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Introduction

Superconductivity was first observed by Onnes in 1911 and has
nowadays many applications.



Meissner effect

In 1933, Meissner understood that superconductivity was related to
the expulsion of the magnetic field outside the material sample



Ginzburg Landau functional

In the 50’s Ginzburg and Landau proposed a phenomenological
model (later derived from the BCS theory):

E (u,A) =

∫
Ω
|∇Au|2 +

κ2

2
(1− ρ2)2dx +

∫
R3

|∇ × A− Bex |2dx

where u = ρe iθ is the order parameter, B = ∇× A is the magnetic
field, Bex is the external magnetic field, κ is the Ginzburg-Landau
constant and

∇Au = ∇u − iAu

is the covariant derivative.

ρ ∼ 0 represents the normal phase and ρ ∼ 1 the superconducting
one.



The various terms in the energy

For u = ρe iθ, |∇Au|2 = |∇ρ|2 + ρ2|∇θ − A|2.
In ρ > 0 first term wants A = ∇θ =⇒ ∇× A = 0
That is

ρ2B ' 0 (Meissner effect)

and penalizes fast oscillations of ρ

Second term forces ρ ' 1 (superconducting phase favored)

Last term wants B ' Bex . In particular, this should hold outside
the sample.



Coherence and penetration length

Already two typical lengths, coherence length ξ and penetration
length λ.

ρ

B

ξ

λ

In our unites, λ = 1, κ = 1
ξ



Our setting

We consider Ω = QL,T = [−L, L]2 × [−T ,T ] with periodic lateral
boundary conditions and take Bex = bexe3.

ρ'1

−T

bexe3

−L

T

L

We want to understand extensive behavior L� 1.



First rescaling

We let

κT =
√

2α bex =
βκ√

2

and then

x̂ = T−1x û(x̂) = u(x)

Â(x̂) = A(x) B̂(x̂) = ∇× Â(x̂) = TB(x)

In these units,

coherence length ' α−1 penetration length ' T−1

We are interested in the regime T � 1, α� 1, β � 1.



The energy

The energy can be written as

ET (u,A) =
1

L2

∫
QL,1

|∇TAu|2 +
(
B3 − α(1− ρ2)

)2
+ |B ′|2

+ ‖B3 − αβ‖2
H−1/2(x3=±1)

I First term: penalizes oscillations + ρ2B ' 0 (Meissner effect)



The energy

The energy can be written as

ET (u,A) =
1

L2

∫
QL,1

|∇TAu|2 +
(
B3 − α(1− ρ2)

)2
+ |B ′|2

+ ‖B3 − αβ‖2
H−1/2(x3=±1)

I First term: penalizes oscillations + ρ2B ' 0 (Meissner effect)

I Second term: degenerate double well potential.

If Meissner then:(
B3 − α(1− ρ2)

)2 ' α2χ{ρ>0}(1− ρ2)2

Rk: wants B3 = α in {ρ = 0}
Similar features in mixtures of BEC
(cf G. Merlet ’15)



Crash course on optimal transportation

For ρ0, ρ1 probability measures

W 2
2 (ρ0, ρ1) = inf

{∫
QL×QL

|x − y |2dΠ(x , y) : Π1 = ρ0, Π2 = ρ1

}

Theorem
I (Benamou-Brenier)

W 2
2 (ρ0, ρ1) = inf

µ,B′

{∫ 1

0

∫
QL

|B ′|2dµ : ∂3µ+ div′B ′µ = 0,

µ(0, ·) = ρ0, µ(1, ·) = ρ1}

I (Brenier) If ρ0 � dx ,

W 2
2 (ρ0, ρ1) = min

{∫
QL

|x − T (x)|2dρ0 : T ]ρ0 = ρ1

}



The energy continued

ET (u,A) =
1

L2

∫
QL,1

|∇TAu|2 +
(
B3 − α(1− ρ2)

)2
+ |B ′|2

+ ‖B3 − αβ‖2
H−1/2(x3=±1)

I Third term: with Meissner and B3 ' α(1− ρ2) = χ,
divB = 0 can be rewritten as

∂3χ+ div′χB ′ = 0

Benamou-Brenier =⇒ Wasserstein energy of x3 → χ(·, x3)



The energy continued

ET (u,A) =
1

L2

∫
QL,1

|∇TAu|2 +
(
B3 − α(1− ρ2)

)2
+ |B ′|2

+ ‖B3 − αβ‖2
H−1/2(x3=±1)

I Third term: with Meissner and B3 ' α(1− ρ2) = χ,
divB = 0 can be rewritten as

∂3χ+ div′χB ′ = 0

Benamou-Brenier =⇒ Wasserstein energy of x3 → χ(·, x3)

I Last term: penalizes non uniform distribution on the boundary
but negative norm =⇒ allows for oscillations



A non-convex energy regularized by a gradient term

If we forget the kinetic part of the energy, can make B ′ = 0 and

ET (u,A) =
1

L2

∫
QL,1

(
B3 − α(1− ρ2)

)2
+‖B3 − αβ‖2

H−1/2(x3=±1)

ρ=1

ρ=0
=⇒ infinitely small oscillations of phases
{ρ = 0,B3 = α} and {ρ = 1,B3 = 0}
with average volume fraction β.

the kinetic term |∇Au|2 fixes the lengthscale.



Branching is energetically favored

ρ'1 ‖B3 − αβ‖2
H−1/2(x3=±1)

↓ 0

but interfacial energy ↑ ∞

ρ'1

x3 = 1x3 = −1

interfacial energy ↓
but

∫
QL,1
|B ′|2 ↑.

Landau ’43



Experimental results

Complex patterns at the boundary

Experimental pictures from Prozorov and al.

Limitations:

I Difficult to see the pattern inside the sample

I Hysteresis



Branching patterns in other related models

I Shape memory alloys (Kohn-Müller model) (Left, picture from
Chu and James)

I Uniaxial ferromagnets (Right, picture from Hubert and
Schäffer)

Schematic difference: in our problem W 2
2 replaces H−1 norm

See works of Kohn, Müller, Conti, Otto, Choksi ...
Related functional: Ohta-Kawasaki



Scaling law

Theorem (Conti, Otto, Serfaty ’15, See also Choksi, Conti, Kohn, Otto ’08)

In the regime T � 1, α� 1, β � 1,

minET ' min(α4/3β2/3, α10/7β)

ρ'1

First regime: ET ∼ α4/3β2/3

Uniform branching,
‖B3 − αβ‖2

H−1/2(x3=±1)
= 0

ρ'1

Second regime: ET ∼ α10/7β
Non-Uniform branching,
‖B3 − αβ‖2

H−1/2(x3=±1)
> 0

fractal behavior



Scaling law

Theorem (Conti, Otto, Serfaty ’15, See also Choksi, Conti, Kohn, Otto ’08)

In the regime T � 1, α� 1, β � 1,

minET ' min(α4/3β2/3, α10/7β)

We concentrate on the first regime (uniform branching)

ρ'1

=⇒ α−2/7 � β.



Multiscale problem

B

ρ ' 1
B

penetration length

coherence length

ρ

domain size

sample size

From the upper bound construction, we expect

penetration length�coherence length�domain size�sample size

which amounts in our parameters to

T−1 � α−1 � α−1/3β1/3 � L.



Crash course in Γ-convergence

Fn sequence of functionals on a metric space (X , d). We say that
Fn Γ−converges to F if

I ∀xn ∈ X , Fn(xn) ≤ C =⇒ Compactness +

lim
n→+∞

Fn(xn) ≥ F (x)

I ∀x ∈ X , ∃xn → x with

lim
n→+∞

Fn(xn) ≤ F (x)

It implies

I inf Fn → inf F

I if xn are minimizers of Fn =⇒ x is a minimizer of F .



Compactness and Lower
bounds



First limit, T → +∞
Recall:

ET (u,A) =
1

L2

∫
QL,1

|∇TAu|2 +
(
B3 − α(1− ρ2)

)2
+ |B ′|2

+ ‖B3 − αβ‖2
H−1/2(x3=±1)

Proposition

If ET (uT ,AT ) ≤ C then ρT = |uT | → ρ, BT = ∇× AT ⇀ B and

I ρ2B = 0, divB = 0 (Meissner effect)

I limT ET (uT ,AT ) ≥ Fα,β(ρ,B) where

Fα,β(ρ,B) =
1

L2

∫
QL,1

|∇ρ|2 +
(
B3 − α(1− ρ2)

)2
+ |B ′|2

+ ‖B3 − αβ‖2
H−1/2(x3=±1)



Second rescaling

In this limit, penetration length = 0, coherence length ' α−1,
domain size α−1/3β1/3.
In order to get sharp interface limit with finite domain size, we
make the anisotropic rescaling(

x̂ ′

x̂3

)
=

(
α1/3x ′

x3

)
, F̂α,β = α−4/3Fα,β.(

B̂ ′

B̂3

)
(x̂) =

(
α−2/3B ′

α−1B3

)
(x), ρ̂(x̂) = ρ(x),

In these variable: coherence length ' α−2/3 � 1 and normal
domain size ' β1/3



Second limit, α→ +∞
Dropping the hats

L2Fα,β(ρ,B) =

∫
QL,1

α−2/3

∣∣∣∣( ∇′ρ
α−1/3∂3ρ

)∣∣∣∣2+α2/3|B3−(1−ρ2)|2+|B ′|2

+ α1/3‖B3 − β‖2
H−1/2(x3=±1)

and the Meissner condition

divB = 0 and ρ2B = 0

still holds

Proposition

If Fα,β(ρα,Bα) ≤ C , then 1− ρ2
α → χ ∈ {0, 1} B ′α ⇀ B ′ and

I χ(·,±1) = β, χB ′ = B ′, ∂3χ+ div′χB ′ = 0

I limα Fα,β(ρα,Bα) ≥ Gβ(χ,B ′) where

Gβ(χ,B ′) =
1

L2

∫
QL,1

4

3
|∇′χ|+ |B ′|2



Comments on the proof

I Anisotropic rescaling =⇒ control only on the horizontal
derivative.

I Thanks to Meissner, double well potential

α−2/3

∣∣∣∣( ∇′ρ
α−1/3∂3ρ

)∣∣∣∣2 + α2/3|B3 − (1− ρ2)|2 ≥

α−2/3
∣∣∇′ρ∣∣2 + α2/3χ{ρ>0}|(1− ρ2)|2

Recall Modica-Mortola∫
ε|∇′ρε|2 + ε−1ρ2

ε(1− ρ2
ε)→ C

∫
|∇′χ|



Last rescaling

We want to send β → 0 and get 1 dimensional trees. We make
another anisotropic rescaling:(

x̂ ′

x̂3

)
=

(
β1/6x ′

x3

)
, χ̂(x̂) = β−1χ(x) ∈ {0, β−1}

B̂ ′(x̂) = β1/6B ′(x) Ĝβ = β−2/3Gβ

Now, domain width ' β1/2 � 1, L = 1 and (dropping hats)

Gβ(χ,B ′) =

∫
Q1,1

4

3
β1/2|∇′χ|+ χ|B ′|2

with ∂3χ+ div′(χB ′) = 0, χB ′ = β−1B ′ and χ(·, x3) ⇀ dx ′ when
x3 → ±1.



Limiting functional

β1/2ri

xi

Because of isoperimetric effects,
on every slice

χ ' β−1
∑
i

χB(xi ,β1/2ri )

If φi = πr2
i ,∫
[−1,1]2

χ '
∑
i

φi

and∫
[−1,1]2

β1/2|∇′χ| ' 2π1/2
∑
i

√
φi

Hence χ ⇀
∑

i φiδxi



The limiting functional II
For µ a probability measure with µx3 =

∑
i φiδxi (x3) for a.e. x3 and

µx3 ⇀ dx ′ when x3 → ±1, and m� µ, with ∂3µ+ div ′m = 0,

I (µ,m) =

∫ 1

−1

8π1/2

3

∑
x ′∈Q1

(
µx3(x ′)

)1/2
dx3 +

∫
Q1,1

(
dm

dµ

)2

dµ

Formally,

I (µ) = inf
m

I (µ,m) =

∫ 1

−1

∑
i

8π1/2

3
φ

1/2
i + φi ẋ

2
i dx3



Last lower bound

Proposition

If Gβ(χβ,B
′
β) ≤ C χβ ⇀ µ, χβB

′
β ⇀ m and

lim
β

Gβ(χβ,B
′
β) ≥ I (µ,m)



The limiting functional

I I (µ) reminiscent of branched transport models (see
Bernot-Caselles-Morel). Our result, similar in spirit to
Oudet-Santambrogio ’11.

I Minimizers of I , contain no loop, finite number of branching
points away from boundary (with quantitative estimate),
branches are linear between two branching points

I Every measure can be irrigated



Definition of regular measures

Definition

For ε > 0, we denote by Mε
R(Q1,1) the set of regular measures,

i.e., of measures such that:

(i) µ is finite polygonal.

(ii) All branching points are triple points. This means that any
x ∈ Q1,1 belongs to no more than three segments.

(iii) there is ε1/2 � λε � ε with 1/λε ∈ N, such that for all
x3 ∈ [1− ε, 1] one has µx3 =

∑
x ′∈λεZ2∩Q1

ϕx ′δx ′ , with

ϕx ′ = λ2
ε, and the same in [−1,−1 + ε].



A crucial density result

Proposition

For every µ with I (µ) <∞, ∃µε ∈Mε
R(Q1,1) with µε ⇀ µ and

limε I (µε) ≤ I (µ).

=⇒ ' enough to make the construction for finite polygonal
measures.



Idea of the proof

I Rescale µ to [−1 + 2ε, 1−2ε]

I in the boundary layer plug in
a uniform branching
construction

I remove small branches. Tool:
notion of subsystem cf.
Ambrosio-Gigli-Savare

I discretize and minimize

−1

1

1− 2ε

−1 + 2ε
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Recovery sequences



Recovery sequence, from trees to sharp interface

Want to enlarge the 1D trees. Far from branching points, easy
(take a tube). At a branching point:

Need to transform a rectangle into disk with controlled energy



Recovery sequence, from sharp to diffuse interface

Need to reintroduce a smooth transition + vertical derivative.

1

−1

To get smooth transition: use optimal profile (keeping Meissner) +
careful estimate of the error terms



Recovery sequence, from diffuse interface to full GL

Can define A with ∇× A = B. Need to define θ. Would be easy if
quantization of flux φi ∈ 2πZ.

x

Γ
2πki

0

If Γ 0←→ x , θ(x) =
∫

Γ A · τ
Quantization+Stokes =⇒
well defined + ∇θ = A

=⇒ Need to modify the fluxes to get quantization



Ongoing work and perspective

I Understand the cross-over regime α−2/7 ∼ β
I Go from GL to sharp interface when coherence ∼ penetration

(more complex/non-local optimal profile problem)

I Understand minimizers of the limiting functional
(self-similarity à la Conti)

I Investigate the non-uniform branching  fractal behavior



“What in the name of Sir Isaac H. Newton happened here?”
Dr. Emmett ’Doc’ Brown

Thank you! Any Question?
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