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"After years, I have deeply regretted that I did not proceed far enough
at least to understand something of the great leading principles of
mathematics: for men thus endowed seem to have an extra-sense".

Charles Darwin, Autobiography.



Natural selection and evolution

"As many more individuals of each species are born than can possibly
survive; and as, consequently, there is a frequently recurring struggle
for existence, it follows that any being, if it vary however slightly in any
manner profitable to itself, under the complex and sometimes varying
conditions of life, will have a better chance of surviving, and thus be
naturally selected. From the strong principle of inheritance, any
selected variety will tend to propagate its new and modified form".

Charles Darwin, On the origin of species, 1859.



Adaptive Biology

The population has the propensity to generate as well to select individual
diversity.

The ability of an individual (bacteria cell) to survive and reproduce depends
on phenotypic (or genetic) parameters called traits.

The evolution of the trait distribution results from the following mechanisms:

Heredity. (Vertical) transmission of the ancestral trait to the offsprings.

Mutation. Generates variability in the trait values.

Selection. Individuals with traits increasing their survival probability or
their reproduction ability will spread through the population over time.
The selection can also result from competition between individuals.

Horizontal Gene Transfer (HGT): the bacteria exchange genetic
information.



Horizontal Transfer

In a large range of species across the tree of life, horizontal transfer (HT)
of information, such as genetic mobile elements, plasmids,
endosymbionts or cultural traits, affects the adaptation of populations
and the evolution of species.

HGT is recognized as a major process in the evolution and adaptation of
micro-organisms.

Behaviors or cultural traits can also be socially transmitted between
non-kin individuals in animals and have effect on fitness.

Nevertheless, most of the evolutive models do not take horizontal
transfer into account.



Horizontal Gene Transfer

There are several mechanisms for horizontal gene transfer.

Transformation

Some DNA filaments directly enter the cell: direct uptake and
incorporation of the exogenous genetic material from its surroundings
through the cell membrane.



Transduction: bacterial DNA is moved from a bacterium to another one
by viruses (phages) which affect the cell. No physical contact between
cells.

Transduction could explain the large diversity of phytoplanctons (The
paradox of the plancton).

Observation of the plancton
diversity under microscope.



Conjugation : transfer of genetic material between bacteria cells by
direct cell-to-cell contact. We will focus on plasmid conjugation.

Plasmids: small circular double-stranded DNA, physically separated
from the chromosonal DNA. They replicate from a cell to another one,
independently of the chromosome.



Plasmids in E-Coli

Number of identical plasmids in a cell: from 1 to thousands.

A larger proportion of the genome of plasmids codes for antibiotic resistances
than that of the chromosome.



Plasmid transfer plays a main role in the evolution, maintenance, and
transmission of virulence.
Indeed, plasmids are known to carry factors that can affect their host’s
fitness dramatically (as pathogens or genes for antibiotic resistance).

Plasmid transfer is the primary reason for bacterial antibiotic resistance.

Artificial plasmids are widely used as vectors in molecular cloning
(CRISPR/Cas 9)

Important role in the degradation of novel compounds by bacteria (such
as human-created pesticides).

Trade-off between the cost of their mobility and the advantage imparted by
their accelerated spread.

How the demographic parameters and the environment do interplay in the
evolution mechanism?



Experiments and data
• Pilus synthesis and conjugation are very costly. In some cases, if a
bacterium is in contact with a bacterium carrying the plasmid, it receives a
signal impeding the transfer mechanism.

• Population of recipients a: they don’t get the plasmid. The cells divide every
20 mn.

• Population of donors A: they carry a plasmid coding for resistance to
antibiotic AB1. The plasmid is costly and the division of a cell happens every
22 mn.

Data: R. Fernandez-Lopez et al.

The populations a and A are
isolated and one can measure their
growth rates by spectrophotometry.

Logistic growth



Gene transfer modeling

A few literature on the subject.

Previous models are

- either deterministic:

epidemiological ODE’s - No evolution (Levin et al. 1979, Anderson, May
1979, . . . )

Some PDE’s models: Hinow et al. 2009, Magal, Raoul 2015.

- or stochastic:

population genetics models with constant population size - No ecology
(Novozhilov et al. 2005, Tazzyman, Bonhoeffer 2013).



Our aim

To propose a general stochastic eco-evolutionary model of population
dynamics with horizontal and vertical transmissions.

To focus on the interplay between ecology, transfer and evolution.

To study the maintenance of polymorphism and the invasion or
elimination of traits

To show how HGT can drastically affect the evolutionary outcomes.



An individual-based model with two traits

K scales the size of the population (large K means large population).

We consider a population structured by a gene x with two alleles A and
a: x ∈ {A, a}.

The population at time t is modeled by the vector

(Z A,K
t ,Z a,K

t ) =
1
K

(NA,K
t ,Na,K

t ),

where NA,K
t and Na,K

t the numbers of individuals with alleles respectively
A and a.

Birth rate of an individual with trait x ∈ {A, a}: bK (x).

Death rate of an individual with trait x at time t :

dK (x) +
C(x , x)

K
Nx,K

t +
C(x , y)

K
Ny,K

t .



HGT: bacteria conjugation

Transfer rate: In a population (z1, z2), a donor transfers its trait x to a
recipient with trait y at rate hK (x , y , z1, z2).

The recipient becomes x .

The Markovian dynamics

A a

bK (A ) bK (a)

d K(a)+K CK (a , A) z1+KC K(a ,a) z2d K(A)+KC K(A , A) z1+K CK (A ,a) z2

K hK (a , A , z1, z2) z2

K hK(A ,a , z1, z2) z1

Birth rate of an 
individual A

Birth rate of an 
individual a

Death rate of an individual A
(due to intrinsinc death and 

competition)

Horizontal transmission rate 
Individual A becomes a

Horizontal transmission rate 
Individual a becomes A

Death rate of an individual a
(due to intrinsinc death and 

competition)



The Stochastic process

Let us consider test functions F ∈ Cb(R2, R). The generator of the process
(Z A,K

t ,Z a,K
t )t≥0 is:

LF (z1, z2) = K z1 bK (A)
(

F
(
z1 +

1
K
, z2)− F (z1, z2)

)
+ K z2 bK (a)

(
F
(
z1, z2 +

1
K

)
− F (z1, z2)

)
+ K z1

(
dK (A) + C(A,A) z1 + C(A, a) z2

)(
F
(
z1 −

1
K
, z2

)
− F (z1, z2)

)
+ K z2

(
dK (a) + C(a,A) z1 + C(a, a) z2

)(
F
(
z1, z2 −

1
K

)
− F (z1, z2)

)
+ K 2 z1 z2 hK (A, a, z1, z2)

(
F
(
z1 +

1
K
, z2 −

1
K

)
− F (z1, z2)

)
+ K 2 z1 z2 hK (a,A, z1, z2)

(
F
(
z1 −

1
K
, z2 +

1
K

)
− F (z1, z2)

)
.

(1)

Playing with the forms of the demographic parameters and time scales will
lead to various asymptotic behaviors.



Large population limit

Consider now the following assumptions:

•We assume that for any x , y ∈ {a,A}, we have bK (x)→ b(x),
dK (x)→ d(x), KCK (x , y)→ C(x , y) and we set

r(x) = b(x)− d(x).

•We also assume that for any x , y ∈ {a,A},

h(x , y , z1, z2) = limK→∞ K hK (x , y , z1, z2) =
τ(x , y)

β + µ (z1 + z2)
.

Experimental remark: HGT rate is density-dependent when the population
size is low and frequency-dependent when the population is close to its
carrying capacity.

• For β = 1, µ = 0 or β = 0, µ = 1 or β, µ 6= 0 , one gets the three cases of
density-dependent horizontal transfer rate (DD), frequency-dependent
transfer rate (FD) or Beddington-DeAngelis like transfer rate (BDA).

• Denote by α(x , y) = τ(x , y)− τ(y , x) the transfer flux, which can be
positive or negative.



Theorem

When K →∞ , the stochastic process (Z A,K
t ,Z a,K

t )t≥0 converges in
probability to the solution (zA

t , z
a
t )t≥0 of the ODEs system:

dzA

dt
=
(

r(A)− C(A,A)zA − C(A, a)za +
α(A, a)

β + µ (zA + za)
za
)

zA

dza

dt
=
(

r(a)− C(a,A)zA − C(a, a)za − α(A, a)

β + µ (zA + za)
zA
)

za.

Sketch of Proof (cf. Ethier-Kurz).
Uniform estimates on moments ; Tightness
Identification of the limit.
Uniqueness of the solution of the dynamical system.

Remark: if there is only one type A, the equation becomes

dza

dt
=
(

r(a)− C(a, a)za
)

za.

There is only one stable equilibrium

z̄a =
r(a)

C(a, a)
.



Stability Analysis
When α(x , y) ≡ 0: classical Lotka-Volterra system. The stability is governed
by the sign of the invasion fitness function

f (y ; x) = r(y)− C(y , x) zx = r(y)− C(y , x)
r(x)

C(x , x)
.

For C constant and r bijective, f (y ; x) = r(y)− r(x): no co-existence.

When α(x , y) 6= 0:

A

a

zA

za (3)

A

a

zA

za (4)
A

a

zA

za (1)

A

a

zA

za (2)

A

a

zA

za (5)

A

a

zA

za (6)

A

a

zA

za (7)

A

a

zA

za (8)

The circles and stars respectively show
the stable and unstable fixed points.



Invasion fitness of individuals with trait A in the a-resident population:

S(A; a) = r(A) +
(α(A, a) z̄a

β + µ z̄a − C(A, a)
)

z̄a

= r(A) +
α(A, a)r(a)

βC(a, a) + µr(a)
− C(A, a))r(a)

C(a, a)
.

Compared to the classical two-species Lotka-Volterra system, 4 new
phase diagrams are possible: Figures (5)-(8).

Figures (1)-(4) are possible for all forms of HGT rates while Figures
(5)-(6) are not possible when the HGT rate is DD and Figures (7)-(8) are
only possible when the HGT rate is BDA.

Figures (5)-(8): depending on the initial conditions, the population can be
stably polymorphic or can fix one of the two traits.

Classical two-species LV system without HGT: coexistence of both
species⇐⇒ SAa > 0 and SaA > 0 .

Our results show that HGT changes dramatically the picture: a stable
polymorphic state can exist whatever the sign of the fitness.



Study of the dynamical system

If C(A,A) > 0 and C(a, a) > 0, then φ(z1, z2) = 1
z1z2 is a Dulac function.

Dulac Theorem : the system has no cycle in (R∗+)2.

Fixed points in the positive quadrant: it’s easier to consider the system
"population size and frequencies".

n(t) = x(t) + y(t) ; q(t) =
x(t)

x(t) + y(t)
.

dn
dt

= n
(

q r(A) + (1− q) r(a)− CAA q2n − (CAa + CaA) q(1− q)n

− Caa (1− q)2n
)

dq
dt

= q (1− q)
(

r(A)− r(a) + nq(CaA − CAA) + n(1− q)(Caa − CAa)+

+ α(a,A)
n

β + µn

)
.

Use of the Poincaré index and of Poincaré-Hopf Theorem to get the
sources and the sinks.



Invasion, fixation or polymorphism persistence of a costly plasmid

Our results show that HGT can dramatically change the usual picture.

Fate of a deleterious mutant A in a resident population a.

Here the usual fitness f (A; a) < 0 and the transfer is unilateral.

The case where C is constant and r bijective.

Without transfer:
f (A; a) = r(A)− r(a).

No polymorphism is possible.



With tranfer:

• Unilateral DD transfer.

S(A; a) = r(A)− r(a) + τ(A, a)
r(a)

C
; S(a; A) = r(a)− r(A)− τ(A, a)

r(A)

C
.

b(A) = 0.5 ; b(a) = 1 ; τ(A, a) =
α(A, a) = 0, 7 ; K = 1000 ;
C = 1 ; d ≡ 0.

Polymorphism with C constant.

• Unilateral FD transfer.

S(A; a) = r(A)− r(a) + τ(A, a) ; S(a; A) = −S(A; a).

b(A) = 0.5 ; b(a) = 1 ; τ(A, a) =
α(A, a) = 0, 7 ; K = 1000 ;
C = 1 ; d ≡ 0.

Fixation of a deleterious mutant.



The case of a very consuming mutant

• Unilateral DD transfer.

b(A) = 0.8 ; b(a) = 1 ; τ(A, a) =
α(A, a) = 0.5 ; K = 5000, CAa =
Caa = 2 ; CAA = 4 ; CaA = 1 ; d ≡ 0.

Fixation of a deleterious and very
consuming mutant.

• Unilateral FD transfer.

b(A) = 0.8 ; b(a) = 1 ; τ(A, a) =
α(A, a) = 0.5 ; K = 5000 ; CAa =
Caa = 2 ; CAA = 4 ; CaA = 1 ; d ≡ 0.

Polymorphism with a deleterious and
very consuming mutant.



Invasion probability of A in a resident population of type a:
S(A; a) > 0.

PAa =
[S(A; a)]+

b(A) + h(A, a, 0, z̄a) z̄a =
[b(A)− d(A) +

(
h(A, a, 0, z̄a)− CAa

)
z̄a]+

b(A) + h(A, a, 0, z̄a) z̄a .

Unilateral HGT increases the probability of invasion of A.

Time for the population A to be of order K : log K/S(A; a).

Competition (deterministic): follows the EDOs system - Duration of
order 1.

Fixation (when the deterministic system converges to (z̄A, 0)):
birth-death process with negative fitness S(a; A) < 0.

Duration of order log K/|S(a; A)|.

Fixation times are decreased by HGT.



Evolution: mutations of traits

The trait values belong to a continuum.

Phenotypic trait under selection x in a compact subset X of Rd (rate of
nutrient intake, body size at maturity, age at maturity . . . ).

K scales the size of the population (large K means large population).

Population of NK (t) individuals weighted by 1
K with trait vector

(X 1
t , · · · ,X

NK (t)
t ) ∈ X NK (t).

The population is described by the Markovian random measure-valued
process (νK

t , t ≥ 0) defined by

νK
t =

1
K

NK (t)∑
i=1

δX i
t



Transitions

BIRTHS:

Each individual with characteristics x gives birth to a single individual at rate
b(x) .

The function b is continuous on X .

pK scales the mutation probability (small pK means rare mutation).

At each birth time:

with probability 1−pK , the offsprings inherits of x . (Clonal reproduction)

Otherwise mutations on trait occur independently with probability pK .

Trait mutation: the new trait is z chosen according to m(x , z)dz.

The mutation measure m(., z)dz is continuous.



HORIZONTAL GENE TRANSFER (HGT)

Individuals exchange information by conjugation. In the population ν, an
individual with trait x chooses a partner with trait y at rate hK (x , y , ν).The
new traits are (x , x).
Unilateral plasmid transfer: the donor transmits a copy of its plasmid to
individuals devoid of plasmid: hK (x , y , ν) = 0 for x < y .

DEATHS:

Each individual with characteristics x dies at rate

d(x) +
1
K

NK (t)∑
i=1

C(x , xi ) = d(x) + C ∗ νK
t (x).

The term
C(x , xi )

K
: competition pressure between two individuals.

The functions d and C are bounded continuous.

For some p ≥ 2,
E
(
〈νK

0 , 1〉p
)
< +∞.

Moment conditions propagate and imply the existence and uniqueness of the
process.

r(x) = b(x)− d(x) > 0 ; C(x , y) ≥ c > 0.



Let us introduce Ff (ν) =
∫

f (x)ν(dx), for f ∈ Cb and ν = 1
K

∑
i=1 δxi .

The infinitesimal generator of (νK
t )t is then given by

LK Ff (ν) =

∫
X
ν(dx)

[
b(x)

(
(1− pK )f (x) + pK

∫
X

f (z)m(x , z)dz
)

−
(
d(x) + C ∗ ν(x)

)
f (x)

+

∫
X

K hK (x , y , ν)
(
f (x)− f (y)

)
ν(dy)

]
.

Moreover,∫
X

f (x)νK
t (dx) =

∫
X

f (x)νK
0 (dx) +

∫ t

0
LK Ff (ν

K
s )ds + MK ,f

t ,

where MK ,f is a càdlàg square-integrable martingale issued from 0 and

E((MK ,f
t )2) =

1
K

E
(∫ t

0

∫
X

{(
(1− pK )b(x)− d(x)− C ∗ νK

s (x))
)

f 2(x)

+ pK b(x)

∫
X

f 2(z) m(x , z)dz

+

∫
X

K hK (x , y , νK )
(
f (x)− f (y)

)2
νK

s (dy)

}
νK

s (dx)ds
)
.



Grande population, échelle de temps O(1)

K →∞ , pK → p and bK → b, dK → d , KCK → C.

lim
K→∞

K hK (x , y , ν) = h(x , y , 〈ν, 1〉) =
τ(x , y)

β + µ 〈ν, 1〉 ,

where τ is a continuous function .

Proposition: Let T > 0. If νK
0 =⇒ ξ0 when K → +∞, the sequence

(νK )K≥1 converges in probability in D([0,T ],MF (Rd )) to the solution
ξ ∈ C([0,T ],MF (Rd )) of

〈ξt , f 〉 = 〈ξ0, f 〉+
∫ t

0

∫
X

{(
b(x)(1− p)− d(x)− C ∗ ξ(x)

)
f (x)

+pb(x)

∫
X

f (z)m(x , z)dz

+

∫
X

(
f (x)− f (y)

) τ(x , y)

β + µ〈ξs, 1〉
ξs(dy)

}
ξs(dx)ds.

Preuve: usual argument compactness-identification-uniqueness using
moment estimates.



Conjugation - time scale O(1)

Let us introduce the transfer flux α(x , y) = τ(x , y)− τ(y , x) (positive or
negative or 0).

Proposition: If ξ0 � leb meas., then for any t > 0, the measure
ξt � leb meas. and its density is given by (u(t , x), x ∈ X ) positive solution
of the equation

∂tu(t , x) =
(
b(x)(1− p)− d(x)− C ∗ u(t , x)

)
u(t , x) + p

∫
X

b(y)m(y , x)u(t , y)dy

+
u(t , x)

β + µ‖u(t , .)‖1

∫
X
α(x , y)u(t , y)dy ,

with C ∗ u(t , x) =
∫

C(x , y)u(t , y)dy , ‖u(t , .)‖1 =
∫

u(t , y)dy.

Long time behaviour? (Cf. Desvillettes, Jabin, Mischler, Raoul ’08 (α = 0), Hinow,
Le Foll, Magal, Webb ’09, Magal, Raoul ’15).

Rare mutation p = 0: The mutations disappear at this time scale.



Large population, Rare mutations, Evolution time scale t
KpK

Adaptation of Champagnat 2006 - Heuristics Metz et al. 1996.

We stay in this framework with the continuum of traits x ∈ X .

Invasion implies fixation: For simplicity, we assume that the stable
equilibria of the dynamical system with any two traits x and y are only on the
boundary of the positive quadrant (no coexistence).

Rare mutations assumption:

log K � 1
KpK

� eKV , ∀V > 0.

It results a separation of time scales, between competition phases and
mutation arrivals.



1
KpK
� eKV , for any V > 0: before the first mutation, the population size

stays close to its deterministic equilibrium.

When a mutation occurs, the duration for the competition phase is of
order log K (as seen in the previous slides).

log K � 1
KpK

: the selection process has sufficient time to eliminate
disadvantaged trait before the next mutation event arrives with high
probability.

At the mutation time scale: we will only see a jump from z̄x bacteria
with trait x to z̄y bacteria with trait y .

Succession of phases of trait mutant invasion, and phases of
competition between traits.



Theorem (TSS Approximation)

Assume: the initial conditions νK
0 = nK

0 δx0 (dx) converge to z̄x0δx0 (dx).

As soon as Invasion-implies-fixation, the the population process at time t
KpK

is approximated by a process which charges monomorphic equilibrium states.

The process jumps from z̄x individuals with trait x to z̄y individuals with trait
y , where y is chosen according to the mutation measure m(x , dy)
with rate

b(x) z̄x [S(y ; x)]+
b(y) + h(y , x , z̄x )z̄x with z̄x =

r(x)

C(x , x)
.

Each jump corresponds to the successful invasion of a new mutant trait.



Transfer events may drastically change the evolution.

Constant competition pressure C:

S(y ; x) = r(y)− r(x) +
α(y , x) r(x)

β C + µ r(x)
= f (y ; x) +

α(y , x) r(x)

β C + µ r(x)
.

Example: x ∈ [0, 4]. b(x) = 4− x ; d ≡ 1 , C(x , y) ≡ C and nx =
3− x

C
.

(i) Without HGT: the fitness function equals

f (y ; x) = x − y ,

f (y ; x) > 0 ⇐⇒ y < x .

A mutant with trait y will invade the population ⇐⇒ y < x .
The evolution will yield decreasing traits.

(ii) With frequency-dependence HGT: We consider the transfer rates

τ(x , y) = ex−y , β = 0 , µ = 1,

S(y ; x) = −(y − x) + ey−x − e−(y−x)

S(y ; x) > 0 ⇐⇒ y > x .

The evolution will lead to larger and larger traits: may lead the population to
evolutive suicide.



Canonical equation - Small mutations

The mutation steps are of order σ:∫
g(z) mσ(x , z)dz =

∫
g(x + σh) m(x , h)dh, where m independent of σ.

Theorem When σ → 0, the TSS process at time t/σ2 is approximated by the
solution of the ODE

x ′(t) = nx
(

r ′(x) + ∂1τ(x , x)− ∂2τ(x , x)
) ∫

h2 m(x , h)dh.

In the example:

Without transfer:

x ′(t) = − 3− x(t)
C

∫
h2 m(x(t), h)dh

leads to the nul optimal trait which maximises the birth rate.

With transfer:
x ′(t) =

3− x(t)
C

∫
h2 m(x(t), h)dh.

makes the reproduction rate decrease.



Unilateral HGT: transfer of plasmid

(Simulations: Lucie Desfontaines and Stéphane Krystal).

x ∈ [0, 4]; m(x , z)dz = N (x , σ2).

Frequency-dependent unilateral HGT model. τ(x , y) = τ 1x>y .

The constant τ > 0 will be the varying parameter.

b(x) = 4− x ; d(x) = 1 ; C = 0, 5 ; p = 0, 03 ; σ = 0, 1 ; K = 1000.

Initial state: 1000 individuals with trait 1. Equilibrium of population size
with trait 1: 1000× b(1)−d(1)

C = 4000 individuals.

Optimal trait 0 and size at equilibrium: 1000× b(0)−d(0)
C = 6000

individuals.

The transfer favorizes the large traits: a trade-off between reproduction
and transfer.



τ = 0



τ = 0,2 - Almost no modification



τ = 0,6 - Stepwise Evolution

Transfer will convert individuals to larger traits.

Then, the population decreases. For a given trait x , the equilibrium size
Neq = b(x)−d

C × 1000 = 2000(3− x).

Brutal appearance of new strains.



Mutants with small trait xsmall appear in the resident population with trait
x . Invasion fitness:

S(xsmall ; x) = x − xsmall − τ .

Thus, mutants will survive⇐⇒ x − xsmall > τ .

If such a mutant appears, it reproduces faster and its subpopulation
immediately kills the population with trait x .

Interpretation in terms of appearance of antibiotics resistant strains.



τ = 0,7 - Random Macroscopic Evolution

Four simulations with the same parameters. Big differences due to the
aptitude of a mutant to create a new strain.



τ = 1 - Evolutive Suicide

HGT impedes the population to keep a small mean trait to survive.



Co-authors and biologists collaborators

Figure: S. Billiard , N. Champagnat , P. Collet , M. El Karoui

Figure: R. Fernandez-Lopez , R. Ferrière , C.V. Tran
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Thank you for your attention!


