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Setting of the problem

We consider F(x,p) : RY x R — R s.t.:
» F(-,p) is Z9-periodic
» F(x,-) is convex one-homogeneous and smooth on S7-1
» F(x,:) —d]-| is still convex (i.e. F is elliptic).

We will consider interfacial energies:

/ F(x,v)dH9?
0E

where v is the internal normal to E.
Definition
We say that E is a Class A Minimizer if VR > 0, V(EAF) C Bk,

/ Fx,v) < / Flx,v).
OENBg OFNBgr



Existence of Plane-Like minimizers

Theorem (Caffarelli-De La
Llave '01)

IM > 0 s.t. Vp € S971, there
exists a Class A Min. E with

{x-p>M} C E C {x-p>-—-M}

= E is a plane-like minimizer.

e



The Stable Norm

Definition
For p € S971 Jet

1

p) = lim / F(x,v
80( ) R—o0 (,Ud,]_Rd_l OENBg ( )

where E is any PL in the direction p and wy_1 is the volume of the
unit ball of R9~1. Extend then ¢ by one-homogeneity to RY.

Question: What are the qualitative properties of p? Strict
convexity? Differentiability?



Relation with other works

» Codimension 1 analogue of the Weak KAM Theory for
Hamiltonian systems (Aubry-Mather...)

> In the non-parametric setting, works of Moser, Bangert and
Senn

> In the parametric setting, related works of Auer-Bangert and
Junginger-Gestrich



The cell formula

Proposition (Chambolle-Thouroude '09)

©(p) = min {/ F(x,p+ Dv(x)) : v € BV(']I‘)}
T
and for every minimizer u and every s € R,
{u+p-x>s}

is a plane-like minimizer.



Let X := {z € L>°(T) / F*(x, z(x)) = 0 a.e. divz =0} then
GEIOR

thus if C:={[;z/z € X}, Cis a closed convex set and

o(p) =sup £-p
cec

= ( is the support function of C.



Structure of the subdifferential of p

dp(p) ={¢ /&€ Cand & p=p(p)}
=  is differentiable at p iff

Vzy,2 € X with [zi-p=o(p),

[a=]=
T T



Calibrations

Definition
We say that z € X is a calibration in the direction p if

/Tz-pch(p)-

Proposition
For every calibration z and every minimizer u,

/z-(ou+p)=/F(x,Du+p)(:w(p>>.
T T



Calibration of a set

Definition
We say that z € X calibrates a set E if

z-v=F(x,v) onOE.
Equivalently, z = V ,F(x,v) on OE.

Example: half spaces are calibrated by z = p.

Proposition
If E is calibrated then E is a Class A
Minimizer.



Proposition
For every calibration z in the direction p, every minimizer u and
every s € R, z calibrates

{u+p-x>s}
Proposition

If E and F are calibrated by the same z then either E C F or
F C E and DENOF ~ ().



The Birkhoff property

Definition

We say that E has the Strong Birkhoff property if
»VkeZd k-p>0=E+kCE
»VkeZd k-p<0=ECE+k.

Example: the sets {u+ p - x > s} are Strong Birkhoff.

Proposition

Every PL with the Strong Birkhoff property is calibrated by every
calibration.

Therefore, they form a lamination (possibly with gaps) of the
space.



Maie's Conjecture

Reminder: ¢(p) = min{ [; F(x,p+ Dv(x)) : v € BV(T)}

Theorem
For a generic anisotropy F, the minimimum defining ¢ is attained
for a unique measure Du.

See the works of Bernard-Contreras, Bessi-Massart.



Our Main Theorem

Theorem

> 2 s strictly convex,

> if there is no gap in the lamination then ¢ is differentiable at
pr

> if p is totally irrational then o is differentiable at p,

> if p is not totally irrational and if there is a gap then ¢ is not
differentiable at p.



Remarks on the differentiability

> If there is no gap, z is prescribed everywhere = the mean is
also prescribed,

> if p is totally irrational then the gaps have finite volume = it
can be shown that they play no role in the integral (use the
cell formula),

» if p is not tot. irr. and there are gaps = using heteroclinic
solutions, it is possible to construct two different calibrations
with different means.



A concluding observation

Under mild hypothesis, this work extends to functionals of the form

/6E F(x,v) —i—/Eg(x)

with g periodic with zero mean.



" Les bulles de savon” J.B.S. Chardin

Thank you!
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