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Abstract1

In this article we consider diffusion processes modeling the dynamics of multiple2

allelic proportions (with fixed and varying population size). We are interested in the 13

way alleles extinctions and fixations occur. We first prove that for the Wright–Fisher4

diffusion process with selection, alleles get extinct successively (and not simultane-5

ously), until the fixation of one last allele. Then we introduce a very general model6

with selection, competition and Mendelian reproduction, derived from the rescaling7

of a discrete individual-based dynamics. This multi-dimensional diffusion process8

describes the dynamics of the population size as well as the proportion of each type in9

the population. We prove first that alleles extinctions occur successively and second10

that depending on population size dynamics near extinction, fixation can occur either11

before extinction almost surely, or not. The proofs of these different results rely on12

stochastic time changes, integrability of one-dimensional diffusion processes paths13

and multi-dimensional Girsanov’s tranform.14
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1 Introduction: a demo-genetic model19

This paper is motivated by concerns in conservation biology and more specifically by20

assessing conditions for the maintenance of biodiversity in populations facing extinc-21

tion. Classical population genetics models like the Wright–Fisher model, the Moran22

model or the Wright–Fisher diffusion for instance assume a constant population size,23

which is then introduced as a key parameter of these models. In contrast, when con-24

servation biology issues, one needs to understand the behaviour of populations facing25

extinction or composed with only a few individuals. Notably, specific phenomena such26

as inbreeding (Byers and Waller 1999) and mutational meltdown (Lynch and Gabriel27

1990), or changes in interactions between individuals (Svanbck and Bolnick 2007)28

are observed in small populations. To study these kinds of phenomena one therefore29

needs to consider models that allow to take into account and study the joint dynamics30

of both the demography and the genetic composition of a population. Our aim in this31

paper is more specifically to understand the impact of demography, and in particular32

of extinction, on allele extinction (or fixation).33

We first study the dynamics of the progressive loss of genetic diversity in a classical34

population genetics context (constant population size) and second the impact of the35

fluctuations of population demography on genetic diversity. We consider a population36

composed of hermaphroditic diploid individuals characterized by their genotype at one37

locus presenting L possible alleles. The dynamics is modeled by a multi-dimensional38

diffusion process. The first study (Sect. 2) concerns the L-allelic diploid Wright–39

Fisher diffusion (see Ethier and Kurtz 1986, Chap. 10). We prove (Theorem 1) that in40

this model the alleles disappear successively until the fixation of a single last allele.41

Therefore fixed population size induces a progressive loss of genetic diversity. The42

proof is done by induction on L and is based on successive time changes and a criterion43

for perpetual integrals finiteness.44

The rest of the article focuses on the impact of demography on genetic diversity.45

We introduce a diffusion process (N (t), X2(t), X3(t), . . . , X L(t))t≥0 giving the joint46

behavior of the population size and the proportions of types 2, 3, . . . , L . Note that47

X1 = 1−
∑L

i=2 X i is the proportion af allele 1. This diffusion is derived from a slow-48

fast rescaling of a diploid multi-type birth and death process (see “Appendix A”). This49

individual-based model includes Mendelian reproduction, competition, and selection50

on birth, natural death and competition parameters. Since individuals are diploid, their51

genotypes are of the form i j where i, j ∈ {1, . . . , L}.52

The infinitesimal generator of the considered diffusion process is given for53

(n, x2, . . . , xL) ∈ ]0,+∞) × {(x2, . . . , xL) ∈ [0, 1]; x2 + · · · + xL ≤ 1} and any54

function f ∈ C2
b([0,+∞) × {(x2, . . . , xL) ∈ [0, 1]; x2 + · · · + xL ≤ 1}, R) by55

L1 f (n, x2, . . . , xL ) = n

⎛
⎝ρ − αn +

∑

1≤i, j≤L

⎛
⎝si j − n

∑

1≤k,l≤L

ci j,kl xk xl

⎞
⎠ xi x j

⎞
⎠

56

∂ f

∂n
(n, x2, . . . , xL ) + γ n

∂2 f

∂n2
(n, x2, . . . , xL )57
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+
L∑

i=2

⎡
⎣xi

L∑

j=1

L∑

k=1

x j xk

⎡
⎣(sik − s jk) − n

∑

1≤l,m≤L

(cik,ml − c jk,ml )xm xl

⎤
⎦
⎤
⎦

58

× ∂ f

∂xi
(n, x2, . . . , xL )59

+
L∑

i=2

γ
xi (1 − xi )

2n

∂2 f

∂x2
i

(n, x2, . . . , xL ) −
∑

i �= j∈�2,N�

γ
xi x j

2n

∂2 f

∂xi ∂x j
(n, x2, . . . , xL ).60

(1)61

Here x1 = 1 − x2 − · · · − xL is the proportion of allele 1, ρ ∈ R is the natural62

growth rate of genotype 11 and si j quantifies the selective advantage of genotype63

i j for i, j ∈ {1, . . . , L} (the higher is si j , the more advantageous is genotype i j);64

s11 = 0 by convention. The parameter α + ci j,kl > 0 quantifies the competition65

pressure of genotype kl on genotype i j (for example due to limitation of resources)66

and c11,11 = 0 by convention. The allelic diffusion parameter γ > 0 scales the speed67

at which birth-and-death events occur. The existence and uniqueness properties of68

this process are given in “Appendix A”. The Model (1) dramatically generalizes the69

classical genetic models by considering an arbitrary number of alleles under different70

types of selection. Let us note the interplay between allelic repartition and demography71

through differences in competition parameters. In the mean field case with constant72

competition pressure (ci j,kl = 0 for any i, j, k, l), this model is a stochastically varying73

population size version of the general Wright–Fisher model introduced in Ethier and74

Kurtz (1986).75

If si j = 0 for all i, j ≥ 1, the model is neutral, since alleles are exchangeable.76

If si j = 1
2 (si +s j ) for all i, j , which corresponds to additive selection, the generator77

becomes78

L1 f (n, x2, . . . , xL ) = n

⎛
⎝ρ − αn +

L∑

i=2

si xi

⎞
⎠ ∂ f

∂n
(n, x2, . . . , xL )

+ γ n
∂2 f

∂n2
(n, x2, . . . , xL ) +

L∑

i=2

xi

⎛
⎝si −

L∑

j=1

x j s j

⎞
⎠ ∂ f

∂xi
(n, x2, . . . , xL )

+
L∑

i=2

γ
xi (1 − xi )

2n

∂2 f

∂x2
i

(n, x2, . . . , xL ) −
∑

i �= j∈�2,N�

γ
xi x j

2n

∂2 f

∂xi ∂x j
(n, x2, . . . , xL ).

(2)79

Let us note that this generator is close to the one we would obtain in an haploid80

case, except that the denominator 2n in the diffusion coefficients would be n, which81

changes the dynamics.82

What is more, the system (1) writes as (2) with any si replaced by Si defined by83

Si =
L∑

k=1

sik xk − n
∑

1≤k,l,m≤L

cik,ml xm xl xk .84
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C. Coron et al.

The coefficient Si is the true selective advantage of allele i in our general framework.85

It takes into account both diploid individual (genetic) selection and environmental86

pressure between individuals.87

In Model (1), population size goes almost-surely to 0 in finite time. We prove88

(Theorem 4) that, almost surely, the fixation of a (non given) single allele occurs89

before the extinction time and after the successive extinctions of the other alleles.90

The proof of this result is deduced from that of Theorem 1 using time changes and91

multi-dimensional Girsanov’s transform.92

The diffusion processes defined in (1) comes from a specific scaling in the93

individual-based initial model linking the population size and the demographic param-94

eters in an allometric scale explained by the metabolic theory which relates the95

individuals characteristics and their mass (cf. Brown et al. 2004; Salminen and Yor96

2005; Foucart and Hénard 2013). This leads in the limit to systems in which the97

organisms with short lives and fast reproduction create a demographic stochasticity98

modeled by the diffusion (cf. Byers and Waller 1999). In the case where some specific99

density-dependence impacts the birth and death rates, we can obtain a different scal-100

ing leading to different population size diffusion coefficients. In Sect. 4 we explore101

the impact of the demography on allele fixation and therefore on the maintenance102

of biodiversity. In particular, we exhibit examples of population size dynamics for103

which extinction occurs before fixation of alleles with positive probability (Theorem104

6; Figs. 1, 2). This result implies a maintenance of genetic diversity at all times, for the105

considered population, and shows the main influence of demographic stochasticity on106

biodiversity.107

Our proofs and results repeatedly rely on the study of quantities of the form108 ∫ T0
0 f (Zs)ds (which are referred to as perpetual integrals Salminen and Yor 2005),109

for a nonnegative (one-dimensional) diffusion process Z and T0 its hitting time of 0,110

or
∫ T0∧T1

0 f (Xs)ds, for a diffusion process X ∈ [0, 1] and T0, T1 its hitting times of111

0 and 1. More specifically, we need to know whether such integrals are finite or not.112

In “Appendix B”, we state and prove a general criterion involving a necessary and113

sufficient condition based on the scale function and speed measure of the nonnegative114

(one-dimensional) diffusion process Z , which ensures that the integral
∫ T0

0 f (Zs)ds115

is finite almost surely or infinite almost surely.116

Notation117

– In the following the state space will be denoted by118

S = ]0,+∞) × {(x2, . . . , xL) ∈ [0, 1]; x2 + · · · + xL ≤ 1}119

and its interior will be denoted by
◦
S.120

– We denote by Tz the hitting time of z ∈ [0,+∞) by the process Z :121

Tz = inf{t ≥ 0, Z t = z}.122

When the process Z has to be specified, this time will be denoted T Z
z .123
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2 Successive fixations for themulti-allelic neutral Wright–Fisher124

diffusion125

In this section we consider a neutral L-type Wright–Fisher diffusion (Ethier and Kurtz126

1986, pp. 435–439) describing the dynamics of the respective proportions of L alleles127

in a population with fixed size. We are interested in the study of alleles extinctions in128

this model.129

Let us define by X i
t the proportion of allele i in the population at time t . Since by130

definition X1
t + · · · + X L

t = 1 for any time t , it is enough to study the dynamics of131

the process (X1
t , . . . , X L−1

t )t≥0. The Wright–Fisher diffusion (see for example Ethier132

and Kurtz 1986, Chap. 10) is a stochastic diffusion whose infinitesimal generator L1133

is defined for all (x1, . . . xL−1) ∈ {(x1, . . . , xL−1) ∈ [0, 1]L−1; x1 + · · · + xL−1 ≤ 1}134

and for all function f ∈ C2({(x1, . . . , xL−1) ∈ [0, 1]L−1; x1 + · · · + xL−1 ≤ 1}, R)135

by136

L1 f (x1, . . . , xL−1) =
L−1∑

i=1

xi (1 − xi )
∂2 f

∂x2
i

(x1, . . . , xL−1)

−
∑

i �= j∈�1,L−1�

xi x j

∂2 f

∂xi∂x j

(x1, . . . , xL−1).

(3)137

Our aim is to prove the following theorem:138

Theorem 1 (i) One of the L alleles is fixed almost surely in finite time, i.e. the139

random variable maxi∈{1,...,L} X i is absorbed at 1 in finite time almost surely.140

(ii) Till that time, the population experiences successive (and non simultaneous)141

allele extinctions.142

The proof of this theorem is based on an induction argument and relies on two lemmas.143

Lemma 2 Let Y be the process solution of144

dYt =
√

Yt (1 − Yt ) d Bt ; Y0 ∈ (0, 1),145

where (Bt , t ≥ 0) is a standard Brownian motion. Then, setting T1 = inf{t ≥ 0, Yt =146

1}, we have for any y ∈ (0, 1)147

Py

(∫ T1

0

1

1 − Ys

ds = +∞
)

= 1. (4)148

149

Proof It is well known that Y reaches 0 or 1 in finite time a.s.. The process is on150

natural scale and the speed measure on (0, 1) is given by m(dy) = 2dy
y(1−y)

. Setting151

f (y) = 1/(1 − y), we have
∫ 1−

(s(1) − s(y)) f (y) m(dy) = +∞ and Theorem 12152

of “Appendix B” yields153

Py

({∫ T1

0

1

1 − Ys

ds = +∞
}

∩ {T1 < T0}
)

= Py (T1 < T0) .154

155
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Since {T1 = +∞} = {T0 < T1} and 1/(1 − Yt ) = 1 for all t ≥ T0, we get the156

result. ⊓⊔157

Lemma 3 Let (X1(t), . . . , X L−1(t))t≥0 be a L − 1-dimensional Wright–Fisher diffu-158

sion process, let 1 − X L(t) = X1(t) + · · · + X L−1(t) for all time t ≥ 0, and define159

the time change τ on [0,+∞) such that
∫ τ(t)

0
1

1−X L (s)
ds = t for all t ≥ 0 (see Lemma160

2). Now let161

(
Y 1

t , Y 2
t , . . . , Y L−2

t

)
t≥0

=
(

X1

1 − X L
(τ (t)), . . . ,

X L−2

1 − X L
(τ (t))

)

t≥0
.162

The stochastic process (Y 1
t , Y 2

t , . . . , Y L−2
t )t≥0 is a L − 2-dimensional Wright–Fisher163

diffusion process.164

Proof of Lemma 3 Let us denote by L̃ the infinitesimal generator of the L − 1-165

dimensional diffusion process ( X1

1−X L (t), X2

1−X L (t), . . . , X L−2

1−X L (t), 1 − X L(t))t≥0. For166

any real-valued twice differentiable function f defined on {(x̃1, . . . , x̃L−2, 1 − xL) ∈167

[0, 1]L−1; x̃1 + · · · + x̃L−2 ≤ 1}, we may write for xL �= 1,168

L̃ f (x̃1, . . . , x̃L−2, 1 − xL) = L1( f ◦ g)(x1, . . . , xL−1),169

where (x̃1, . . . , x̃L−2, 1 − xL) = g(x1, . . . , xL−1) and, for any (x1, . . . xL−1) ∈170

[0, 1]L−1 such that 0 < x1 + · · · + xL−1 ≤ 1171

g(x1, . . . , xL−1) =
(

x1

x1 + · · · + xL−1
, . . . ,

xL−2

x1 + · · · + xL−1
, x1 + · · · + xL−1

)
.172

Therefore, we obtain from Eq. (3) that for xL �= 1,173

L̃ f (x̃1, x̃2, . . . , x̃L−2, 1 − xL ) =
L−2∑

j=1

γ x̃ j (1 − x̃ j )

1 − xL

∂2 f

∂ x̃2
j

(x̃1, x̃2, . . . , x̃L−2, 1 − xL )

−
∑

j �=k∈�1,L−2�

γ x̃ j x̃k

1 − xL

∂2 f

∂ x̃ j ∂ x̃k

(x̃1, x̃2, . . . , x̃L−2, 1 − xL )

+ γ xL (1 − xL )
∂2 f

∂(1 − xL )2 (x̃1, x̃2, . . . , x̃L−2, 1 − xL )

174

which gives the result since dτ(t) = (1 − X L(t))dt . ⊓⊔175

Proof of Theorem 1 We prove both results by induction on L . (i) is a well known result176

in the case L = 2. Now for L alleles, note that the proportion of allele 1 follows a177

1-dimensional Wright–Fisher diffusion. Therefore allele 1 gets fixed or disappears178

almost surely in finite time. If allele 1 gets fixed then one of the L alleles gets fixed.179

If allele 1 gets lost then from its (almost surely finite) extinction time, the population180

follows a L − 1-type Wright–Fisher diffusion, therefore one of the L − 1 remaining181

alleles gets fixed almost surely in finite time, using the induction assumption.182
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Impact of demography on extinction/fixation events

We now prove (i i) (which is trivial when L = 2). We have
∫ T L

1
0

1
1−X L

s
ds = +∞183

from Lemma 2. Let us consider the time change τ(t), defined for all t ∈ [0,+∞) by184 ∫ τ(t)

0
1

1−X L
s

ds = t . Note that for t ∈ [0,+∞), X L(τ (t)) < 1.185

Therefore we can define the stochastic process Yt = (Y 1
t , . . . , Y L−2

t )t≥0 such that186

Y i
t = X i

1−X L (τ (t)) for all 1 ≤ i ≤ L − 2 and for any t ∈ [0,+∞). From Lemma 3,187

the stochastic process (Y 1
t , Y 2

t , . . . , Y L−2
t )t≥0 is a L − 2 dimensional Wright–Fisher188

diffusion process. By induction assumption, this diffusion process experiences L − 2189

successive and non simultaneous extinctions, at times denoted by SY
1 < · · · < SY

L−2 <190

+∞. Therefore τ(SY
1 ) < · · · < τ(SY

L−2) < τ(+∞) = T L
1 . Under the event { T L

1 <191

+∞}, the times τ(SY
1 ), . . . , τ (SY

L−2) and T L
1 correspond to the L −1 extinction times192

experienced by the population, which gives the result, since P(∪L
i=1{T i

1 < +∞}) = 1193

from (i). ⊓⊔194

3 Long time behavior of the diffusion process (1)195

In this section, we focus on the stochastic diffusion process (N (t), X2(t), X3(t), . . . ,196

X L(t))t≥0 whose infinitesimal generator is given in (1) and whose existence is obtained197

by the scaling limit of a multi-type birth-and-death process (see “Appendix A”, Theo-198

rem 9 for existence and uniqueness). Here the genetic dynamics of the population199

depends on both the selection and the competition between individuals, and the200

population size dynamics depends on the allelic repartition. The following theorem201

generalizes the results obtained in Theorem 1, to this very general class of demogenet-202

ics models. The main intuition (for the proof) is that the speed of allelic extinctions is203

inversely proportional to population size. So we introduce an appropriate time change204

to compensate the population size variability.205

Theorem 4 (i) The population size process (N (t))t≥0 is absorbed at 0 (extinction206

of the population) almost surely in finite time.207

(ii) One of the allele will eventually get fixed before the extinction of the population,208

almost surely.209

(iii) Till that time, the population experiences successive (and not simultaneous)210

allele extinctions.211

Proof (i) From (1), using that xi ∈ [0, 1] for all i , and setting ρ̄ = supi, j {ρ + si j } and212

α = inf i, j,k,l{α+ci j,kl}, one can easily see that the process (N (t))t≥0 is stochastically213

dominated by the logistic Feller diffusion process (N (t))t≥0 satisfying d N t = N t (ρ̄−214

αN t )dt +
√

2γ N t d Bt which is known to reach 0 almost surely in finite time (Ikeda215

and Watanabe 1989, Chapter VI.3).216

(i i) and (i i i). We first use a multi-dimensional Girsanov transform to reduce the217

study to the neutral diffusion process (for which si j = ci j,kl = 0 for all i , j , k, l). We218

introduce an appropriate time change to compensate the population size variability.219

That allows us to deduce the long time behavior of the diffusion process (1) from that220

of the classical Wright–Fisher diffusion process, obtained in Theorem 1.221
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The infinitesimal generator (1) writes222

L1 f (n, x2, . . . , xL) =n

⎛
⎝ρ − αn +

∑

1≤i, j≤L

⎛
⎝si j − n

∑

1≤k,l≤L

ci j,kl xk xl

⎞
⎠ xi x j

⎞
⎠

× ∂ f

∂n
(n, x2, . . . , xL) + γ n

∂2 f

∂n2 (n, x2, . . . , xL)

+
L∑

i=2

bi (n, x2, . . . , xL)
∂ f

∂xi

(n, x2, . . . , xL)

+ 1

2

∑

i, j∈�2,N�

a(n, x2, . . . , xL)i j

∂2 f

∂xi∂x j

(n, x2, . . . , xL),

223

where the diffusion matrix a(n, x2, x3, . . . , xL) satisfies for i �= j224

a(n, x2, x3, . . . , xL)i i = γ
xi (1 − xi )

n
and a(n, x2, x3, . . . , xL)i j = −γ

xi x j

n
.225

Remark that this matrix is related to the covariance matrix of a L−1-dimensional multi-226

nomial (n, x2, x3, . . . , xL) vector Y : a(n, x1, . . . , xL) = γ Cov((Y2, . . . , YL)/n).227

Therefore it is a symmetric positive semi-definite matrix. The vector b is defined228

by229

bi (n, x2, . . . , xL) = xi

L∑

j=1

L∑

k=1

x j xk

⎡
⎣(sik − s jk) − n

∑

1≤l,m≤L

(cik,ml − c jk,ml)xm xl

⎤
⎦ .230

We first prove that for all (n, x2, . . . , xL) ∈
◦
S, a(n, x2, . . . , xL) is an invertible231

matrix.232

Lemma 5 Assume that n �= 0, then233

det(a) = 1

nL−1

(
1 −

L∑

i=2

xi

)
L∏

i=2

xi .234

Proof It is well known that det(a) is a polynomial of degree less than 2L − 2. It is235

obvious that any xi , i = 2, . . . ,L , is a factor of det(a). Moreover adding all columns,236

we also obtain that (1 −
∑L

i=2 xi ) = x1 factorizes det(a). The derivative of det(a) is237

of degree one in any variable xi , since it is a multilinear form on its columns whose238

derivatives are of degree one. The conclusion follows by computing the determinant239

with xi = 1/L (which allows us to check that the value of the dominating constant is240

1/nL−1). ⊓⊔241
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We remark that a(n, x2, . . . , xL) = ã(x2, . . . , xL)/n where the second derivative242

of ã is bounded. Then from Theorem 5.2.3 of Stroock and Varadhan (2007), there243

exists a Lipschitz square root σ̃ of the matrix ã.244

Let us note that bi (n, x2, . . . , xL) = xi (Si −
∑L

j=2 S j x j ) where245

Si (n, x2, . . . , xL) =
L∑

k=1

sik xk − n
∑

k,l,m

cml,ik xm xl xk .246

We have the remarkable identity: If Σ denotes the vector of coordinates Si (n, x2, . . . ,247

xL), i = 2, . . . ,L , then248

a(n, x2, . . . , xL).Σ = γ

n
b(n, x2, . . . , xL). (5)249

Then for (n, x) ∈
◦
S,250

‖σ−1(n, x2, . . . , xL)b(n, x2, . . . , xL)‖2

=
〈
b(n, x2, . . . , xL), a−1(n, x2, . . . , xL)b(n, x2, . . . , xL)

〉

= n

γ
〈b(n, x2, . . . , xL),Σ〉 .

251

Therefore there exists a constant C > 0 such that for all (n, x2, . . . , xL) ∈ S,252

∥∥∥σ−1(n, x2, . . . , xL)b(n, x2, . . . , xL)

∥∥∥
2

≤ C (1 + n2). (6)253

Let (N , X2, . . . , X L) be solution to the stochastic differential system254

⎧
⎪⎨
⎪⎩

d Nt =
√

γ Nt d B1
t + Nt

(
ρ − αNt +

L∑
i=2

Si (Nt , X2
t , . . . , X L

t ) X i
t

)
dt

d X t = σ(Nt , X t ) d Bt + b(Nt , X t )dt

; (N0, X0) ∈
◦
S

(7)

255

256

where X = (X2, . . . , X L) and B1 and B are two independent Brownian motions257

respectively one and L − 1-dimensional. The system is well defined as soon as the258

solutions stay in
◦
S and then for any time t < T N

0 ∧ T X1

0 ∧ T X2

0 ∧ · · · ∧ T X L

0 , where259

X1 = 1 − X2 − · · · − X L .260

We now use the following L-dimensional Girsanov transformation (Ikeda and261

Watanabe 1989, p. 192). Let us introduce k ∈ N and define τk = T N
0 ∧ T N

k ∧262

T X1

0 ∧ T X2

0 ∧ · · · ∧ T X L

0 . We introduce the exponential martingale E(M)t∧τk
where263
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for any t ≤ τk ,264

Mt = −
((

L∑

i=2

Si

(
Ns, X2

s , . . . , X L
s

) ∫ t

0
X i

s

√
Ns

γ

)
d B1

s265

+
L∑

i=2

∫ t

0
σ−1

(
Ns, X2

s , . . . , X L
s

)
b
(

Ns, X2
s , . . . , X L

s

)
d Bs

)
.266

For each k, the martingale E(M)t∧τk
is uniformly integrable, thanks to (6). Under the267

probability Q such that dQ
dP

|Ft
= E(M)t , the process (B̃1, B̃) = (B1 − 〈B1, M〉, B −268

〈B, M〉) is a L-dimensional Brownian motion, and the process (N , X2, . . . , X L) is269

solution to the stochastic differential system270

{
d Nt =

√
γ Nt d B̃1

t + Nt (ρ − αNt ) dt

d X t = σ(Nt , X t ) d B̃t

; (N0, X0) ∈
◦
S, (8)271

272

for t < τk .273

The end of the proof of (ii) and (iii) consists in using a time change in order to274

apply Theorem 1 (i) and (ii). Using Example 2 in Section B, we know that275

∫ T N
0

0

γ

2Ns

ds = +∞276

277

a.s. Hence we can define the time change τ(t) defined for all t ∈ [0,+∞) as the278

unique positive real number satisfying279

∫ τ(t)

0

γ

2Ns

ds = t . (9)280

281

In particular, τ is increasing and, under Q, the process defined for any t by X̂ t = Xτ(t)282

is a Markov process whose generator is given in (3).283

Since τ(·) is increasing, we deduce that, Q-almost surely,284

T X1

0 ∧ T X2

0 ∧ · · · ∧ T X L

0 = τ(T X̂1

0 ∧ T X̂2

0 ∧ · · · ∧ T X̂ L

0 )285

and that, up to a Q-negligible event,286

{
T X1

0 ∧ T X2

0 ∧ · · · ∧ T X L

0 < T N
0

}
=
{

T X̂1

0 ∧ T X̂2

0 ∧ · · · ∧ T X̂ L

0 < +∞
}

.287

Using Theorem 1, we deduce that288

Q

(
T X1

0 ∧ T X2

0 ∧ · · · ∧ T X L

0 < T N
0

)
= 1.289
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Impact of demography on extinction/fixation events

Hence, one has290

P

(
T X1

0 ∧ T X2

0 ∧ · · · ∧ T X L

0 < T N
0

)
291

= lim
k→+∞

P

(
T X1

0 ∧ T X2

0 ∧ · · · ∧ T X L

0 < T N
k ∧ T N

0

)
292

= lim
k→+∞

EQ

(
1

T X1
0 ∧T X2

0 ∧···∧T X L

0 <T N
k ∧T N

0
E(−M)T N

k ∧T N
0

)
293

≥ lim
k→+∞

EQ
(

1T N
0 <T N

k
E(−M)T N

k ∧T N
0

)
294

= lim
k→+∞

P

(
T N

0 < T N
k

)
= 1.295

296

Using the same induction argument as in the proof of Theorem 1, this concludes the297

proof of (ii) and (iii) and hence of Theorem 4. ⊓⊔298

4 Demography andmaintenance of biodiversity299

The general demogenetics model (1) was obtained from a specific scaling of the param-300

eters in the individual-based model. Other scalings will lead to different coefficients.301

In particular we can generalize the linear form of the size diffusion coefficient (Feller302

diffusion). Our aim in this section is to emphasize the importance of the variance303

effects, both in the demographic and in the genetic part of the system, on the long time304

behavior. The main question is whether one allele gets fixed almost surely before the305

population goes extinct. We will see that it depends on the behavior of the diffusion306

coefficient near extinction in the equation satisfied by the population size. The next307

theorem notably highlights the major effect of the demography on the maintenance of308

genetic diversity by giving a necessary and sufficient criterion ensuring almost sure309

fixation before extinction.310

For simplicity we consider in this section the bi-allelic framework.311

Let us consider the process (Nt , X t )t≥0 solution to the system of stochastic differ-312

ential equations313

{
d Nt = σ(Nt ) d Bt + Nt (ρ − αNt )dt, N0 > 0, α > 0

d X t =
√

X t (1−X t )
f (Nt )

dWt

, t < T N
0+, (10)314

315

where B, W are independent one-dimensional Brownian motions, σ : (0,+∞) →316

(0,+∞) is locally Lipschitz and f : (0,+∞) → (0,+∞) is locally bounded away317

from 0 and where318

T N
0+ := lim

n→+∞
T N

1/n .319

320

Note that lim infx→0 f (x) can be null or not, nevertheless the former case is more321

interesting and biologically motivated (see Coron 2016). Note also that the system322
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admits a pathwise unique strong solution, as will be explained in the proof of the323

following theorem (if σ is only locally Hölder continuous, an adaptation of our proof324

leads to the weak existence and pathwise uniqueness of a solution to this system, so325

that the following result remains valid).326

Theorem 6 Fixation occurs before extinction with probability one if and only if327

∫

0+

y

σ 2(y) f (y)
dy = +∞. (11)328

329

In particular, if f is the identity function, the behavior of σ(N ) near extinction plays330

a main role. Whereas for the usual demographic term σ(N ) =
√

N (studied in the331

previous sections), fixation occurs almost surely before extinction, a small perturbation332

of this diffusion term, taking for example σ(N ) = N (1−ε)/2, ε > 0, leads to extinction333

before fixation with positive probability. An example of trajectory for which fixation334

does not occur before extinction is given in Fig. 1, and the effect of ε on the probability335

of extinction before fixation is numerically studied in Fig. 2.336

Note that the demographic term σ(N ) =
√

N can be explained from an individual-337

based stochastic system in a case of large size combined with accelerated birth and338

death. This corresponds to population dynamics with allometric demographies whose339

time scale is explained by the metabolic theory which relates the individuals charac-340

teristics and their mass (cf. Brown et al. 2004; West et al. 1999; Gillooly et al. 2001).341

This leads in the limit to systems in which the organisms with short lives and fast342

reproduction create a demographic stochasticity modeled by the Brownian part (cf.343

Champagnat et al. 2006). In the case where some specific density-dependence impacts344

the birth and death rates, we can obtain, in the limit of large population, a demographic345

Fig. 1 We plot a trajectory of the 2-dimensional diffusion process (N , X) such that d Nt =
√

N
(1−ε)
t d Bt +

Nt (ρ − αNt )dt and d X t =
√

Xt (1−Xt )
Nt

dWt , with ε = 0.4, ρ = −1 and α = 0.1. For this trajectory,
fixation does not occur before extinction
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Fig. 2 For different values of ε, we simulate 10,000 trajectories of the 2-dimensional diffusion process

(N , X) such that d Nt =
√

N
(1−ε)
t d B1

t + Nt (r − cNt )dt and d X t =
√

Xt (1−Xt )
Nt

, with r = −1 and
c = 0.1. We plot the number of simulations for which fixation does not occur before extinction

term of the form σ(N ) = N (1−ε)/2, ε > 0. For the mathematical statement of such346

limits, we refer to Bansaye and Méléard (2015).347

Proof Let us first prove that the system (10) admits a unique (strong) solution up to time348

T N
0+, which in particular implies the strong Markov property used in the sequel. Given B349

and W , for all n ≥ 1, there exists a pathwise unique strong solution N n to the equation350

d N n
t = σ(N n

t ) d Bt + N n
t (ρ−αN n

t )dt for all time t < T N
1/n := inf{s ≥ 0, N n

s ≤ 1/n}351

[this is an immediate consequence of Theorem 3.11 p.300 in Ethier and Kurtz (1986)].352

Setting Nt = N n
t for all t ∈ [T N

1/n, T N
1/n+1), one obtains a pathwise unique strong353

solution to d Nt = σ(Nt ) d Bt + Nt (ρ − αNt )dt up to time T N
0+ [in the case where σ354

is only Hölder continuous, weak existence holds true, see for instance in Section 12.1355

of Champagnat and Villemonais (2018)].356

We define the random number357

Tmax =
∫ T N

0+

0

1

f (Ns)
ds358

359

and the time change τ(t), for all t ∈ [0, Tmax ), as the unique positive real number360

satisfying361

∫ τ(t)

0

1

f (Ns)
ds = t .362

363

In particular, τ is increasing and T N
0+ = τ(Tmax ).364

We define W̃t :=
∫ τ(t)

0
1

f (Ns )
dWs for all t < Tmax (which is a standard Brownian365

motion), and consider X̂ t the unique strong solution to366

d X̂ t =
√

X̂ t (1 − X̂ t ) dW̃t , X̂0 = X0, t ∈ [0, Tmax )367
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[strong existence and pathwise uniqueness of such a solution is a consequence of368

Proposition 2.13 p.291 of Karatzas and Shreve (1991)]. Then the process X t := Xτ−1(t)369

is a strong solution to d X t =
√

X t (1−X t )
f (Nt )

dWt for all t < T N
0+. Pathwise uniqueness370

up to time T N
1/n,n := inf{t ≥ 0, Nt /∈ [1/n, n]} for all n ≥ 1 is proved using the371

same approach as in the proof of Theorem 3.8 p.298 of Ethier and Kurtz (1986), using372

the fact that inf y∈[1/n,n] f (y) > 0. Since limn→+∞ T N
1/n,n = T N

0+ almots surely, one373

concludes that the system (10) admits a pathwise unique strong solution.374

We denote by T̂F = inf{t > 0, X̂ t ∈ {0, 1}} the (possibly infinite) absorption time375

of X̂ .376

Assume first that
∫

0+
y

σ 2(y) f (y)
dy = +∞. In this case, using (21), we note that377

s(y) ∼y→0 y s′(y). Hence Tmax = +∞ by Corollary 2, and X̂ reaches 0 or 1 in finite378

time almost surely. Then, TF = τ(T̂F ) < τ(Tmax ) = T N
0+ (i.e. fixation occurs before379

extinction) almost surely.380

Assume now that
∫

0+
y

σ 2(y) f (y)
dy < +∞. In this case Tmax < +∞ with prob-381

ability one by Corollary 2. Let W̃ ′ be a Brownian motion independent from B and382

consider X̂ ′ the solution to the SDE d X̂ ′
t =

√
X̂ ′

t (1 − X̂ ′
t ) dW̃ ′

t , X̂ ′
0 = X0. We define383

for t < T N
0+ the time changed X ′

t = X̂ ′
τ−1(t)

, so that (N , X ′) is solution to the SDE384

system (10) and hence, by uniqueness in law of the solution to this system, (N , X ′)385

and (N , X) have the same law. Since (N , X̂ ′) and (N , X̂) can be obtained as the same386

function of (N , X ′) and (N , X) respectively, we deduce that they share the same law387

up to time Tmax . Then we have388

P(X t ∈ (0, 1) ∀t < T N
0+ and XT N

0+− exists in (0, 1))389

= P(X̂ t ∈ (0, 1) ∀t < Tmax and X̂Tmax− exists in (0, 1))390

= P(X̂ ′
t ∈ (0, 1) ∀t < Tmax and X̂ ′

Tmax− exists in (0, 1)) > 0,391
392

since N and X̂ ′ are independent and X̂ ′ is a Wright–Fisher diffusion. This concludes393

the proof, since {X t ∈ (0, 1),∀t < T N
0+ and XT N

0+− exists in (0, 1)} ⊂ {T N
0+ < TF },394

therefore P(T N
0+ < TF ) > 0. ⊓⊔395
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Appendix A: Derivation of the generator (1) from an individual-based400

model401

Appendix A.1: Themodel402

We consider a population of diploid hermaphroditic organisms, characterized by their403

genotype at one locus. There exist L versions (alleles) of the gene at this locus and we404
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denote by 1, 2, . . . , L , these alleles. Individuals can then have genotype i j for all i and405

j in �1, L� (genotypes i j and j i are not distinguished), and we study the dynamics406

of the respective numbers of individuals with each genotype. We introduce a scaling407

parameter K ∈ N\{0} that scales the initial population size and goes to infinity. The408

population is then represented at any time t ≥ 0 by a symmetric positive matrix with409

size L , whose coefficients belong to Z+/2K :410

NK (t) =
(

nK
i j (t)

)
1≤i, j≤L

,411

where for all i ∈ �1, L�, nK
ii (t) ∈ Z+/K is the number of individuals with genotype i i412

at time t , divided by K and for all i �= j ∈ �1, L�, nK
i j (t)+ nK

ji (t) = 2nK
i j (t) ∈ Z+/K413

is the number of individuals with genotype i j at time t , divided by K . For any time t ,414

and for all K , NK (t) belongs to the space SL([0,+∞)) of symmetric matrices with415

positive real-valued coefficients.416

Notation 7 For any matrix ν = (νi j )1≤i, j≤L ∈ SL([0,+∞)), we define ν{i i} = νi i417

and ν{i j} = 2νi j for all i �= j .418

We assume that the population follows a non-linear birth-and-death process with419

Mendelian reproduction and competition whose jump rates will be given later.420

The following quantities play a main role in this study:421

– N K (t) =
∑

i, j∈�1,L� nK
i j (t) is the rescaled population size at time t ,422

– nK
i (t) = 2

∑L
j=1 nK

i j (t) is the rescaled number of occurrences of allele i at time t ,423

– x K
i (t) = nK

i (t)

2N K (t)
=
∑

j nK
i j (t)∑

i, j

nK
i j (t)

is the proportion of alleles i at time t ,424

– x K
i j (t) = nK

{i j}(t)

N K (t)
is the proportion of genotypes i j at time t ,425

– ǫK
i j (t) = x K

i (t)x K
j (t)− x K

i j (t)

2 is called the deviation of the population from Hardy-426

Weinberg structure, for genotype i j with i �= j .427

For all n = (ni j )i, j∈�1,L� ∈ SL([0,+∞)) \ 0, we set for all i �= j ,428

ψi j (n) = ǫi j =
(∑

k nik

) (∑
l n jl

)
(∑

i, j ni j

)2 − ni j∑
i, j ni j

.429

We obtain the following result:430

Lemma 8 For all n = (ni j )i, j∈�1,L� ∈ SL([0,+∞)) \ 0, let us define431

φ1(n) =
L∑

i, j=1

ni j ; φi (n) =
∑

j ni j∑
i, j ni j

for all i ∈ �2, L�,

(φL+1(n), . . . , φL(L+1)/2(n)) = ((ψ1 j (n))1< j≤L , (ψ2 j (n))2< j≤L , . . . , ψ(L−1)L(n))

432
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C. Coron et al.

The function433

φ : S
L([0,+∞)) \ 0 → φ(SL([0,+∞)) \ 0)

n �→ φ(n) =
(
φ1(n), . . . , φ L(L+1)

2
(n)

)
434

is a bijection.435

Proof Setting x1 = 1 − x2 − x3 − · · · − xL , we get that436

(n, x2, x3, . . . , xL , (ǫ1 j )1≤i< j≤L , (ǫ2 j )2≤i< j≤L , . . . , ǫ(L−1)L) = φ(x)437

if and only if438

ni j = n(xi x j − ǫi j ) for all i �= j, and

ni i = n(xi )
2 +
∑

j �=i

ǫi j , which gives the result.439

⊓⊔440

For all i, j ∈ �1, L�, we now denote by ei j the square matrix with size L such that for441

all k, l ∈ �1, L�, ei j (k, l) = δ
(k,l)
(i, j)

+δ
(k,l)
( j,i)

2 . Individuals experience panmictic Mendelian442

reproduction. Therefore, for all i < j ∈ �1, L�, as long as the total population size443 ∑
1≤i, j≤L ni j = n �= 0, the rate λK

i j (n) (resp. λK
ii (n)) at which the stochastic process444

NK jumps from n = (ni j )i, j∈�1,L� ∈ SL([0,+∞)) to n + ei j/K (resp. n + ei i/K ) is445

given by:446

λK
i j (x) = 2K bK

i j nxi x j

λK
ii (x) = K bK

ii nx2
i ,

(12)447

where bK
i j ∈ [0,+∞) for all i ≤ j ∈ �1, L�. These birth rates are naturally all equal448

to 0 if n = 0.449

Each individual can die either naturally or due to the competition with other indi-450

viduals. More precisely, for all i ≤ j ∈ �1, L�, the rate µK
i j (x) at which the stochastic451

process XK jumps from x = (xi j )i, j∈�1,L� ∈ SL([0,+∞)) to x − ei j/K , is given by452

µK
i j (x) = K

⎛
⎝d K

i j + K
∑

1≤k,l≤L

cK
i j,kl xkl

⎞
⎠ x{i j}, (13)453

where d K
i j ∈ [0,+∞) is the intrinsic death rate of an an individual with genotype i j ,454

and cK
i j,kl ∈ ]0,+∞) is the rate at which a given individual with genotype i j dies due455

to the competition with a given individual with genotype kl (we have used Notation456

7). We obviously assume that cK
i j,kl = cK

i j,lk = cK
ji,kl for all i , j , k, and l, since the two457

genotypes i j and j i are indistinguishable.458

Note that for all K ∈ N\{0}, the pure jump process XK is well-defined for all459

time t ∈ [0,+∞). Indeed, the process (N K (t), t ≥ 0) is stochastically dominated460
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Impact of demography on extinction/fixation events

by a logistic birth-and-death process N
K

with birth, intrinsic death and competition461

parameters respectively equal to sup
i, j

bK
i j < +∞, inf

i, j
d K

i j and inf
i, j,k,l

cK
kl,i j > 0, which,462

from Chapter 8 of Anderson (1991), does not explode, almost surely.463

The stochastic process (XK (t), t ≥ 0) is therefore a pure jump process with values464

in SL(R+) (endowed with the distance r such that r(x, y) = max
i, j

|xi j − yi j |, for465

instance), absorbed at 0, and defined for all t ≥ 0 by466

XK
t = XK

0 +
∑

1≤i≤ j≤L

[∫ t

0

ei j

K
1{

θ≤λK
i j (X

K
s− )

}ηi j
1 (ds, dθ) −

∫ t

0

ei j

K
1{

θ≤µK
i j (X

K
s− )

}ηi j
2 (ds, dθ)

]
467

where the measures η
i j
k for i ≤ j ∈ �1, L� and k ∈ {1, 2} are independent Poisson468

point measures on [0,+∞)2, with intensity dsdθ . For all K , the law of XK is then469

a probability measure on the space of trajectories D([0,+∞),SL([0,+∞))) which470

is the space of càd-làg functions, from [0,+∞) to SL([0,+∞)), endowed with the471

Skorokhod topology. The extended generator LK of (XK (t), t ≥ 0) satisfies, for all472

measurable function f from SL([0,+∞)) to R, and for all x ∈ SL([0,+∞)):473

L
K f (x) =

∑

1≤i≤ j≤L

[
λK

i j (x)

(
f
(

x + ei j

K

)
− f (x)

)
+ µK

i j (x)

(
f
(

x − ei j

K

)
− f (x)

)]
,

(14)474

where the rates λK
i j (x) and µK

i j (x) have been defined in Eqs. (12) and (13) for all i ≤ j .475

Appendix A.2: Slow-fast dynamics476

We now study the convergence of the sequence of stochastic processes (XK (t), t ≥477

0)K∈N\{0} toward a slow-fast stochastic diffusion dynamic, as done in Coron (2016).478

To this aim, demographic parameters must be properly rescaled, according to the479

following assumptions, for γ > 0:480

bK
i j = γ K + βi j ∈ ]0,+∞), d K

i j = γ K + δi j ∈ [0,+∞), and481

cK
i j,kl = αi j,kl

K
∈ ]0,+∞).482

Besides, we assume that483

there exists a constant C < ∞ such that sup
K

E((N K (0))3) ≤ C . (15)484

Then, from Lemma 1 of Champagnat (2006) and the proof of Theorem 5.3 of Fournier485

and Méléard (2004):486

(i) There exists a constant C > 0 such that487

sup
K

sup
t≥0

E((N K (t))3) ≤ C .488
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(ii) For all T < +∞, there exists a constant CT such that489

sup
K

E

(
sup
t≤T

(N K (t))3

)
≤ CT .490

The following proposition gives the convergence of the fast variables491

((ǫK
i j (t))1≤i< j≤L , t ≥ 0) toward 0 and is an extension of Proposition 3.2 of Coron492

(2016) for a larger number of alleles. The proof of this result can be found in Coron493

(2013), Chapter 4, “Appendix A”.494

Proposition 1 Under the Hypothesis (15), for all times s, t > 0 and for all i �= j ∈495

�1, L�, sup
t≤u≤t+s

E((ǫK
i j (u))2) → 0 when K goes to infinity.496

We next study the asymptotic behavior of the sequence of stochastic processes con-497

stituted of the remaining variables (N K (t), x K
2 (t), x K

3 (t), . . . , x K
L (t))t≥0 introduced498

in Lemma 8, when K goes to infinity. For more simplicity, we first consider the499

sequence of stochastic processes ((nK
1 (t), nK

2 (t), . . . , nK
L (t))t≥0)K∈N\{0} giving the500

respective numbers of occurrences of the different alleles, whose dynamics are sim-501

pler. The proof of the following can be found in Coron (2013), Chapter 4, “Appendix502

A” and is a generalization of the proof of Theorem 1 in Coron (2016).503

Theorem 9 Under (15), if the sequence (nK
1 (0), nK

2 (0), . . . , nK
L (0))K∈N\{0} converges504

in law toward a random variable (n1(0), n2(0), . . . , nL(0)) ∈ [0,+∞)L when505

K goes to infinity, then for all T > 0, the sequence of stochastic processes506

((nK
1 (t), nK

2 (t), . . . , nK
L (t)), t ∈ [0, T ]) converges in law in D([0, T ], [0,+∞)L)507

when K goes to infinity, toward a time-continuous diffusion process ((n1(t), n2(t), . . . ,508

nL(t)), t ∈ [0, T ]) starting from (n1(0), n2(0), . . . , nL(0)), which is the unique con-509

tinuous solution of the martingale problem:510

g(n1(t), n2(t), . . . , nL(t)) − g(n1(0), n2(0), . . . , nL(0))

−
∫ t

0
Lg(n1(s), n2(s), . . . , nL(s))ds

(16)511

is a martingale for all function g ∈ C2
b ([0,+∞)L , R) where L satisfies512

Lg(n1, . . . , nL) =
L∑

i=1

∂g

∂ni

(n)

⎡
⎣

L∑

j=1

⎛
⎝βi j − δi j −

∑

k,l

αi j,kl

nknl

2
∑

k nk

⎞
⎠ ni n j∑

k nk

⎤
⎦

+ γ

L∑

i=1

∂2g

∂n2
i

(n)

[
(ni )

2
∑

k nk

+ ni

]
+ γ

∑

i< j

∂2g

∂ni∂n j

(n)

[
2ni n j∑

k nk

]

(17)513

for all point n = (n1, . . . , nL) of [0,+∞)L .514

Note that the diffusion coefficients of the generator L go to 0 when the total
∑

k nk515

goes to 0. The system of Eqs. (16) and (17) admits a unique strong solution up to516
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Impact of demography on extinction/fixation events

time Tǫ = inf{t > 0, n1(t) + n2(t) + · · · + nL(t) ≥ ǫ}. Then from Theorem 6.2,517

Chapter 4 of Ethier and Kurtz (1986), it admits a unique strong solution up to time518

T0+ = limǫ→0 Tǫ .519

From Theorem 9, we deduce for all ǫ > 0 the convergence of the sequence of520

stochastic processes (N K (t), x K
2 (t), x K

3 (t), . . . x K
L (t))t≥0 stopped when N K (t) ≤ ǫ,521

toward a L-dimensional diffusion process (N (.), x2(.), . . . , xL(.)).∧Tǫ , stopped when522

N (t) ≤ ǫ:523

Corollary 1 For all ǫ > 0 and T > 0, let us define T K
ǫ = inf{t ∈ [0, T ] : N K (t) ≤524

ǫ}. If the sequence of random variables (N K (0), x K
2 (0), x K

3 (0), . . . x K
L (0)) ∈525

[ǫ,+∞[×[0, 1]L−1 converges in law when K goes to infinity, toward a random526

vector (N (0), x2(0), x3(0), . . . xL(0)) ∈]ǫ,+∞[×[0, 1]L−1, then the sequence of527

stopped stochastic processes {(N K (t ∧ T K
ǫ ), x K

2 (t ∧ T K
ǫ ), x K

3 (t ∧ T K
ǫ ), . . . , x K

L (t ∧528

T K
ǫ ))0≤t≤T }K≥1 converges in law in D([0, T ], [ǫ,∞[×[0, 1]L−1) when K goes to529

infinity, toward a continuous diffusion process (N (t ∧ Tǫ), x2(t ∧ Tǫ), . . . , xL(t ∧530

Tǫ))0≤t≤T stopped at time Tǫ = inf{t ∈ [0, T ] : Nt = ǫ}, starting from531

(N (0), x2(0), x3(0), . . . xL(0)) and whose infinitesimal generator L1 is defined for532

all function f ∈ C2
b([ǫ,∞[×[0, 1]L−1, R) by533

L1 f (n, x2, . . . , xL)

= n

⎛
⎝ ∑

1≤i, j≤L

⎛
⎝βi j − δi j −

∑

1≤k,l≤L

αi j,klnxk xl

⎞
⎠ xi x j

⎞
⎠ ∂ f

∂n
(n, x2, . . . , xL)

+ γ n
∂2 f

∂n2 (n, x2, . . . , xL)

+
L∑

i=2

⎡
⎣xi

L∑

j=1

L∑

k=1

x j xk

(
(βik − β jk) − (δik − δ jk)

−
∑

1≤l,m≤L

(αik,ml − α jk,ml)nxm xl

⎞
⎠
⎤
⎦ ∂ f

∂xi

(n, x2, . . . , xL)

+
L∑

i=2

γ
xi (1 − xi )

2n

∂2 f

∂x2
i

(n, x2, . . . , xL)

−
∑

i �= j∈�2,N�

γ
xi x j

2n

∂2 f

∂xi∂x j

(n, x2, . . . , xL)

534

The link with the generator (1) can be seen by setting ρ = β11 − δ11, si j =535

(βi j − δi j ) − (β11 − δ11), α = α11,11 and ci j,kl = αi j,kl − α11,11.536
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Appendix B: Integrability properties for diffusion processes537

Proofs of Theorems 1, Lemmas 2, 3 and Theorem 4 rely on the integrability of paths538

of diffusion processes. This section is devoted to the statement and the proof of a539

criterion for such integrability (Theorem 11). More precisely, this result states that,540

depending on the behavior of the diffusion and drift coefficients near absorption, the541

integral of the paths of diffusion processes are either almost surely finite or almost542

surely infinite. This 0–1 law criterion has already been proved by various methods,543

using a combination of the local time formula and Ray–Knight Theorem (Engelbert544

and Tittel 2002; Mijatovic and Urusov 2012; Khoshnevisan et al. 2006) (see also545

Engelbert and Senf 1991; Foucart and Hénard 2013 for proofs in particular settings).546

We give a simpler proof of this criterion, which also provides explicit bounds for547

the moments of perpetual integrals and can be easily extended to more general one548

dimensional Markov processes. Then, we extend this result to a diffusion taking values549

in a compact subset and finally to non-homogeneous processes by the use of Girsanov’s550

transform.551

Appendix B.1: General diffusion processes on [0,+∞)552

Let us consider a general one-dimensional diffusion process (Z t , t ≥ 0) (that is a553

continuous strong Markov process) with values in [0,+∞). We denote by Tz the554

hitting time of z ∈ [0,+∞) by the process Z :555

Tz = inf{t ≥ 0, Z t = z}.556

When the process Z has to be specified, this time will be denoted T Z
z .557

Let us denote by Pz the law of Z starting from z. We assume that Z is regular558

(∀z ∈ (0,+∞),∀y ∈ (0,+∞), Pz(Ty < +∞) > 0). This implies that for any559

a < b ∈ (0,+∞) and a ≤ z ≤ b, Ez(Ta ∧ Tb) < +∞ and we can associate with Z560

a scale function s and a locally finite speed measure m on [0,+∞) (see Revuz and561

Yor 1999, Chapter VII). We moreover assume that for all z ∈ (0,+∞),562

Pz(T0 = T0 ∧ Te < +∞) = 1, (18)563

where Te is the explosion time.564

Lemma 10 Condition (18) is equivalent to565

s(+∞) = +∞; s(0) > −∞;
∫

0+
(s(y) − s(0)) m(dy) < +∞. (19)566

Note that Condition (19) is well known in the case where Z is solution of a stochastic567

differential equation (cf. Karatzas and Shreve 1991, p. 348; Ikeda and Watanabe 1989,568

p. 450).569

Proof Assume first that (18) is satisfied. As Z has scale s, s(Z) is a local martin-570

gale on (s(0), s(+∞)) such that T
s(Z)
s(0)

< T
s(Z)
s(+∞)

a.s.. We deduce that s(0) > −∞571
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Impact of demography on extinction/fixation events

and s(+∞) = +∞. The diffusion s(Z) has a natural scale with speed measure572

m̃ = m ◦ s−1 (see Revuz and Yor 1999, Chapter VII). Since it attains s(0) in573

finite time almost surely, we deduce using (Rogers and Williams 2000, Theorem 51-574

2) that
∫

s(0)+(u − s(0)) m̃(du) < +∞. As
∫

s(0)+(u − s(0)) m̃(du) < +∞ ⇐⇒575 ∫
0+(s(y)− s(0)) m(dy) < +∞, we obtain (19). Conversely, assume (19). Conditions576

s(0) > −∞ and s(+∞) = +∞ imply that the local martingale s(Z) doesn’t explode577

a.s.. Since
∫

0+(s(y) − s(0)) m(dy) < +∞, then
∫

s(0)+(u − s(0)) m̃(du) < +∞ and578

the process s(Z) attains s(0) in finite time a.s., so does the process Z . ⊓⊔579

Since the function s is defined up to a constant, we choose by convention s(0) = 0580

as soon as s(0) > −∞.581

The following theorem gives a 0–1 law criterion for the finiteness/infiniteness of582

perpetual integrals of diffusion processes, for which we provide a new and simple583

proof.584

Theorem 11 Let (Z t , t ≥ 0) be a regular diffusion process on [0,+∞) with scale585

function s and speed measure m on (0,+∞) satisfying (19). Let also f be a non-586

negative locally integrable function on (0,+∞). Then, for all z > 0 and all n ≥ 1,587

Ez

[(∫ T0

0
f (Zs) ds

)n
]

≤ n!
(∫ ∞

0
s(y) f (y) m(dy)

)n

588

589

and590

∫

0+
s(y) f (y) m(dy) < +∞ ⇐⇒

∫ T0

0
f (Zs) ds < +∞ Pz-almost surely591

∫

0+
s(y) f (y) m(dy) = +∞ ⇐⇒

∫ T0

0
f (Zs) ds = +∞ Pz-almost surely.592

593

Proof Because of the non-explosion assumption (19), we have
∫ T0

0 f (Zs) ds <594

+∞ ⇔ ∀k ∈ N,
∫ T0

0 f (Zs)1Zs≤k ds < +∞ and
∫ T0

0 f (Zs) ds = +∞ ⇔ ∃k ∈ N595

such that
∫ T0

0 f (Zs)1Zs≤k ds = +∞. Hence it is sufficient to prove Theorem 12 for596

functions f satisfying
∫∞

a
f (x) s(x) m(dx) < +∞ for all a > 0. We make this597

assumption from the rest of the proof.598

As Z has scale function s and speed measure m, the process s(Z) is on a natural599

scale with speed measure m ◦ s−1. Then it is enough to prove the result for Z on a600

natural scale. In particular, we have the following Green formula [see [Chapter 23] of601

Kallenberg (2001)]602

Ex

(∫ T0

0
f (Zs) ds

)
=
∫

(0,+∞)

2 (x ∧ y) f (y) m(dy).603

604
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Noting that605

∫ T0

0
f (Zs) ds =

∞∑

k=1

∫ Tx/(k+1)

Tx/k

f (Zs) ds,606

607

one easily checks that, under Px for any x ∈ (0,+∞),
∫ T0

0 f (Zs) ds < +∞ satisfies608

a 0–1 law. Indeed, the random variables
∫ Tx/(k+1)

Tx/k
f (Zs) ds, k ≥ 1 are non-negative609

and independent (strong Markov property) and almost surely finite because of our610

assumptions and the Green’s formula applied under Px/k up to time Tx/k+1. Hence611

the above series is finite with probability zero or one.612

Let us now assume that
∫
(0,+∞)

y f (y) m(dy) < +∞. Then
∫ T0

0 f (Zs)ds < ∞613

almost surely and, for all n ≥ 1,614

Ex

[(∫ T0

0
f (Zs)ds

)n
]

= Ex

[
n

∫ T0

0
f (Zs)

(∫ T0

s

f (Zu) du

)n−1

ds

]
615

= n

∫ ∞

0
Ex

[
1s<T0 f (Zs)

(∫ T0

s

f (Zu) du

)n−1]
ds616

= n Ex

[∫ T0

0
f (Zs)EZs

((∫ T0

0
f (Zu)du

)n−1)
ds

]
,617

618

where we used the Markov property. We immediately deduce by induction that619

Ex

[(∫ T0

0
f (Zs)ds

)n
]

≤ n!
(∫

(0,+∞)

2y f (y)m(dy)

)n

.620

621

This concludes the proof of the first part of Theorem 11 (the inequality is trivial when622 ∫
(0,+∞)

y f (y) m(dy) = +∞).623

Assume now that
∫
(0,+∞)

y f (y) m(dy) = +∞ and fix x ∈ (0,+∞). For all624

k ≥ 1, we set625

fk(y) =
{

f (y) if y ≥ 1

f (y) ∧ k if y < 1.
626

627

In particular,
∫
(0,+∞)

fk(y) y m(dy) < ∞ for all k ≥ 1 and hence, using the inequal-628

ities established above and then the fact that
∫
(0,+∞)

2y fk(y) m(dy) goes to infinity629

and the fact that y f (y)m(dy) is assumed to be finite on neighborhood of +∞, we630

deduce that for k large enough631
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Impact of demography on extinction/fixation events

Ex

[(∫ T0

0
fk(Zs)ds

)2]
≤ 2

(∫

(0,+∞)

2y fk(y) m(dy)

)2

632

≤ 2

(∫

(0,+∞)

2 (y ∧ x) fk(y) m(dy) +
∫ ∞

x

2(y − x) f (y) m(dy)

)2

≤ 4

(∫

(0,+∞)

2 (y ∧ x) fk(y) m(dy)

)2

+ 4

(∫ ∞

x

2(y − x) f (y) m(dy)

)2

≤ 5

(∫

(0,+∞)

2 (y ∧ x) fk(y) m(dy)

)2

≤ 5

[
Ex

(∫ T0

0
fk(Zs)ds

)]2

.

633

634

We deduce that, for k large enough,635

Px

⎛
⎝
∫ T0

0
fk(Zs)ds ≥

Ex

(∫ T0
0 fk(Zs)ds

)

2

⎞
⎠ ≥ 1

20
.636

637

Indeed, for any random variable Y ≥ 0 such that E(Y 2) ≤ 5E(Y )2, we have, setting638

M = E(Y ),639

5M2 ≥ E(Y 2) ≥ E(Y 2 | Y ≥ M/2)P(Y ≥ M/2) ≥ E(Y | Y ≥ M/2)2 P(Y ≥ M/2)640

≥ E(Y 1Y≥M/2)
2

P(Y ≥ M/2)
≥ M2/4

P(Y ≥ M/2)
641

642

and hence P(Y ≥ M/2) ≥ 1/20. Now using the fact that fk is increasing in k, we643

deduce that, for k large enough,644

Px

⎛
⎝
∫ T0

0
f (Zs)ds ≥

Ex

(∫ T0
0 fk(Zs)ds

)

2

⎞
⎠ ≥ 1/20.645

646

Since Ex

(∫ T0
0 fk(Zs)ds

)
is not bounded in k, we deduce that647

Px

(∫ T0
0 f (Zs)ds = +∞

)
≥ 1/20. This and the fact that {

∫ T0
0 f (Zs)ds = +∞}648

satisfies a 0–1 law conclude the proof. ⊓⊔649

The equivalences stated in Theorem 11 are particularly useful when Z is solution650

of651

d Z t = σ(Z t )d Bt + b(Z t )dt; Z0 > 0, (20)652

where B is a one dimensional Brownian motion, and σ : (0,+∞) → (0,+∞) and653

b : (0,+∞) → R are measurable functions such that b/σ 2 is locally integrable. The654

scale function (up to a constant) and speed measure equal to655
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s(x) =
∫ x

c

exp

(
−2
∫ y

c

b(z)

σ 2(z)
dz

)
dy; m(dx) = 2dx

s′(x) σ 2(x)
, (21)656

(cf. Kallenberg 2001, Chapter 23).657

Corollary 2 Assume that Z is solution of (20) with s(+∞) = +∞ and
∫

0+ s(y) m(dy)658

< +∞. Let us consider a non negative locally integrable function f on (0,+∞). Then,659

under Pz ,660

∫

0+

f (y)s(y)

s′(y)σ 2(y)
dy = +∞ ⇐⇒

∫ T0

0
f (Zs) ds = +∞ almost surely,661

∫

0+

f (y)s(y)

s′(y)σ 2(y)
dy < +∞ ⇐⇒

∫ T0

0
f (Zs) ds < +∞ almost surely.662

663

Let us give two examples for population size processes.664

Example 1 Branching process with immigration. Let us consider the solution of the665

stochastic differential equation d Nt = σ
√

Nt d Bt + βdt, β > 0. Computing s and666

m as in (21), we easily obtain that (18) ⇐⇒ β/σ 2 < 1/2. Applying Corollary 2 with667

f (y) = 1/yα , we have668

∫ T0

0

1

(Ns)α
ds = +∞ a.s. ⇐⇒ α ≥ 1;

∫ T0

0

1

(Ns)α
ds < +∞ a.s. ⇐⇒ α < 1.

(22)

669

670

671

In the particular case α = 1, the authors of Foucart and Hénard (2013) propose an672

other approach based on self-similarity properties.673

Example 2 Logistic diffusion process. Let us consider the process674

d Nt =
√

Nt d Bt + Nt (b − c Nt ) dt; N0 > 0,675

where c > 0. Then s(y) =
∫ y

0 ecz2−2bzdz and m(dy) = 2e−cy2+2by

y
dy and676

∫
0+ s(y)m(dy) < +∞, since s(y)

s′(y) y
→y→0 1. (Note that if c = 0, the condition677

s(+∞) = +∞ is not satisfied). It is immediate to check that (22) also holds.678

Appendix B.2: General diffusion processes on (a, b)679

Let us consider a general diffusion process (X t , t ≥ 0) with scale function s and680

locally finite speed measure m on (a, b), with −∞ < a < b < +∞. Let us denote681

by Ta and Tb the hitting times of a and b respectively by the process X . We assume682

that, for all x ∈ (a, b), Px (Ta ∧ Tb < +∞) = 1. This is the case if and only if one of683

the following properties is satisfied684
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(i) −∞ < s(a) < s(b) < +∞;
∫

a+(s(y) − s(a)) m(dy) < +∞ and
∫ b−

(s(b) −685

s(y) m(dy) < +∞;686

(ii) −∞ < s(a) and s(b) = +∞;
∫

a+(s(y) − s(a)) m(dy) < +∞;687

(iii) s(a) = −∞ and s(b) < +∞;
∫ b−

(s(b) − s(y)) m(dy) < +∞.688

Theorem 12 Fix x ∈ (a, b) and let f : (a, b) → R+ be a locally bounded measurable689

function. Then690

∫ b−

(s(b) − s(y)) f (y)m(dy) = ∞691

⇔ Px

({∫ Tb

0
f (Xs)ds = ∞

}
∩ {Tb < Ta}

)
= Px (Tb < Ta)692

∫ b−

(s(b) − s(y)) f (y)m(dy) < ∞693

⇔ Px

({∫ Tb

0
f (Xs)ds < ∞

}
∩ {Tb < Ta}

)
= Px (Tb < Ta) .694

695

A similar result holds at the boundary a.696

Proof As in the proof of Theorem 11, it is enough to prove the result in the case where697

s is the identity function. Without loss of generality, we take (a, b) = (0, 1). Let us698

consider x ∈ (0, 1), fix ε ∈ (0, 1 − x) and consider a locally finite measure mε on699

(0,+∞) such that the restriction of mε on (0, 1 − ε) is equal to the restriction of m700

on (0, 1 − ε). Let Xε be a diffusion process on natural scale on (0,+∞) with speed701

measure mε and starting from x , built as a time change of the same Brownian motion702

as X . Because of this construction, X and Xε coincide up to time T0 on the event703

{T0 < T1−ε}.704

Now, by Theorem 11 applied to Xε and f ε : y �→ f (y)1y≤1−ε, we deduce that705

∫ T0

0
f (Xε

s )1Xε
s ≤1−ε ds = +∞ almost surely ⇐⇒

∫

0+
y f (y)m(dy) = +∞,706

∫ T0

0
f (Xε

s )1Xε
s ≤1−ε ds < +∞ almost surely ⇐⇒

∫

0+
y f (y)m(dy) < +∞.707

708

Since on the event T0 < T1−ε, X and Xε coincide up to time T0 and Xs ≤ 1 − ε holds709

for s ≤ T0, then up to Px -negligible events,710

∫

0+
y f (y)m(dy) = +∞ �⇒

∫ T0

0
f (Xs)ds = +∞ on T0 < T1−ε.711

∫

0+
y f (y)m(dy) < +∞ �⇒

∫ T0

0
f (Xs)ds < +∞ on T0 < T1−ε.712

713
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The continuity of the paths of X implies that {T0 < T1} = ∪0<ε<1−x {T0 < T1−ε},714

which yields, up to negligible events,715

∫

0+
y f (y)m(dy) = +∞ �⇒

∫ T0

0
f (Xs)ds = +∞ on T0 < T1.716

∫

0+
y f (y)m(dy) < +∞ �⇒

∫ T0

0
f (Xs)ds < +∞ on T0 < T1.717

718

This concludes the proof of the direct implications in Theorem 12.719

Now, assume for instance that
∫ T0

0 f (Xs)ds = +∞ on T0 < T1. Then, a for-720

tiori,
∫ T0

0 f (Xs)ds = +∞ on T0 < T1−ε for any ε ∈ (0, 1 − x). This implies721

that
∫ T0

0 f (Xε
s )ds = +∞ on T0 < T1−ε. But T0 < T1−ε happens with probability722

x/(1 − ε) > 0 by definition of the natural scale. We deduce from Theorem 11 that723 ∫
0+ y f (y)m(dy) < +∞ does not hold and hence, because f is non-negative, that724 ∫
0+ y f (y)m(dy) = +∞. This provides the first ⇐ implication in Theorem 12. The725

second ⇐ implication in Theorem 12 is proved using similar arguments.726

The result at boundary b is proved similarly. ⊓⊔727

Appendix B.3: Extension to non-homogeneous processes by use of Girsanov728

transform729

We are interested in generalized one-dimensional stochastic differential equations of730

the form731

d X t = σ(X t )d Bt + b(X t )dt + q(X t , θt )dt, X0 > 0, (23)732

where (Bt , t ≥ 0) is a Brownian motion for some filtration (Ft )t and (θt , t ≥ 0)733

is predictable with respect to (Ft )t . The process (θt )t can for example model an734

environmental heterogeneity.735

Assumption (H): We consider real functions σ and b such that for any Brown-736

ian motion W on some probability space, the one-dimensional stochastic differential737

equation d Z t = σ(Z t )dWt + b(Z t )dt, Z0 > 0 satisfies the assumptions of Corol-738

lary 2.739

Theorem 13 Let us consider a solution X of (23) where σ and b satisfy Assumption740

(H). We also assume that T0 = T X
0 < +∞ almost surely and that the sequence741

(T X
k )k∈N∗ tends almost surely to infinity as k tends to infinity.742

Next, we assume that for any k ∈ N\{0},743

E

(
exp

(
1

2

∫ T X
k

0

q2(Xs, θs)

σ 2(Xs)
ds

))
< +∞. (24)744

745
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Let f be a non negative locally bounded measurable function on (0,+∞). We have746

∫

0+
f (y)s(y) m(dy) = +∞ ⇐⇒

∫ T X
0

0
f (Xs)ds = +∞ almost surely,747

∫

0+
f (y)s(y) m(dy) < +∞ ⇐⇒

∫ T X
0

0
f (Xs)ds < +∞ almost surely,748

749

where s and m are defined in (21).750

Note that (24) holds true as soon as, for all k ∈ R+,751

sup
x∈(0,k),θ

|q(x, θ)/σ (x)| < +∞. (25)752

Proof We use the Girsanov Theorem, as stated for example in Revuz and Yor (1999)753

Chapter 8 Proposition 1.3.754

Let us consider the diffusion process X k on [0, k], absorbed when it reaches 0 or755

k, at time τk := T X
0 ∧ T X

k .756

The exponential martingale E(Lk)t , where Lk
t = −

∫ t∧τk

0
q(Xs ,θs )
σ (Xs )

d Bs , is uni-757

formly integrable thanks to (24) and Novikov’s criterion. Define for any x > 0 the758

probability Qx with dQx

dPx
|Ft

= E(L)t . Then, the process ω = B − 〈B, L〉 is a Qx -759

Brownian motion and, under Qx , X is solution to the SDE d X t = σ(X t )dωt +760

b(X t )dt . Hence s restricted to (0, k) is the scale function of X k under Qx . Since s and761

f are both bounded in a vicinity of k, we deduce from Theorem 12 that762

∫ τk

0
f (X t )dt < +∞ a.s., under Qx (· | T X

k < T X
0 ).763

764

Note also that, since we assumed that Tk tends almost surely to infinity, we have up765

to a Px -negligible event,766

{∫ T0

0
f (X t ) dt = +∞

}
=

+∞⋃

k=0

{∫ τk

0
f (X t ) dt = +∞

}
767

768

and hence769

Px

(∫ T0

0
f (X t ) dt = +∞

)
= lim

k→+∞
Px

(∫ τk

0
f (X t ) dt = +∞

)
.770

771

But, by definition of Qx and by Theorem 12, we have772

Px

(∫ τk

0
f (X t )dt = +∞

)
= EQx

(
1∫ τk

0 f (X t )dt=+∞ E

(∫ τk

0

q(ωs, θs)

σ (ωs)
dωs

))

(26)

773
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=
{

0 if
∫

0+ s(y) f (y) m(dy) < +∞
EQx

(
1T0<Tk

E

(∫ τk

0
q(ωs ,θs )
σ (ωs )

dωs

))
otherwise

(27)

774

=
{

0 if
∫

0+ s(y) f (y) m(dy) < +∞
Px (T0 < Tk) otherwise.

(28)775

776

Letting k tend to infinity concludes the proof. ⊓⊔777
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