 

where A1. are arbitrary constants and A~ ., k = 0,1,2, i,j = 1,2 are 
1, J 

coefficients which can be determined from the assumption that I/J(n) 

satisfies (57-58), from the fact that R~E SL(2,C) and from the boundary 

conditions. Let us compare the solutions (71) with (66). We see that 

they coincide if s = O. For s * 0 we obtain typical nonabelian solu­

tions. Similarly to the abelian case we can construct the linear com­

binations of (71). The matrix R~ obtained in this way I named in [43] 

as the nonabelian one (anti) solitons. 
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Let us return once more to the equations (1-6). From the soliton 

theory point of view this equation can be considered as the model of 

solitons in one discrete and in one or two continuous variables. One 

can ask whether it is possible to construct solitons in two discrete 
variables. Recently, Ablowitz et al. (46) considered the discretiza­

tion of the so-called "a" (DBAR) problem. They considered the finite­

differential analogue of the Schrodinger equation in the form 

~(n-1,m) + B(n,m)~(n,m) + A(n,m)~(n+1,m) = A~(n,m+1), (72) 

where (n,m) Ez2 and the "potentials" B, A-1 vanish sufficiently fast 

as nand/or m goes to infinity. Due to it they obtained the Toda lattice 

equation in two discrete variables and in one continuous as the compa­

tibility conditions between (72) and 

d 
dt ~(n,m) 

which reads as 

d 
dtA(n,m) 

d 
dtB(n,m) 

A -1 ~(n,m) + gO(n,m)~(n+1 ,m), 

IT A(n-j,m+j)/A(n-1-j,m+j), 
i=O 

B(n+1,m)go(n,m+1) - B(n,m)go(n,m), 

(73) 

(74) 

(75) 

(76 ) 

This is the next possible way of generalization of the Toda lattice. 

From (75-76) we recover the Toda lattice (5-6) by assuming that A and 

B do not depend on m. Recently, Ragnisco and the present author used 

in (47) the concept of Darboux transformation and obtained some new 

formulae for the solutions of the equation (75-76). Let us briefly 

demonstrate how it works. The concept of Darboux transformation can 

be applied for the explicit integration of linear evolution equations 

with scalar or matrix-valued coefficients. We define the Darboux trans­

formation for (75-76) by 

~(n,m) 
f(n,m) 

~(n,m) - f(n+1,m) ~(n+1,m) ( 77) 

B(n,m) f(n,m+1) f(n-1,m) 
B(n,m) - f(n+1,m+1) + f(n,m) (78) 

A(n,m) 
f ( n , m+ 1 )f ( n+ 2, m) 
f(n+1 ,m) f(n+1 ,m+1) A(n+1 ,m), (79 ) 

where f(n,m) is a particular solution of equations (72-73) with A = A1 . 
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To see that ~, A and B satisfy the equations (72-73) let us substitute 

the formula (77-79) to this equation and use the fact that f, A, B, 

satisfy (72-73) also. Notice that in the special case when we assume 

that A, B, ~ do not depend on m we recover the Darboux transformation 

for the Toda lattice (5-6). This Darboux transformation is different 

from the transformation in the paper of Matveev [48] because he used 

a different representation for the so-called L-A pair. Notice that 

the concept of Darboux transformation is similar to the concept of 

Backlund transformation. Indeed, from the knowledge of the Darboux 

transformation one can recover the Backlund transformation for the 

Toda lattice (5-6) assuming additionally that 

f(n) 
f (n+1 ) (80 ) 

where a is an arbitrary constant and ~'(n) and ~(n) are old and new 

solutions of the Toda lattice. To see this, it is enough to substitute 

(80) with (77) into (72-73) assuming that m dependence does not appear 

and equate the coefficient standing on the same ~(n). 

Concluding this brief review let us recapitulate what we considered 

here. Firstly, we considered the applications of the concept of the 

Toda lattice in the context of the eighteenth and nineteenth century 

mathematics. Secondly, we tried to classify the different generalizations 

of the Toda lattice which appear in mathematics and physics. We paid 

special attention to the application of Toda lattice to the gauge theory. 

However, our classification does not exhaust this subject and the scope 

of this paper does not allow us to consider other interesting generali­

zations of the Toda lattice. Interested readers may refer to the papers 

[49-53] where this problem is considered. 
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Construction of Exact Invariants for 
One- and Two-Dimensional Classical Systems 

R.S. Kaushal 

Department of Physics, Ramjas College, University of Delhi, 
Delhi 110007, India 

A general method to construct the invariants of both time independent 
and time dependent one- and two-dimensional classical system is outlined 
by complexifying the two dimensions. 

1 • INTRODUCTION 

If all possible constants of motion (briefly called invariants) of a 

dynamical system are known or can be constructed, then it becomes 

easier to study or to predict the behaviour of the system rather comp­

letely, and the system is said to be integrable [1]. Since there 

exists scarcity of integrable systems in contrast to nonintegrable 

systems, in recent years, there has been considerable interest in ex­

ploring the methods of construction of these invariants for both time­

dependent (TO) [2-12] and time independent (TID) systems [13-16,18]. 

These invariants play an important role in various disciplines, 

particularly in plasma physics, hydrodynamics, astrophysics, biophysics 

and in quantum field theory. In fact, nonlinear equations involving 

higher degrees of freedom can be reduced to quadrature from the know­

ledge of these invariants. Besides their mathematical usefulness in 

solving a problem, the physical interpretations of these invariants 

have not yet been found for most of the systems. The most-studied 

example [2-7] is that of one-dimensional TO harmonic oscillator. For 

this system, the Hamiltonian 

H 1 2 + 1 2(t) 2 "2 p "2 w q 

is not the constant of motion, and the invariant is found to be 

I 
1 2 2 
"2[~ + (pp - pq) ], 

p 

where p satisfies an auxiliary equation 

2 
p + W (t)p 
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(1 ) 

(2 ) 

(3) 



This is perhaps the only example for which some plausible physical 

interpretations of I have been sought. Eliezer and Gray [6] argue 

that I is equivalent to the angular momentum in a projected two­

dimensional plane in which the radial equation is given by the auxi­

liary Eq. (3). Takayama [6] relates I and subsequently the auxiliary 

Eq. (3) to the betatron oscillations about the equilibrium orbits. 

In the present talk, my main emphasis will be on the construction aspects 

of these invariants for one- and two-dimensional classical systems. 

2. ONE-DIMENSIONAL TD SYSTEMS 

After the work of Lewis [2] and Lewis and Riesenfeld [2] several other 

methods have been developed for the construction of invariants for one­

dimensional TD systems. Although most of these methods deal with the 

invariants upto second order in momenta (this is perhaps to maintain 

an analogy with the Hamiltonian of the system), the existence of higher 

order invariants cannot be ruled out. 

2.1 Second Order Invariants 

Various approaches used for the construction of second order invariants 

for the system 

L 
1 • 2 "2 q - V(q,t) 

can broadly be classified as 

(a) Ermakov approach as used by Ray and Reid [7]; 

(b) Lutzky's approach using Noether's theorem [5]; 

(c) Transformation group approach of Burgan et ale [3]; and 

(d) Dynamical Lie algebraic approach [4]. 

(4 ) 

While the approach (a) is more heuristic than the other three, it assumes 

the form of auxiliary equation in advance. The approaches (b) and 

(c) are rather involved and also used for solving a class of nonlinear 

differential equations [5,17]. The approach (d), based on the closure 

property of Lie algebra of phase-space function~ has relatively more 

transparent connection with the corresponding quantum systems. More 

general cases in which V depends on momentum and also being non-sepa­

rable can easily be dealt within this approach. 
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2.2 Higher Order Invariants 

Recently, we have carried out [9) the construction of invariants of 

third and fourth order in momen~a for the system (4), by assuming the 

form of I as 

I (5 ) 

where b. 's are the functions of q and t. The fact that I satisfies 
dI 1 
dt = 0, leads to a set of coupled partial differential equations 

o 

3 
ab 2 

+ 
ab 3 

aq at 

abO 
+ 

ab 1 
aq at 

b 4 

b 2 
av 
aq 

0, 

aV 
aq 

b 1 av 
aq 

(6 ) 

By method of elimination of the coefficients in (6) nonlinear differen­

tial equations in V (henceforth called 'potential' equations) can be 

obtained separately for third and fourth order invariants. Further 

assuming the separability of V in q and t variables, these potential 

equations are reduced to simpler forms. The system, 

(7 ) 

is found to be integrable and admits [9) a third order invariant of 

the form 

I 

Other integrable systems can be found by solving these potential 

equations. 

3. TWO-DIMENSIONAL SYSTEMS 

(8 ) 

Several methods have been developed [10-16) and applied to the study 

of two-dimensional systems. While the third and fourth order invariants 

in momenta are constructed [13) for TID systems, construction of 

invariants for TO systems beyond the second order seems to be not pur­

sued that vigorously. Here we outline a method which can uniformly 
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be used for the study of both TID and TD systems by complexifying [16] 

the two-dimensions. The method has not only led to some simplifications 

in the construction of invariants but also provided with several new 

integrable systems in two-dimensions. 

3.1 Time Independent Systems 

We consider a dynamical system described by the Lagrangian, 

L 
1 !. 

"2 z z - V( z ,z) 

with z z -2 aV 
az' z = aV 

-2 a z 

(9 ) 

We assume the second constant of motion (the first being the Hamiltonian 

itself for the TID case) upto fourth order in momenta in the form 

I a O + ai~i + 2T aij~i~j + 3T aijk~i~j~k + 4T aijkl~i~j~k~l' 

( 10) 

where i,j,k,l = 1,2 ; ~1 = z and ~2 = z and the coefficients a O' ai' 

a .. , a. 'k' and a. 'kl are functions of z and ~ only. These coefficients 
1J 1J 1J 

are symmetric with respect to any interchange of their indices. The 
dI -

fact that dt = 0, implies an expression in z, z which must vanish iden-

tically, viz., 

a ~ + a ~ ~ + a1'~1' + -2
1 a ~ ~ ~ O,isi i,jSiSj S ij,kSiSjSk 

O. ( 1 1 ) 

Now, after accounting for the proper symmetrisation of the coefficients, 

we obtain the following conditions on a ijkl , a ijk , a ij , a i and a O: 

aijkl,m + ajklm,i + aklmi,j + almij,k + amijk,l 0, (12a) 

aijk,l + ajkl,i + akli,j + alij,k 0, ( 12b) 

0, (12c) 
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a. 
1, j + a. 

J,i 
+ aijk~k 0, ( 12d) 

aO,i + a .. 
IJ ~j 0, (12e) 

a·C 
1 1 

O. ( 12 f) 

From these equations it can be seen that the coupling between the 

coefficients corresponding to even and odd powers of momenta in (10) 

does not arise. As a result, the number of equations to be solved 

simultaneously for the third and fourth order invariants is nine and 

twelve, respectively. To solve these equations we adopt the following 

procedure: 

(a) Equations which are free from potential terms in the set (12) are 

solved explicitly for the coefficients involved and with some 

arbitrary constants; 

(b) Equations involving the potential terms are reduced to a couple 

of 'potential' equations by method of elimination; 

(c) Most of the arbitrary constants which arise in the step (a), can 

be fixed either by solving or by rationalising these potential 

equations. 

(d) Using these values of the arbitrary constants, various coefficients 

in (10) can be determined which in turn provide the explicit struc­

ture of I. 

The method is successfully applied [15] to a large class of poten­

tials (including the Toda, Holt and Fokas potentials and also a class 

of Toda-type potentials) which admit the third order invariants. The 

potential equation corresponding to the fourth order invariants requires 

further investigation. 

3.2 Time-Dependent Systems 

If we restrict upto the third order invariants (a ijkl = 0), and the 

potential V and the coefficients a O' ai' a ij , a ijk in Eqs. (9) and 

(10) are allowed to depend explicitly on t, then the expression (11) 

takes the form, 

a a O a a i 1 • 1 
(a-t + a.~.) + (aO . +"""'---t + -2 a .. f,; . + -2 a .. ~ .)f,;. + 

1 1 ,1 aT: IJ J Jl J 1 

o. ( 13) 
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This expression, after accounting for the proper symmetrisation of 

the coefficients as before, will now yield [12) the following restric­

tions on a O' ai' a ij and a ijk : 

aijk,l + ajkl,i + akli,j + alij,k 

aa, 'k 
~ 

aij,k + ajk,i + aki,j + at 

0; 

0, ( 14a) 

o. (140 ) 

In contrary to the TID case, here the coupling between the coefficients 

corresponding to the even and odd powers of momenta in (10) does exist. 

Subsequently, the number of equations to be satisfied simultaneously 

for a given order of invariant is much more as compared to the corres­

ponding TID case. This complicates the construction of invariants 

for TD systems. Note that for the second order case (a ijk = 0), the 

set (14) reduces to ten equations whereas for the third order it provides 

fifteen equations. To solve these equations we follow the same procedure 

as described before. However, the aribtrary constants which arise in 

the step (a) now turn out to be the arbitrary functions of t and the 

same can be fixed in terms of potential parameters. 

Using the complexification method in the context of TD systems a 

large number of integrable systems which admit the second order invariants 

are found [11). Recently, Eqs. (14) are used [12) to obtain a third 

order invariant for a TD Henon-Heiles system, 

( 15) 

The invariant turns out to be 

I 

~here c 1, c 4 and BO are arbitrary real constants and a satisfies, 

a = -3a . 

A part of this work has been carried out in collaboration with 

Prof. K. C. Tripathy and Dr S. C. Mishra. 
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Nonlinear Chains and Kink-Impurity Interactions 

Bishwajyoti Dey 

Institute of Physics, Bhubaneswar 751005, India 

One-dimensional monatomic and diatomic chains with harmonic coupling 
between neighbouring sites and an on-site anharmonic potential V(~) = 
c~2n+2 + B~n+2 + A~2 + 0 are examined in the displacive limit, which 
serves as a model for a structural phase transition. It is shown that 
these systems admit kinks, nonlinear phonons and periodon solutions. 
The eigenfunctions of the small oscillations about the kink solutions 
are also obtained. This complete set of eigenfunctions has been used 
to investigate the influence of impurities on the amplitude kink for 
n = 1 case of the potential. The kink solution change near the impurity 
is evaluated with the help of linear perturbation theory. 

In recent years one-dimensional field theoretic models exhibiting soli­

tary-wave solutions (kink, solitons, non-linear phonons) have played 

an important role in condensed matter physics, as these provide a non­

perturbative approach to strongly anharmonic systems. These models 

have been used to describe many systems, especially those that undergo 

a structural phase transition. For example, the domain wall (kink) 

solutions of A~4 field theoretic models are identified with the central 

peak phenomena observed in ferroelectric crystals [1]. 

Here we consider a model of a one-dimensional lattice with harmonic 

coupling between neighbouring lattice sites and an on-site potential 

( 1 ) 

with adjustable non-linearity for n = 1,2,3, .... This potential has 

triply degenerate minima for even values of n and doubly degenerate 

minima for odd values of n, and for 

4AC with A, C > 0 and B < O. (2 ) 

This model describes a first-order structural phase transition at zero 

temperature. We consider the model Hamiltonian for the monatomic chain 

[2 ], 
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(2. • 2 
V (cp i) ) + 2. Cij(CPi 

2 (3 ) H l: mcp i + l: - cP j) I 

i 2 2 i, j 

where the on-site potential V (cp ) is given by equation ( 1 ) • The conti-

nuum limit is 

H (4 ) 

and the equation of motion is 

a (5 ) 

where a is lattice constant and CO' the velocity of sound. This 

equation can be readily integrated to give the kink and anti-kink solu­

tions as 

2- l/n (1 CPa ± tanh ¥) lin for n 1 ,3,5, ... 

±2- l/n CPO(l ± tanh ~~) lin; for n = 2,4,6, ... 

where CPa = (2A/B) lin; 2 2 2 
~O = m(C O - v )/2A. 

The solutions are stable and have finite energy. 

For the diatomic chain we take a model Hamiltonian 

(6a) 

(6b) 

where u i and vi are the displacements of masses Ml and M2 respectively, 

y is the harmonic force constant between neighbouring atoms and V(u) 

is the on-site potential represented by equation (1). The coupled 

equations of motion are given by 

(8a) 

(8b) 

The continuum limit of the Hamiltonian is 

H j ~x[~Mlu2 + ~M2v2 + y(u-v)2 + ~ ya2u'v' + V(u)] (9 ) 
-00 

and gives the coupled fields equations 
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dV 
+ 2yf + df 

+ 2yf 
] ' 

where u(x,t) = f(5); v(x,t) g(5) and 5 x - Ct. 

For a particular velocity 

we get kink and antikink solutions (M2 > M1 and D = 0) as 

uk(x,t) vk(x,t) 2- 1/ n Uo[1 ± tanh (~t )]1 /n for n 
k 

±2- 1/ n Uo[1 ± tanh(~~ )]l/n, for n 
k 

These solutions are also stable and have finite energy. 

( 10) 

( 1 1 ) 

1 ,3,5, ... 

( 12a) 

2,4,6, ... 

( 12b) 

For C * Co (equation (11)) we can obtain the nonlinear periodic 

solutions. For n = 1 case the solutions of equation (10) are [2], 

f(5) ';(1 + fO sink5) ( 1 3a) 

and 

g(5) ( 1 3b) 

where the amplitudes f O' gl and g2 are determined in terms of the 

parameters and k = (2Y/9M2C2 ) 1/2 The periodon solutions which solve 

the discrete equations of motion (equations (8)), can be expressed 

as (for n = 1 case of potential) 

(14a) 

( 1 4b) 

One can also obtain kink and antikink solutions for a model Hamiltonian 

generalised by including a single well on-site potential on the M2 

species of atoms [2]. 
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The eigenfunctions and eigenvalues of the small oscillations about 

the static kink solutions (equations (6)) is obtained from the equation 

[ 4 1 

o , ( 15) 

where 

A[n 2+ 1 - j(n+1 )(2n+1)sech 2 ~ + (n+1 )(n-1)tanh ~t 1. 
2 0 0 

( 16) 

The number of bound states is given by the relation [51 

nb = 0,1,2, ... < .l[n+1 -1711. 
n 

(17 ) 

Thus for n = 1, there are two bound states corresponding to nb = 0 

and 1. There is only one bound state for all other values of n. The 

eigenfunctions of the bound states are given in terms of the hyper­

geometric series F(a,b,lclp) as (K = nx/2s0) 

where 

and 

b 
m 

( 18) 

2(n+1)(n-1) ( 19) 
n(3n+2)-2(m+i) 

(3n+2) _ (m + 1) 
2n 2 . (20 ) 

The frequency of the bound states is given by 

1 J 2 - (m + 2) -

The continuum states are 

( .lik _ 1. k 1 1 . k F - 2 + 21 + 2 -y, - 21 + 
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(n+1)2(n-1)2 ] 

( -i )J 2 . (21 ) 
4 3n+2 ( + n ~ - m 

-K e 
K -K)' 

e +e 
(22) 



222 where k_ = k+ + 4 - 4/n and the frequency of the continuum states 

can be expressed in terms of the wave vector k+ as 

(23 ) 

For n = 1 case only the hypergeometric case can be terminated and the 

continuum states can be expressed in terms of hypergeometric functions. 

We use this complete set of states for n = 1 case of the potential 

to calculate the kink impurity interaction, using the linear perturba­

tion theory. 

The model Hamiltonian for kink-impurity interaction is taken as[6], 

H 

where 

V(x) 

00 

f~x[~m(tt)2 + ~mc~(~)2 + V(~) + ~V(x)~2], 
-00 

a.O(x-x ) p 

(24 ) 

(25 ) 

describes the short range kink-impurity interaction potential. The 

equation for ~(x,t) is 

-V(x)~ , (26 ) 

where the damping constant y describes phenomenologically the sto­

chastic character of kink motion between their collisions. The solution 

of equation (26) is given by 

~(x,t) ~K(x) + u(x,t) (27) 

where ~K(x) denotes the static kink solution (equation (6a)) and u(x,t) 

the fluctuation in ~K(x) due to its interaction with impurity. Subs­

tituting equation (27) in equation (26) we get the equation for u(x,t) 

as 

2 2 
mau mC2au+A(2-3sech2x )u+ vau 

at2 - 0 ax2 2t;O I at (28 ) 

Using linear perturbation theory, the fluctuation u(x,t) can be written 

in terms of the basis functions {¢} (equations (18) and (22), for 

n = 1) as [6], 
00 

(29 ) 

237 



Substituting equation (29) in equation (28) we obtain coupled equations 

for the coefficients {s} , the solutions of which determine u(x,t) 

completely and hence ~(x,t) in equation (27). The coefficients {S} 

is determined to be 

where 

A .. 
]] 

2 2 mw]. + A .. - Y 14m, 
]] 

2 2 
mWk - y 14m, for j 

fdx[V(x)III'1!III·) , 
-co ] ] 

for j 0, 1 

k 

x -x x -x 
(1 - tanh ~) sech 0 p 

2E;0 2E;0 
tanh 

0,1, k 

x -x o P 
2E;0 

(30 ) 

(31 a) 

( 31 b) 

( 31 c) 

(31 d) 

A (It') i Ci.m 4"'0 -----------------------------------------, (31e) 
x -x 

tanh2 0 p 
~ 

(31f ) 

Xo and xp denote the initial position of the kink and position of 

impurity respectively and w~ denote the frequency of the eigenstates 
] 

(equations (21) and (23), for n = 1). This solution u(x,t) can be 

used for calculating the kink-impurity binding (pinning) energy [6). 
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Part IV 

Statistical Mechanics and 
Quantum Aspects 



Quantum Solitons: An Overview * 
R. Rajaraman 

Centre for Theoretical Studies, Indian Institute of Science, 
Bangalore 560012, India 

The quantisation of the classical solutions of nonlinear field equations 
by semiclassical methods is explained. 

1. INTRODUCTION 

It is well known that nonlinear relativistic field equation permit 

localised classical solutions, called solitary waves and solitons. Here 

we discuss the relevance of such classical solutions to the corresponding 

quantum field theories and show how these solutions can be associated 

with quantum, extended, non-pertubrative-particle states. To obtain 

the quantum particle-states we quantise the classical static solutions. 

There is a variety of techniques for executing such quantisation. The 

idea of associating these classical soliton-solutions with particle 

states in the corresponding quantum theory comes from the fact that 

these classical solutions resemble extended particles, as these are 

localised (finite size) and have finite energy. However, this connection 

between the classical solution and the quantum particle is not trivial. 

For example, it is not correct to identify the extended classical solu­

tion with say, something like the wave function of the quantum particle. 

It should be noted that though the classical soliton solutions resemble 

particles, the concept of particles exists only in quantum field theory 

and not in classical field theory. In classical field theory, the fields 

are continuous c-number functions of space-time and these functions 

specify the s~ates of the classical system. The dynamics of these fields 

is governed by nonlinear partial differential field equations. In quantum 

field theory however, the fields are operator functions of space-time 

acting on vectors in a Hilbert space. The states of the quantum system 

are specified by vectors in that Hilbert space and not by the fields. 

In particular, 'particles' are special state-vectors of the quantum 

system. They are simultaneous eigenstates of the Hamiltonian and momen-

*Notes taken by Bishwajyoti Dey. 
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tum operators, with eigenvalues forming a discrete hyperboloid in the 

E-P space. Additional requirements are that the form-factors in these 

states should be localised to reflect their particle-nature. 

Thus we see that the classical solutions of field equations on the 

one hand, and the concept of a particle in the corresponding quantum 

field theories on the other are quite different entities. However the 

two entities are related. Certain properties of the quantum states, 

e.g., energy or form factors can be expanded in semiclassical series 

and the leading terms in these series are found to be related to the 

corresponding classical solutions. These relations between the two 

entities can be easily established by generalising to field theory 

certain concepts of quantum mechanics such as the correspondence prin­

ciple and the semiclassical expansion (which relate quantum levels to 

classical orbits). To develop this generalisation, we recall the analogy 

between objects in quantum mechanics and in quantum field theory. 

Consider a non-relativistic, unit mass particle in one dimension 

under the influence of a potential V(x). Classically, the particle is 

described by giving x as a function of time, and this is obtained by 

solving Newton's equation 

dV 
- dx (1 ) 

In quantum mechanics, the particle is described, not by giving the value 

of x, but of the wave function ~(x,t). x now becomes an operator which 

operates on the sJ;laceof all wave functions (Hilbert space). Similarly 

momentum p X is also an operator which satisfies 

[p,x) -Hi (2 ) 

where [,) denotes the commutator. The Hamiltonian which is also an 

operator is given in terms of the operators x and p by 

2 
H ~ + Vex). (3 ) 

The energy eigenstates ~n(x,t) obey the time independent Schrodinger 

equation 

(4 ) 

Now consider the theory of a scalar field governed by the Lagrangian 
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The analogue of x(t) in field theory is the field ~(x,t) which is 

classically obtained by solving the field equation. To quantise the 

system we consider the commutator 

[~(x,t), ~(y,t)l H'i.s (x - y), ( 5) 

where ~(x,t) is momentum conjugate to the field ~(x,t) and they both 

are operators. Corresponding to wave function ~(x,t) in quantum 

mechanics here we have ~[~(x,t)l whose square gives the probability 

of finding the field in the configuration ~(x,t). The energy eigen­

states are again determined by 

(6 ) 

where the Hamiltonian operator H is given by 

H 
.2 (V) 2 

fdx(1- + -~ + u[~l). (7 ) 

The lowest eigenstate I~o> is called the 'vacuum' of the quantum field 

theory and by a suitable choice one can make Eo 0 (and the momentum 

= 0) for the vacuum state. The Hamiltonian and momentum operators 

commute with each other, and a particle in quantum field theory corres­

ponds to a discrete hyperboloid in the spectrum, i.e., a family of 

simultaneous eigenvectors of the Hamiltonian and momentum operators, 

with eigenvalues E and P obeying 

(8 ) 

with fixed m. We are interested in the relationship of these particle­

states in quantum field theory to localised solutions of the classical 

field equation 

o~ + aU 
a~ 

o. (9 ) 

Now, recall the relation between quantum energy eigenstates deter­

mined by Eq. l4) and the static solution of Eq. (1). Let us consider 

a potential V(x) which has an absolute minimum at x = a, and a local 

minimum at x = c. Then clearly there is a classical static solution, 

x(t) a. 

It may be called the 'classical ground state' as it represents, the 

lowest-energy classical solution. Its energy is 

V(a) . ( 10) 
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A particle placed at the point x = a will stay there classically. In 

quantum theory such a state is not allowed. The uncertainty principle 

will not permit the particle to have both zero momentum and a fixed 

position. Consequently, even in the ground state, the particle will 

fluctuate around x = a leading to a ground state energy 

( 11 ) 

where ~o is the energy of zero-point motion. Furthermore, if the poten­

tial is harmonic (approximately) near x = a, one can make a Taylor 

series expansion of V(x) near x = a 

V(x) 

Then, for those wave functions that satisfy 

« 2 2 
w «(x-a) r = 3,4, ... (13 ) 

where < ••• > denotes expectation value, the effect of the anharmonic 

terms of V(x) will be small. For Xr sufficiently small, the potential 

will be dominantly that of a harmonic oscillator and the low-lyipg energy 

eigenstates whose spread is localised in the vicinity of x = a will 

have energies 

VIa) + (n + ~)hW + 0(\). ( 14 ) 

In particular the ground state energy is given by 

( 15) 

Note that the first term in the expansion (15) is just the energy VIa) 

of the classical solutions. Equation (15) represents the simplest 

relation between some quantum states and corresponding classical solu­

tion. Apart from this, the classical solution also gives other fea­

tures of the ground state wave function. For instance the position 

expectation value 

a + ( 16) 

The quantity on the r.h.s. is the classical solution whereas the l.h.s. 

is a property of the quantum ground state. 

Repeating the same procedure for the local minimum of the potential 

at x = c, we have a classical solution 

x(t) c. ( 17) 
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It has the classical energy 

V(c) , ( 18a) 

which is higher than V(a). This solution is interesting, as it is 

analogous to the classical static soliton in field theory. The solitons 

too are static solutions, but with higher energies than the classical 

vacua in the corresponding field theories. As before we can make a 

Taylor series expansion about x = c (local minimum) giving 

V(x) 
1 2 2 A) 3 A4 4 

V(c) + 2(w') (x-c) + 3T(x-c) + 4T(x-c) +. ( 18b) 

and if A~ (r=3,4, ... ) are sufficiently small, then the approximate 

harmonic oscillator states centred at x = c will have en€rgies 

E 
n v ( c) + w' (n' + ~) + 0 ( A~) 

and expectation values 

<x> c + 0 ( A~) • 

(18c) 

( l8d) 

Thus again we have a set of energy eigenstates whose energy is related 

to V(c), the classical energy of a static solution and whose <x> is 

related to the classical solution itself. 

However while deriving results in Eq.(18c,dl we ignored the effect 

of the deeper potential well at x = a. Actually the wave packets built 

in the potential well around x = c will tunnel into the well around 

x = a and vice versa. But, if the Ar and A~ are all small, the two 

minima x = a and x = c will be widely separated with a large potential 

barrier between them. Therefore, the tunneling will be small. Thus 

to any finite order in the weak coupling expansion, the set of levels 

around x = c can be considered separately from the set around x = a. 

In field theory on the other hand we have examples of both situations. 

The ones where such tunneling takes place, are associated with "ins­

tantons" and the ones where tunneling does not take place, are associated 

with "quantum solitons." The states built around most of the soliton 

solutions can be shown not to decay at all through tunneling. This is 

related to the non-zero topological index carried by these solutions, 

which effectively places an infinite energy barrier between them and 

the vacuum solutions. 

Now in order to generalise these ideas to field theory let us first 

consider a system with a large (but finite) number of degrees of freedom. 
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Let a bunch of unit-mass non-relativistic particles be collectively 

described by a cartesian coordinate x = (x 1 , .. x N) with a potential 

V(x 1 ... x N). Let x = a be a (local or absolute) minimum of V in the 

N-dimensional space. Then x(t) = a will be a stable static classical 

solution. Expanding V(x 1 , .. xN) around xi ai' 

V(x) 

1 a3v + 3T ( x . -a. ) (x . -a . ) (xk -ak ) [ a a a ] _ + ... . (1 9 ) 
• 1 1 J ] xi Xj xk x-a 

In the weak coupling limit we can construct a set of low lying states 

around x = a by diagonalising the matrix of second derivatives 

[a 2v/ax.ax.] by changing variables to some normal modes ~l'. Then 
1 J x=a 

in terms of ~i' the problem reduces to a set of oscillators of fre-

quencies wi' with wf, the eigenvalues of the matrix. The lowest-energy 

state constructed around x = a will have energy 

E o 
V(a) + 

N 1 
E 2hwi + higher order terms 

i=1 

and the higher excitations will be given by 

N 1 
V(a) + E (n. + 2)wi + higher order terms. 

i=1 1 

(20 ) 

( 21) 

These higher order terms are to be obtained by perturbation theory. 

As can be seen these results are the generalisation of the one-degree 

of freedom problem, with the set of eigenvalues (w.)2 of [a~/ax.ax.] 
1 1 J x=a 

replacing the single number w2 

2. QUANTI SAT ION OF SOLITON SOLUTIONS 

In field theory, instead of a finite number of degrees of freedom 

x 1 ' ... ,xN' we hav~ a continuous infinity of degrees of freedom ~(x), 

i.e., the value of ~ at each space point x. We consider the example 

of the sine-Gordon field ~(x,t) here. The action is 

s 
4 

!dt dx {~ (a~~a~ ~) + ~ (cos/~ ~ - 1). (22) 

Changing variables to 

x --> mx, t --> mt and I~ ~ --> ~ (23) 
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we get the Lagrangian in the standard form 

L T[cp 1 - v[cp 1 (24 ) 

as 

L = fdx[~(~)21 - fdx(~(cp,)2 + 1 - coscp) = T[cpl - V[cpl. (25) 

The stable static solutions of the field equation 

2 a cp(x,t) 

dt2 
aV[pl 

acp( x, t) 

are once again the minima of the potential, satisfying 

o cpU _ sincp 

These are given by 

(i) cp (x) 0, ±2n, ±4n, .•• 

( i i) cp 

(iii) cp = CPanstisol(x), 

where CPsol(x) 
(antisol) 

-1 +x = 4 tan (e-) 

(26 ) 

( 27) 

(28a) 

(28b) 

(28c) 

(29 ) 

(the ± sign describes soliton and antisoliton solutions respectively). 

In quantum field theory, as mentioned before, the field cp , n (the cp 
conjugate momentum) and the Hamiltonian are operators. The generali-

sation of the matrix of second derivative of V occurring in Eq. (19) 

is the operator (-a 2/ax2 + coscp) evaluated at cp(x) = cpo(x) which is any 

one of the solutions in Eq. (27). Its eigenvalues and eigenfunctions 

are given by the differential equation 

(30 ) 

where ni(x) are the orthonormal 'normal modes' of fluctuations around 

cpo(x). Thus in quantum theory (weak coupling approximation), one can 

construct a set of approximate harmonic-oscillator states, spread in 

field space around cpo(x). The energies of these states would be 

1 V[cpol + h E(n. + 2)wi + higher order terms 
i 1 

(31 ) 

246 



For the solution given by Eq. (28a) we have as the eigenvalue equation 

_a 2 
coscp) n i (x) a2 

(- + (- -2 + 1) ni (x) 
dx 2 cp=O ax 

The eigenvalues 2 k~ + are wi 1 

(33 ) 

The set of approximate harmonic oscillator states built around cp= 0 
have energies 

E 1 
= V[cp =0 1 + L, (n i + 2M i + higher order terms 

n i 1 
(34) 

(we have used the units ~ = c 1). The vacuum state has energy 

.l L (k~ 
1 

E E + 1) 2 + higher order terms. 
0 vac 2 ' 1 

1 

(35 ) 

The next excited state (one particle state) has energy 

(k 2 
1 

E1 E + + 1) 2 + higher order terms. 
0 1 

(36 ) 

E1 - Eo represents the energy of the single-quantum particle state. 

Its mass, in terms of the original parameters in (22), is 

mass m + O(A) ( 37) 

2 1 221 
(in terms of original variable (k +1)2 ~ (k +m )2, etc.). Similarly 

for the soliton solution in Eq. (28b) the eigenvalue equation is 

a2 
{- ---2 + coscp(x) }ni(x) 

ax sol 
(38 ) 

This equation is exactly solvable and has one discrete eigenvalue 

o (39a) 

followed by a continuum, 

2 (qN + 1) 

where ~N = 2nN + o(qN) 

One can now associate a set of energy levels around cp(x) 

,with energies 

V[m 1 + L,(n 1, + -21 )w1, + higher order terms. Tsol 
1 

(39b) 

CPsol(x) 

(40 ) 
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Of these, the lowest state has energy 

E V[~soll + ~ ~wi + higher order terms. 
1 

( 41 ) 

This is the basic soliton-particle state in quantum field theory. Higher 

states are soliton-plus-meson states. Together they form the soliton 

sector of states. Finally we make some comments: 

i) All we are doing is quantising small fluctuations about any given 

stable static classical solution, whether it be ~ = 0 or 

~ = ~sol(antisol)· 

ii) The method is 'semiclassical' but no less quantum mechanical than 

standard perturbation quantum field theory, which amounts to 

expanding about ~ = o. 

iii) The states in the soliton sector carry a nonzero topological quantum 

number 

Q 
1 
"2 f ~ dx 

dx 
(42 ) 

The associated current is 

(43 ) 

which is conserved, i.e., 

o (44 ) 

and gives rise to the quantum number 

Q (45 ) 

iv) The quantisation of time-dependent solutions can be carried out 

by extending the standard WKB method to field theory. 

v) The occurrence of 'ultraviolet' divergences in quantum field theory 

due to short-distance behaviour of products of field operators 
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is well known. It is removed by adding suitable 'counter terms' 

to the Hamiltonian. When this is done, ultraviolet divergences 

in the sum EW i over modes in expressions like (41), (40), (35), 

cancelout. i 



Fuller details and references are given in the reviews listed below: 

The method for quantising solitons was first developed systematically 

by 

R. F. Dashen, B. Hasslacher and A. Neveu, Phys. Rev. 010 (1974) 4130 

and independently by 

J. Goldstone and R. Jackiw, Phys. Rev. 011 (1975) 1486. 

The extension of W. K. B. method to field theory to quantise time­

dependent soliton solutions (such as the sine-Gordon breather solutions) 

was developed by 

R. F. Dashen, B. Hasslacher and A. Neveu, Phys. Rev. 011 (1975) 3424. 

A review of the above work and other developments is given in 

R. Rajaraman, Phys. Reports 21C (1975) 227. 
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Soliton Statistical Mechanics: 
Statistical Mechanics of the Quantum and 
Classical Integrable Models 

R.IC Bullough, D.J. Pilling, and J. Timonen * 
Department of Mathematics, U.M.I.S.T., P.O. Box 88, 
Manchester M601QD, United Kingdom 

It is shown how the Bethe Ansatz (BA) analysis for the quantum statis­
tical mechanics of the Nonlinear Schr~dinger Model generalises to the 
other quantum integrable models and to the classical statistical mecha­
nics of the classical integrable models. The bose-fermi equivalence 
of these models plays a fundamental role even at classical level. Two 
methods for calculating the quantum or classical free energies are 
developed: one generalises the BA method the other uses functional 
integral methods. The familia~ classical action-angle variables of 
the integrable models developed for the real line ~ are used throughout, 
but the crucial importance of periodic boundary conditions is recognized 
and these are imposed. Connections with the quantum inverse method 
for quantum integrable systems are established. The R-matrix and the 
Yang-Baxter relation playa fundamental role in the theory. The lec­
tures draw together the quantum BA method, the quantum inverse method, 
and the generalised BA and functional integral methods introduced more 
recently. 

1. INTRODUCTION TO THE CLASSICAL AND 
QUANTUM INTEGRABLE MODELS 

The simplest integrable model with real physical interest is probably 

the 'repulsive' nonlinear Schrodinger (NLS) model with equation of 

motion 

(1. 1 ) 

~ is a complex scalar field. This classical system is a Hamiltonian 

system with Hamiltonian 

H [~ ) r 2 2 
J [~ ~ * + c~ ~* )dx x x ( 1 .2) 

*On leave from Department of Physics, University of Jyvaskyla, 
SF-40100 Jyvaskyla, Finland 
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the parameter c is a real-valued coupling constant, and, for the 

'repulsive' NLS model, c > O. Evidently this is consistent with the 

repulsive character of the nonlinear self-potential c~2~*2, which 

is positive when c > O. 

By imposing the Poisson bracket 

{~(x,t), ~*(x',t)} ia (x - x') (1. 3) 

one finds that Hamilton's equation of motion 

( 1 .4) 

is exactly (1.1). There is now an obvious extension to a quantum 
t theory in which ~, ~* become operators ~,~ with commutation relation 

t 
[~(x,t), ~ (x' ,t) 1 a (x - x') ( 1 .5 ) 

and (1.4) becomes Heisenberg's equation of motion. For a well defined 

ground state of the quantum model ~, ~t must be placed in normal order: 

H[~l (1. 6) 

The 'hat' on H[~l indicates it is now an operator. 

We shall see that H[~l, (1.6), describes N bosons on a line with 

repulsive a-function interactions. Indeed there is evidently a number 
~ t ~ 

operator N = f~'~ dx which commutes with H. Moreover, since (1.1) 

is now 

t 2 
~xx - 2c~ ~ (1. 7) 

(in normal order) in second quantisation, there is the equivalent 

Schr6dinger problem in first quanti sat ion 

N 

{- \' a2 
L --2 + 2c L a ( Xi - x j) }'l' 

bj 

E'l' , ( 1 .8) 

i=l aX i 

and this displays the repulsive a-function interactions. The 'on 

a line' means that the model is a one space-dimensional model defined 

on (say) b::. x ::. d. The cases of most interest are b -+ -eo, d -+ +eo (i. e. , 

xE ~) with appropriate decaying boundary conditions, or periodic 
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1 1 boundary conditions of per iod L (say) on - "2L 2. x 2. "2L. The quantum 

model with periodic boundary conditions we have just described was 

the model of a pioneering paper in quantum statistical mechanics by 

Yang and Yang [1]. Their analysis was based on the quantum Bethe 

Ansatz (BA) method which we very briefly describe later. There is an 

ansatz for 'I' which solves (1.8) exactly [2]. However, the fact that 

a quantum model with a Schrodinger problem such as (1.8) is exactly 

solvable has much wider implications. The purpose of these lectures 

is to show how the Yangs' result for the free energy of this quantum 

model apparently generalises to all of the integrable models including 

the classical integrable models. 

The history of the classical integrable models is that they were 

first solved with q>, defined for x E JR, vanishing 'fast enough' at 

\x\ = 00. Typically, this is exponential decay at x = too [3]. However, 

we shall find that it is periodic boundary conditions, rather than 

these decaying boundary conditions, which playa fundamental role 

in the statistical mechanics. 

At first sight the 'attractive' classical NLS (c < 0) is more 

interesting than the repulsive case (c > 0); for the former has soliton 

solutions. For c = -1 the l-s01iton solution is 

q>(x,t) 
2n exp{-4i( e:2-n2 )t + 2ie: x + i/)} 

cosh [8ne: t - 2 n( x - x o )] 
( 1 .9) 

e:, n, /) and x are real free parameters and (for n > 0) decays 

as e- 2n \x\ as Ix \ ~ 00. However when c < 0 the quantum NLS has no 

lower bound to its ground state. Thus starting with the simpler cases 

we should first of all be concerned with the repulsive case of the 

quantum or classical NLS. 

Still, in a sense which becomes plain once we transform to action­

angle variabl~s (§2), the two NLS models are non-relativistic forms 

of two covariant models: the attractive NLS corresponds to the sine­

Gordon (s-G) model 

q> xx - q>tt ( 1. 10) 

the repulsive NLS to the sinh-Gordon (sinh-G) model 

m2 sinhq> . ( 1. 11 ) 
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The m's are "masses", so the units are such that ~ = c (= velocity 

of "light") = 1. The classical s-G has the kink and antikink solutions 

cp(x,t) = 4 tan- 1 exp{± m(x-Vt)'Y} ; ( 1. 12) 

y ~ (1 - V2 )-1/2. It also has the "breather" (bound kink-antikink 

pair) solutions 

cp(x,t) = 4 tan- 1 [tann sin{Ym(cosnllt-Vx)} sech{ym(sinnllx-Vt)}]. 

( 1. 13) 

These are the soliton solutions of the s-G model. Evidently the 

boundary conditions (b.c.s.) are now cp ~ 0 (mod 2n) 'fast enough' as 
Ixl ~ 00; and CPx ~ 0 fastenough. On the other hand the sinh-G, like 

the repulsive NLS has no soliton solutions. We shall find in conse­

quence that we can develop the statistical mechanics of sinh-G wholly 

in parallel with that of the repulsive NLS. 

Both the s-G and sinh-G are Hamiltonian: for s-G 

H[cpl -1f 1 2 2 1 2 2 Yo [2 11 Yo + 2 CPx + m (1 - coscp) ldx (1. 14) 

and 10 (the real valued coupling constant) > O. Then sinh-G is found 

by cp ~ i cp, Yo ~ - Yo. The bracket is 

{11(x,t), cp(x' ,t)} o(x - x') (1. 15) 

and (1.4) for s-G is 

y, -1 [ 2. 1 CPt = 011, I1t = Yo CPxx - m s1ncp (1. 16) 

1 1 

which is (1.10). The canonical transformation cp.... :r~ cp,11 ~ Yo-2 11 
2 -! ! 2 1 3 

means Yo appears only as -m Yo 2 sin ( y~ cp) = -m [cp - '6 Yo cp + ••• 1 in 

(1.16), so that yoscales the s-G nonlinearity just as c scales the 

NLS nonlinearity. However, cp is a real field for s-G and sinh-G, 

whilst it is complex for the two NLS models. 

It is plain too that sinh-G is a continuation of s-G as Yo ~ -Yo 
(and vice-versa) just as the NLS equations continue in c. We use 

this fact later. The places Yo = 0, c = 0 are exceptional: Yo = 0 

in sinh-G or s-G is the linear Klein-Gordon (K-G) model 

2 m cp ; (1. 17) 

c = 0 is the linear Schrodinger (LS) model 

(1. 18) 
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Evidently both linear models are still Hamiltonian (set Yo ~ 0 in 

(1.14)). Both are free-field models in an obvious sense. 

There are other integrable models of physical interest: the Landau­

Lifshitz model is 

H [ <p] 
1 
2" 

1 
2" 

00 

with J = diag(J 1 ,J2 ,J3 ), 0<J 1 <J2 <J 3 
and the bracket is 

Hamilton's equations (1.4) are 

S,t S x S + S x(J.S) . ,xx 

( 1. 19) 

S(x,t) 

(1. 20) 

( 1. 21 ) 

This model contains both the s-G and attractive NLS models as special 

cases [4,5]; the repulsive cases can also be found. In the isotropic 

case J 1 = J 2 = J 1 the model is the integrable Heisenberg ferromagnet 

[6,7] with equation of motion S = S x S ,t ,xx· 

As for the NLS models the classical s-G models (s-G and sinh-G) 

have extensions to quantum ~heories: the commutation relations are 

[n (x, t), <p ( x' , t) ] -i6(x - x') (1. 22) 

and the equations of motion ((1.10) and (1.11)) and the Hamiltonians 

((1.14)) must be placed in normal order. This cannot be done in practice 

until we define operators of annihilation and creation type from <po 

We develop such apparatus later. 

One of the, more remarkable properties of quantum s-G, evidently 

a massive boson problem, is its strict equivalence to the massive 

Thirring model (MTM), a massive fermion problem. "Equivalence" means 

equivalence of expectation values--especially the eigenspectrum [8]. 

The MTM is 

f dX[-i<pto 3<Px + mo<pt °1<P + 2go<p;<pi<p2<Pl] 

<p [ :~] I 6(x - x') , ( 1. 23) 
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in normal order: 

= 0, and 0 < g < 
0-

03' 01 are Pauli matrices. The free field has go 

00. In connection with the quantum spin-t XYZ-model 

H[cp] (1. 24) 

which has spin commutation relations [S~, S~] = iEasy S~Omn and reduces 

to the Landau-Lifshitz model in classical and continuum limit, one 

defines a coupling constant ~ [9] which relates [10] to go as ~ = 
cot- 1 (-tg ) [11]. The spin-tXYZ model (1.24) maps by Jordan-Wigner 

o 
transformation [14] and continuum limit to the MTM, and it then proves 

that for the MTM-quantum s-G equivalence iyo = n -~. So go = 0 is 

Yo = 4n in the quantum s-G model. Because s-G is covariant one finds 

a "bare" Yo renormalises to 

y" 
o 

(1. 25) 

Thus Yo = 4n is y~ = Sn, and it is at this value one finds there 

are no quantised breather states of quantum s-G [5]. Thus go = 0 

(free fermions) in the MTM corresponds to no quantised breathers of 

quantum s-G. Similarly Yo = 0 (free bosons) in the s-G corresponds 

to go = 00 in quantum MTM. This is the infinitely attractive massive 

fermion problem and compares with c = 00 in the repulsive NLS, which 

is the so-called 'impenetrable bose gas' [15]. 

Finally, for quantum sinh-G Yo < 0, and for Yo < 0 one would expect 

any related fermion model to be repulsive. In particular for -4n~0< 0 

and ~ = cot- 1 (-tgo ) we find 0> go> -00, repulsive, but on a different 

branch of ~(n <~ <3n/2) compared with that for the attractive MTM 

(n/2 < ~ < n). Korepin's repulsive MTM [13] with his different relation 

[11] between g and ~ has 0 >g >-n which means 4n<yo< Sn(n/2>~>0). 
o 1 0 

If however ~ = cot- (-tg ) then 4n < y < Sn means -<x> < go< 0, repulsive, o 0 

but on the branch of ~ connecting smoothly to the attractive case. 

Without further investigation it therefore seems that Korepin's repulsive 

MTM is not equi va'lent to quantum sinh-G case. We shall not explore 

the MTM-s-G equivalence in the repulsive regime any further here. We 

confine attention to quantum sinh-G which is still to be explored as 

an MTM. 

The renormalisation of Yo shown in (1.25) arises in connection 

with the renormalisation of mass m in the (relativistic) quantum s-G 

model [16]; it appeared first in the work of DHN [17] and necessarily 

appears in equivalent form in the BA theory of the MTM [10]. Evidently 

the corresponding result for quantum sinh-G is [lS,19] 
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1''' = l' [1 + l' /871]-1, 
o 0 0 

(1. 26) 

and in this case the only free particle model seems to be where 1'0=0 

(§5). Still we shall see that for quantum sinh-G with Yo > 0 there 

is still a description in terms of bosons and a second, equivalent, 

description in terms of fermions. Similarly, although quantum repul­

sive NLS is a boson model with commutation (1.5), it has an equivalent 

fermion description. It was this fermion description which was used 

in the work of [1] on the quantum statistical mechanics. 

These bose-fermi equivalent descriptions are equivalent. Thus 

in §5 we shall show how to follow out the work of [1] wholly in a 

boson description. This equivalence apparently depends on the fact 

that the classical integrable model are embedded in infinite dimensional 

Lie algebras. The simplest is an embedding in an "untwisted loop" 

algebra [20] 

. abcLc 
1 ( m+n m,n E ~ (1. 27) 

in which (abc are structure constants of a finite dimensional Lie 

algebra g, dimension dim g. All the classical models we have mentioned 

have the Lie algebra g = s~(2, cr) which has dim g = 3 and satisfies 

( 1. 28) 

If A E ~ and La E g, then the algebra of AmLa is isomorphic to (1.27). 

For dim g = 00 an algebra g~ (00) [21] or a larger algebra [22] replaces 

(1.27). Embedded in g~(oo) is the integrable Kadomtsev-Petviashvili 

equations in two space and one time dimensions (2+1 dimensions) [21,22]. 

In 2+1 dimensions much remains to be understood. But g~(oo) has both 

"bose" and "fermi" equivalent representations and g~(n) carries this 

down to 1+1 dimensions (one space and one time dimension). Perhaps 

still more important for present purposes is that the algebras (1.27) 

determine the,"integrability" of the models. The Kostant-Symes-Adler 

theorem [23] shows that an arbitrary loop algebra (1.27) induces a 

symplectic structure with infinite sets of quantities commuting under 

a Poisson bracket; it also yields hierarchies of classical integrable 

nonlinear evolution equations [23]. Evidently we are concerned with 

the classical integrability of the classical models and a quantum 

integrability of the quantum models. We look at the former from a 

wholly elementary point of view in §2 next. Later (in §4) we introduce 

the quantum R-matrix first recognized by the Leningrad school in their 
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work on the quantum inverse method [2,16,24,25]. The R-matrix allows 

us to define quantum integrability and Wadati and Akutsu [26] in their 

lectures show how it defines the integrability of their IRF models 

in two-dimensional classical statistical mechanics (2+0 dimensions). 

The loop algebras (1.27) extend to Kac-Moody-Lie algebras by inclusion 

of the centre commuting with all the elements of the algebra [20]. 

The quantum integrable models are embedded in such algebras [20]. 

De Vega [27] has established some particular connections between these 

algebras and corresponding algebras associated with the R-matrix(also 
see [25]). 

2 • CLASSICAL INTEGRABILITY 

We shall exploit both classical and quantum integrability of the integ­

rable models in the statistical mechanics of 1+1 dimensions we develop 

in these lectures. By classical integrability we shall mean 'complete 

integrability' in the sense of Liouvile-Arnold [28]. Recall that 

for a classical Hamiltonian system with a finite number of degrees 

of freedom N, that is N q-coordinates and N p-coordinates ({ p.,q.l =15 .. ), 
~ . J LJ 

the system is completely integrable when there are N independent first 

integrals I k , k = 1, ... ,N (say) which are in involution, that is commute 

under the bracket, {Ik,I~} = O. Then if the manifold of level lines 

Ik = const. is compact and connected Arnold [28] proves the motion 

lies on an N-dimensional torus. 

The simplest torus is a 1-dimensional torus, and the simplest 

integrable system is the 1-dimensional harmonic oscillator with H 

~p2 + ~w2q2 Since H = E, the energy, the 1-0 case is always integrable. 

The energy E defines the action w- 1 E =P and there is a canonical so­

called angle variable Q = wt + c. With H = wP{ Qt = wand Pt = 0 1 

are Hamilton's equations. Evidently p = -(2wP)' s}n Q, ~ = (2W- 1p)' 

cos Q. Note that the differential 1-forms dp = -w'(2P)-' dP sin Q 
1 1 1 1 1 1 

- w'(2P)' cos Q ~Q, and dq = W-'(2P)-' dP cos Q - W-'(2P)' sin Q dQ. 

Consequently the 2-form ID = dpl\dq = dPl\dQ and dID = O. This is just 

the condition for a canonical transformation [28]. One easily checks 

that {P,Q} = {~~ ~~ - ~~ ~~} = 1. This is the other way (invariance 

of the Poisson brackets) of looking at a canonical transformation. 
-1 1 2 1 2 2 -1 The check follows from P W [2 p + 2w q ], Q = tan (p/wq). 

It is easy to extend the theory to any number of oscillators and 

any corresponding number of degrees of freedom--in particular, by 

not being too searching about it, to a continuously infinite number 

257 



of degrees of freedom. This is just the situation for a field ~(x,t): 

there is a q-type coordinate ~ (x,t) for each label x, and a p-type 

coordinate rr(x,t) likewise; and x is not countable in any segment 

-b< x< d in JR. Thus, for the linear K-G model (1.17) with xEJR 

in particular, we expect an H 

00 

H fW (k)P(k) dk w(k) ( 2 . 1 ) 

"" 
and a Q ( k ), 0 < Q ( k) < 21T so tha t {p ( k) , Q ( k' )} .s (k-k'). 

In order to show this, note that under the complex Fourier trans­

form qfx,t)-+cp(k,t) (1.17) becomes 

- 2-
~tt + (w(k)) ~ o • (2.2) 

On the other hand, scaling ~, H -+ j[~cpt~t + ~(W(k))2~~*]dk, where 
co -co 00 

cp*(k) = cp(-k), while f(drrAd~)dx f(dcptAdcp*)dk and the bracket is 
-00 co -00 

{cpt(k),cp*(k')} = .s(k-k'). Then f(dcptA dcp*)dk 
co 1 -co 

f(dPAdQ)dk where a = (2w)-'(cpt + iwcp), a* = 

i 
-'P 

(2w)-'(~t - iwcp*); 
_00 2 

then P = lal ' Q = arg a. Thus (rr(x) ,~(x)) -+ (P(k) ,Q(k)) is canonical, 

while {P(k),Q(k')} = .s(k-k'), O<P(k)<oo, O<Q(k)< 21T, and 

00 00 

H f w ( k ) I a ( k ) I 2 dk f w(k)P(k) dk (2.3) 

-00 

which is (2.1). Notice that (2.3) is characteristic of a linear problem: 

the LS model (1.18) yields the same result with w(k) = k 2 . Notice 

too that the Fourier transform (rr(x),~(x)) -+ (cpt(k),cp(k)) is canonical. 

That the Fourier transform is canonical extends to the spectral 

transform which is also canonical [3,5,29,30]. Recall that the spectral 

(or scattering) transform is used to solve nonlinear models like sinh-G 

[3]. In light-cone coordinates, ~xt = m2 sinh ~ has the spectral 

transform [3,5] 

(2.4) 
-a/ax 

This eig~n-condition, with eigen- or spectral-parameter~, can be 

written tv = ~v. (The hat onI, indicates only that it is a (matrix) 

258 



differential operator). This eigen-condition is the basis of the 

inverse scattering, or inverse spectral, method for solving sinh-G. 

Combined with 

i sinh CP] [V1] 
- cosh cP v 2 [:~] ,t (2.5) 

1 
or Av = V,t one finds [3] that L,t [A, L] is 2 CPxt 1 m2 2 sinh cP' 
together with the isospectral condition ~,t = 0. 

The matrix operator L is self-adjoint and has only real ~igenvalues. 

These are dense on the real ~-axis. The spectral transform Lv = ~v 
maps cp(x) (at fixed t) to spectral data S = {a(k) ,b(k);k E:JR} and 

2 2 I a I - I b I = 1. From (2.5) one finds [5] 

a(k,t) 

arg b(k,t) 

in which w(k) 

a(k,O) 

w(k)t + o(k), (2.6) 

m2k- 1 is the dispersion relation of the linear K-G 

in light-cone coordinates. Surprisingly, in view of the nonlinearity 

of sinh-G, one can now prove [5], that H can be written in the form 

co 
H (2.7) 

with this w(k). One checks [ 5] that if P(k) = ('II k)-1 lnl a(k)1 ' 

constants of the motion, and Q(k) = arg b(k,t) then 

co co 

J{ 1 
d(2CPx) A d(~CP) } dx lco(dP AdQ) dk (2.8) 

-co 

and the transformation is canonical: P(k), Q(k) are action-angle 

variables, the phase space is ° 2. P(k)< co, 02. Q(k) <2'11 for each k, 

and {P(k),Q(k ' )} o(k - k'lo One includes the coupling constant 

by P(k) = (Yo'llk)~1 lnla(k) I when Yo* 1. 

A second constant of the motion for sinh-G in light cone coordi­

nates then proves to be 

co 

P 2 L k P(k) dk , (2.9) 

and covariant combination~ are H±P: these are interpreted as 
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H 

P (2.10) 

in laboratory coordinates. We have set k = (m,2/B~-2~) P(~)d~ = 

P'(k)dk, and m' = 2m. The mapping ~-+k is 2:1 since both -oo<~ <0 

and map to -oo<k<oo. On the other hand one checks that ~ J(dIl(x)/\ 

I 1 -1 1 -00 

d~(x))dx = _ {d(2Yo ~~(~))/\d(2~(~)} d~ when ~= x+t, n = x-to Then 

4~~n = m,2 sinh~ = ~xx - ~tt (using m' = 2m). rurther one finds y;, 

the coupling constant for the covariant problem is y; = 4yo ' More 

detail is given in [5]. 

Next, using 

1 
h(~) = 2(h' (~) + p' (~)), p(U = ~(h' (~) - p' (~)) (2.11 ) 

one 
Dropping the primes we thus have the somewhat remarkable results that 

00 00 

H[p] fW(k)P(k)dk p[p] = fkP(k)dk (2.12 ) 

The notation H[p], etc. indicates that these quantities are expressed 

in action-angle variables. Under the mapping ~ -+k, Q(~)-+ Q(k), and 

{P(k), Q(k')} = 6(k-k') with O~P(k)<oo, O~Q(k)< 21T. Thus H[p],etc. 

depend only on the action variables. 

In the same way one proves for the repulsive NLS that 

N[~ ] - f~*~ dx <+ N[p] = f P(k) dk 

00 

p[~] - f i~~~ dx<+ p[ p] fkP(k) dk 

00 

H[~] (eqn. ( 1 .2) ) +-> H [p] fW(k)P(k)dk (2.13 ) 

and w(k) = k 2 . The last is the energy of a free non-relativistic 
1 

particle of mass m = 2' a result consistent with the form of the quantum 

problem (1.7). These results for repulsive NLS indicate why that 

model can be thought of as a non-relativistic limit of the covariant 

s-G model. 

260 



However, the more remarkable feature of (2.12) and (2.13) is that 

these expressions are exactly those one would find respectively for 

the linear K-G and linear LS models. There is no actual incompatibility 

here since the results for the linear problems are found (essentially) 

by Fourier transform, those for the nonlinear problems are found by 

the spectral transform. They are both canonical transforms with dif­

ferent inverse transforms. Unfortunately the very real difference 

this represents becomes obscured once we embark on the statistical 

mechanics. For in the evaluation of the partition function Z for 

the free energy one expects to average over the action (and angle) 

variables. We therefore look at this problem next. 

3. CLASSICAL STATISTICAL MECHANICS 

For a classical 1 D- oscillator 

Z = f exp -SH[q](2n)-1 dpdq exp -SH[p](2n) dPdQ f -1 ( 3 • 1 ) 

the notation follows §2 so that 

H[q] H[p] wP . (3.2) 

Then indeed Z = (Sw)-l from the first expression and Z (Sw)-l from 

the second. Implicit is the Jacobian a(p,q)/a(p,Q) 1 for a canonical 

transformation. Then the two equal measures (2n)-l dpdq and (2n)-l dPdQ 

appeal to the fact that t= 1, h = 2n so (2n)-1 is h- 1 . 

In the case of a field ~(x,t) with running index x (§2) one evidently 

needs a continuous infinity of integrals placed in product form in 

the expressions for Z. This is a functional integral. The first 

expression for Z in (3.1) applies to any classical system with one 

degree of freedom and given H[q]. Generalising this to q""~:x,t), 

p"" IT(x,t) we thus get the functional integral 

Z f ID IT ID cp exp - SH [ cp ] (3.3) 

and H[cp] would be given, for example, by (1.14) in the case of s-G 

or its continuation in the case of sinh-G. We can then expect to 

write down the equivalent of the second form for Z in (3.1), namely 

Z f ID II exp -SH[p] (3.4) 
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where, now particularly for sinh-G, H[p) is given by (2.12). However, 

although (3.4) is to follow from (3.3) by canonical transformation 

we must still find the correct measure ID~ for the transformed integral. 

This proves to be [18) 

ID~ (3.5) 

and the normalisations on each element dPndQn are natural. The precise 

definitions of the Pn and Qn are given below (4.2), but Pn ~ P(k) 

(actually P(k)dk), Qn ~ Q(k) as N ~ 00. 

It is now easy to evaluate both (3.3) and (3.4) for the linear 

K-G equation. Some details are given in [5): one point is that as 

IDTIID~ is discretized to TIdTI d~ the natural measure factors (2 n )-1 
n n n 

must again appear with each dTInd~n' In this way the results for both 

(3.3) and (3.4) for linear K-G coincide [5) in 

-1 
- -6 ln ZKG (3.6) 

The parameter a is a lattice parameter which arises by writing the 

functional integrals for Z, as their definitions demand, as products 

of a finite number N+1 of integrals and taking the limit N ~ ex>. The 

system is therefore placed on a lattice with a finite number of indepen~ 

dent degrees of freedom N and ultimately the limits N~oo and a ~ 0 are 

to be taken. The lim a ~ 0 cannot be done in (3.6), but this is because 

of the physics. The classical statistical mechanics has ultra-violet 

divergences which can be removed (i.e. renormalised) only in the quantum 

theories. 

4. CLASSICAL STATISTICAL MECHANICS OF THE SINH-G MODEL 

Plainly we are now faced with a flifficulty. If we use (3.4) for Z with 

H[p) given by (2.12) we can only regain the classical K-G result (3.6)! 

In a quantum calculation (§§4 and 5) we would recognize this as a free­

field result. On the other hand we can actually use (3.3) directly in 

the classical cases even though H[~) describes a nonlinear system. The 

method is the transfer integral method (TIM) and appeals to periodic 

boundary conditions on ~[5,31). The calculation has been done for 

sinh-G [18), and the result of the classical analysis is the low-T 

asymptotic series 

262 



Lim FL- 1 
Ir+oo 

-1 
mB 

478935069186 t12 ] 
223 + ... + FKG ; ( 4 . 1 ) 

FKG is the classical free energy of the free K-G given by (3.6), and 
-1 -1 -1 T = temperature = B , t = (MB) and M = 8myo (Yo> 0), which would also 

be the mass of the kink or antikink in the s-G model. This result shows 

that the free energy of the classical sinh-G model is not FKG , and it 

becomes this only when Yo = O. A corollary is that for linear K-G the 

periodic b.c.s. of the TIM do not change the result (3.6) for FKG . In 

§3 periodic b.c.s. were not imposed for FKG . 

This linear result is misleading and does not extend to the non­

linear models. The error in simply using (2.12) in (3.4) is a failure 

to define with sufficient care a proper thermodynamic limit. An exactly 

equivalent problem arises in constructing an applicable form of the 

quantum inverse method where [24], by defining the Hamiltonian operator 

H = H -~ N on a finite interval L E m (~ is a chemical potential 
~ 

and N is the number operator of §1 and (4.6) below) the energy separation 

between the vacuum 10> and the minimum of H is rendered finite. 
~ 

The method is once again to impose periodic b.c.s. of period L. We 

sketch the argument later in this section and more details can be found in 

ref.[2,24-26].There we also show how the quantum inverse method is 

equivalent to the BA method. Lieb and Liniger [32] were perhaps the 

first deliberately to solve such a problem by imposing periodic b.c.s., 

but periodic b.c.s. lie at the heart of the BA method anyway [2]. 
- -1 Notice that this procedure ensures a finite particle density n = NL . 

We now see that we can expect to reach a proper classical or quantum 

thermodynamic limit of finite density by imposing periodic b.c.s. 

Conveniently the system is first placed on a lattice, spacing a, say, 

so that N particles in a period L under periodic b.c.s. mean (N+1)a 

= L. A proper thermodynamic limit is then lim NL- 1 = n > O. One 
1 N 1-+00 

such limit is evidently a- However for a fleld ~(x,t) we also 

need a -+ O. We shall see how this combination is achieved shortly. 

First we address the problem of periodic boundary conditions itself. 

The action-angle variables of §2 were all found for x E m with 

decaying boundary conditions at ± 00. Since L is now a priori infinite 

the particle density is zero. Evidently we need action-angle variables 

under periodic b.c.s. with period L < 00. 
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For the integrable systems it is natural to start with an integrable 

lattice with these b.c.s. Izergin and Korepin [33,34] have introduced 

integrable lattices reducing to s-G and sinh-G as a ~ O. We have 

found action-angle variables for these lattices [18,35,36] valid to 

O(L- 1 ). We sketch some results for sinh-G. 

With L 

H[p] 

(N+1)a we find 

n=-iN 

w(R )P 
n n 

+O(L- 1 ). (4.2) 

We find it convenient to carry both n = -iN and n = +iN in (11.2) and choose N 

even: the period is still (N+1)a = L. The Pn in (4.2) relate to the 

= P(R )(2nL- 1 + O(L-1))~ P(R)dR as 2nnL- 1 
n III! 

P(k), as L ~a>, through P n 

= k ~ k as L ~a>. Thus as 
n 

L~a>, (4.2) ~ j,w(k)P(k)dk providing the 

modes Rn properly fill the k-space as L 

The modes Rn are the allowed modes. The periodic b.c.s. restrict 

the allowed modes to those satisfying the integral equation [18,35] 

iN 
\' 6. (R ,R )P L c n m m 

(4.3) 

m=-iN,m*n 

The analysis determines the phase shifts 6.c and for classical sinh-G 

and repulsive NLS these are [18,35] 

(4.4) 
kw(k') - k' w(k) 

(with Yo > 0 and w(k) 

-2c(k - k' )-1 (4.5) 

respectively. For details we refer the reader to [35] where they 

are found by using classical Floquet theory on the integrable sinh-G 

and NLS lattices. Notice a does not appear, i.e. lim a ~ 0 is already 

taken. However, for a > 0 w(k) in (4.4) actually involves a and 

this will show itself in the free field contribution FKG to the free 

energy as (3.6) has already shown. 

To present the classical Floquet theory [5,18,35,36] here would 

divert from our main theme. Instead we attempt to motivate the all 

important result (4.3) by describing the corresponding approach in 
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the quantum inverse method. This allows us to bring together the 

quantum inverse and BA methods and this way we can relate both of these 

to our own work [5,18,36-38]. 

The quantum repulsive NLS model has played a fundamental role 

in the development of the quantum inverse method [2,24,25]. The sketch 

of the argument we give here is for that model and largely follows 

Korepin [39]. The Hamiltonian of the model is the normally ordered 

operator (1.6). The commutation relation is (1.5). Evidently 

(4.6) 

commute with H. The corresponding BA problem is (1.7) solved in [2,32] 

and used in [1]. 

First we need a remark about the classical NLS under periodic 

b.c.s. This is solved by introducing the monodromy matrix 

T(A) [ 
A(A) 

etA) 

B(A )] 

D(A) 
A E e (4.7) 

(say). For an integrable lattice ~ = ~n on distinct sites n spaced 

with lattice spacing a the spectral operator L, such that Lv = ~v, 
of §2 is replaced by L(nIA) such that vn+1 = L(nIA)vn and a Lax pair 

description can be found [24,25,35,39]. Under periodic b.c.s. ~n+N= 

~n so 

-iN 
II L(nIA) 

n=iN-1 
T(A) (4.8) 

which is ordered from n = ~N-1 to the right (and we again assume N 

even). For present purposes it is sufficient to assume that the relevant 

NLS lattice is integrable when a ~ O. Then to O(a2 ) 

while 

so that 

-1 
a 

xn 

f ~(x) 
x -1 

n 

-iy'c ~~] 
l+hAa 

dx 

(4.9) 

(4.10) 

(4.11 ) 
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It is now plain that the bracket condition (4.11) on the ~ induces 
n 

bracket relations on the elements of T(A). The Leningrad school intro-

duces the classical r-matrix r(A,~)(a 4 x 4 matrix for NLS) such that 

(4.12 ) 

As usual ® is Kronecker product: so T(A) ® T(~) is 4 x 4 and the 

right side is the usual matrix commutator. The left side is simply 

the corresponding matrix of Poisson brackets. For the repulsive NLS 

c [ ! o 
o 
1 
o 

o 
1 
o 
o 

rrn . (4.13 ) 

There are natural 8 x 8 matrices r12(A,~) = r(A,~) ® I and r23(A,~) 

= I ® r(A,~) (I = 12 is the 2 x 2 unit matrix). The 12 and 23 notation 

describes two of the three ways of embedding a 2-particle configuration 

space in a 3-particle space. Evidently there is r13(A,~) also and 

we find 

[ r 1 3 ( A, \)), r 23 ( ~, \))] + [r 1 2 ( A, ~), r 1 3 ( A, \))] + [r 1 2 ( A, ~) , r 23 ( ~, \)) ] =0 • 

(4.14 ) 

(4.14) is a statement on the scattering of three particles-namely that 

this breaks down to a product of two-particle scatterings. It is in 

fact the semi-classical limit of the Yang-Banter condition also intro­

duced by Wadati and Akutsu [26] in their contribution. 

The trace of the right side of (4.12) vanishes. So 

o ll(A) = TrT(A) . (4.15 ) 

Consequently ll(A) is a generator of classical Hamiltonians H with 

a continuous infinity of commuting constants {H,ll(A)} = 0 (the use 

of ll(A) = TrT('A) here should cause no confusion with the use of II 

for phase shift in what follows). The existence of the r-matrix satis­

fying (4.14) guarantees the existence of a Lax representation for 

the lattice if it applies exactly for that lattice, it guarantees 

a Lax representation for the field ~(x,t) derived from any lattice 

as a ~ 0, and it also guarantees the integrability of both in the 

spectral transform sense, and their complete integrability in the 

Liouville-Arnold sense. Thus (4.14) is a classical integrability 

condition. 
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Korepin's integrable NLS lattice is chosen to preserve the same 

r-matrix for both the lattice and its continuum limit. The lattice 

has 

(4.16 ) 

2 .!. • -1 
with Pn = [1+~cW~Wna ]2, {W~' Wm} = -1a 8 nm and {Wn,Wm} O. 

The transfer matrix L(nIA) satisfies 

{ L ( n I A ) ® L ( m III ) } = 8 nm [ L ( n I A) ® L ( m III ), r ( A , II )] , (4.17) 

-1 r(A,Il) = c(A-ll) IT1I (i.e. (4.13», and (4.17) implies (4.12) for 

T(A) defined by (4.8). 

This summarises the r-matrix theory of the classical integrable 

models epitomized by repulsive NLS. The generalisation to the quantum 

case and the quantum inverse method is now relatively straightforward: 

~~, ~n become operators ~~, ~n and 

-1 
8 a nm 

Then L(nIA) is the operator 

-ilCa~~l 
+ 0(a 2 ) . 

1+haA 

Define the ordered operator 

£(mIA) ... £(nIA) . 

The periodic b.c.s. mean T(m+N,n+NIA) T(m,nIA) so focus on 

for which 

is an operator. It can be shown that 

(4.18 ) 

( 4 • 19) 

(4.20 ) 

(4.21 ) 

(4.22 ) 

(4.23 ) 
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The matrix R(A'~) is a 4 x 4 c-number matrix 

(4.24 ) 

where 14 is the 4 x 4 unit matrix and ITTI is defined in (4.13). 

R(A,~) is the R-matrix and (4.23) are the commutation relations for 

the operator elements A(A), B(A), etc. of the monodromy matrix operator 

T(A). Evidently T(A) is the quantum form of (4.7) and (4.23) that 

of (4.12). The matrix R satisfies the Yang-Baxter relation 

(R(~,\i)®Il(I®R(A,\i))(R(A,~) ®1) (4.25 ) 

A solution of this relation (namely (4.24)) determines the commutation 

relations (4.23). From 

(4.26 ) 

and invariance of the trace of 4 x 4 matrices 

(4.27 ) 

Thus ~(A) is a generator of Hamiltonian operators Hand 

o . (4.28 ) 

The existence of R guarantees an (operator) Lax representation. Thus 

the Yang-Baxter relation (4.25) is a quantum integrability condition. 

For the present purposes the following results, which can be 

derived in the standard way(see for example ref.[2]),are what we need. 

First of all for the repulsive NLS model there are statesl{Ao};N>, 
J 

j = 1,2, ... , N such that 

(4.29a) 

(4.29b) 

(4.29c) 
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and these results correspond to (2.12). The operator B(v) is a raising 

operator and B(V)j{A .}jN> =j~{A .}j N+l> , so B(v) creates the eigen-
J ] 

states of (4.29). The eigenvalues in (4.29) are evidently the free 

field eigenvalues. However, the second result we need is that under 

the periodic b.c. only certain A' are allowed, namely those satisfying 
J 

-iN 

An 2nn L- 1 + L- 1 ~ ~(Am-An) 
m=,N-l,mtn 

(4.30 ) 

-1 
We can associate An and 2nnL simply to label An by n. However, 

for c = 0, ~ = 0, so we can identify An with allowed wave vectors 

kn . Then 

-iN 

\' ~(k,k ) L n m 
(4.31 ) 

m=iN-l,mtn 

with 

~ (k,k' ) - 2 tan- 1 [c/(k-k')] (4.32 ) 

(We note in passing a problem in maintaining the limits -~N ~n ~ >,N-l 
(v 

if the k n are allowed wave vectors(compare with(4.39) below)). 

The results (4.29) and (4.31) with (4.32) are exactly those found 

by the BA method also [2]. The BA method starts from (1.8), makes 

an ansatz for ~ which solves it exactly when (4.31) with (4.32) applies, 

and thus arrives at (4.29) for the eigenvalues. Thus the results 

(4.29) and (4.31) bring together these two otherwise different cal­

culational procedures. 

One can show that the result corresponding to (4.31) for sinh-G is 

(after writing exp A for A so that the new A is a rapidity) 

(4.33 ) 

where, 

~ (A, A' ) -i ln sinh(A-A'+i)l) 
sirih(A-A '-i).J) (4.34 ) 
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m1 is a partially renormalised mass [16,40], and ~ is the coupling 

constant (§1) related to Yo by ~ = n(l + (yo/8n)). However, since 

sinh-G is covariant it is necessary to fill a Dirac sea with particles: 

this dresses the "bare" particles and the result is finally (4.31) 

again [18,40] with 

11 (k, k' ) -1 [ = -2 tan (4.35 ) 

kw (k') -

where k = m sinh A, w(k) = m cosh A and y~ is given by (1.26). In 

this expression m is the fully renormalised mass [16,40] and can be 

identified with the physical m for sinh-G. 

The form (4.31) is therefore rather general and apparently applies 

whenever the classical H can be expressed in the form (4.2), that 

is in the forms of (2.12) and (2.13). However, we must still specify 
-1 the branches of the tan expressions for the various 11. We choose 

these in the first place to be the continuous branch running between 

l1(k,k') = -2n for k -+ to 11 (k,k') = 0 for k -+ +00 at fixed k'. 

When k = k', 11 = -n. We then indicate this particular choice of branch 

by writing l1f for 11 However, it 

of the 2-body S-matrix phase shift 

to reference [ 2] for quantum NLS) . 

vanish for k -+ +00 and for k -+ - 00. 

with this property: e (k)=l, k~O, 

is 

of 

The 

We 

evident that l1f is a form 

the chosen quantum model (refer 

true S-matrix phase shift should 

therefore define a phase shift 

(4.36 ) 

e (k)=O, k(0. 
singular at k = k'. However, for c -+ 0, yo-+ 0 

classical forms for NLS and sinh-G 

Evidently lib is 

then has the semi-

-2c/(k-k') (4.37) 

(4.38 ) 

respectively. These are precisely the expressions (4.5) and (4.4) 

for l1c found in the classical Floquet theoretical analysis [18,35]. 

The classical condition (4.3) for the allowed modes Kn found by 

classical Floquet theory, and the result (4.31) found by the quantum 

inverse method as sketched, or by the BA method as given in e.g. [2], 

now all become consistent if 11 in (4.3) is l1 f and 
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P = 1 
n K allowed 

n Pn = 0, Kn not allowed. (4.39 ) 



It is clear from (2.3) in §2 that P ~ p(R )(2TIL- 1+O(L- 1 )) ~ P(R)dR 
n n 

can be interpreted as a particle number in the mode Rn. Indeed compari-

son of (2.13), (4.6) and (4.29) confirms this view. Thus (4.39) is 

a fermion description. Thacker [2] shows by BA that choosing the 

smooth branch for 6 is equivalent to making a fermion description 

despite the bose character of the model. We can then intuit that 

6 b is a description in terms of bosons so that 

P 
n m 

n 
0, 1, 2, . . (4.40 ) 

Then Pn~ p(R)dR is the natural extension from this description in 

terms of bosons to a description in terms of classical Maxwell-Boltzmann 

(MB) particles. Accordingly, by using appropriate phase shifts 6 f , 

6 b or 6 c ' (4.3) generalises the BA or quantum inverse method condition 

(4.31) to descriptions in terms of fermions or bosons in the quantum 

case and then extends it to the classical case as well. 

5. QUANTUM STATISTICAL MECHANICS 

A fundamental object to consider is the quantum partition function Z: 

like the classical partition function (3.3) this will be a functional 

integral. We choose 

Z JIDII IDcp exp S[cp] (5.1 ) 

S [ cp] j d T U II ( x , 'r! cp ( x , 1) , 1 dx - H [ cp ] ] . 

o 
(5.2) 

Note that H[cp],II and cp are classical quantities: {II,cp} = o(x-x'). This 

form can be reached [5,41] by starting from the quantum mechanical 

Feynman propagator expressed in Hamiltonian form and performing the Wick 

rotation t ~-il followed by integration on 'time' 1 from 0 to B. Since 

the trace is required for Z, cp(x,O) runs to cp(x,O) as 1 ~ B Thus (5.1) 

is periodic in l·of period B. But cp(X,l) is also periodic in x, of 

period L, because of the thermodynamic limit. Thus (5.1) is defined 

on the space-time torus -!L~ x < !L; 0 < 1 ~ B(and 1 includes r-B ). 

If one notes thatJ~dl in (5.2) is really 't- 1 J~hdl and lets 11 ~ 0, 

one regains (3.3) [5] from (5.1) and (5.2). Thus for models like repul­

sive NLS and sinh-G which have no soliton solutions and have action-angle 

variables P(k), Q(k), k E ~ but no others, the quantum form of (3.4) 

will be 
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z f ID]J exp S [ p ] 

with the measure ID]J given by (3.5): 

8 
S[p] f d, [i f P(k)Q(k), ,dk - H[p] ] 

o 

(5.3) 

(5.4) 

and H[p] is given by forms like (2.12). We should stress again that 

all of these quantities are classical quantities. Moreover P(k), Q(k) 

and H[p] are all real. 

Now we can see that F 

more-or-less only when) 

_8- 1 ln Z is a real free energy when (and 

(5.5) 

in which mn is an integer. Since n = 1, h = 2TI as noted (§3), so (5.5) 

is Bohr semi-classical quantisation. If we set mn = 0,1,2, ..• (bosons) 

or mn 0,1 (fermions), then P n = 0,1,2, (bosons) or P n = 0,1 (fer~ 

mions). This is consistent with the results of the last section. Then 

from (5.3) and (5.4) 

Z f ID]J exp - 8H[p] , 

together with the quantisations Pn 
allowed modes 

k 
n 

m*n 

(5.6) 

0,1,2, .•. -or P n 0,1 and the 

(5.7) 

in the two cases. Equation (4.3) for classical MB particles now fits 

smoothly into this: (4.3) is (5.7) with ~c replacing ~b or ~f and 

Pm is the classical action variable. Notice that (5.6) for the quantum 

cases is formally equivalent to the classical (3.4). Note too that 

in (5.7) it is now convenient to let m,n run from -iN to fiN rather 

than to iN-l ~refer by (4.2». 

The functional integral (5.6) must keep the same value evaluated 

in terms of bosons or in terms of fermions. Before demonstrating 

this by an actual calculation, we first evaluate Z by the very different 

route pioneered by Yang and Yang [1]. Here a fermion description 

was used, so we shall differ from that work by making the equivalent 

analysis in terms of bosons. This calculation is reported [18,42] 

and Wadati [43] has done a similar calculation, but beyond this nothing 
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seems to have been done in boson description in either the BA or quan­

tum inverse methods. In particular the status of (5.7) is that it 

derives from the commutation relations (4.23) and the Yang-Baxter 

relations but then emerges in fermion description. We assume it 

generally true and proceed. The classical form (4.3) is proved rigorously 

in the classical case [5,18,35,36,44,45]. We handle both quantum 

repulsive NLS and quantum sinh-G together. 

Since P is a particle number in R , P L- 1 is a number density 
n -1 n_ 1 n -1 -1 

(of bosons) in R. Then P L ~ P(R)L (2nL + O(L ))~ p(k)dk 
n n -1 n 

(say), as L ~ 00; and p(k) = P(k)L . From (2.13), and guided by 

(4.29) for NLS or from (2.12) for sinh-G, we can then define energy, 

momentum, and number densities through 

lim EL- 1 
L~oo 

lim NL -1 _ 
L-+co 

n -I p(k)dk . 

lim PL- 1 
L-+co 

J kp(k)dk 

(5.8) 

2 2!. 
w(k) = (m +k )' for sinh-G upto Evidently w(k) = k 2 for NLS, while 

ultraviolet divergence corrections (§3). Notige that the independent 

variable is Rn which is assumed properly to fill the k-space with 

the vectors R as L ~ We can therefore set k = h(R) and can define 

a density of allowed states through dh/dR - 2nf(R). Then, dropping 

the tilda again as in (5.8), (5.7) b~comes 

dll (k, k ' ) 
2nf(k) 1 + f bdk p(k' )dk' (5.9) 

We then reach a second relation between f(k) and p(k) by defining 

a free energy F and minimising this: F = E - 8- 1s and we need an 

entropy S. 

Following Yang and Yang [1], but referring to bosons, the number 

of possible states in dk consistent with p and f is 

(L(p+f)dk) !/(Lpdk)! (Lfdk)! . (5.10) 

So after using Stirling's formula one finds an entropy per unit length 

f [(f+p)ln(f+p) - flnf - pln p] dk . ( 5 . 11 ) 
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We now minimise FL- l = (E - S-l S )L- l : SL- l is given by (5.11) and 

EL- l by (5.8). A condition for minimum FL- l is that the functional 

derivative C(FL- l )/cp = O. After a little manipulation one finds 

C(SL- l )/Cp= In{(f+p)p-l} - inf~k llb(k,k')ln{(f(k')+p(k'»/f(k'lkik' 

(5.12 ) 

since f relates to p through (5.9). Consequently the condition C(FL- l )/ 

cp = 0 becomes 

ln {( f+ p) p-l } - Bw(k) - 21i 
OOd f dkllb(k,k') In{ (f+p)f-l} dk' O. 

-00 

(5.13 ) 

It is therefore convenient to set 

(f+p)p-l = fp-l + 1 _ expSe:(k) (5.14 ) 

in which e:(k) are energies. These energies are allowed energies if, 

and only if, they satisfy (5.13), and this integral equation becomes 

e: (k) 1 
w (k) + 2nS 

00 

f dll b ( k , k') 1 n (1 _ e -B e: (k ' ) ) dk ' 
dk (5.15a) 

while e:(k) = e:(-k). From this result, and by using (5.9), we go on to 

show that the free energy FL- l per unit length is given by 

lim FL- l = (2nB)-1 
L-+oo 

00 

f dk ln (1 - e - B e: (k» I 

-00 

(5.15b) 

where the e:(k) are determined by (5.15a). The free-field results 

are (c=O for NLS, Yo = 0 for sinh-G) then just (5.15b) with e:(k)=W(k). 

It is now plain that these results (5.15) in boson form have the 

classical limit 

00 

e:(k) = w(k) + (2nB)-1 f ~k llc(k,k') In(Be:(k'))dk' 

Lim FL- l 
L -+00 

-00 

00 

(2 n B) -1 f dk ln ( S e: (k» . 

-00 

(5.16a) 

(5.16b) 

Yang and Yang (1) prove that the fermion form of (5.15) (equations 
-1 (5.19) below) iterates to yield an iterated expansion for FL for 

the quantum NLS model. There is a problem in iterating the classical 

form (5.16) for the NLS model (45), but no such problem arises for 
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the classical sinh-G model. Iteration of (5.16) in this case yields 

a sequence of integrals all of which can be done and the result is 

exactly the TIM result (4.1) [18]. Moreover, rather than take the 

classical limit of (5.15), one can derive (5.16) for classical MB 

particles. Hence the low temperature asymptotic result (4.1) confirms 

the consistency of all the calculations. 

We now convert (5.15) to its fermion form. Introduce a chemical 
-1 potential ~ at (5.12) by minimising the negative pressure -p = FL 

- ~ NL - 1 = (E - 8- 1 S - ~ N) L - 1; NL - 1 = n is given by (5.8) so that 

w(k) -+ w(k) - ~ in (5.15a) and ~ n adds to the right side of (5. 15b). 

From (4.57), in which t:.f is smooth, 

d dk t:. f (k, k') - 211 C ( k - k ') . (5.17l 

If one defines E(k) through 

(5.18) 

one then finds 

00 

w(k) - ~- (2118)-1 f ~t:.f(k,k' l1n(1+e- 8E(k' ))dk' 
-00 dk (5.1 9a) 

and 

00 

~n - (2118)-1 f In(1 + e- 8E (k'))dk' . (5.1 9b) 

-00 

Note that it is now t:. f which appears under the integral sign. For the 

NLS t:.(k,k') = t:.(k-k') and dt:./dk = -dt:./dk'. With this choice equations 

(5.19) are exactly the result derived in [1] by fermion description. 

It is now clear that the bose and fermi descriptions yield the same 

values for FL- 1 . 

However, for NLS in particular there are two interesting free 

particle limits. Since 

(5.20 ) 

and this -+ 0 for c -+ 00 and - 211c(k-k') for c -+ 0, C -+ 00 yields E(k) 

= k 2 _ ~, a gas of free fermions (and this is the 'impenetrable bose 

gas' [1,15]), while for c -+ 0, E(k) = w(k) - ~- 8- 1 In(1+e- 8E (k)) 

so E(k) = w(k) - ~, for a gas of free bosons. The free boson case 

follows directly from (5.15a) of course (once ~ is included). 
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In the case of sinh-G one sees from (4.3S) that, when Yo ~ 0, 

one again obtains a gas of free bosons. However since sin(y~/8)~ 

0, 1, 0 as Yo ~ 0, 8n/1S, 8n/7 there seems to be no free fermion limit. 

From (S.19) for both repulsive NLS and sinh-G one can examine 

the excitations above the quantum ground state by defining k = kF 

where E(±kF ) = 0 (note that E(-k) = E(k)). Then ~ = ~F is fixed 

by this condition also and E(k) > 0, Ikl >kF , while E (k) < 0, Ik!<kF . 

Thus for 8- 1 ~ 0 

+kF 
e:( k ) -w ( k) - ~F - (2 n 8) -1 f 

-kp 

-w(k) - ~F + (2n) 
-1 

(S. 21 ) 

The excitation energies E - Eo _ El above the ground state energy 

Eo correspond to lifting a particle to the state k above kF so creating 
- - p 

a hole at k h , I khl < k F : then [2] El = e: (kp ) - e:(kh )':'l Mo~~over, 

the ground state energy Eo can be calculated from EoL = I -FW(k)P(k)dk 
-1 -kF 

+ constant by solving (S.22). For at 8 = 0, (S.14) in the form 

fP- 1 = exp 8£ means that P(k) = 0, Ikl >kF and (S.9) then means that 

P satisfies 

2np(k) 1 + 
dt.f(k,k' ) 

dk P (k' )dk' (S. 22) 

for Ikl < kF . We should note however that this integral equation is 

for the bose particle density p(k): we discuss elsewhere how it relates 

to the fermion density used by Yang and Yang [1]. Otherwise the finite 

temperature results (S.19) evidently contain all of the quantum theory 
-1 of the models at 8 = T = 0 as we should expect. 

6. EQUIVALENT RESULTS FOR THE s-G MODEL 

The TIM result (4.1) for the low temperature expansion of FL- 1 for 

classical sinh-G has the continuation in Yo to -Yo which is (4.1) 

with Yo ~ -Yo i.e. t ~ -to The series in (4.1) becomes negative in 

every term, but FKG , independent of y , is unchanged. However in 

addition (4.1) now gains terms in e-l~t, e- 2/ t , •.. [36] which apparently 

come from the kinks and antikinks: the term in e- 1/ t is [36] 
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e - 1/ t [1 _ 28 t - S9 t 2 - 897 t 3 - 7S00S t 4 - ] 
128 1024 32768 .... 

(6.1 ) 

It would be natural to associate the series for s-G as arising from 

the classical breathers but sinh-G has no breathers and the series 

is the continuation from the series in (4.1). 

On the other hand, the whole of the classical MB analysis which 

leads to (S.16) for sinh-G has been generalised to classical s-G. 

The argument uses an H[p] which includes kink, anti-kink and K-G con­

tributions but not breather contributions [36]. 

However, it is known that in the quantum s-G [16] (or MTM [10]) 

filling the Dirac sea (using the modes Kn) dresses the system to quantum 

breather-like terms plus kink-antikink terms (cf. e.g. [19,37,38,46,47]). 

It has been shown that the classical limit of these quantum statistical 

mechanical integral equations for quantum s-G yields the classical 

continuation Yo~ -Yo of (4.1) [37,38,47]. The method of §S which 

leads to (S.lS) and (S.19) for quantum sinh-G and (S.16) for classical 

sinh-G we call [18,36] a 'generalised BA method'. The same metpod 

yields the quantum statistical mechanics of the s-G model [48]. So 

indeed does the functional integral method generalising (S.6) with 

(S.7). We return to calculate the functional integral (S.6) for 

quantum sinh-G in the next section. 

7. EVALUATION OF THE FUNCTIONAL INTEGRALS 
FOR CLASSICAL AND QUANTUM Z 

The classical Z for sinh-G or repulsive NLS is (3.4): it is important 

to notice that 

iN 

H[p] ~ W(Kn)P n ( 7 • 1 ) 

-iN 

in which W(K ) depends on Kn' while n 

K k ~ t>c(Kn,Km)Pm n n (7.2) 

m*n 

The functional integral (3.4) can be evaluated by iterating (7.2) 

in (7.1) and the result for F can be put in the form [18] 

277 



00 00 

(21TS)-1 f dk In(Sw(k)) - (21TS)-2 f dq[W(q)]-l f dk 

-00 -00 

x ~c(k,q)d(lnw(k))/dk + (21TS)-3 f dP[w(p)]-l fdq 
-00 -00 

x ~c(q'P)~q [[W(q)]-l fdk ~c(k,q)d(lnW(k))/dkJ 
-00 

+ .. 

2 

[fdk ~c(k,q)d(lnw(k))/dkJ 
-00 

(7.3) 

This is exactly the (formal) iteration of the classical free energy 

(5.16b) with energies €(k) given by the classical integral equation 

(5. 16a) ! 

For sinh-G the same iteration (or the iteration of the system 

(5.16)) yields the asymptotic series expression (4.1) for FL- l ; FKG 
is given by the first integral in (7.3). Similar work for the classical 

repulsive NLS is not possible beyond a formal iteration since (5.16a) 

does not iterate then [45]. Otherwise the classical functional integral 

and generalised BA methods come together. 

It is now plain that in the correpponding quantum analysis we 

use (5.6) with (5.7) and the quantisation Pn = 0,1 (fermion form) 

or Pn = 0,1, 2, ... (boson form). One readily finds that iteration 

of (5.7) through (5.6) with either of these quantisation conditions 

yields (5.19) (fermions) or (5.15) (bosons). Thus the functional 

integral methods derived from (5.3) and (5.4) in terms of action-angle 

variables reach, in either of these fashions, exactly the same results 

as the quantum forms of the generalised BA method described in §5. 

It is worth stressing that the functional integral method follows 

Feynman's original approach by using the classical action throughout: 

but the action-angle variables are used after canonical transformation, 

and a measure problem arises and is solved (for sinh-G, NLS [18] (and 

also for s-G [36])): the semiclassical quantisations which follow 

discretize the action variables and this is more-or-less necessary 

for a real quantum free energy F. All of the quantum mechanics created 

by normal ordering then rests in the periodicity conditions (5.7), 
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namely in the 2-body S-matrix phase shifts ~b or ~f. As noted in 

the theory presented in §5, ~f comes essentially from the commutation 

relations (4.23) of the quantum inverse method, therefore from the 

R-matrix, and so from the Yang-Baxter relations. We shall show how 

this can be done directly elsewhere [48]. The corresponding analysis 

for bosons has not been worked out yet (apparently). 

Now how different the final form of the functional integral is 

from Feynman's original form [49]. The classical action is used, 

but this is in Hamiltonian form, the trivial (Bohr) quantisation condi­

tions are imposed, so no time discretization is needed to evaluate 

the quantum functional integrals and the periodicity conditions carry 

the deeper quantum mechanics. 

It is now evident that this functional integral method extends 

to quantum and classical integrable models other than sinh-G and re­

pulsive NLS, namely to all of the integrable models. Bose-fermi equi­

valence plays a fundamental role even in the classical cases. We 

cite the case of classical s-G [36] as a non-trivial example of this 

extension: the results of the functional integral method coincide 

with those found by the generalised BA method described in §6. Results 

for the quantum s-G model seem to show a wholly similar measure of 

agreement [48]. 

Corresponding results for other integrable models (e.g. Landau­

Lifshitz, §1) are to be reported [50]. 
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Recent studies on exactly solvable models in statistical mechanics are 
reviewed. A brief summary of the quantum inverse scattering method is 
given to emphasize the soliton theoretic aspect of the theory. Intro­
ducing a class of lattice models called the IRF models, it is shown that 
there exists an infinite number of exactly solvable models in 2-dimen­
sional statistical mechanics. Significances both in physics and mathe­
matics are discussed. 

1. INTRODUCTION 

Twenty years have passed since the discovery of soliton [1]. Advances 

during the last two decades may be summarized as follows. 

(1) Ubiquity of soliton equations. Canonical soliton equations, such 

as the Korteweg-de Vries equation, the nonlinear Schrodinger equa­

tion and the sine-Gordon equation, appear in almost all branches 

of physics. 

(2) Systematic methods to solve soliton equations. The soliton equa­

tions can be solved by analytical methods such as the inverse scat­

tering method, the Backlund transformation and Hirota's method. 

(3) Universality of soliton picture. Soliton system as a completely 

integrable system includes solvable models in quantum field theory, 

quantum spin systems and statistical mechanics. 

In this lecture note we review our recent contribution to the theory 

of exactly solvable models in statistical mechanics [2-11]. By doing 

this as elementary as possible, we like to convey our finding that the 

extension of the soliton theory implied in (3) is surprisingly wide and 

deep. Before we proceed to the main theme, we briefly summarize the 
quantum inverse scattering method [12]. This way of writing may be help­

ful for readers to understandtrefundamental strategy of the theory. 
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An operator version of the auxiliary linear problem is 

0, ( 1.1) 

Here Q(x, A) and GL(x, A) are M x M matrix operators, and A is the spectral 

parameter. We assume the boundary conditions: 

(1. 2) 

where I is an identity operator and TL(A) is called the transition matrix. 

For later discussions, it is more transparent to formulate the quantum 

inverse scattering method (QISM hereafter) on lattice. The system size 

2L is divided into 2N intervals each of which has a length ~ = 2L/2N. 

The local transition matrix Ln(A) 

xn 
I - f 

xn-~ 

Q(x,A)dx (1. 3) 

describes the change of the Jost function matrix GL(X,A) over the n-th 

interval. In terms of the operator Ln(A), the transition matrix TL(A) 

is expressed as 

(1.4) 

For a quantum integrable system we can associate Ln(A) such that 

R(A,lJ)-[L (A) ® L (lJ)] n n (1. 5) 

where symbol ® denotes the direct product of the matrices. The c-number 

matrix R(A,lJ), of course, depends on the model. The relation (1.5) is 

referred as the (local) Yang-Baxter relation. If Ln(A)'S with different 

n commute, we further have 

(1.6) 

This is the (global) Yang-Baxter relation. 

The QISM provides not only a powerful method to study completely 

integrable systems, but also a unified viewpoint on the structure of 

solvable models in (l+l)-dimensional quantum field theory and 2-dimen-
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sional statistical mechanics. We list the consequences of the Yang­

Baxter relation. 

(1) The relation (1.6) indicates the existence of an infinite number 

of conserved quantities as seen from the relation 

[TO.), T(jJ)) 0, T {).. ) (1. 7l 

Further, off-diagonal elements of (1.6) yield an algebraic formu­

lation [12-14) of the Bethe ansatz method. 

(2) When we regard the elements of Ln (\) and R(\,jJ) as those of scat­

tering matrix (S-matrix), the relation (1.5) is nothing but the 

factorization equation for the S-matrix [15). 

(3) When we consider Ln (\) as vertices of a vertex model in statistical 

mechanics, (1.5) is a condition that the transfer matrices T(\) 

Tr TL(\) with different A'S commute, which implies the mod~l is 

exactly solvable. 

It is to be remarked that we have already suggested a common feature 

of exactly solvable models, that is, the commutability of the "transfer 

matrices." We shall explain this in detail in Section 3. 

2. IRF MODELS 

To be concrete, we shall mainly consider a type of statistical mechanical 

models in two dimensions, called IRF (interaction round a face) models 

[16). Let us introduce an IRF model. Spins 0i (oi = 0, 1, 

k-l) are located on the lattice points (sites) of a square lattice and 

the Boltzmann weight is assigned on each face (or plaquette) depending 

on the spin configurations round the face. By ((a,b,c,d), we denote 

the energy ofa plaquette with spin configuration (a,b,c,d). The corres­

ponding Boltzmann weight is 

w(a,b,c,d) ( 2 • 1 ) 

where kB is the Boltzmann constant and T is the temperature (Fig. 1). 

Let N be the particle number. The partition function ZN' the free 

energy per particle f and the spin density <0 1 > (the average of a 

certain spin, say 0 1 ) are defined by 
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d c Fig. 1 Boltzmann weight w(a,b,c,d) 

W( a,b,c ,d) = 

ZN 

f -

<°1> 

a 

E 

°1 

kBT 

1 

ZN 

b 

E II w(ai' OJ' ok' °1) , 
oN (i,j,k,l) 

(2.2) 

lim N- 1 log ZN' 
N->"" 

(2.3) 

(2.4) 

Here, the product is over all faces of the lattice and the sum is over 

all values of all spins. 

Exact solvability of a model in statistical mechanics means that 

we can evaluate physical quantities such as the free energy and the 

spin density without any approximation. It is known that the Ising 

model, the next nearest neighbor Ising model, the 6-vertex model, the 

8-vertex model and the 3-spin model are exactly solvable [16]. Note that 

the IRF model is not special but v.ery general. Most of the exactly 

solvable models are expressed in the form of IRF models. For instance, 

the Ising model is defined by 

e: (a,b,c,d) 

- ~[(2a-1) ~2b-1 )+(2b-1) (2c-1 )+(2c-1) (2d-1 )+(2d-1) (2a-1) 1, (2.5) 

a, b, c, d, = 0, 1, 

and the 8-vertex model is defined by 

e: (a, b, c, d) 

= -J(2a-1)(2c-1) - J'(2b-1)(2d-1) - J 4 (2a-1)(2b-1)(2c-1)(2d-1), 

a, b, c, d, = 0, 1. (2.6 ) 
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In general, the model is called k-state model when spin variables can 

take k values, a i = 0, 1, k-1. The Ising model and the 8-vertex 

model are, as seen from (2.5) and (2.6), two-state models. 

3. TRANSFER MATRICES 

Exactly solvable models in statistical mechanics are used to be counted 

on the fingers. This situation has been drastically changed by the 

following two discoveries: 

(1) Concept of the commuting transfer matrices, 

(2) Evaluation of physical quantities via the corner transfer matrices. 

The row-to-row transfer matrix V has elements (Fig. 2) 

n 
V 

aa' II w(a j' a j+ 1 ' a ;+1 ' a;) , 
j=l 

where a {a 1 ' ... , an}' a' {a i ' ••• I a~}, a n+1 

(J' n 

(J 
n 

Fig. 2 Row-to-row transfer matrix Vaa' 

(J 
n+1 

Similarly, we define V' with w replaced by w' 

V' aa' 

n 
II w'(OJ" a J·+ 1 , a J"+l' a J'.). 

j=l 

Then, the elements of the matrix product VV' are 

(VV') , 
aa 

a,] 
where 

n 

V 
aa 

V'II , 
a a 

II X ( a J" a J'!, a J" I a J' + 1 ' 
j=l 

X(a,b,c I a' ,b' ,c') w(a,a' ,b' ,b)w' (b,b' ,c' ,c). 
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We regard X(a,c I a' ,c') as the k x k matrix with element X(a,b,c I 

a' ,b' ,c') in row b and column b' (Fig. 3). Then, (3.3) can be written 

as 

, 
(VV') , 

00 Tr X(o" 0; 102' 02)X(02,02 103' 03) ... X(on,onl 0,' 0;). 

(3.5 ) 

c c' 

w' 

b r------j b' 

w 

a a' 
Fig. 3 X(a,b,c I a' ,b' ,c') in (3.4) 

Similarly, we define X' with wand w' interchanged in (3.4). Then we 

have 

(V'V)oo' 

(3.6) 

From (3.5) and (3.6), we see that V and V' commute if there exist 

k x k matrices M(a,a') such that 

X(a,a' Ib,b') = M(a,a' lX' (a,a' Ib,b') [M(b,b') ]-'. (3.71 

Multiplying M(b,b') from the right and writing the element (c,d) of 

Mla,a') as w"lc,a,d,a'), we obtain 

E wlb,d,c,a)w'(a,c,f,g)w"(c,d,e,f) 
c 

E w"(a,b,c,g)w'(b,d,e,c)w(c,e,f,g). 
c 

(3.8) 

Equation (3.8) is a sufficient condition for the commuting transfer 

matrices and will be referred as star-triangle equation (Fig. 4). 
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~ 
c 

= ~ 
c 

Fig. 4 Schematic explanation of the star-triangle equation (3.8) 

d-c 

d 

d-a 

a 

c 

b 

c-b 

Fig. 5 Wu-Kadanoff-Wegner 
transformation 

Commutability of the transfer matrices is a common feature of exactly 

solvable models. By Wu-Kadanoff-Wegner transformation (Fig. 5), the 

star-triangle equation for vertex models becomes 

L w ( fl , a I Y, fl" ) w' (v, yl a, v" ) w" ( v" , fl" I v' , fl ' ) 
Yfl"V" 

L 
Yfl"V" 

w" ( v, fll v", fl" ) w' ( fl" , al Y, fl' ) w (v" , Yla, v' ) . (3.9) 

The relation (3.9) is schematically shown in Fig. 6. Furthermore, 

when we set an arrow on each bond of vertex and regard the vertex as 

trajectories of two particles (Fig. 7), (3.9) is a condition imposed 

on the 3-body scattering from initial state (v,fl,a) to final state 

(fl' ,v' ,a): 

L ffY S ,ya S" ~' " 
Yfl"V" fl~' vv l1 v " fl' 

L S"flV" s,ay sya (3.10) 
Yfl"V" Vfl" fl"fl' \} "\} I 

This relation is called factorization equation for the S-matrix. 
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v V' 
))" 

y 
1/ 

/I \1 
IJ I 

IJ IJ 

Q. 

Fig.6 The star-triangle equation for vertex model 

Fig. 7 2-body scattering S~~ 
1J 

))' 

I 

We have shown that (3.8), (3.9) and (3.10) are equivalent. Baxter 

noticed the importance of (3.9) in the study of 8-vertex model [17] 

and Yang [18] introduced (3.10) as a consistency condition of the Bethe 

ansatz method [19]. After them, these equations in general are often 

called Yang-Baxter relation as already used in Section 1. 

We consider corner transfer matrices. The lattice is divided into 

four quadrants as indicated in Fig. 8. The boundary spins are fixed 

to their ground state values. For spin configurations (Fig. 9) in 

the lower-right quadrant, we define corner transfer matrix A: 

(3.11 ) 

Note that the spins a = {01' ... , am} and a' = {ai, ... , o~} are 

not summed over. Similarly, we introduce corner transfer matrices 

B, C and D in the upper-right, upper-left and lower-left quadrants. 

The partition function ZN and the spin density <01> are expressed 

as 
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C B 

0- '11 

0'"1 
() 

II 

0 A 

Fig. 8 

a­m 

-
Fig. 9 

Il 

6. Il 

f). 

Il 

0- 1 
m 

b. 
6. 

A 

Fig. 8 The lattice is divided into four quadrants. The center 
spin is 0 1 • 

Fig. 9 Corner transfer matrix Aoo '. Boundary spins denoted 

by ~ are fixed to their ground state values. 

Tr(A BCD), 

lim Tr(01 ABC D)/Tr(A BCD). 
m-+oo 

I 

(3.12 ) 

(3.13 ) 

Corner transfer matrices can be diagonalized in the thermodynamic 

limit m -+ 00 using the star-triangle equation and the analytic and perio­

dic properties of the Boltzmann weights [16]. In contrast with the 

row-to-row transfer matrix the eigenvalues of the corner transfer mat­

rices remain discrete. Recently, Thacker [20] found a link to the 

field theory that corner transfer matrix may be interpreted as the 

boost operato~ [21]. 

4. ROGERS-RAMANUJAN IDENTITY AND PARTITION THEORY 

One of the fascinating aspects which we encounter in the study of IRF 

models is a close relation to the theory of partitions in number theory. 

There exists a direct correspondence of the conditions on the spins 

and the constraints on the partition of natural numbers. Appearance 
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of the Rogers-Ramanujan type identities in the evaluation of the spin 

density through the corner transfer matrix is a consequence of this 

correspondence. 

Celebrated Rogers-Ramanujan identities [22] are 

G(q) 

H(q) 

co 

1 + 1: 
n=1 

2 n (1-q)(1-q ) ... (1-q ) 

IT 
n=O ( 1_q 5n+ 1 ) ( 1_q 5n+4) , 

co 

1 + 1: 

co 

IT 
n=O 

n=1 2 n (1-q)(1-q ) .•. (1-q ) 

(4.1 a) 

(4.1 b) 

It is a famous story that in 1917 S. Ramanujan who had known (4.1) 

incidentally found a paper by Rogers in the Proceedings of London 

Mathematical Society. We shall give a short introduction to the theory 

of partitions [23], which leads to the proofs of (4.1) and its ex­

tension. 

A partition of a positive integer n is a finite nonincreasing 

sequence of positive integers whose sum is n. The number of partitions 

of n is denoted by Pn . For instance, we have 

3 + 1 + 1 

2 + 

3 

P3 3. 

It is useful to introduce a notation that makes explicit the number 

of times that a particular integer occurs as a part: 

(J (J2 (J (J 

(11 23 3 4 4 .•. ). (4.2) 

We often deal with problems that the number of partitions is enumerated 

under restriction (restricted partition problems). We denote the number 
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of partitions of n under restriction R by Pn(R). It is known [23] 

that 

Pn(all partitions with distinct parts) 

Pn (all partitions with odd parts). (4.3) 

For instance, we have 

6 (1 2 3) = (1 5) (2 4) = (6), 

6 

which confirms (4.3) for n 6. 

The partition problem is called equipartition if for two restric­

tions Rand R' it holds that 

Pn(R) Pn(R' ) for all n. (4.4) 

Define the generating function Z(q,R) by 

00 

Z(q,R) L 
n 

Pn(R) . q 
n=O 

(4.5) 

In terms of the generating functions, equipartition condition (4.4) 

is expressed as 

Z(q,R) Z(q,R') . 

The following identity is useful for later discussions: 

00 

L Pn(R)qn 
n=O 

II (1 _ qn) -1 . 

nER 

A simple example of (4.7) is 

00 

L 
n=O 

P (all partitions with odd parts).qn 
n 

00 

II 
n=l 

(1 _ q2n-1)-1. 

(4.6) 

(4.7) 

(4.8) 

We are in a position to prove Rogers-Ramanujan identity (4.1). 

Define a function F(oo; q) by 

(4.9) 
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where the sum r' is over 01' 02' ... under the constraints 

R: ° i = 0, 1 and ° < ° i + ° i + 1 ~ 1, i > 0. (4.10) 

By a calculation, we see that F(O;qi and F(l:q) coincide with the 
infinite series of (4.1) respectively. We can prove [23] that 

the partition with the restriction R in (4JO) is equipartition to 

that with restriction R' defined by 

0· 
~ 

° for i = 0, ±(2 - 00) mod 5 

0, 1, 2, ..• , otherwise. (4.11 ) 

Applying the identity (4.7) to (4.10) which is equivalent to (4.11), 

we obtain the infinite products of (4.1). Thus, the Rogers-Ramanujan 

identities (4.1) are expressed as 

II (1 _ qn) -1 . (4.12 ) 
n*0,±(2-0 0 )mod 5 

In 1961, B. Gordon [24] discovered a generalization of the Rogers­

Ramanujan identities. Define 

(4.13 ) 

where the sum r' is over 01'02' •.• under restriction R given by 

R: 0i = 0, 1, 2, ••• , (k-l) 

and ° ~ 0i + 0i+l < k - 1, i > 0. (4.14 ) 

Equipartition holds for the restriction R and the following restric­

tion R' 

R': 0i = ° ~or i = 0, ± (k - 00)mod (2k+l), 

0, 1, 2, ..• , otherwise. 

Then, we arrive at the identity 

00 

II 
n=l 

n*0,±(k-oO)mod(2k+l) 

(1 _ qn)-l. 

(4.15 ) 

(4.16 ) 
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This is called Gordon's generalization of the Rogers-Ramanujan identi­

ties. The case k = 2 corresponds to (4.12). 

Ramanujan further discovered a list of identities including 

P(x) 
00 

II 
n=1 

P(x) 

P( x 3 ) , 

(1 _ x 2n- 1 ) . 

5. GORDON'S GENERALIZATION HIERARCHY 

(4.17) 

We go back to the IRF models. As shown in Section 3, if the Boltzmann 

weights satisfy the star-triangle equation (3.8), the transfer matrices 

commute and then the model is solvable. This fact offers an extremely 

powerful method to construct exactly solvable models. Finding of 

solvable models consists of two steps. 

(1) Introduce a model with appropriate physical requirements (symmetries, 

number of spin states, etc). 

(2) Solve the star-triangle equation (STE, for short) for the model. 

In general, k-state IRF model has k4 independent Boltzmann weights 

and the number of the STE to be satisfied is k 6 . As k increases, the 

system of equations is extremely overdetermined and does not have 

interesting solutions. Therefore, the setting of physical requirements 

is crucial in this game. 

We introduce the spectral parameter 

w w(u), w' w(u + v), w" w(v) . 

Then, the STE (3.8) reads as 

L w(a,b,g,'f;u) w(f,g,d,e;u+v) w(g,b,c,d;v) 
g 

L w(g,c,d,e; u) w(a,b,c,g; u+v) w(f,a,g,e; v). 
g 

( 5 • 1 ) 

(5.2) 

We assume diagonal exchange symmetry among the Boltzmann weights 

w(a,b,c,d; u) w(c,b,a,d; u) 

w(a, d, c, b; u). (5.3) 
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In 1980, Baxter [25] found that the hard hexagon model is exactly 

solvable. In the hard hexagon model, spin variable can take either 

of ° or 1, and the Boltzmann weight is non-zero only if there are no 

neighbouring pairs of 1-spins. Then, the physical requirements on 

the model are 

0, 1, (5.4a) 

for neighbouring spins 0i and OJ. (5.4b) 

With the hard-core condition (5.4b), spin-1 particle looks "hexagon 

shape molecule" on the lattice. The model has been successfully applied 
4 to the adsorption problem of He monolayer on carbon surface [16]. 

Due to the hard-core condition (5.4b) and the symmetry (5.3), 

the hard hexagon model has 5-independent Boltzmann weights: 

W1 w(O, 0, 0, 0; u), 

w(O, 0, 0, 1; u) w(O, 1, 0, 0; u), 

w(O, 0, 1, 0; u) w(l, 0, 0, 0; u), 

W4 w(O, 1, 0, 1; u), 

w(l, 0, 1, 0; u). (5.5) 

The STE to be satisfied by these Boltzmann weights are 

W1WiWl + w3w4w3 w2wjwZ 

w3 wjwl + w5wiw3 w1w3wZ' 

w1wiW3 + w w'w l1 

3 ,4 5 w4w3wZ' 

w3 wj w3 + w5wi ws w2wSwZ' 

w3wi w3 + w5W4Ws w4wSw4, (5.6) 

where the arguments of wi' wi and wi are u, u+v and v, respectively. 

The solution of these functional equations is expressed in terms of 

elliptic theta function. It is convenient to employ the definition 
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sinu n (1 
n=1 

2n 4n 2n 2p cos2u + P )(1 - P ). 

2 We hereafter write H(u) for H(u;p). The solution is 

where 

H(3" - u) 

H(3,,) 

H(u) 
1 

[H(,,)H(n)]2 

H(n - u) 

H(n) 

n/5. 

Using an addition formula 

H(a+x)H(a-x)H(b+y)H(b-y) 

H(A - u) 

H(A) 

H(4" - u) 

H(4,,) 

H(a+y)H(a-y)H(b+x)H(b-x) + H(a+b)H(a-b)H(x+y)H(x-y), 

we can prove that the solution (5.8) satisfies the STE (5.6). 

( 5.7) 

(5.8) 

(5.9) 

( 5.10) 

The hard hexagon model has four regimes; I(the vacuum), II(the 

triangular ordering), III(the vacuum) and IV(the square ordering). The 
2 parameter u and p measure the anisotropy of coupling constants and 

the deviation from critical temperature. In regime I, we use x and 

w defined by 

2 
P 

-e: - e , x = w 2nu/e: e . ( 5 . 11 ) 

By using the analytical properties of corner transfer matrices and 

the explicit forms of the Boltzmann weights, we can show [16] that 

in regime I the spin density is given by 

<°1> (5. 12a) 

6 x , - xG(x)/H(x). (5.12b) 

Here, F(oO;q), G(x) and H(x) have been introduced in (4.9), (4.1a) 

and (4.1b). Using (4.12) and (4.17) in (5.12), we arrive at 
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<°1> (S. 13) 
P(x} 

We can analyze the critical behavior exactly. For instance, critical 

indices across the I-II regime boundary are a = 1/3 and B = 1/9. 

The hard-hexagon model is a 2-state model where spin variable 0i 

takes 0 or 1. We introduce a k-state model 

0· 
1 

0,1, . .. , (k - 1) (S. 14a) 

subject to the constraint 

k - 1 for adjacent spins 0. and 
1 

(S. 14b) 

It should be remarked that the constraint (S.14) corresponds to the 

restriction (4.14) which leads to the Gordon's generalization of the 

Rogers-Ramanujan identities. We call the k-state model defined by 

(S.14) GG(k} model. The number of independent Boltzmann weights is 

k(k+l }(k+2}(k+3}/24. We succeeded in finding the solution of the STE 

for the GG(3) [2], GG(4} [S,7] and GG(S} [8,11] models by solving 

37, lS8 and S10 functional equations. We also presented a method to 

construct the Boltzmann weights for the GG(k} model [11]. A beautiful 

mathematical structure of the Boltzmann weights was found in the cons­

truction. 

As an example, we write down the solution for the GG(3} model 

which are obtained by solving 37 independent STE's. 

w(O,O,O,O;u} 

w(l,O,O,O;u} 

w(2,0,0,0;u} 

H(S)..-u}H(3)..-u} 

H(S)..}H(3)"} 

w(O,O,l,O;u} 

H(2)..} H(u}H()..-u}, 
H()"}H(3)..}2 

£ [H(2)"}]~ H(u}H(4)..-u} 
1 H(3)..} H()..}H(4A} 

w(0,0,2,0;u} 

H(u}H(3A-u} 
£2 1 

[H(A}H(3)..} ]2H(2A} 
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w(O,O,O,l;u) 

w(O,O,O,2;u) 

w(l,O,l,O;u) 

w(2,O,2,O;u) 

w(O,l,O,l;u) 

w(O,2,O,2;u) 

w(l,O,O,l;u) 

w(O,O,l,l;u) 

w( 1 ,O,2,O;u) 

w(O,2,O,1;u) 

w(O,l,l,l;u) 

w(l,O,l,l;u) 

298 

w(O,l,O,O;u) 

H(A-U)H(4A-U) 

H(A)H(4A) 

w(O,2,O,O;u) 

H(A-U)H(5A-U) 

H(A)H(5A) 

H(3A-U)H(4A-U) 

H(3A)H(4A) 

H(2A-u)H(3A-U) 

H(2A)H(3A) 

H(5A-U)H(4A-U) 

H(5A)H(4A) 

H(GA-u)H(5A-U) 

H(6A)H(5A) 

w(l,l,O,O;u) w(O,l,l,O;u) 

€ H(u)H(A-u) 

2 [H(A)H(2A)]t H (3A) 

w(2,O,1,O;u) 

H(u)H(6A-U) 

w(O,1,O,2;u) 

H(A-U)H(2A-u) 

H(A) H(2A) 

w(l,l,O,l;u) 

H(u)H(5A-U) 

w(l,l,l,O;u) 

H(A-U)H(3A-U) 

H(A) H(3A) 



w(l,l,l,l:u) H(3A-u)H(5A-u) 
(5.15 ) 

H(3A) H(5A) 

where €i = ± 1 (i=1,2,3) and the parameter A (the crossing point) is 

TT/7. (5.16 ) 

Independently, this solution has been found by Baxter and 

Andrews [26]. For the general k, the Boltzmann weights are expressed 

in polynomials of products of (k-1) elliptic theta functions and A is 

given by [11] 

1..= TT/(2k+1). ( 5.17) 

Thus, there exists a series of exactly solvable models, that is, the 

GG(k) model for k = 2 (hard hexagon model), 3, 4, 5, .... We call 

it Gordon's Generalization (GG) hierarchy. The finding of the GG 

hierarchy is a result of our belief that exactly solvable IRF models 

are closely related to the theory of partitions. 

6. GRAND HIERARCHY OF EXACTLY SOLVABLE MODELS 

Besides the GG hierarchy explained in the previous section, we know 

a hierarchy of solvable models which we call ABF hierarchy [27]. 

The ABF hierarchy is also closely related to the theory of parti­

tions. Originally, those models (restricted 8V 50S models) are defined 

as the solid-on-solid (50S) models where the height variables {hi} 

are assigned on the lattice sites. In terms of the spin variables 

Vi}' the model is defined by the restrictions 

0,1,2, ... , (k-1), (6.1 a) 

k-2 <0. + O. < k-1 for adjacent spins 0; and OJ'. 
- ~ J ~ 

(6.1 b) 

Recently, we discovered a new hierarchy (KAW hierarchy hereafter) 

where the model i,s defined by [6] 

O· 
~ 

0,1,2, ... , (k-1), 

k-2 <0. + o. < k 
- ~ J -

for adjacent spins o. and 
~ 

o . . 
J 

(6.2a) 

(6. 2b) 

Furthermore, we found a hierarchy (the special 52 hierarchy) where 

the constraints are the same as (6.1) but the highest spin 0 = (k-1) 

is replaced by a doublet [4]. 
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Those hierarchies are classified by the following constraints: 

(1) number of states: 

0,1,2, ... , (k-1), (6. 3a) 

(2 ) hard-core conditions for adjacent spins °i and OJ: 

L < °i + 0· 
J 

< L + f, (6.3b) 

(3 ) additional constraints on adjacent spins 0. and 0· 
1 J 

for f > 3. (6. 3c) 

We consider an (L,f) plane, L ~ 0, f ~ 1 (see Fig. 10). The ABF 

and KAW hierarchies correspond to f = 1 and f = 2 line, respectively. 

The L = 0 line is the GG hierarchy. Based on this observation, we 

have predicted (6) that there exists an exactly solvable model at every 

lattice point in the (L,f) plane. A set of those models which contains 

00 x 00 models will be referred to as Grand Hierarchy. 

The existence of the Grand Hierarchy was confirmed as follows (9). 

We start from the eight vertex solid-on-solid model (8VSOS model, 

for short) which is also an IRF model (Fig. 11). Each height variable 

hi takes integer values under constraints 

Ih. - h·1 
1 J 

for adjacent heights hi and h j . (6.4) 

From the homogeneous model, we can construct the Z-invariant 8VSOS 

model (the term HZ-invariant" by origin means that the partition func­

tion ZN 

lattice 

f 

I 
5 X 

I 
4 X 

I 
3 X 

I 
2 X 

o 

300 

remains invariant under the shift of lines forming the irregular 

(28).1. We construct the Z-invariant model on the square lattice 

2 3 4 5 L 

Fig. 10 The (L,f) plane showing 

the Grand Hierarchy. The 

symbols (x), (0) and (e) 

correspond to the GG, 

ABF and KAW hierarchies, 

respectively. 
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Fig _ 11 Fig _ 12 

Fig. 11 A Z-invariant 8VSOS model_ Height variables are assigned 

on the sites of the lattice formed by the full lines_ 

To each dashed vertical (horizontal) line ~i (~;), spectral 

parameter u. (v.) is assigned. The spectral parameter~ of 
1 J 

the IRF plaquette which contains the intersection of 

~i and ~; is Vj - u i -

Fig. 12 Boltzmann weight wQQ(a,b,c,d;u) of the IRF model. The 

symbol. denotes the summation over the "inner" height. 

The weight does not depend on the edge heights denoted 

by O. 

in the following manner. On a plane we place M vertical lines{~j} 

and N horizontal lines {~~} forming a square lattice. To each line 
J 

c 

b 

~i(~i) we assign a spectral parameter u i (vi)' An inhomogeneous 8VSOS 

model is introduced on the dual square lattice. The spectral parameter 

of an IRF-plaquette which contains an intersection point of ~i and ~; 

is assigned to be v. - u .. We call the resultant 8VSOS model the Z-
J 1 

invariant 8VSOS model. The homogeneous model is recovered by setting 

Vj = u (all j) and u i o (all i). 

We consider Q x Q periodic reduction for the Z-invariant 8VSOS 

model, which means that we set (see Fig. 12) 

UJA = i -

(V.-U)/A 
J 

mod Q, 

j - 1 mod Q. (6.5) 
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We also set (r positive integer, r > 5) 

IT/r, (6.6) 

and regard Q as f in (6.3). From the edge-height independence (Fig.12), 

resultant Q x Q blocks can be considered as plaquettes of an IRF model 

in the (L,f) plane. Hence the partition function of the IRF model 

is the same as the Q x Q periodic Z-inavriant 8VSOS model. Thus,the 

solvability of the Grand Hierarchy is a consequence of the periodic 

reduction of the Z-invariant 8VSOS model [9]. 

It is an extremely interesting fact that the special S2 hierarchy 

[4] is not included in the Grand Hierarchy. It may be possible that 

we extend the special S2 hierarchy into the Z-invariant model and 

again by the periodic reduction we construct a new set of solvable 

hierarchies. 

7. SUMMARY AND FURTHER DEVELOPMENTS 

(1) We have shown that an infinite number of solvable models in 

statistical mechanics, at least ~ x ~ number of models, can be cons-

tructed by solving the star-triangle equation. Thus, the existence 

of the Grand Hierarchy has been established [6,9]. Significance of 

this achievement in statistical mechanics cannot be overemphasized. 

Physical applications, for instance, to the interfacial problems are 

very interesting. 

(2) Let us relate our discussion to the conformal theory [29,30]. 

The conformal theory enables us to predict the possible values of cri­

tical index n in (l+l)-field theory or 2-dimensional statistical mecha­

nics. Since any analytic function of the coordinate z = x + iy is 

the conformal transformation, conformal group in two dimensions is 

infinite dimen,sional. Generators Ln' n = 0, ±1, ±2, •.• , of'the trans­

formations satisfy the Virasoro algebra [31]: 

c 3 
(n-m)Ln+m + T2(n - n)6 n+m,0· (7.1) 

From the representation theory of the Virasoro algebra [32] and the 

physical requirements such as unitarity [30], the value of central 

charge c is restricted to 
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(1 ) c > 1 

(2) c = 1 - 6 
m 2, 3, 4, (7.2) 

m(m+1) 

Further, in the case of (2), the possible value of critical index n 

is given by [30] 

n 2(h+h), 

h, h 
2 [ (m+ 1 ) p - mq] - 1 

m 2, 3, 4, 
4m(m+1 ) 

< p < m+ 1, < q < p. (7.3) 

It is quite interesting that the critical index n calculated from 

the exact values of a and B for the ABF hierarchy through a scaling 

relation n = 4B/(2-a) agrees with the one predicted by (7.3) with p 

= q [33]. In other words, the ABF hierarchy is a partial realization 

of the conformal theory. The detailed analysis of the Grand Hierarchy 

is under progress and at the moment we predict that there exists an 

exactly solvable model in each universality class. 

We note that while the conformal theory deals with the phenomena 

only at the criticality the exactly solvable models can offer infor­

mation both on- and off-critical temperatures. 

(3) As we have seen in Section 5, the Rogers-Ramanujan type identi­

ties appear in the spin density calculation by the corner transfer 

matrix method. Conversely, we expect that there exists a solvable 

model corresponding to any Rogers-Ramanujan type partition identity 

[2,34]. We remark that elliptic functions (more generally, modular 

functions) play an important role again in the exact theory of statis­

tical mechanics as we experienced in the soliton theory. It is interes­

ting that the modular functions are closely related to the partition 

theory and the representation theory of Kac-Moody algebra [35]. 

(4) Very recently, we have found that the study of exactly solvable 

models in statistical mechanics has deep connections with the von Neumann 

algebra theory and the knot theory [10]. In 1984, v. Jones [36] dis­

covered new polynomial invariant (Jones polynomial) which is more power­

ful than the Alexander polynomial to classify knots and links. A 

central role is played by the algebra A defined by q,n 
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2 e. 
1 

e.e. 
1 J 

> 2, (7.4) 

A certain trace is associated with the algebra A making it the von q,n 
Neumann algebra. Due to the existence condition of the trace, the value 

of , in (7.4) is restricted to 

(1) ,-1>4 

(2 ) 
-1 , 4 cos 2 (lT/k), k 3, 4, ... . (7.5) 

On the other hand, the star-triangle equation for the ABF hierarchy 

(restricted 8-vertex 80S model with the height variable h. = 1,2, ... , 
J 

r-1) at criticality yields the Temperley-Lieb algebra {U.} [37]: 
J 

U~ 1/2u 
J q j' 

U.U. 
1 J 

U.U. , 
J 1 

with q given by 

q 

Ij-il > 2, (7.6) 

(7.7) 

We see from (7.4) and (7.6) that both algebras are the same when 

we set U. 

-1 , 
J 

1/2 q e j and 

q. (7.8) 

Moreover, it is known [33] that the (r-1 )-state 8V80S model exhibits 

the generic (r-2)-fold multicriticality whose exponent realizes the 

discrete series (7.3) of the Virasoro algebra through the correspondence 

m r - 1. (7.9) 

Combining the above results we arrive [10] at a novel relation between 

the discrete series of the Virasoro algebra and the indices ,-1 for 

sub factors of III factors [38]: 

m + 1 = r k. ( 7 . 10) 
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Note that the critical 8VSOS hierarchy intermediates the completely 

different objects in mathematics. 

More recently, we have found that new invariant polynomials for 

knots and links can be constructed from solvable (vertex and IRF) models 

describing critical statistical systems [39]. 

In conclusion we summarize this note by emphasizing that the soliton 

theory including solvable models in statistical mechanics has much 

more wide and deep extensions in physics and mathematics than we expected 

a few years ago. 
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Part V 

Applications: 
Physics and Biology 



Solitons and Some Other Special Solutions 
in Field Theory 

K. Babu Joseph 

Department of Physics, Cochin University of Science and Technology, 
Cochin 682022, India 

Solitons in gauge theories such as monopoles and vortices are dis­
cussed. The applications of the Hirota bilinear operator and group 
analysis methods for the SU(2) Higgs model are described. 

1. INTRODUCTION 

In field theory a soliton characterises a stable and extended solution 

of a nonlinear field equation, having finite energy or action, whose 

existence may sometimes be related to the topological properties of the 

fields at spatial infinity. Though solitons arise in certain gauge as 

well as scalar field theories we shall confine ourselves with gauge 

theory solitons. Magnetic monopoles are the most widely studied soli­

tons of this category. In contrast to the singular point monopole dis­

covered by Dirac [1] in abelian gauge theory, the 't Hooft-Polyakov 

non-abelian monopole [2] is a finite energy static field configuration 

carrying magnetic charge. It is a solution of the SU(2) Yang-Mil ls­

Higgs model, where the gauge group is SU(2), which is spontaneously 

broken to U(l) by a triplet of Higgs scalar fields. Solitons carrying 

both magnetic and electric charges, called dyons, have also been cons­

tructed [3]. However, monopole and dyon solutions can be expressed 

in closed analytic form only in a special limit. 

Vortices or strings form another class of gauge theory solitons. These 

objects contain quantized units of magnetic flux. The abelian Higgs 

model possesses a finite energy vortex solution [4]. A scale-dependent 

vortex solution has been obtained recently [5], and it is the first 

solution of its kind to be derived. It is important to note that a pure 

gauge theory, abelian or non-abelian, has no finite energy solutions. 

Finite action solutions of four-dimensional non-abelian gauge 

theories in Euclidean space-time are called instantons [6]. Since 

instantons are localized in time as well as space, they do not qualify 

as particles. In the corresponding quantized theory instantons tunnel 

between different gauge vacua. 
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All of the foregoing types of soliton have associated topological 

conservation laws. But in some models solitons arise from the con­

servation of an ordinary charge, and these are called non-topological 

solitons [7]. Instantons and non-topological solitons will not be 

treated in these lectures. The topics we discuss here include appli­

cation of the Hirota bilinear operator [8] and group analysis [9] methods 

to the construction of soliton and some time-dependent solutions of 

the SU(2} Higgs model. Among these are the celebrated Prasad-Sommerfield 

(PS) monopole [10] and related solutions, which were discovered by mere 

guess-work. No systematic derivation of these solutions has so far 

been given in the literature. This explains the importance of the 

approaches herein presented. There is a short section on vortices also. 

A general familiarity with gauge theories at the classical level is 

assumed on the part of the reader. 

2. TOPOLOGICAL CRITERION FOR SOLITON SOLUTIONS 

The existence and stability of a topological solution are guaranteed 

by the conservation of a topological quantity called the winding number 

or Pontryagin index. Two maps from a topological space to another are 

said to be homotopic, if one can be continuously deformed into the other. 

A homotopy class is an equivalence class of maps which are homotopic 

to one another. Each such class is labelled by a winding number which 

is conserved, implying that maps belonging to two distinct homotopy 

classes are not deformable into each other. 

To illustrate the winding number idea, let us consider the SU(2} 

Higgs model mentioned in the introduction. It is described by the 

Lagrangian 

~ = _ ~ Fa F~va + ~ 0 a - V( } 
4 ~v 2 ~cp cp (2.1 ) 

where the Fa are .the three components of the SU(2} field strength tensor 
~v 

D~ is the gauge covariant derivative operator, defined by 

o a 
~cp 

abc =0 cp + gE b A cp , 
~ a c ~ 

and V(cp} is the Higgs potential, 

(2.2 ) 

(2.3 ) 
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with 

V(cp) 

2 
cp 

A ( 2 "4 cp 

a a cp cp 

(2.4) 

222 For m > 0, the minimum of V(cp) corresponds to cp = m IA. By 

convention, the classical vacuum is identified to be at spatial infinity, 

and thus 

as r ... 00. (2.5) 

This condition defines a map of a sphere at spatial infinity to a sphere 

of radius milA in the field space spanned by the Higgs fields cpa. We 
2 2 2 2 denote this map by S ... S. Now, the homotopy classes of the map S ... S 

form a group called the second homotopy group, IT 2 (S2), and IT 2 (S2) = Z, 

the group of integers. Each element of IT 2 (S2) defines a homotopy 

class and represents a winding number. Hence the winding numbers of 

the present model are integers. 

The total energy of any solution of the above model is 

E (2.6) 

For a static solution of the Yang-Mills fields the energy will be finite 
2 2 if and only if V(cp) vanishes or cp ... m IA as r ... 00. Hence, a way is 

open to classify the solitons according to their winding number. The 

n=1 soliton is a magnetic monopole which generates (asymptotically) the 

magnetic fields, 

B. 
1 

1\ 

1 r i 
g 2" 

r 
(2.7l 

where £ is a unit vector. The stability of a monopole sterns from the 

topological conservation law, ~n = O. The conservation of magnetic 

charge is a consequence of the Higgs field topology. 

3. HIROTA'S BILINEAR OPERATOR METHOD: 
CONSTRUCTION OF PS MONOPOLE SOLUTION 

The limit, m2 ... 0, A ... 0, keeping m2/A finite, is called the PS limit 

in which an explicit, static monopole solution was obtained [10] by 

ingenious guess-work. In this section we discuss an application of 

Hirota's method [8] to a systematic derivation of the PS monopole and 

other related solutions [11]. 
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The bilinear operator method of solving a nonlinear differential 

equation consists in expressing the dependent variable h as the ratio 

of two functions, h = g/f. When this ratio is substituted in the origi­

nal equation, an equation with two dependent variables, g and f, is 

obtained. The derivatives of functions can always be expressed in 

terms of Hirota's bilinear derivatives, defined by 

(~x - ~x' )f(x,t)g(x' ,t) I . 
x=x' 

( 3 . 1 ) 

The nonlinear equation for g and f is split into two coupled equations, 

and the functions g and f are expanded as power series in a parameter 

E. The individual functions in the power series are evaluated by suc­

cessively integrating the differential equations that follow from equa­

ting the coefficients of equal powers of E on either side of each 

of the split equations. Solutions can be obtained either by terminating 

the series by some technique, or by actual summation. 

Some useful identities that follow from (3.1) are listed below: 

L(g/f) 
ax 

2 
~(g/f) 
ax 

On(g.f) 
x 

n 
Ox g. 1 (3.2) 

(3.3) 

(3.4) 

(3.5) 

Turning to the monopole problem, the equations of motion derived 

from (2.1) reduce to the following form, when a suitable ansatz [2] 

which is spherically symmetric and static, with winding number 1, is 

made use of: 

H(2K 2 + ~H2 _ m2r2), 
g 

(3. 6a) 

(3.6b) 

where K and H are both functions of r, and a prime denotes differen­

tiation with respect to the argument. The energy integral is 
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E 4n j dr {( K I ) 2 + (rH I - H) 2 
g2 0 2r2 

(3.7) 

For finiteness of this integral, the necessary boundary conditions are 

H ..... 0, K ..... 1, as r ..... 0 

H ..... ~ r, K ..... 0, as r ..... 00 • 

/>-

In the PS limit eqs. (3.6) become 

One makes the dependent variables transformation: 

K(r) A(r)/B(r), H(r) C(r)/B(r). 

Using (3.4), eqs. (3.9) are rewritten in the form 

where D2 = 0 2 a second order bilinear operator. r' 

(3. 8a) 

(3.8b) 

(3.9a) 

(3.9b) 

(3.10) 

( 3.11 a) 

(3.11b) 

In the next step, (3.11b) is split into two coupled equations with 

the help of a function G(r), which will be determined later: 

(3.12a) 

o. (3.12b) 

One readily verifies that solutions to (3.12) are solutions of the 

original set (3.11). Although other splitting patterns may also be 

effective, the present one is advantageous in reducing the degree of 

nonlinearity from three to two. (3.11a) now becomes 

(3. 12c) 
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The functions A, Band C are expanded as power series in a small 

parameter £: 

A(r) £A, (r) + 2 £ A2 (r) + (3. , 3a) 

B(r) , + £B, (r) + 2 £ B2 (r) + (3. , 3b) 

C(r) , + £C, (r) + 2 £ C2 (r) + (3. , 3c) 

Inserting (3.'3) into (3.'2) and comparing the zeroth power of £ on 

both sides, one finds that G(r) = 0 for consistency. Extending the 

same procedure to higher powers of £ yields equations of the following 

type: 

o 

o 

2A,(C,-B,). 

A consistent set of solutions of (3.'4) is the following: 

C, 

2 acr 

2 2 cr+d, C2= (2bc-N )r /2!, 

2 2 2 2 2 3 C3 = -d(2bc-N )r /2! + [(c-2b)N + 2c(a +b )]r /3! 

2)~ a . 

(3. '4a) 

(3. '4b) 

( 3. , 5a) 

( 3. , 5c) 

A solution of (3.9) by the above procedure is labelled by five 

parameters a, b, c, d and £. However, by suitable choice of these 

parameters, one can make summable series out of (3.'5). There are two 

trivial solutions too. For, setting a = b = c = d = 0 gives 

K 0, H 1. (3. '6) 

Similarly, the choice a = b, c = 0 yields 

K nr/( '+nr), H '/(1+n r ) (3.17) 
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where n = ac/(l+d), an arbitrary constant. Both of these solutions 

represent point monopoles of infinite energy. 

For a * b, c 0, and I dc I < 1, 

A(r) car, ( 3. 18a) 

B( r) ~ (b sinhSr + N coshSr), (3.18b) 

where S Nc/(l+dc). Due to the large arbitrariness of d and c, one 

can take S to be independent of a and b. After a straightforward cal­

culation, the series for C(r) becomes 

C(r) = ~[(N - bSr)coshSr + (b - Nsr)sinhSr1. (3. 18c) 

Transforming back to the original pair of dependent variables, one 

finds 

K(r) 

H (r) 

Sr 2 2Sr aSr e /(a e - 1) ( 3. 19a) 

(3.19b) 

with a = a/(b -~), which is arbitrary. This coincides with the 

general point monopole solution obtained by Ju [121. Setting a= e Y 

(say), one recovers the Protogenev solution [131. The most interesting 

solution emerges with a 1, which is the PS monopole solution. It 

is, however, not possible to sum the series for B(r) and C(r) for non-

zero c. 

The Hirota method provides a unified scheme for deriving the PS 

and some other solutions, which were originally obtained by trial and 

error. Nevertheless, the procedure fails to yield closed expressions 

in the general case away from the PS limit. 

4. GROUP ANALYSIS OF SU(2) MONOPOLE EQUATIONS 

The group analysis of partial differential equations (POE) is a standard 

procedure [91 that exposes their invariances and often, leads to solu­

tions. For a second order PDE, 

o ( 4 • 1 ) 
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a similarity transformation x-+x*, t-+t*, u-+u*, is one which leaves 

the equation invariant. In infinitesimal form one writes 

x* x + e: X(x,t,u) + O( l) (4. 2a) 

t* t + e:T(x,t,u) + 0(e: 2 ) (4.2b) 

u* u + e:U(x,t,u) + 0(e: 2 ), (4. 2c) 

where X, T, U denote the infinitesimals of the transformation. From 

these equations it follows that 

2 2 u(x+e:X+O(e: ); t+e:T+O(e: )) u + e:U + 0(e: 2 ). (4.3) 

Expanding, and equating the O(e:) terms on either side, 

U. (4.4) 

This is called the invariant surface condition and yields the charac­

teristic equations: 

dx/X dt/T 

which imply, 

dx 
dt 

du 
dt 

f(x,t,u) 

g(x,t,u). 

du/U 

When (4.6) is independent of u, one deduces the solution, 

x 

u 

(4.5) 

(4. 6a) 

(4.6b) 

(4. 7a) 

(4.7b) 

where k1 and k2 are arbitrary constants. One of these constants, say 

k 1 , plays the role of a new independent variable, henceforth denoted 

by p; then k2 becomes the dependent or similarity variable; thus, 

u(x,t) F( p) • (4.8) 

On inserting this into (4.1) there results an ODE for F(p). 
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From a knowledge of the infinitesimals X, T, U, one can construct 

a set of infinitesimal operators which generate the infinitesimal simi­

larity transformations and the Lie algebra corresponding to them. It 

characterizes the group of invariances G of the system of equations, 

and the procedure herein described, is called group analysis. Its 

usefulness in field theory is clear from the possibility of generating 

time-dependent solutions of the SU(2} Higgs model [14]. The time-

dependent equations of this model in the PS limit are 

r2(K 
rr Ktt } K(K 2 + H2_ 1 } (4. 9a) 

r2(H 
rr 

- Htt } 2HK2. (4.9b) 

One defines a generic dependent variable ua (a = 1,2) such that 

u 1 = K and u 2 = H, and considers a one-parameter family of infinitesimal 

transformations in r, t, and ua with associated infinitesimals R, T 

and ua , respectively. 

To ensure the invariance of the system (4.9), the second derivatives 

of ua must transform according to 

a* 
ur*r* 

a* 
ut*t* 

where [Ua ] denotes a second extension [9]. 
xx 

(4.1 Oa) 

(4.1 Ob) 

When the transformed system corresponding to (4.9) is written in 

view of (4.10), and coefficients of terms of order E are equated to 

zero, one finds 

r2[U~r] - r2[U~t] + 2rR(Krr - Ktt } + u1 (1-3K 2-H 2 }-2U2KH) = 0 

(4.11 a) 

O. ( 4.11 b) 

From these equations one picks up the coefficients of different orders 

of derivatives of K and H, and sets them equal to zero. This leads 

to a large number of determining equations which are consistently solved 

to yield the infinitesimals: 

R 
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2;\rt + ltr, 

0, 

(4. 12a) 

(4.12b) 

(4. 12c) 



where A, K, and a are constants. The occurrence of three independent 

parameters in these equations, permits one to define the three genera­

tors Ga as follows: 

G1 2rt a + (r 2 + t 2 )L 
ar at (4. 13a) 

G2 rL + a 
ar tat (4.13b) 

G3 
a 
at 

, (4. 13c) 

which satisfy the Lie algebra: 

(4.14 ) 

The group analysis approach yields a set of time-dependent solu­

tions. To this end, one considers a subgroup G 1 c G as well as 

itself, defines a similarity variable in each case, and solves the 

corresponding similarity-reduced equation. 

Under the full group G , with A * 0, K * 0 and a 

similarity variable is 

p (4.15) 

The corresponding similarity-reduced equations have the same form as 

that of the static 8U(2) Higgs model in the P8 limit, (3.9), with r 

being replaced by p. This directly gives the solution 

K(p) Cp/sinh(Cp) , (4. 16a) 

H( p) Cplcoth(Cp), (4. 16b) 

which coincides with that reported in ref. (15). One, however, obtains 

a new solution also: 

K( p) p/(A + p), (4. 17a) 

H( p) A/(A + p), (4.17b) 

where A is a nonzero arbitrary constant. Both K(p) and H(p) are singular 

on the surface A + P = o. 

When a subgroup G1c G, defined by setting K 

the similarity variable is 

a = 0, is considered, 

317 



TI 
2 2 r/(t - r ), (4.18 ) 

and the reduced system is again of the PS form, (3.9), with p ~ TI . 

In addition to a PS-like solution, which is reported in ref. (15), 

one obtains a new solution: 

Til (A + TI), (4. 19a) 

AI (A + TI), (4. 19b) 

with A '" O. 

5. VORTICES 

We shall discuss here some aspects of a scale-dependent vortex solution 

recently obtained in the SU(2) Higgs system [5]. Using a suitable 

axially symmetric ansatz, that satisfies the boundary condition, 

K (r) ~ 1, H (r) ~ 0 as r ~ 0 (5.1) 

the equations of motion in the PS limit are obtained: 

rH 
r 

rK r 

With the substitution 

K(r) 1 - H(r), 

(5. 2a) 

(5.2b) 

(5.3) 

which is in agreement with (5.1), (5.2) are converted into a single 

nonlinear equation 

r2H 
rr 

So far no 

authors of 

that there 

H(O) 
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rH 2H2(H - 1 ) . 
r 

analytic solutions of this 

ref. (5 ) have resorted to 

exists a regular solution 

0, H(oo) 1. 

(5.4) 

equation have been found. The 

phase plane analysis, and found 

(5.4) with the behaviour 

(5.5) 



Since (5.4) is invariant under a scale transformation, r~/a r, 

the solution as well as its energy, will be scale-dependent. Thanks 

to the axial symmetry, this soliton is rightly designated as a vortex 

or string. 

The energy per unit length of a vortex is called its tension. In 

the present case, the tension is scale-dependent and is given by the 

integral 

E -2lTJ 
2 r dr, (5.6) 

0 
or 

E ':!!"-J dr[3r2(H )2 - 4rHH + 4H2 - 4H 3 + 3H 4 ] , 
e 2 0 

3 r r 
r 

(5.71 

which has been evaluated only numerically [5] for different a values. 

The scale-dependent vortex, as this solution may be called, is stable 

because, even though a may be continuously varied, the value a = 0 

is forbidden. The reason for this is that at this point, the boundary 

behaviour at r (5.5) is altered. 

The magnetic flux contained in the scale-dependent vortex, is cal­

culated from the formula, 

3 J 2lTr dr F 12 , 
o 

(5.8) 

which gives 

<I> = -2lT/e, (5.9) 

as is the case with the Nielsen-Olesen string [4]. 

6. CONCLUSION 

In these lectures we have discussed the concept of finite energy soli­

tons in gauge theories at the classical level and the application of 

two well-known mathematical methods--Hirota's method and group analysis-­

to the construction of some of these solutions in closed form. Much 

work has been done in recent years to find multi-soliton solutions in 

field theory. For instance, multivortex solutions where n vortices 

are superimposed in an axially symmetric configuration have been dis­

covered [16]. However, there exists no formula for a general multi­

vortex solution. On the other hand, static multi-monopole solutions in 

the PS limit have been obtained by methods of algebraic geometry [17] 
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and using Backlund transformations [18]. The soliton concept has per­

meated into supergravity and Kaluza-Klein theories and has even been 

suggested as a model of baryons. 
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Solitary Waves of the "2-Dimensional Ferromagnet" * 
R. Rajaraman 

Centre for Theoretical Studies, Indian Institute of Science, 
Bangalore 560012, India 

Finite energy solitary wave solutions obtained by Polyakov and Belavin 
for the isotropic 2-dimensional ferromagnet are briefly reviewed. The 
ideas of Bogomolnyi connecting the winding number and potential energy 
of the system play an important role in the discussion. 

I will derive here some exact solitary waves solutions of the so-called 

nonlinear a-model in particle-physics parlance. The system consists 

of three coupled fields ~a(X,t), a = 1,2,3, in 2+1 (two-space, one­

time) dimensions. This system can also be viewed, as I hope to show 

you, as a simple model of an isotropic 2-dimensional ferromagnet. These 

solutions were obtained in the late seventies by Polyakov and Belavin 

[1] using very elegant methods. The ideas of Bogomolnyi [2] will also 

play an important role in our discussion. These solutions have been 

known now for several years and have also been covered in reviews [3]. 

Nevertheless I decided to discuss them in this school for the following 

reason. Most participants here are from either the applied mathematics 

or plasma physics wings of the soliton community. Most of you are very 

familiar, in great detail, with 1+1 dimensional systems, such as the 

KdV, the sine-Gordon, the nonlinear SChrodinger equation, and with their 

remarkable exact soliton solutions. But if we relax the requirement 

of exact solitons (i.e., preservation of shape and velocity even after 

collisons), and settle for just solitary waves, then there are many 

interesting solut~ons in higher dimensions as well. In particular, 

particle physicists have found several such solutions in 2, 3 and 4 

dimensions, by using some elegant analytic methods. These solutions 

also possess an interesting topological index. The solitary waves of 

the 2-dimensional ferromagnet, which I shall discuss here, are perhaps 

the simplest examples of this type. Other examples are the 't Hooft­

Polyakov monopole, the Skyrmion, and the Yang Mills instanton[3]. 

* . 1 Notes taken and prepared by M. Dan1e . 
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The equation we are going to solve is 

0, ( 1 ) 

where 

a a cp cp (xl ,x2 ,t), a = 1,2,3. 

It is understood that the repeated indices are summed over. Thus, b 

is summed and a is free. This equation results from the following simple 

Lagrangian, 

L E f 
a 

subject, however, to the constraint 

E cpa(x,t) cpa(x,t) 
a 

at each x, t. 

(2 ) 

This is the Lagrangian of a massless Klein Gordon field in 2-dimensionp, 

under the condition ~ cpa cpa 1, that is, the field is not allowed 

to vary freely but varies only subject to the above condition. Let 

us show that the field equation (1) is the Euler-Lagrangian equation 

for Lagrangian (2), in the presence of the constraint Ecpacpa = 1. The 
a 

constraint can be incorporated using the method of Lagrangian multipliers. 

Let us write a new Lagrangian by adding the Lagrange multiplier term 

to the old one, 

r. (3 ) 

The Euler-Lagrange equation for the Lagrangian (3) is 

o. (4 ) 

This may appear like a linear equation, but remember that we must adjust 

the Lagrangian multiplier A(X,t) in such a way that the constraint is 

satisfied. Rewriting (4), we have 

(5 ) 

Multiply both sides by cpa, and sum over a. 

aD a cp cp (6 ) 
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Using equation (6) in (5), we get 

a 
<p to b a - (<p <p)<p 0, 

which is just the original equation (1). 

(7) 

So far nothing has been said about ferromagnets. Now one can see 

the following connection with the ferromagnets. Consider first a one-

dimensional ferromagnet, that is, a lattice with a magnetic moment 

<P~ at each point. Here i lebels the lattice site and a are the compo­
l 

f h . 1 h h t' aa nents 0 t e magnetlC moment. A so, we ave t e cons ralnt <Pi<Pi 1 , 

since the individual magnets can only rotate, and not change their 

magnitudes. 
a 

<po 
l 

<$ <$ 

i i+l 

The dynamics of these magnets depends on what they energtically favour. 

Energy is least when they are parallel and most when anti-parallel. 

We assume that each magnet interacts only with its nearest neighbour 

and that this interaction is characterized by the following potential 

energy. 

v (8 ) 

Rewriting, 

v (9 ) 

When the lattice size is small we can take the continuum limit, by 

taking <P~ ~<pa(x), E = J dx. Then the potential energy for this 
l . 

one-dimensional ferroffiagnet becomes, after absorbing constants, 

v ( 10) 

In two dimensions the same arguments can be carried out and one will 

get 

v ( 1 1 ) 

This is the potential energy appearing in the Lagrangian of the system 

(2). Adding to this the kinetic energy we will get the full Lagrangian 

(2). The corresponding equation of motion is given in eq. (1). 
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Equation (1) is our starting point and the task ahead is to solve 

this equation. To make life simpler we will look for time-independent 

solutions: ~a(xl,x2). This will be sufficient for obtaining a class 

of solitary waves. These time-independent solutions will satisfy the 

following equations. 

o. ( 12) 

Once the stationary solution a 
~ (x 1 ,x2 ) is found the solution in the 

moving frame can be constructed because the equation of motion is co­

variant under (2+1)-dimensional Lorentz transformations. Hence, by 

Lorentz transforming, we get the function 

a (Xl - ut 
~ --------2---,-' 

(1 - u ) 2 

which is also a time-dependent solution of (1). 

Note: However that such transformations will generate some but not 

all time-dependent solutions. 

Equation (12) was solved by Polakov and Belavin using the following 

clever trick. The lowest energy trivial solution for the equation is 

called vacuum solution which is of the form 

where 

a 
u 

a a 
u u 

( 13) 

1. 

Thus, we have an infinite number of trivial vacuum solutions, one corres­

ponding to each possible direction the unit vector ua could take. 

Next consider non-trivial x-dependent solitary wave solutions. The 
energy of these solutions (entirely potential, since they are static 

solutions) is 

V 
1 

J d 2x J..(V~a)2 
"2 2 

'" 211 a 
_1_( a~a) 2} 1 J dr r J de {J..(~)2 + ( 14) "2 2 or 2~ 

0 0 2r 

In order that this energy be finite, the energy density (the integrand 

in (14))should go to zero as r~"'. This yields the boundary conditions 

~ 0 and ~ ae 
~ 0 as r ~ "'. ( 1 5 ) 
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In other words, as r ~ 00 the field ~a(x) must approach some fixed 

value, independent of direction. All points on the circle at infinity 

must have the same value of ~a. 8uch a function ~a(x), since it iden­

tifies (that is, it has the same value at) the boundary at infinity, 

compactifies physical space R2 into a spherical surface 8 2 , In the 

interior of this space, ~a(x) could be any continuous function of x, 

with unit modulus (~a~a 1). The allowed values of ~a at each given 

x, also forms a sphere 8 2 since the modulus of ~a has to be unity. 

Thus, any finite energy configuration ~a(x) represents a mapping of 

one sphere 8 2 into another sphere 8 2 , 

We know from mathematics that all such mappings can be divided 

into homotopy classes, where mappings within each class can be conti­

nuously deformed into one another. Each class is characterised by 

a "winding number." The expression for the winding number n for these 

mappings is given by 

( 1 6 ) 

A useful relation connecting the winding number and potential energy 

of the system was written down by Bogomolnyi. We have 

2 f d x ( a cp + £ !p x a cp) (a !pi £ !p x a alP 
II - ll\) \) II lla 

> 0, ( 17) 

that is, 

2 
fd x( a cp. a !p) + £ £ (!pxa!p) (!pxa !p > + 2 f£lI\)a ll !P. (!pxa\)!pl.. (18) 

II II ll\) lla \) a ~ ~ 

It is easy to check that the first two terms are equal. Then using 

eq. (16), one can write 

( 19) 

Given (1), this is equivalent to the following: 

4V>+1611n, 

that is, 

v > h\n\. (20) 

Equation (20) is the Bogomolnyi inequality. It says that the energy 

of any configuration is greater than or equal to 411 times its winding 

number. Now, recall the important fact that any classical static solu-

tion extremises the energy functional. In particular, if the equality 
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in eq. (20) is satisfied, then the energy is minimised in any given 

topological sector. Hence, a field ~a(x) for which the equality in 

eqs. (17-20) holds, is automatically going to solve the field equation 

(12). This in turn requires, because of (17) that 

a a .. ~ 
Thus, instead of solving the second order differential 

(12), we need only to solve the first order equation (21). 

tion of the latter will also be a solution of the former. 

(21 ) 

equation 

Any solu­

This can 

be verified by applying a on equation (21). To solve eq. (21), we .. 
make the following stereographic projection. 

(22 ) 

Let w where 

In terms of this, the Bogomolnyi equation (21) now becomes 

(23a) 

(23b) 

Using the stereographic projection (22), eq. (23) takes the form 

(24 ) 

On making use of (23), eq. (24) becomes 

(25 ) 

Equation (25) is the Cauchy-Riemann equation for which any analytic 

function w(z) (z = xl + ix 2 ) or w(z*) is a solution. Thus our original 

equation is solved. In terms of the variables w = 2(~1+i~2)/(1-~3)' 

and z = xl + iX2 any analytic function w(z) or w(z*) is an exact 

solution of (21), and also of the original field equation (12). The 

solution can be rewritten in terms of the original field variables 

~a, by inverting the stereographic projection (22). These solutions 

will, for reasons given earlier, have finite energy, equal to 4 times 
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its winding number n. 

be written as 

n 
V 
4n 

In terms of the variable w (t), eq. (16) can 

(26) 

n 
As an example, consider w = [(Z-ZO)/A] 0 , where Zo and A are cons-

tants and no is a positive integer. This is an analytic function and 

hence a solution of the original field equation (12). Upon inserting 

this function into (26), one can check that 

n 

n 
o 

v 
4TI 

A 0 + ( 
2n 

2n 
A 0 

( 27) 

The winding number is n. This is also evident from the fact that 
o n 

in the function w = [(Z-ZO)/A] 0, the Z plane is clearly mapped no 

times into the w-plane. The constants Zo and A represent respectively 

the location and the size of the soliton. Notice that thanks to the 

translational and scale covariance of the field equation (12), the 

energy (27) does not depend either on Zo or on A . 

We had taken no to be a positive integer. Choosing no to be negative 

yields an equally good solution, with the same energy but opposite 

winding. That there is a pole at Z = Zo when no is a negative integer 

is no cause for concern. The divergence of w as Z ~ Zo only means 

that (j)3 ~ 1. 

In this fashion, any meromorphic function of Z or z* is a solitary 

wave solution of the system (12). 
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Soliton Propagation In Optical Fibres 

A.Kumar 
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Pulse propagation in optical fibres, including the effects of nonlinear 
change in the refractive index, group velocity dispersion and losses, 
is reviewed. An analysis of the effect of fifth-order nonlinearity 
on the soliton propagation in the model based on the damped nonlinear 
Schr~dinger equation is made. The experimental observation of bright 
solitons and soliton laser are discussed in short. 

INTRODUCTION 

Nonlinear pulse propagation in optical fibres has been a subject of 

intensive research [1-40] primarily because of the possibility of trans­

mitting undistorted pulses of high peak powers which can be used in 

various fields such as communication, power transmission, medicine and 

industrial processing [3,4], etc. The main activity in this connection 

is centred around a suggestion given by Hasegawa and Tappert [1,2] that 

the nonlinear response of the fibre, which tends to self-confine the 

pulse, can be exploited to get rid of the pulse distortions, caused 

by dispersion, frequency chirp, etc., which put a critical limitation 

in realizing the full bandwidth capability of the linear communication 

systems using fibres. The distortionless pulse propagation based on 

this mechanism is usually referred to as soliton propagation. According 

to this mechanism when the frequency shift due to the nonlinear change 

in the refractive index of the fibre is balanced with that due to group 

dispersion in the negative dispersion region of the fibre the optical 

pulse should form an envelope soliton and a stationary pulse transmission 

should take place. However, due to the losses in fibre the soliton pulse 

continuously loses its energy, as a result of which its width increases 

with the distance of propagation and it tends to vanish [13,18-21,27]. 

Therefore, for long distance propagation periodic amplification and 

reshaping of the pulse should be done [14-16,22]. 

The prediction of Hasegawa and Tappert was successfully verified 

by Mollenauer, Stolen and Gordon [28]. After this demonstration of the 
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feasibility of the soliton concept a large number of research papers 

(both theoretical and experimental) dealing with further possible appli­

cations of optical solitons appeared in literature. All these investi­

gations led to the creation of what is called a soliton laser, which 

is a valuable achievement. 

The organisation of the lecture is as follows. Section I deals 

with the basic nonlinear evolution equation for the complex envelope 

amplitude and the soliton solutions to them in the lossless case. In 

Section II we see the effect of fibre losses on soliton propagation 

while in Section III we study the amplification and reshaping of solitons 

and their effect on the stability of the pulse. Section IV describes 

the effect of fifth-order nonlinearity on the propagation of a gaussian 

input pulse taking into account the frequency chirp. Section V deals 

with the modulational instability in optical fibres and the possibility 

of generating a train of solitons using induced modulational instability. 

In the last two sections, i.e., in the sixth and seventh we, in short, 

talk about the experimental observations of bright soliton pulses and 

the soliton laser. 

I. BASIC NONLINEAR EQUATION: BRIGHT AND DARK SOLITONS 

Consider the propagation of a pulse envelope ~(t,x) (where x is the 

longitudinal coordinate along the axis of the fibre) through an optical 

fibre including the effects of group velocity dispersion, nonlinear 

change in the refractive index of the fibre and the fibre losses. It 

is well known [1,13,18,28,37] that the evolution of the envelope is 

governed by the following differential equation: 

a a 1 a 2 rn & 2 i{K 1 ~ + y~ + ~) + -2K2 ~ - n (I~I )~ 
at ax at 2 no NL 

o , (1. 1 ) 

where y is the exponent of amplitude decay in linear regime, K1 =aK/aw 

K2 = a 2K/aw 2 and nNL { 1~12) represents the intensity dependent nonlinear 

part of the refractive index: 

2 n{w, lEI) 

In the case of cubic nonlinearity nNL 
n 2 > 0, using the transformations 

(1. 2) 

n21EI2 and self-focusing medium 
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S -1 
IK2 IT 

-2 T (t-K 1X), ~ x 

1/2 1 n2 Ko 
( 1 . 2a) 1\! = T(a!lK 2 I) cp, a 2" n 

0 

equation (1.1) can be reduced to the following dimensionless form 

o , ( 1 .3) 

where r = YT 2/ IK2 I. Note that in the above transformations T is an 

arbitrary time scale which allows a pulse of standard duration in the 

dimensionless retarded time variable s to correspond to a pulse of any 

desired duration in t [28]. 

In the absence of losses y = 0 and Eq. (1.3) reduces to well-known 

nonlinear Schrodinger equation (NLS). This equation can be solved for 

any input structure 1\! (~,S) at ~ = 0 using Zakharov-Shabat scheme based 

on inverse scattering method. The general response of 1\!(~,S) can be 

described by N solitons and continuous modes which vanish at ~ ~ 00. 

The number of solitons N is determined by the area 

+00 
A f I1\!( 0, S) IdS. 

The soliton solutions obtained by Hasegawa and Tappert [1,2] for 

optical fibres are one soliton solutions to Eq. (1.3) which are usually 

called bright or dark solitons depending on whether they exist in the 

anomalous dispersion region or norma~ dispersion region respectively. 

The bright soliton solutions to Eq. (1.3) in the anomalous dispersion 

region when K2< 0 are given by 

( 1 .4) 

where the soliton amplitude EBS is related to the pulse half-width So 

and the wave number shift AB by 

( 1 .5) 

In the normal dispersion region when K2 > 0, Eq. (1.3) admits soliton 

solutions which represent envelope shocks and are called the dark soli­

tons. They are given by 

( 1.6) 
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where EDS ' SO' and AD are related through 

(1. 7) 

Note that for dark solitons the nonlinear wave number shift is twice 

as large as the wave number shift in the case of bright solitons for 

the same amplitude. 

Further, note that 

$U,;, S) ~(S - 1) exp[i(~ - 11-)] 
u u 2 2 

(1.8) 
u 

is also a solution which indicates that a frequency modulation at ~=O 

can produce a soliton which propagates with the speed u different from 

that without frequency modulation. 

Let us now find out the expression for the peak power of the above 

mentioned solitons. Using Eq. (1.2a) and Eq. (1.5) the relationship 

between the peak electric field ~o and the pulse width 2to (for which 

the pulse height drops to sech = 0.65) can be written as [27] 

~o (1. 9) 

where Wo = 2 TIC/A is the carrier angular frequency. The peak power 

Po is related to ~o by 

P o (1. 10) 

v = c/n and the di-where S is the cross-sectional area of the fibre, 

electric constant of the fibre £ = £ n 2 where 
-22 2 0 

g -12 
£0 = 8.854 x 10 F/m. 

Assuming n 2 = 1.2 x 10 (m/V) and n = 1.5 we 

P o 3.32 x,10 7 - 2 S(]Jm ) 
A 2 (a 2.n / aA 2 ) 

(W t )2 
o 0 

(W) • 

get 

(1. 11 ) 

This is the required expression for peak power. From this expression 

it follows that near the zero group dispersion the balancing power to 

produce a soliton can be minimum. However, at a2n/aA2 = 0 the soliton 

nature of the pulse is lost. Hence for realistic power one should choose 

A in such a way that the higher order dispersions could be treated as 

perturbations [27]. 
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For A = 1.3 ~m and S 2 20 ~m one gets that 

1 . 6 W (P sec) 2 , (1. 12) 

which shows that for 1 ps pulse one requires a minimum power of 1.6W. 

However, this minimum power can be changed by the choice of A and some 

other factors. 

At the end of this section we want to note that in the derivation 

of Eq. (1.1) the radial dependence of the field was treated by employing 

the radial eigenfunction of a linear dispersive fibre [1,37] which in 

general is not acceptable. Christodoulides and Joseph [29,30] have 

studied the propagation of bright solitons through optical fibres treating 

the radial dependence of the field in an exact way. For the weakly 

dispersive fibres they reproduce the old results. However, for highly 

dispersive fibres they conclude that higher order effects in the pertur­

bation scheme for radial field dependence become important and may play 

a vital role in the formation of solitons. Using the same procedure 

they have obtained a new class of dark soliton solutions which exist 

in the normal dispersion region of the fibre. 

II. EFFECT OF LOSSES 

For y * 0, Eq. (1.3) cannot be solved exactly. However, if r~« 1 the 

second term in Eq. (1.3) can be treated as perturbation and the one 

soliton solution can be written in a simple form [8,18,19] 

I/J(~,S) A sechAS exp(io), 

where 

A = I/J exp[-2r~], o a 
1/J2 

o -ar[1 - exp(-4rS)]. 

( 2 • 1 ) 

(2.2) 

Thus the pulse amplitude decreases with the distance of propagation 

while the pulse width increases as So~ So exp[2 r~]. It puts some limi­

tations on a large distance propagation of solitons in lossy fibres. 

In fact the condition for the perturbation to be valid is 

yx « 1. (2.3) 

The characteristic distance determined by Eq. (2.3) is known as the 

period of soliton in lossy fibres [41]. 
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Numerical simulation results [18] of Blow and Doran confirmed the 

perturbative results for small propagation distances. However, the 

results obtained for the evolution of higher order solitons in lossy 

fabric indicated that the complicated amplitude oscillations charac-

teristic of higher order solitons gradually disappeared and the output 

shape at large distances is a single peak with a pulse width much less 

than in the corresponding linear case. These results demonstrate that 

for realistic optical fibre communication systems large amplitude soli­

tons can be used for a significant reduction in pulse spreading over 

the linear regime, which is important for systems using long repeater 

spacing. 

III. AMPLIFICATION AND RESHAPING OF SOLITONS 

From the above discussions it is clear that in real fibres with losses 

it is not possible to have distortionless propagation for longer dis­

tances. For long distance communication systems periodic amplification 

is needed to retain the original pulse shape. If the soliton is periodi­

cally amplified at a distance determined by group dispersion and losses 

it should propagate without distortion for a large distance. To study 

this problem let us consider the following. 

It has been shown [14-16] that if we include the acts of amplifica-

tion the envelope amplitude 

equation 

~(~,S) satisfies the following differential 

a ,10 + 1 a 2". i ~ - ---~ + ir~ 
a~ 2 as2 

N 
- i L: a ~ ~ ( s , ~ ~ - 0) a ( ~ - ~ ~ ) + I ~ 12~ = 0, ( 3 . 1 ) 

~=1 

where ~~ = (~-1)~~ ,~ = 1,2,3, ... ,N are the positions of the amplifiers, 

a(x) is a-function of x and a~ is the exponential gain of the ~-th 

amplifier. Kodama and Hasegawa [14,15] showed that for r « 1 the soliton 

can propagate for. a distance larger than 600.~~ provided that the ampli­

fier gain is chosen constant, a, such that it exactly compensates for 

the loss rate 

a exp[r.~~] - l. (3.2) 

However, if a~is variable one has to study the effect of random 

kicks, experienced by the soliton during amplification, on the stability 

and the detoriation of the soliton quality of the pulse. 

333 



Since due to the act of amplification only the amplitude of the 

pulse is increased to (l+a~) while the pulse width is not affected the 

pulse deviates from the ideal soliton structure. The amplified pulse 

produces a new soliton with the amplitude (l+a~)~o where ~o is the ori­

ginal amplitude. The difference between the energy of the amplified 

pulse and the newly formed soliton is radiated out as linear dispersive 

wave. Kodama and Hasegawa [16] showed that the total energy E(~): 

F(~ ) 

diffuses as 

- co 

( ~ (l+a~)J exp(-r~); ~n < ~ <~n+1 
~=1 

[exp(2D~) - l]Eo 

where D is defined by 

lim 
ll~ -+ 0 

«(Fn+ 1 - Fn/) 
lim 
ll~-+O 

- 2 
«(an+ 1 - a) ) ;. 

n 

(3.3) 

(3.4) 

(3.5) 

(3.6 ) 

under the assumption that the average value of a~ is given by a defined 

by equation (3.2). 

Now, right after the n-th amplification ~ 

is expected to have the form 

~n + 0 and the soliton 

(3.7) 

where en and an are the centre and the phase of the soliton and 

[1 + 2an + O(a2 )] exp[-2rll~]~ 1. n n- (3.8) 

The deviation in ~n in the order a~ is due to the interaction between 

the soliton and the radiation generated by the previous amplification 

and loss in th~ absence of which we would have got ~n = (1 + 2an)~n_1. 

From this equation we get that after the n-th amplification the energy 

of the soliton can be expressed as 

(3.9) 

where (1-0) > 0 is the measure of the energy lost by the radiation of 

the dispersive wave. The ratio Rn of the soliton energy after n-th 

amplification and the total energy is given by 
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Esol 
n 

-E--
n 

1 + 20. + 00. 2 
n n 

----------~2~----Rn-1 . 
(1 + an) 

(3.10 ) 

It follows from this equation that the deviation of the soliton energy 

from the total energy is small after each amplification since 0. ~ r6~ 

is usually a small quantity. Thus the main problem in the study of 

soliton transmission with amplification is to find out the quantity 0 

since it determines whether there will be transfer of energy to the 

soliton from the dispersive waves (0 <0 < 1) or from the soliton to 

the dispersive waves (0 < 0) [16]. Besides that 0 1 indicates that 

no radiation appears and all the energy goes to the soliton while 0=0 

indicates that there is no interaction between the soliton and the dis­

persive waves which means that the dispersive waves escape from the 

soliton quickly. For this purpose Kodama and Hasegawa numerically 

integrated equation (3.1) for various values of 6~ and the parameter 

20 which represents the random error in the amplifier gain. Their re­

sults show that even for large errors in the amplifier gain an optical 

soliton can be stably transmitted through a glass fibre with low loss 

for thousands of kilometres. 

Concluding the section we note that another adiabatic amplification 

scheme based on stimulated Raman gain has also been proposed by Hasegawa 

[22] which has the advantage that here the repeater spacing is decided 

only by fibre loss rate. In the first scheme discussed here the amplifi­

cation has to be done every time before the dispersive wave leaves the 

soliton which means that the repeater spacing is decided by a distance 

controlled by group dispersion. The latter scheme utilizes the stimu­

lated Raman process of the fibre itself in which the gain can be made 

small to make the amplification adiabatic (so that the change in the 

Raman gain due to fibre loss and pump depletion can be avoided). As 

a result the area of the soliton remains constant and the transfer of 

soliton energy to the dispersive waves is minimum. 

IV. EFFECT OF FIFTH-ORDER NONLINEARITY 

Let the index of refraction of the fibre be given by [24,25] 

n (4.1) 

where n2iEi2 and n4iEi4 are the intensity dependent nonlinear parts of 

the refractive index. In this case the propagation of the pulse en-
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velope ~(X'T)' where x is the longitudinal coordinate along the axis 

of the fibre, is governed by the following differential equation [24] 

(4.2) 

where t is time, T = t - k~x is a reduced time coordinate, k~ 

(ak/aw) is the inverse of the group velocity at the group carrier 
w=wo 1 2 2 

frequency w , a = -2(a K/aw) ,y characterizes the losses in fibre o w=w 
and Ko -won2/2c and Ao = wog4/2c express the magnitude of non­

-yx linearity in terms of n 2 and n 4 . For ~ = ~(x,T)e Eq. (4.2) takes 

the form 

i~ 
ax (4.2a) 

The pulse propagation through a fibre characterized by Eq. (4.2a) can 

be formulated as a variational problem in terms of the Lagrangian 

L (4.3) 

K(x) = Ko exp[-2yx], A(x) = Ao exp[-4yx] , (4.4) 

where the asterisk denotes a complex conjugate. Assume that ~ initially 

had a gaussian form, i.e., that 

(4.5) 

where Ao and a o are the initial pulse amplitude and ~ulse width respec­

tively. The further evolution of ~o can be analyzed in terms of the 

trial function 

2 
A(x) exp[- T + ib(x)T 2 ] 

2a 2 (x) 
(4.6) 

where the amplitude A(x), a(x) and the frequency chirp 2b(x)T all vary 

with the distance of propagation. Using the variational principle and 

performing the integration over 

tions for A(x), A*(x), a(x) and 

T we get four Euler differential equa­

b(x) which after some algebra can be 

reduced to a single second order ordinary differential equation [24] 

for the normalized pulse width parameter y(x) = a(x)/a o 

where 
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-4-
a 

o 

v 
/2aK E o 0 

E 
o 

a(x) 2 
IA(x)l. (4.8) 

Kumar et al. integrated this equation numerically for ~ = 1/8 and 
! -

y= 0.5 dB/Km for various values of the parameters f = (v/ 2~) 2 and A 

The initial value for y(x) was taken to be unity. The results of numeri­

cal integration are depicted in Figs. 1 and 2 and show that the pulse 

width initially oscillates and then starts increasing monotonically with 

the distance of propagation. While oscillating it passes through several 

minima whose p03itions vary with the relative strengths of dispersion 

and nonlinearity, which is in agreement with the character of solution 

obtained for damped NLS equation [13]. In the case of damped NLS equation 

for f = 2 the distance travelled by the pulse with consecutive compres­

sion and decompression before it disperses finally is the largest. 

In this case the final minimum of the pulse width occurs at a distance 

of about 8.6 km which in fact gives the spacing between the amplifiers 

to be used for long distance propagation. However if we increase f for 

nonzero X the position of the final minimum shifts towards larger dis-

tances. The best result is obtained for X = -0.035 and f = 2.5 (curve 
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Results of the numerical solution of Eq. (4.7) for 
different values of f and X. Solid lines: 1, f = 0.0, 
X = 0.0; 2A, f = loS, X = 0.0; 3A, f = 2.0, X = 0.0; 
4A, f = 2.5, X = 0.0. Dashed lines: 2B, f = 1.5, 
X -0.025; 3B, f = 2.0, X = -0.025, 4B, f = 2.5, 
X -0.025; 3B, f = 2.0, X -0.025, 4B, f = 2.5, 
X -0.025; 4C, f = 2.5, X = -0.035. 
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4c of Fig. 1) when the pulse width passes through a minimum (before 

final dispersion takes place) at a distance of approximately 23 km. 

At this point the pulse width is about nine-tenth of the initial pulse 
2 width. For a glass fibre with effective core area of 20 jJ m the minimum 

laser peak power, at A = 1.55 jJ m, required to materialise the above si tua­

tion for a gaussian pulse of 1 psec width is of the order of 5W. 

the values of n 2 and n 4 used are n 2 '" 

4.4 x 10- 37 (m/v)4 

-22 2 1.2xl0 (m/v) and n 4 

Here 

Finally we note that since in our case the final minimum of the pulse 

occurs at a distance of about 23 km the frequency at which the ampli­

fication of the pulse should be done for long distance propagation is 

reduced by a factor of 3 (compared with the model based on damped NLS 

equation). This is a considerable advantage. 

v. INDUCED MODULATIONAL INSTABILITY AND 
GENERATION OF SOLITONS 

It was pointed out by Anderson and Lisak [211 that modulational insta­

bility in optical fibres makes a cw optical signal unstable if the 

carrier wavelength is more than 1.3 m, i.e., in the negative group dis­

persion region of the fibre leading to some difficulty for coherent signal 
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transmission using amplitude or phase modulation (or both employed 

together) . 

For cubic nonlinearity the envelope amplitude satisfies the equation 

(see Eq. (4. 2 ) ) 

i(f* +y\)J) 

The steady state solution to it can be written as 

x 
\)Jo exp[-i J ~K(x)dx - yx], \)J~ = \)Jo 

o 

( 5 . , ) 

(5.2) 

with ~K(x) = Ko \)J~ exp[-2yx]. In the case of small modulation \)J, (X,T) 

representing \)J(X,T) as 

x 
[\)Jo + \)J, (X,T)] exp[-i J ~K(x)dx - yxl, 1\)J,I«\)Jo' 

o 
(5.3) 

putting \)J, = u + iv and seeking the solution to equations satisfied by u 

and v (obtained after the substitution of (5.3) into (5.')) in the form 

u = Uo cos[wx -~T] and v = Vo sin[wx - ~T] we get that the local growth 

rate is given by [2'] 

I w(x) 
m 

where 

2 
2 ~ (x) 

a~ [_c __ 
~2 

,]'/2 (5.4) 

(5.5) 

wi th ~2 = 2 K I \)J I 2 la Note that ~ is /2 times the maximum 
co 0 0 co 

growth rate frequency in the lossless case y = O. The total growth 

rate is determined by exp[K(x)], where 

x 
K(x) J 

o 
I w(x' )dx' 

m 

Hence the maximum growth rate is given by exp[maxK(x)] where 

a~2 
max(K(x) ) 

co (, - TI/ 4 ) 2""Y 

, ) , 12] 

(5.6) 

(5.7) 

and occurs at ~ = ~2 12. 
co 

Thus if the product of the maximum growth 

rate and the damping length is larger than' the modulational instability 

becomes a limiting factor for coherent signal transmission because of 

the instability of the cw signal. 
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However, Hasegawa [20] has shown that if one uses an externally 

applied amplitude modulation which could induce modulational instability 

at the wavelength of the given modulation one would be able to produce 

a series of solitons with the pulse width in the range of 1-50 psec and 

repetition period ~ 250 psec. 

For this purpose Hasegawa solved Eq. (1.3) numerically for different 

wavelengths A M of the initial modulation and the depths of modulation 

AM in a periodic boundary condition with a given period s = 48 which 

corresponds to 130 psec for the parameters used by him. In particular 

Eq. (1.3) was solved with the initial condition 

1jJ( 0, S) (5.9) 

with a fixed value of r -2 = 5.18 x 10 corresponding to 0.3 dB/km. His 

calculations show that initially peak structures are formed which deform 

at a longer distance of propagation splitting into two or more peaks 

and a sequential pulse with a width So ~ 1 is produced at a repetition 

frequency given by the initial modulation 'M independently of AM' How­

ever, the distance of propagation needed to form the peaked structures 

varies as a function of AM and 'M (Table I of reference 20). This dis­

tance tends to increase as 'M is increased and as AM is reduced. It 

suggests that to produce pulses at a shorter distance it is better to 

use shorter modulation period and deeper depth of modulation. 

VI. EXPERIMENTAL OBSERVATION OF BRIGHT SOLITONS 

For the experimental verification of the existence of bright solitons 

one needs a fibre with low losses in the negative group dispersion region. 

The development of monomode silica glass fibres having low losses (0.2 

dB/km) in the region of negative group dispersion [5,28]and mode-locked 

colour centre laser[39] tunable over that region made possible the experi­

mental observ~tion of bright solitons. Mollenauer, Stolen and Gordon 

[28] successfully demonstrated the distortionless propagation of a 7 

psec pulse with peak power of ~ 1.24 W at A = 1.55 ~m for a distance 
2 of about 700 meters using a monomode fibre of about 100 ~m cross sec-

tion. For higher powers they observed substantial compression and well 

resolved splitting of psec pulses. These observations were in close 

agreement with the predictions of Hasegawa and Tappert. So far as the 

experimental observation of dark solitons is concerned we note that noth­

ing has been reported so far. 
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VII THE SOLITON LASER 

Using the basic properties of nonlinear pulse propagation through optical 

fibres and the mode-locked colour-centre laser Mollenauer and Stolen 

[17] created a device which can be called a soliton laser. It is basi­

cally a synchronously pumped mode-locked colour-centre laser with a 

certain length (which can be altered according to the required value 

of the pulse width) of a monomode polarisation preserving (highly bire­

frengent) fibre incorporated into its feedback loop. The operation of 

the laser is based on N = 2 soliton of NLS equation and the shape of 

the pulse obtained from this laser is sech2 in intensity. Besides the 

ultra narrow pulses the soliton laser allows for longer precisely con­

trolled pulses which are important for several experiments on pulse pro­

pagation in optical fibres. 

The pulse narrowing and solitons are obtained using the combined 

effect of nonlinearity in the refractive index and negative group dis­

persion of the fibre as discussed earlier. The operation of the soli­

ton laser can in short be explained as follows. Broad pulses initially 

obtained from the mode-locked colour-centre laser are narrowed by passage 

through the fibre. The narrowed pulses are reinjected into the cavity 

in such a way that they are coincident and in phase with those already 

existing in the cavity. As a result the laser itself starts producing 

narrower pulses. This process is continued until one obtains soliton 

pulses. 

Concluding we wish to note that the polarisation preserving ability 

of the fibre is crucial for the operation of the laser for otherwise 

feedback into the mode-locked colour-centre laser, which is highly polari­

zation sensitive, would fluctuate wildly with fibre length, wavelength, 

etc. [17]. 
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Davydov's Soliton 

A.C. Scott 
Department of Electrical and Computer Engineering, 
The University of Arizona, Tucson, AZ85721, USA 

Davydov's theory for storage and transport of biological energy in protein 
is described and related to recent infrared absorption measurements in 
crystalline acetanilide. Some aspects of the quantum theory are consi­
dered in detail. 

1. INTRODUCTION 

In living organisms a fundamental mechanism for the transfer of energy 

into function proteins or enzymes is the hydrolysis of adenosine tri­

phosphate (ATP) into adenosine diphosphate (ADP) according to the 

reaction 

( 1.1) 

Under normal physiological conditions about 10 kcal/mol or 0.422 eV 

of free energy is released by this reaction [1], leading to several 

interesting questions: How is this free energy transferred into protein? 

How is it stored there? How does it move inside a protein? How is it 

transformed into useful work? 

To answer questions of this sort a theory was proposed by Davydov 

[2] which focused attention on the self-trapping of molecular vibra­

tional energy in the amide-I (or co stretch) vibration of the peptide 

unit (CONH), a basic structural element of all proteins. According to 

this theory, it was proposed that the localization of amide-I vibrational 

energy would alter the surrounding structure (primarily the hydrogen 

bonding) and that this local alteration would, in turn, lower the amide-I 

energy enough to prevent its dispersion. 

At about the same time as the original paper by Davydov, Careri [3] 

published some unexpected spectral measurements in the amide-I region 

of crystalline acetanilide (CH 3CONHC 6HS )' or ACN. As the temperature 

was lowered from room temperature, he observed an anomalous amide-I 
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band (at 1650 cm- 1 ) growing up on the red side of the normal amide-I 

band (at 1665 cm- 1 ). This 1650 cm- 1 band was called anomalous because 

it could not be explained with accepted concepts of molecular spectros­

copy (e.g.,Fermi resonance, Davydov splitting, etc.). At first Careri 

suspected some unusual one-dimensional phase transformation might provide 

an explanation, but no such evidence was found after several years of 

experimental work. Recently a self-trapping theory was proposed which 

is closely related to that of Davydov and explains the salient experi­

mental facts [4-6]. 

The present situation, therefore, is that the 1650 cm- 1 band in 

ACN seems to provide direct experimental evidence for a self-trapped 

state of molecular vibrational energy. The "red shift" of 15 cm- 1 from 

the normal band can be considered as the binding energy of a Davydov­

like soliton, and this interpretation leads to quantitative predictions 

of biological significance. 

This paper is organized into three phases. The first is a review 

of Davydov's soliton theory and the experimental observations in crys­

talline acetanilide. The second phase is a detailed comparison of various 

attempts to provide a quantum mechanical explanation for self-trapping 

of molecular vibrations. Finally some questions of biological signifi­

cance are briefly considered. 

2. DAVYDOV'S SOLITON THEORY 

This section is intended to provide a brief summary of Davydov's soliton 

theory for the convenience of the reader. Such a summary is helpful 

to appreciate the differences between the theory of self-trapping pro­

posed for proteins and the theory proposed recently to explain experi­

mental measurements on crystalline acetanilide. It is also necessary 

in order to see how the quantum theory developed by Davydov as a basis 

for self-trapping is related to other quantum analyses. Several surveys 

of this work are available for further reference [7,8]. 

Careful inspection of the a-helix structure of protein reveals three 

channels situated approximately in the longitudinal direction with the 

sequence 

etc. H-N-C=O---H-NC=O---H-N-C=O---H-N-C=O etc. 

where the dashed lines represent hydrogen bonds. For a detailed analysis 

it is necessary to consider the interaction of all three channels, but 

one is sufficient to layout the basic ideas. 
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A single channel is governed by the energy operator 

(2.1) 

Taking the components of A in order, A co 
co stretch (amide-I) vibration including 

is an energy operator for the 

the effects of nearest neighbor 

dipole-dipole interactions. Thus 

(2.2) 

where Eo is the fundamental energy of the amide-I vibration, -J is the 

nearest neighbor dipole-dipole interaction energy, and ~~(~n) are boson 

creation (annihilation) operators for amide-I quanta on the n-th molecule. 

Aph is the energy operator for longitudinal (acoustic) sound waves. 

Thus 

(2.3) 

where M is the mass of a molecule, W is the spring constant of a hydrogen 

bond, ~n is a longitudinal momentum operator for the n-th molecule, and 
1\ 
un is the corresponding longitudinal position operator. 

(2.4) 

where Xa is the derivative of amide-I vibrational energy with respect 

to the length (R) of the adjacent hydrogen bond. Thus 

(2.5) 

Davydov minimizes the average value of A with respect to the wave 

function 

11jJ> r an(t)exp[G(t)l~~ 10>, (2.6 ) 
n 

where 

(2.7) 

A straightforward calculation shows that 

(2.8 ) 
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and 

(2.9) 

The wave function in (2.6) will be called Davydov's ansatz throughout 

this chapter. One of the aims here is to study the range of validity 

of this ansatz. 

Assuming that Davydov's ansatz approximates the true wavefunction, 

(2.8) and (2.9) show that Bn and TIn are the average values of the posi­

tion and momentum operators, respectively. Furthermore, an is the pro­

bability amplitude for finding a quantum of amide-I vibrational energy 

on the n-th molecule. The normalization condition <~[~> = 1 implies 

that 

1. (2.10) 

Thus Davydov's ansatz describes the dynamics of a single quantum of 

amide-I vibrational energy. 

Minimization of <~[A[~> with respect to an' Bn and TIn leads to 

the differential-difference equations 

0, (2.11 a) 

(2.11 b) 

Extensive numerical and theoretical analysis of (2.11) yields the follow-

ing results [9-12J: (i) it is reasonable to expect soliton formation 

at the level of energy released by ATP hydrolysis (1.1), and (ii) such 

a soliton travels rather slowly with respect to the speed of longitudi­

nal sound waves. This suggests neglecting the kinetic energy of longi-

tudinal sound by assuming Bn 0, whereupon 

Xa 2 - - [a [ W n (2.12 ) 

and, in this "adiabatic approximation," (2.11) becomes 

0, (2.13 ) 

where 

(2.14 ) 
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Davydov has emphasized that a solitary wave solution of (2.11) cannot 

be created directly by absorption of a photon because of an unfavorable 

Franck-Condon factor. This is because the necessary intermolecular 

displacement in (2.11b) cannot occur in a time that is short enough 

for photon absorption. The Franck-Condon factor will be discussed in 

detail in the following section. 

3. SELF-TRAPPING IN CRYSTALLINE ACETANILIDE 

Just as in the a-helix, careful inspection of the crystal structure 

of acetanilide reveals channels situated in the b-direction with the 

sequence 

etc. H-N-C=O---H-N-C=O---H-N-C=O---H-N-C=O etc. 

Recent infrared absorption measurements on microcrystals of ACN 

show an unexpected band at 1650 cm- 1 which rises with decreasing tem­

perature to become the dominant spectral feature below 100 K. When 

this band was discovered, Careri suspected it to be caused by a subtle 

phase change along b-direction of the crystal [3], but careful studies 

over a period of several years failed to reveal any such evidence. The 

lack of a viable alternative eventually led to the suggestion that the 
-1 1650 cm band might be caused by direct absorption of an infrared photon 

into a self-trapped state similar to that proposed by Davydov. The 

qualifier "similar" is important because, as was noted above, the Franck­

Condon factor is unfavorable for direct photon absorption by a self­

trapped solution of (2.11). 

The corresponding theory proceeds, as in the previous section, by 

defining the energy operator 

where @CO is again given by (2.2) but with [6]: 

J 3.96 
-1 cm 

(3.1 ) 

(3.2) 

In the present analysis, however, self-trapping is assumed to be caused 

by interaction with an optical phonon rather than an acoustic phonon . 

. Thus 

(3.3) 
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and 

(3.4) 

Minimization of <~IAI~> with respect to the parameters of the 

Davydov ansatz wavefunction (2.6), where 

" (J 
1 (; " - -h E[q (t)p - P (t)q], n n n 

n 

leads to the dynamic equations 

As before 

The adiabatic approximation (qn 

where 

0, 

0) reduces (3.6) to 

0, 

(3.5) 

(3. 6a) 

(3.6b) 

(3.7) 

(3.8) 

(3.9) 

A detailed numerical study of a system of equations similar to (3.8) 

but representing one hundred molecules of ACN in two coupled channels 

has recently been carried out by Eilbeck et al. [6]. This wor~ shows 

that the red shift from the normal amide-I band at 1665 cm- 1 to the 

1650 cm- 1 band is best fit by choosing 

Yo 44.7 
-1 em (3.10) 

We turn next to an estimate of the Franck-Condon factor for direct 

photon absorption by a self-trapped state of (3.6). Before absorption 

lanl2 = 0, and after absorption lanl 2 = 0 over a localized region such 

that (2.10) is satisfied. Thus the ground state wavefunction of (3.6b) 

must shift from 
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(~)~ (2 w ) 
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before absorption to 

~ 
o 

w! [ + la 12)2 ~) (nw)2 exp -(qn Yo n 2w ( 3.12) 

after absorption, where 

1 

W = (w/m)' ( 3.13) 

is the frequency of the optical mode that is mediating the self­

trapping. The transition probability for soliton absorption is there­

fore reduced by the Franck-Condon factor 

[f~ ~ * dq )2 ~ exp(-Yo/2w), ( 3 . 14) 
o 0 n 

which is close to unity for 

y «w. 
o 

( 3.15) 

The frequency (w) of the optical mode can be determined from the 
-1 temperature dependence of the 1650 cm line. Such temperature depen-

dence is expected, because the probability of (3.6b) being in its ground 

state, and therefore able to participate in self-trapping, is [1 -

exp(-w/kT»). Thus as the temperature is raised, the low temperature 

factor given in (3.14) should be reduced by the additional factor 

[1 - exp(-w/kT»)2. 

for w = 131 cm- 1 . 

A least square fit to intensity data is obtained 

Together with (3.10) this implies exp(-Yo/2hw) = 0.84. 

Further evidence tending to favor a self-trapping explanation for 

the 1650 cm- 1 band is the recent observation of the overtone series 

shown in Table 1 [13]. Since the overtones N > 2 are self-trapped states 

involving more than one quantum of the amide-I vibration, it is interest­

ing to consider states that avoid the constraint of (2.10). 

Table 1 Overtone Series for the 
ACN Soliton 

N v(N) 

1 1650 
-1 

cm 

2 3250 

3 4803 

4 6304 
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4. THE QUANTUM THEORY OF SELF-TRAPPING 

In this section we approach the problem from a classical perspective. 

Starting with the classical amide-I coordinates, Pn and Qn' for which 

the Hamiltonian is r [p2 + Q2) it is convenient to define the complex n n n' 
mode amplitudes 

1 

w2 (P + iQn)· o n 
(4. 1) 

In terms of these complex mode amplitudes (including dipole-dipole 

interactions) 

(4.2) 

where 

(4.3) 

is the classical oscillation frequency of an amide-I vibration. (From 

here on we will assume n = 1 and measure energy and frequency in the 

same units.) 

With a classical interaction energy 

(4.4) 

where qn is the coordinate of some low-frequency phonon with adiabatic 

energy 

1 2 
2" w r qn' 

n 

one arrives at the total classical Hamiltonian 

H 

Minimizing (4.6) with respect to the qn requires 

whereupon (4.6) can be reduced to 

H 
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where 

2 Y - X /w. 

The corresponding dynamical equation for An is 

(i d 
dt E )A 

o n 
o. 

(4.9) 

(4.10) 

In additional to the energy, H, another constant of the motion along 

solutions of (4.10) is the number 

N ( 4 • 1 1 ) 

To this point the discussion of the present section has been entirely 

classical. We now consider quantization in four special cases: (i) 

J «y, (ii) y « J, (iii) semiclassical quantization, and (iv) the 

Davydov ansatz. In each case it will be of particular interest to cal­

culate an overtone series corresponding to that presented in Table 

for crystalline acetanilide. 

4.1 The Case J « y 

In this case we neglect the dipole-dipole interaction terms in (4.8) 

and (4.10), and write the energy 

H (4.12 ) 

where 

( 4.13) 

Under quantization, the terms in (4.12) become operators 

h -+ 11 n n (4.14 ) 

through replacement of the complex mode amplitudes by creation and anni­

hilation operators for bosons. Thus 

(4. 15a) 

A* -+ jjt. 
n n (4.15b) 

Since the ordering of these operators is not determined by (4.13), 

we take the averages 
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-+ ~(~t~ + ~~t), (4.16 ) 

-+ ~(~t~t~~ + ~t~~t~ + ~t~~~t + ~~~t~t + ~~t~t~). 
6 (4.17) 

where the subscripts have been dropped for typographical convenience. 

Noting that ~t and ~ have the properties ~tIN> = IN+1 IN+1> and ~IN> 
=IN IN-1> (where IN> is an harmonic oscillator eigenstate), it is straight­

forward to show that 

~ (E - ~y) (~t~ + ~) 1 ~t~~t~. (4.18 ) 
0 2 2 2"Y 

Thus 

filN> E(N) IN>, (4.19 ) 

where 

E(N) (E 1 + ~) 1 N2 (4.20 ) 
0 

2"Y) (N 2 2"Y 

In summary, eigenvectors of the operators defined through (4.13), 

(4.14), (4.16) and (4.17) are identical to those of an harmonic oscilla~ 

tor, but the corresponding eigenvalues are given (4.20). 

The form of (4.20) is significant. It can be written 

E(N) 

where EC is the ground state (N L 0) energy, E 

(4.21 ) 

Nand 

(4.22 ) 

This "nonlinear" contribution is directly measured from the overtone 

series in Table 1. 

4.2 The Case y « J 

In this case the classical equation (4.10) reduces to the nonlinear 

Schrodinger (NLS) equation of soliton theory. To see how this goes, 

assume the repeat distance between molecules of d and replace the dis-

crete variable n by a continuous variable, x = n, 

in units of d. Then (4.10) takes the form 
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Quantization of this equation was originally performed using the 

Bethe ansatz method and recently it has been shown tha~ such solutions 

can be efficiently constructed from a quantum version of inverse scatter­

ing theory [14,15]. 

Under quantization, the functions A and A* are replaced by annihila­

tion and creation operators for boson fields, ~ and ~t. At equal times 

these have the commutation relations [$(x), $*y)] = [t(x),$t(y)] = 0 

and [$(x),$t(y)] = 6(x - y). In terms of the previous discussion, it 

is evident that $(x) is equivalent (under scaling) to ~ in the conti-
n 

nuous limit n = x. In effecting this limit two procedures are customary: 

(i) neglect consideration of the ground state energy which is unbounded 

in the limit, and (ii) "normal order" all operator expressions, i.e., 

move all creation operators to the left. 

Since ~~t = ~t~ + 1, normal ordering of (4.18) and neglect of the 

ground state energy imply 

(4.24) 

Thus to put (4.23) in standard form for quantum analysis, let 

A ~ exp[-i(Eo - 2J - y)t] (4.25 ) 

and scale time as t ~ t/J. Then (4.23) becomes 

0, (4.26 ) 

where a subscript notation is used for the partial derivatives. Under 

quantization ~ ~ $ and (4.26) becomes the operator equation 

0, (4.261) 

with energy operator 

(4.28 ) 

number operator 

N (4.29) 

and momentum operator 

(4.30 ) 
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The quantum inverse scattering method provides exact wavefunctions, 

I~> , that diagonalize ~, ~ and A as follows. 

(4.31 ) 

where 

N integer> 0, (4.32 ) 

~I~>= Npl~>, (4.33 ) 

where p is a real number, and 

[NP2 + 
2 

_ N3 j 1 ~> AI~> = ~(N 
48J 2 

(4.34 ) 

Furthermore in the limit y/J .... 0 

I~> .... fdx e ipx $1 0 >. (4.35 ) 

Equations (4.32) and (4.34) imply an overtone series 

E(N) (4.36) 

(4.37) 

4.3 Semiclassical Quantization 

In the parameter range y ~ J, it is possible to impose elementary quantum 

conditions on stationary solutions of (4.10). Writing such a solution 

in the form 

(~) ~ 
E 

A Ct exp[-i(~ + w)t) n y n J (4.38) 

reduces (4.10) to the standard form 

WCtn + Ct n+1 + Ct n-1 + 3 o. Ct n (4.39 ) 

Using a shooting method [12) it is possible to find a family of numeri­

cal solutions for (4.39) with the following properties: (i) Ct n = Ct_ n ' 

(ii) for n ~ 0, Ct n >Ct n +1 , and (iii) limn .... ooCtn = O. From such a solution 
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the conserved quantities Hand N defined in (4.8) and (4.11) are readily 

calculated as 

N J E 2 Ct 
Y n 

(4.40 ) 

and 

E Ct nCtn_ 1 E 4 Ct n 
H(N) E - J n N 1 N2 n 

0 

ECt~ 
2"Y 2 

[ ECt~J 
(4.41 ) 

Semiclassical quantization is effected by noting that stationary 

solutions are of the form 

A (t) 
n AnO exp[-ie(t)], (4.42 ) 

where ~ = dH(N)/dN. Thus Nand e are conjugate variables and the 

quantum condition 

eft N de 21T(integer) (4.43) 

together with the definition of N (4.11) imply 

N integer ~ O. (4.44 ) 

Equation (4.41) has the form 

E(N) EL + ENL, (4.45) 

where 

E 
4 

Ct n 
ENL 1 N2 n 

2"Y 
~ Ct12 

(4.46 ) 

In the limit J« y, Ct n« Ct o for Inl ~ 1 so (4.46) evidently reduces 

to (4.22). In th~ limit y« J it is straightforward to show that (4.46) 

reduces to (4.37). Thus (4.46) is expected to provide an accurate cal­

cUlation of ENL over the entire parameter range. 

It is now possible to consider how data from the overtone series 

for the 1650 cm- 1 band in acetanilide compare with these calculations. 

From (3.2) and (3.10), 

11.3. (4.47) 
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This lies in the range of (4.46) for which 

so the line at 1650 cm- 1 implies 

1672.3 -1 cm 

(4.48 ) 

(4.49 ) 

From the measured values of overtone frequency, v(N) in Table 1, the non­

linear contributions to the overtone spectrum can be calculated as 

(4.50) 

In Table 2 we compare these calculations with those computed from 

(4.48) . 

Table 2 Nonlinear Terms in 
ACN Overtone Series 

N _ENL (cm- 1 ) 1 2 -1 
ZyN (cm ) 

22 22 

2 95 89 

3 214 201 

4 385 357 

4.4 Davydov's Ansatz 

We are now in a position to evaluate Davydov's ansatz. In the context 

of an adiabatic approximation, the wavefunction introduced in (2.6) 

takes the form 

II\!> = E a (t) Gt 10>, 
n n 

(4.51 ) 
n 

where the an(t) are solutions of (2.13). This form of the Davydov 

ansatz has the following properties: 

(i) In the limit J « y, it reduces to the first eigenfunction, 

11>, in (4.19). 

(ii) In the limit y« J, it reduces to the asymptotic form of 

Bethe's ansatz in (4.35). 

(iii) Between these two limits, Davydov's ansatz gives energies that 

agree with semiclassical calculations. 
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Thus one concludes that Davydov's ansatz is a useful approximation 

to the exact wavefunction over the entire parameter range 0 < y/J < 00 

with the constraint (2.10) which implies N = 1. 

5. BIOLOGICAL SIGNIFICANCE OF SELF-TRAPPING 

Measurements on crystalline acetanilide (ACN) confirm Davydov's theory 

of self-trapped states (solitons) in hydrogen bonded polypeptide chains. 

Furthermore, Table 1 shows that the "N = 2" state in ACN can absorb almost 

all (95%) of the free energy released in hydrolysis of adenosine tri-

phosphate (ATP). It is reasonable to suppose that a corresponding state 

can form on the hydrogen bonded polypeptide chains of a-helix. 

Over a decade ago McClare argued that the free energy released in 

ATP hydrolysis should transfer resonantly into a protein in order to 

avoid thermal degradation [16,17]. To store and transport this energy 

he posited an "excimer" state in protein which would be closely related 

to the amide-A band of a-helix at 3240 cm- 1 . McClare's excimer is 

qualitatively similar to the "conformon" of Green and Ji [18] and the 

basic properties of both are provided by a Davydov soliton in the "N=2" 

state [2,7,19-22]. In the past such suggestions have been rejected or 

ignored by the biochemical community because a localized region of free 

energy within a protein was believed to be physically impossible. Since 

this view is no longer tenable, the early proposals of Davydov, 

McClare [16,17,22~~and Green and Ji [18] must be reevaluated. A recent 

paper by Careri and Wyman [24], suggesting a soliton mechanism for 

cyclic enzyme activity, provides a first step in this direction. 
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Generalized Nonlinear Schrodinger Equations 
in Quantum Fluid Dynamics 

B.M. Deb and P.K. Cbattaraj 
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This review article discusses several inte-resting generalized nonlinear 

Schrodinger equations (GNLSE) occurring in quantum fluid dynamics for 

both time-independent and time-dependent situations as well as the 

possibility of soliton or solitary wave solutions for such equations. 

It concludes with a brie f report on a new GNLSE derived by the authors 

recently. 

1. INTRODUCTION: THE NATURE OF QUANTUM FLUID DYNAMICS 

Paradoxical though it may appear, generalized forms of nonlinear 

Schrodinger equation (GNLSE) do occur in the quantum theory of many­

particle systems--and therefore in nuclear, atomic, molecular and solid 

state physics--provided one adopts Madelung's, rather than Schrodinger's, 

viewpoint. In Madelung's approach [1], the Schrodinger equation for 

a single particle is recast in the form of two classical fluid dynamical 

equations, a continuity equation and an Euler-type equation of motion 

(EOM) [2]. This is the origin of quantum fluid dynamics (QFD) where 

the system is described in terms of two real quantities, the charge 

density and the current density (both obeying the above two fluid dyna­

mical equations), instead of the complex-valued wavefunction [3]. At 

a first glance, this Madelung fluid does not have a particle interpreta­

tion, unlike the Hamilton-Jacobi fluid [4] whose dynamics are governed 

by transformed Hamilton's EOM~. However, following Nelson [5], one 

may ascribe a particle interpretation to the Madelung fluid by consi­

dering the stochastic nature of the particle trajectories. In the semi­

classical limit, the Bohm potential term [2] vanishes for the Madelung 

fluid which then reduces to the Hamilton-Jacobi fluid. Apart from 

'employing a "classical" language within the quantum context, the main 

strength of the QFD viewpoint lies in its adoption of three-dimensional 

(3D) single-particle densities [3] as the basic variables. Even for 
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a many-particle system, the continuity equation and the EOM can be 

brought to 3D space in terms of an orbital partitioning, e.g., natural 

orbital~ [6] or Kohn-Sham orbitals [7], of the charge and the current 

density. 

In this short review article, we discuss several interesting GNLSE's 

in both time-independent and time-dependent situations, the possibility 

of soliton or solitary wave solutions, along with a brief report on 

a new GNLSE derived by us recently [8]. The GNLSE's derived in our 

group have arisen in our attempts to deal with atomic and molecular 

phenomena using a blend of density functional theory (DFT) and QFD [2,3]. 

2. TIME-INDEPENDENT GNLSE 

For a many-electron system, the current density vanishes in the ground 

state and therefore the QFD viewpoint reduces to the DFT viewpoint. 

The latter states that the ground state energy E[p] is a unique func­

tionalof p(r), the charge density, and attains its minimum value 

for the true p. Variational optimization of E[p] with respect to a 

trial density, subject to the conservation of the total number of parti­

cles, leads to an Euler-Lagrange equation which is nothing but a time­

independent GNLSE for the direct calculation of electron density, by­

passing the wavefunction. One such equation, derived by Deb and Ghosh 

[9], has the form (atomic units employed throughout this paper) 

1 2 [- 2 V + veff(r;p)]~(r) ~~(r), (1 ) 

p(r) 2 I ~(r) I ' (2 ) 

where ~ is a Lagrange multiplier and veff is a one-body nonlocal, 

nonlinear effective potential consisting of kinetic, Coulomb and ex­

change-correlation terms. The nonlinearity in veff arises due to non­

integral powers of ~ as well as an integral. Similar equations have 

subsequently been derived, though not solved, by Levy et al. [10] and 

Hunter [11]. Equation (1) was numerically solved by Deb and Ghosh [9] 

in a model potential framework for noble gas atoms (Ne, Ar, Kr, Xe). 

For such systems, Eqs. (1) and (2) become one-dimensional in terms 

of the radial variable r. The calculated radial densities, energies 

and ~-values were quite satisfactory. However, an analytical solution 

was not attempted. 
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3. TIME-DEPENDENT GNLSE: THE POSSIBILITY OF 
SOLITON OR SOLITARY WAVE SOLUTIONS 

The time-dependent GNLSE's are QFD EOM~. In order to examine the possi-

bility of their soliton or solitary wave solutions, it is useful to 

fall back upon the familiar cubic NLSE (one spatial dimension), 

. aiP + a ld"t 0, (3 ) 

whose envelope soliton solution exists when as> 0 and iP-+ 0 as\x\-+oo . 

This is the case of modulational instability of a train of modulated 

waves in a nonlinear, dispersive medium [12,13]. Note that, in general, 

a GNLSE may involve three spatial variables apart from time. For 

spherically svmmetric systems, e.g., closed-shell atoms, such a GNLSE 

reduces from three to one spatial dimension. If one identifies x in 

Eq. (3) as the radial variable r, then Eq. (3) may be regarded as a 

spherically symmetric version of Eq. (1), apart from time, with an 

appropriate form for veff and suitable boundary conditions. Therefore, 

the solution of Eq. (3) can provide insight into its more general forms. 

Due to the difficulties associated with the analytical or numerical 

solution of higher dimensional GNLSE's, one frequently resorts to simpler 

forms of reduced dimensionality whose analytical/numerical solution is 

relatively easier to obtain. This is the approach adopted in Section 4. 

For the present, we continue our discussion on both one- and three­

dimensional GNLSE's. 

The following GNLSE [14] was helpful in the analysis of the Heisen­

berg spin chain with site-dependent exchange integral [15]: 

L 

aa 2 (fiP) 

ax2 
+ 

f\iP\ ~x (f\iP\)dx, 

0, (4 ) 

(5 ) 

where f is a real function of x. The corresponding Madelung fluid 

equations were obtained by Belic [16], by adopting the usual polar form 

for iP , viz., 

1/2 iX p e (6 ) 

in terms of the density p and the velocity potential X Equation 

(4) has also been linked with the dynamics of a surface [16]. Earlier, 
Nonnenmacher and Nonnenmacher [17] had explicitly shown that the usual 

Madelung fluid (obtained from the Schrodinger equation) cannot have 
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a soliton solution unless one adds a nonlinear term to it. Equation 

(3) is such a nonlinear equation and its corresponding Madelung fluid 

will have the expected solitonic behaviour. Such a Madelung fluid 

is equivalent to a nondissipative (ideal), isentropic and irrotational 

fluid [17]. 

Nassar [18] has suggested that the QFD viewpoint, using both the 

Madelung approach (i.e., transformation via the polar form of the wave­

function) and the stochastic mechanical approach [4,5,19] which incor­

porates a stochastic force in Newtonian mechanics, may also be helpful 

in dealing with the quantum mechanical treatment of dissipative proces­

ses. Such processes occur, for example, in photochemistry, solid state 

physics, statistical physics, fission and heavy ion physics. Accordingly, 

a generalized nonlinear Schrodinger-Langevin equation (GNLSLE) of the 

following form has been derived [20]: 

i a<!>(x,t) 1 a 241 (x, t) 
at +"2 2 

ax 

-[~i in 41(x,t) + b lnp(x,t) + V(x,t)] 41(x,t) 0, (7 ) 
41*(x,t) 

p (x,t) 2 
141(x,t)1 ' (8 ) 

where v is akin to a plasma collision frequency, b is a free parameter 

and v(x,t) is an external potential which may contain a white-noise 

random force. The first term in square brackets in Eq. (7) accounts 

for dissipation. Nassar [21,22] has then employed the usual Madelung 

transform, Eq. (6), to obtain the QFD equations corresponding to Eq.(7). 

Note that Eq. (7) is not expected to have a solitary wave solution. 

A different type of GNLSE (in three spatial dimensions) has been 

suggested by Himi and Fukushima [23] via QFD, in order to deal more 

effectively with quantum phenomena such as heavy ion collisions. The 

two QFD equations result on applying a generalized scaling approxima­

tion in the time-dependent Hartree-Fock framework. This GNLSE is, in 

effect, formally a time-dependent generalization of Eq. (1), viz., 

0, (9 ) 

where veff is a nonlocal, nonlinear one-body potential given by 

( 10) 

with E as the total energy and vext as the external potential. 
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4. A NEW GNLSE BASED ON AN AMALGAMATION OF QFD AND DFT 

We now return to our earlier theme in Section 1 of using a blend of 

QFD and DFT (called QFDFT). Since time occurs naturally in the QFD 

equations and a nonzero current density (in addition to the charge 

density) is obtained by solving them, through QFD DFT can go into 

both time-dependent situations [7,24] and excited states, two types 

of phenomena which have been outside the purview of traditional DFT. 

We have considered [8] the physical problem of high-energy proton-neon 

atom collisions and have derived a single equation (a GNLSE) for directly 

calculating the net time-dependent electron density and current density. 

The GNLSE has also been derived by us alternatively through stochastic 

mechanics, via a set of Fokker-Planck equations. The GNLSE has the 

following form, similar to Eq. (9), viz., 

.a¢(r,t) + ~ 0 2 m(r,t) (t) m( t) 
l at 2 v.., + veff r, .., r, o. ( 1 1 ) 

However, v eff is of a different form from (10) and can be explicitly 

written as 

a ( N ) _ 9. _ __ + f ( R, N )j (1 2 ) 
--2- r N ' r IR-r I 

p(r,t) 2 I ¢(r ,t) I ' ( 13) 

where Ck and Cx are constants, a(N) depends on N, f(R,N) depends on 

both Rand N, R being the internuclear distance and N being the number 

of electrons. Here Q refers to a screened nuclear charge. The non­

linearity in Eq. (11) enters through the one-body nonlocal potential 

veff ' via nonintegral powers of ¢ as well as an integral occurring 

in Q (cf. Section 1). In order to solve Eq. (11), for studying high­

energy proton-atom collisions, we first consider a restricted case of 

spherically symmetric scattering system. For a spherically symmetric 

system (one spatial dimension), the GNLSE (11) may be transformed to 

i a1J;(x,t)+ 
at -2 

ax 
{_1_ a []} 3 ax + V eff 1J;,t 1j.(x,t) 
ax 

0; a>O,O~x~oo 

( 1 4 ) 

where 1J; = r¢ and x = Jr. 1J; tends to zero as x goes to zero or 

infinity. We have numerically solved [8] Eq. (14) by applying a Crank­

Nicolson-type finite difference scheme which is stable [25] and con­

vergent. Figure 1 depicts the initial radial density profile and the 

corresponding time-evolved quantity after 61 time-steps (each time­

step = 0.01 atomic unit). Since the initial profile is not a solution 
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12.5 ..-------"""2=-.-=5,,-----------. 
t=O.O a.~, 

Fig. 1 Plot of radial den­
sities against tr, in the 
spherically symmetric ap­
proximation, of a target 
neon atom colliding with 
a proton. The first figure 
at t = 0.0 corresponds to 
the internuclear distance 
R = 10.05 and clearly 
shows the two atomic 
shells (Hartree-Fock wave­
function [27] used). The 
second figure corresponds 
to R = 9.44 after 61 time­
steps, each time-step be­
ing 0.01. All values are 
in atomic units. 

of Eq. (14), it adjusts itself in course of time and from the thirtieth 

time-step onwards the envelope of the profile remains unchanged. In 

other words, these results indicate the possibilIty of solitary wave 

solutions. This requires further analysis. We also hope to look into 

the integrability properties of this type of equation, which might lead 

to an analytical solution. Incidentally, a spherically symmetric GNLSE 

also occurs in the study of higher dimensional Heisenberg spin chain 

[26]. 

Th2 GNLSE (11) has also been solved numerically for a scattering 

system of cylindrical symmetry (two spatial dimensions). An alternating 

direction implicit-type finite difference technique has been used for 

this purpose. As the proton approaches the neon atom and the interaction 

is switched on, a nonzero current density is obtained which signifies 

that contributions from excited states are coming into picture [8]. We 

feel that, unlike the usual approaches in molecular reaction dynamics, 

our QFDFT approach [8] has the potential to monitor a time-dependent 

quantum process from start to finish, where the process occurs on a 

pUlsating (time-dependent) potential surface given by veff(r,t). 
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