Differentiability and strict convexity of the stable norm

Michael Goldman
CMAP, Polytechnique/ Carnegie Mellon
Joint work with A. Chambolle and M. Novaga

May 2012

Introduction

The shortest path between two points is the straight line

Introduction

The shortest path between two points is the straight line

Introduction

The shortest path between two points is the straight line
\Rightarrow half-spaces are local minimizers of the perimeter

Setting of the problem

We consider $F(x, p): \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ s.t.:

- $F(\cdot, p)$ is \mathbb{Z}^{d}-periodic
- $F(x, \cdot)$ is convex one-homogeneous and smooth on \mathbb{S}^{d-1}
- $F(x, \cdot)-\delta|\cdot|$ is still convex (i.e. F is elliptic).

We will consider interfacial energies:

$$
\int_{\partial E} F(x, \nu) d \mathcal{H}^{d-1}
$$

where ν is the internal normal to E.
Definition
We say that E is a Class A Minimizer if $\forall R>0, \forall(E \Delta F) \subset B_{R}$,

$$
\int_{\partial E \cap B_{R}} F(x, \nu) \leq \int_{\partial F \cap B_{R}} F(x, \nu) .
$$

Existence of Plane-Like minimizers

Theorem (Caffarelli-De La Llave '01)
$\exists M>0$ s.t. $\forall p \in \mathbb{S}^{d-1}$, there exists a Class A Min. E with
$\{x \cdot p>M\} \subset E \subset\{x \cdot p>-M\}$
$\Rightarrow E$ is a plane-like minimizer.

The Stable Norm

Definition
For $p \in \mathbb{S}^{d-1}$ let

$$
\varphi(p):=\lim _{R \rightarrow \infty} \frac{1}{\omega_{d-1} R^{d-1}} \int_{\partial E \cap B_{R}} F(x, \nu)
$$

where E is any PL in the direction p and ω_{d-1} is the volume of the unit ball of \mathbb{R}^{d-1}. Extend then φ by one-homogeneity to \mathbb{R}^{d}.

Question: What are the qualitative properties of φ ? Strict convexity? Differentiability?

Relation with other works

- Codimension 1 analogue of the Weak KAM Theory for Hamiltonian systems (Aubry-Mather...)
- In the non-parametric setting, works of Moser, Bangert and Senn
- In the parametric setting, related works of Auer-Bangert and Junginger-Gestrich

The cell formula

Proposition (Chambolle-Thouroude '09)

$$
\varphi(p)=\min \left\{\int_{\mathbb{T}} F(x, p+D v(x)): v \in B V(\mathbb{T})\right\}
$$

and for every minimizer u and every $s \in \mathbb{R}$,

$$
\{u+p \cdot x>s\}
$$

is a plane-like minimizer.

Let $X:=\left\{z \in L^{\infty}(\mathbb{T}) / F^{*}(x, z(x))=0\right.$ a.e. $\left.\operatorname{div} z=0\right\}$ then

$$
\varphi(p)=\sup _{z \in X}\left(\int_{\mathbb{T}} z\right) \cdot p
$$

thus if $C:=\left\{\int_{\mathbb{T}} z / z \in X\right\}, C$ is a closed convex set and

$$
\varphi(p)=\sup _{\xi \in C} \xi \cdot p
$$

$\Rightarrow \varphi$ is the support function of C.

Structure of the subdifferential of p

$$
\partial \varphi(p)=\{\xi / \xi \in C \text { and } \xi \cdot p=\varphi(p)\}
$$

$\Rightarrow \varphi$ is differentiable at p iff
$\forall z_{1}, z_{2} \in X$ with $\int_{\mathbb{T}} z_{i} \cdot p=\varphi(p)$,

$$
\int_{\mathbb{T}} z_{1}=\int_{\mathbb{T}} z_{2}
$$

Calibrations

Definition
We say that $z \in X$ is a calibration in the direction p if

$$
\int_{\mathbb{T}} z \cdot p=\varphi(p)
$$

Proposition

For every calibration z and every minimizer u,

$$
\int_{\mathbb{T}} z \cdot(D u+p)=\int_{\mathbb{T}} F(x, D u+p)(=\varphi(p))
$$

Calibration of a set

Definition

We say that $z \in X$ calibrates a set E if

$$
z \cdot \nu=F(x, \nu) \quad \text { on } \partial E .
$$

Equivalently, $z=\nabla_{p} F(x, \nu)$ on ∂E.
Example: half spaces are calibrated by $z \equiv p$.

If E is calibrated then E is a Class A Minimizer.

Proposition

For every calibration z in the direction p, every minimizer u and every $s \in \mathbb{R}, z$ calibrates

$$
\{u+p \cdot x>s\}
$$

Proposition

If E and F are calibrated by the same z then either $E \subset F$ or $F \subset E$ and $\partial E \cap \partial F \simeq \emptyset$.

The Birkhoff property

Definition

We say that E has the Strong Birkhoff property if

- $\forall k \in \mathbb{Z}^{d}, k \cdot p \geq 0 \Rightarrow E+k \subset E$
- $\forall k \in \mathbb{Z}^{d}, k \cdot p \leq 0 \Rightarrow E \subset E+k$.

Example: the sets $\{u+p \cdot x>s\}$ are Strong Birkhoff.
Proposition
Every PL with the Strong Birkhoff property is calibrated by every calibration.
Therefore, they form a lamination (possibly with gaps) of the space.

Mañe's Conjecture

Reminder: $\varphi(p)=\min \left\{\int_{\mathbb{T}} F(x, p+D v(x)): v \in B V(\mathbb{T})\right\}$

Theorem
For a generic anisotropy F, the minimimum defining φ is attained for a unique measure $D u$.

See the works of Bernard-Contreras, Bessi-Massart.

Our Main Theorem

Theorem

- φ^{2} is strictly convex,
- if there is no gap in the lamination then φ is differentiable at p,
- if p is totally irrational then φ is differentiable at p,
- if p is not totally irrational and if there is a gap then φ is not differentiable at p.

Remarks on the differentiability

- If there is no gap, z is prescribed everywhere \Rightarrow the mean is also prescribed,
- if p is totally irrational then the gaps have finite volume \Rightarrow it can be shown that they play no role in the integral (use the cell formula),
- if p is not tot. irr. and there are gaps \Rightarrow using heteroclinic solutions, it is possible to construct two different calibrations with different means.

A concluding observation

Under mild hypothesis, this work extends to functionals of the form

$$
\int_{\partial E} F(x, \nu)+\int_{E} g(x)
$$

with g periodic with zero mean.

"Les bulles de savon" J.B.S. Chardin

Thank you!

