Differentiability and strict convexity of the stable norm

Michael Goldman

CMAP, Polytechnique/ Carnegie Mellon

Joint work with A. Chambolle and M. Novaga

May 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction

The shortest path between two points is the straight line

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction

The shortest path between two points is the straight line

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction

The shortest path between two points is the straight line

 \Rightarrow half-spaces are local minimizers of the perimeter

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Setting of the problem

We consider $F(x,p) : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ s.t.:

- $F(\cdot, p)$ is \mathbb{Z}^d -periodic
- ► F(x, ·) is convex one-homogeneous and smooth on S^{d-1}
- $F(x, \cdot) \delta |\cdot|$ is still convex (i.e. F is elliptic).

We will consider interfacial energies:

$$\int_{\partial E} F(x,\nu) d\mathcal{H}^{d-1}$$

where ν is the internal normal to E.

Definition

We say that E is a Class A Minimizer if $\forall R > 0$, $\forall (E\Delta F) \subset B_R$,

$$\int_{\partial E \cap B_R} F(x,\nu) \leq \int_{\partial F \cap B_R} F(x,\nu).$$

Existence of Plane-Like minimizers

Theorem (Caffarelli-De La Llave '01) $\exists M > 0 \text{ s.t. } \forall p \in \mathbb{S}^{d-1}, \text{ there exists a Class A Min. E with}$

$$\{x \cdot p > M\} \subset E \subset \{x \cdot p > -M\}$$

 \Rightarrow *E* is a plane-like minimizer.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

The Stable Norm

Definition For $p \in \mathbb{S}^{d-1}$ let

$$\varphi(p) := \lim_{R \to \infty} \frac{1}{\omega_{d-1} R^{d-1}} \, \int_{\partial E \cap B_R} F(x,\nu)$$

where E is any PL in the direction p and ω_{d-1} is the volume of the unit ball of \mathbb{R}^{d-1} . Extend then φ by one-homogeneity to \mathbb{R}^d .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question: What are the qualitative properties of φ ? Strict convexity? Differentiability?

Relation with other works

- Codimension 1 analogue of the Weak KAM Theory for Hamiltonian systems (Aubry-Mather...)
- In the non-parametric setting, works of Moser, Bangert and Senn
- In the parametric setting, related works of Auer-Bangert and Junginger-Gestrich

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition (Chambolle-Thouroude '09)

$$\varphi(p) = \min\left\{\int_{\mathbb{T}} F(x, p + Dv(x)) : v \in BV(\mathbb{T})\right\}$$

and for every minimizer u and every $s \in \mathbb{R}$,

$$\{u+p\cdot x>s\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is a plane-like minimizer.

Let
$$X := \{z \in L^{\infty}(\mathbb{T}) / F^*(x, z(x)) = 0 \text{ a.e. } \operatorname{div} z = 0\}$$
 then
 $\varphi(p) = \sup_{z \in X} \left(\int_{\mathbb{T}} z \right) \cdot p$

thus if $C := \{ \int_{\mathbb{T}} z \, / \, z \in X \}$, C is a closed convex set and

$$arphi({\it p}) = \sup_{\xi \in {\it C}} \, \xi \cdot {\it p}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $\Rightarrow \varphi$ is the support function of *C*.

Structure of the subdifferential of p

$$\partial \varphi(p) = \{ \xi \mid \xi \in C \text{ and } \xi \cdot p = \varphi(p) \}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $\Rightarrow \varphi$ is differentiable at ${\it p}$ iff

$$orall z_1, z_2 \in X$$
 with $\int_{\mathbb{T}} z_i \cdot p = \varphi(p)$, $\int_{\mathbb{T}} z_1 = \int_{\mathbb{T}} z_2.$

Calibrations

Definition We say that $z \in X$ is a calibration in the direction p if

$$\int_{\mathbb{T}} z \cdot p = \varphi(p).$$

Proposition

For every calibration z and every minimizer u,

$$\int_{\mathbb{T}} z \cdot (Du + p) = \int_{\mathbb{T}} F(x, Du + p) (= \varphi(p)).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Calibration of a set

Definition

We say that $z \in X$ calibrates a set E if

$$z \cdot \nu = F(x, \nu)$$
 on ∂E .

Equivalently,
$$z = \nabla_p F(x, \nu)$$
 on ∂E .

Example: half spaces are calibrated by $z \equiv p$.

Proposition

If E is calibrated then E is a Class A Minimizer.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Proposition

For every calibration z in the direction p, every minimizer u and every $s \in \mathbb{R}$, z calibrates

$$\{u+p\cdot x>s\}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proposition

If E and F are calibrated by the same z then either $E \subset F$ or $F \subset E$ and $\partial E \cap \partial F \simeq \emptyset$.

The Birkhoff property

Definition We say that E has the Strong Birkhoff property if

- $\forall k \in \mathbb{Z}^d$, $k \cdot p \ge 0 \Rightarrow E + k \subset E$
- $\blacktriangleright \quad \forall k \in \mathbb{Z}^d, \ k \cdot p \leq 0 \Rightarrow E \subset E + k.$

Example: the sets $\{u + p \cdot x > s\}$ are Strong Birkhoff.

Proposition

Every PL with the Strong Birkhoff property is calibrated by every calibration.

Therefore, they form a lamination (possibly with gaps) of the space.

Mañe's Conjecture

Reminder: $\varphi(p) = \min \left\{ \int_{\mathbb{T}} F(x, p + Dv(x)) : v \in BV(\mathbb{T}) \right\}$

Theorem

For a generic anisotropy F, the minimimum defining φ is attained for a unique measure Du.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

See the works of Bernard-Contreras, Bessi-Massart.

Our Main Theorem

Theorem

- φ^2 is strictly convex,
- if there is no gap in the lamination then φ is differentiable at p,
- if p is totally irrational then φ is differentiable at p,
- if p is not totally irrational and if there is a gap then φ is not differentiable at p.

Remarks on the differentiability

- If there is no gap, z is prescribed everywhere ⇒ the mean is also prescribed,
- ▶ if p is totally irrational then the gaps have finite volume ⇒ it can be shown that they play no role in the integral (use the cell formula),
- ▶ if p is not tot. irr. and there are gaps ⇒ using heteroclinic solutions, it is possible to construct two different calibrations with different means.

A concluding observation

Under mild hypothesis, this work extends to functionals of the form

$$\int_{\partial E} F(x,\nu) + \int_{E} g(x)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

with g periodic with zero mean.

"Les bulles de savon" J.B.S. Chardin

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thank you!