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Introduction

Epitaxially strained crystalline films are obtained by deposing thin
layers on a thick substrate

Deposed atoms

Substrate

Example : In-GaAs/GaAs or SiGe/Si.



Governing mechanism

There is a mismatch between the lattice parameters of the two
crystals

The deposit layer is strained and the atoms try to rearrange for
releasing elastic energy but this migration is also energetically
expensive

=⇒ interaction between bulk and surface energy.



Numerical and experimental observations

Existence of several regimes depending on the volume of the thin
layer and of the mismatch

• For small volumes, the flat configuration is favored

• Above a certain threshold, the flat configuration is not stable
anymore and the film develops corrugations

• For higher values of the volume/mismatch, there is formation
of isolated islands

Goal: Understand these different regimes.



Surface roughening in SiGe/Si, images from Gao, Nix, Surface
roughening of heteroepitaxial thin films, 1999.



Formation of islands, images from Gray, Hull and Floro Formation
of one-dimensional surface grooves from pit instabilities in

annealed SiGe/Si(100) epitaxial films, 2004.



Experimental results

Example of cusps, images from Chen, Jesson, Pennycook,
Thundat, and Warmack, Cuspidal pit formation during the growth
of SixGe1-x strained films, 1995



Numerical simulations

Numerical simulations from Bonnetier and Chambolle, Computing
the Equilibrium Configuration of Epitaxially Strained Crystalline
Films, 2002.

See also the numerical simulations of University of Cambridge,
DoITPoMS,
http://www.doitpoms.ac.uk/tlplib/epitaxial-growth/index.php



Applications

These epitaxially grown thin films are used for

• Optical and optoelectric devices (quantum dot laser).

• Semiconductors.

• Information storage.

• Nanotechnology.



The Mathematical Model

The film is taken to be the subgraph Ωh of a function
h : [0, 1] → R+

h(x)

Ωh

u(x , y) = e0(x , y)

The substrate is considered as rigid hence in the substrate, the
deformation is equal to e0(x , y) where e0 is the mismatch.



The energy

Let W : R4 → R+ be the stored elastic energy then we consider
the variational problem:

Fd,e0(u, h) :=

∫

Ωh

W (∇u) +

∫ 1

0

√
1 + |h′|2

under the conditions that

u(x , 0) = e0(x , 0) and

∫ 1

0
h = d

Remark: most of the works consider energies W depending only on
the symmetric part of the gradient.



Contributions of each term in the energy

• Due to the mismatch, there are no stress free configurations.

• In order to release elastic energy, the bulk term favors creation
of singularities.

• On the other hand, the surface term tends to avoid too many
oscillations.



Regularity results (in the geometrically linear setting)

cusp cut

Theorem [Chambolle-Larsen 03, Fonseca-Fusco-Leoni-Morini
07]

The profile h is regular out of a finite number of cuts and cuts.
Moreover the film satisfies the zero angle condition.



Regularity results continued

Theorem [Fusco-Morini 12]

• For small mismatch, the flat configuration is minimzing (no
matter how big is d).

• For greater mismatch, the following holds:

1. for d ≤ d0, the flat configuration is minimizing
2. for d ≤ d1 the flat configuration is locally minimizing
3. for d ≤ d2, the flat configuration is not locally

minimizing but every minimizer is smooth



Other results in the litterature

• Physical and engineering: Spencer-Meiron 94, Spencer-Tersoff
10, Gao-Nix 99.

• Regularity, relaxation and approximation:
Bonnetier-Chambolle 02, Chambolle-Larsen 03,
Fonseca-Fusco-Leoni-Morini 07, Chambolle-Solci 07,
Fusco-Morini 12.

• Time evolution: Fonseca-Fusco-Leoni-Morini 12, Piovano 12.



Other results in the litterature

• Physical and engineering: Spencer-Meiron 94, Spencer-Tersoff
10, Gao-Nix 99.

• Regularity, relaxation and approximation:
Bonnetier-Chambolle 02, Chambolle-Larsen 03,
Fonseca-Fusco-Leoni-Morini 07, Chambolle-Solci 07,
Fusco-Morini 12.

• Time evolution: Fonseca-Fusco-Leoni-Morini 12, Piovano 12.

No rigourous result on the formation of the islands!



The main result
We will assume that

Hypothesis

(H1) W ≥ 0

(H2) there exists C > 0 and p > 1 such that

C (|A|p + 1) ≥ W (A) ≥
1

C
(|A|p − 1) ∀A ∈ R2×2.

Theorem

Under these assumptions, for every e0 > 0 and d > 0 there holds

min
u,h

Fe0,d(u, h) ≃ max(1, d , e
p/3
0 d2/3).

Remark:

• Thanks to (H2), it is enough considering W (∇u) = |∇u|p .

• Works also in the geometrically linear setting.



Heuristic explanation of the scaling

We consider for simplicity here p = 2 so that

Fe0,d(u, h) =

∫

Ωh

|∇u|2 +

∫ 1

0

√
1 + |h′|2

If Ωh ∩ {y = 0} = [a, a + ℓ] then since |Ωh| = d ,

∫ 1

0

√
1 + |h′|2 ≥

d

ℓ
.

On the other hand

min
u(x ,0)=e0(x ,0)

∫

Ωh

|∇u|2 ≃ e20 |u|
2
H1/2(a,a+ℓ)

≃ e20ℓ
2

ℓ



Putting these together we find that

Fe0,d(u, h) & e20ℓ
2 +

d

ℓ

Optimizing in ℓ, we find that ℓmin ≃ min(1,
(

d
e20

)1/3
). So that two

regimes appear:

• If
(

d
e20

)1/3
≤ 1, we have ℓmin =

(
d
e20

)1/3
and

minFe0,d ≃ e
2/3
0 d2/3.

• If
(

d
e20

)1/3
≥ 1, the flat configuartion is favored and

minFe0,d ≃ e20 + d ≃ d .

Difficulty:

when h(x) ≪ 1, the constant in

the trace inequality degenerate i.e.

min
u(x ,0)=e0(x ,0)

∫

Ωh

|∇u|2 � e20 |u|
2
H1/2(a,a+ℓ)



The Strategy

To prove this kind of scaling laws, the general strategy is

• To get the upper bound by construction.

• To prove an ansatz free lower bound.

In many related results (see Kohn-Müller, Choksi-Conti-Kohn-Otto,
Bella-Kohn, Capella-Otto...) the lower bound is obtained via an
interpolation inequality. Here it will not be the case.



Preamble, playing with rectangles

For u ∈ W 1,p([0, ℓ] × [0, L]) let

ũ(x , y) = 1
ℓu(ℓx , ℓy) ∈ W 1,p([0, 1] × [0, L/ℓ]).

Then ∇ũ(x , y) = ∇u(x , y) and
∫

[0,ℓ]×[0,L]
|∇u|p = ℓ2

∫

[0,1]×[0,L/ℓ]
|∇ũ|p

L

ℓ

Fondamental lemma

min
u(x ,0)=e0(x ,0)

∫

[0,ℓ]×[0,L]
|∇u|p = ep0 ℓ

2 min
u(x ,0)=(x ,0)

∫

[0,1]×[0,L/ℓ]
|∇u|p



The upper bound

By the considerations above, for the upper bound, it is enough

considering a rectangle [0, ℓ]× [0, d/ℓ] with ℓ = min

(
1,
(

d
e
p
0

)1/3
)

and

u (x , y) =

{
(e0x

(
1− 1

ℓ y
)
, 0) if 0 ≤ y ≤ ℓ,

0 else .

Then Fe0,d (u, h) ≃ ℓ2ep0 + 1 + d
ℓ ≃ max(1, d , e

p/3
0 d2/3).



The lower bound: setting the notations

Since Fd,e0(u, h) ≥ 1 + d , we can assume e
p/3
0 d2/3 ≥ max(1, d).

Let :

y0 :=
d

2

√

e
p/3
0 d2/3

.

ℓ := H1(Ωh ∩ (I × {y0})).

Iℓ := Ωh ∩ (I × {y0}).

Iℓ = ∪n
i=1 [ai , bi ].

ℓi := bi − ai .

di := |Ωh ∩ ([ai , bi ]× [y0,+∞))|.

d2

a2

y0ℓ2

b1b2

d1

ℓ1

a1

Then
∑n

i=1 ℓi = ℓ and
∑n

i=1 di ≥ d − y0 ≥ Cd .



First possibility: ℓi ≤
(

d
ep0

)1/3

for all i = 1, . . . , n

In this case, the surface energy is sufficient to get

Fd,e0(u, h) ≥

∫ 1

0

√
1 + |h′|2dx

≥

n∑

i=1

∫ bi

ai

√
1 + |h′|2dx

≥
n∑

i=1

di
ℓi

≥

(
ep0
d

)1/3 n∑

i=1

di

≥ Ce
p/3
0 d2/3 .

And we are done.



Second possibility, ℓ1 ≥
(

d
ep0

)1/3

In this case, we focus on the elastic energy and find

Fd,e0 (u, h) ≥

∫

[a1,b1]×[0,y0]
|∇u|pdxdy

≥ ℓ21e
p
0 min
v(x ,0)=(x ,0)

∫

[0,1]×[0,y0/ℓ1]
|∇u|pdxdy .

Problem: It can happen that y0/ℓ1 ≪ 1...



Second possibility, ℓ1 ≥
(

d
ep0

)1/3

In this case, we focus on the elastic energy and find

Fd,e0 (u, h) ≥

∫

[a1,b1]×[0,y0]
|∇u|pdxdy

≥ ℓ21e
p
0 min
v(x ,0)=(x ,0)

∫

[0,1]×[0,y0/ℓ1]
|∇u|pdxdy .

Problem: It can happen that y0/ℓ1 ≪ 1...

=⇒ We have to control how

min
v(x ,0)=(x ,0)

∫

[0,1]×[0,ε]
|∇u|pdxdy → 0

when ε→ 0.



Theorem (Dimension reduction)

There holds

lim
ε→0+

min
u(x ,0)=(x ,0)

1

ε

∫

[0,1]×[0,ε]
|∇u|p dxdy ≥ 1.

This is a simplified version of the Le Dret-Raoult proof of
dimension reduction.

Remark: For p = 2, using Fourier methods, it can be seen that

min
u(x ,0)=(x ,0)

∫

[0,1]×[0,ε]
|∇u|2 dxdy ≃

+∞∑

k=1

1

|k |3
(1− exp(−2πkε))

≥ 2πε

+∞∑

k=1

1

|k |3



Conclusion of the lower bound (when ℓ1 ≥
(

d
ep0

)1/3

)

Remind that Fd,e0 (u, h) ≥ ℓ21e
p
0 minv(x ,0)=(x ,0)

∫
[0,1]×[0,y0/ℓ1]

|∇u|p

Let c > 0 s.t. for ε < c ,

min
u(x ,0)=(x ,0)

1

ε

∫

[0,1]×[0,ε]
|∇u|p dxdy ≥ 1/2.

• If
(

d
e
p
0

)1/3
≤ ℓ1 ≤ y0/c then

Fd,e0 (u, h) ≥ ℓ21e
p
0 min
v(x ,0)=(x ,0)

∫

[0,1]×[0,c]
|∇u|p

≥ Ce
p/3
0 d2/3.

• If ℓ1 ≥ y0/c then

Fd,e0 (u, h) ≥ ℓ21e
p
0

y0
2ℓ1

≥ Cep0 y
2
0 = C

(
e
p/3
0 d2/3

)2
.



Reduced models
In order to study the asymptotic behavior of the energy, we rescale
the domains and set

• h̃ := h/d

• Ωh̃ := {(x , y) : (x , dy) ∈ Ωh}

• ũ (x , y) = u (x , dy)

Dropping the tildes, the energy now reads

Fd,e0 (u, h) = d

[∫

Ωh

W

(
∂u

∂x
,
1

d

∂u

∂y

)
dxdy +

∫ 1

0

√
1

d2
+ |h′|2dx

]

for (u, h) such that

∫ 1

0
hdx = 1, and u ∈ W 1,p (Ωh) with

u (x , 0) = e0 (x , 0).



Γ-convergence

Definition

We say that a sequence of functionals Fn Γ-converges to F if

∀un with supFn(un) < +∞, ∃u such that un → u (up to a
subsequence) and

lim inf Fn(un) ≥ F (u)

∀u, ∃un → u with

lim supFn(un) ≤ F (u)



The trivial regime Fd ,e0 ≃ 1

Proposition

If {(ud , hd )} is a low energy sequence, i.e.
supFd,e0 (ud , hd ) < +∞, then, up to extraction of a subsequence
the measures µd := hd dx weak-∗ converge to a probability
measure µ, and

lim inf
d→0

Fd,e0 (ud , hd ) ≥ 1.

Moreover, for every probability measure µ on [0, 1] there exists a
sequence {hd} of nonnegative Lipschitz functions h : I → R with

hd (0) = hd (1) = 0 and
∫ 1
0 hd (x) dx = 1, and a sequence {ud} of

functions ud ∈ W 1,p
(
Ωhd ;R

2
)
, such that {hd dx} converges

weak-∗ to µ and

lim sup
d→0

Fd,e0 (ud , hd ) ≤ 1.



The surface dominant regime Fd ,e0 ≃ d

We divide the energy by d and obtain the rescaled energy

Fd (u, h) :=

∫

Ωh

W

(
∂u

∂x
,
1

d

∂u

∂y

)
dxdy +

∫ 1

0

√
1

d2
+ |h′|2dx .

In this regime, the surface energy is the dominating term, and the
limit functional is given by

F̄ (h) :=

∫ 1

0

∣∣h′
∣∣+ 2H1 (Γcuts ) .

The minimizer of F̄ is the flat configuration h ≡ 1



Proposition

Suppose {(ud , hd )} with supd Fd (ud , hd ) < +∞. Then the sets
R2\Ωhd converge to R2\Ωh where
h (x) := inf {lim inf hd (xd ) : xd → x} and

lim inf
d→+∞

Fd (ud , hd ) ≥ F̄ (h) .

Moreover, for every nonnegative lower semicontinuous function h
with bounded pointwise variation and

∫ 1
0 h (x) dx = 1, there exists

a sequence {(ud , hd )} where hd : I → R are non-negative Lipschitz

functions with
∫ 1
0 hd (x) dx = 1, hd (0) = hd (1) = 0, and

ud ∈ W 1,p
(
Ωhd ;R

2
)
such that R2\Ωhd converge to R2\Ωh, and

lim sup
d→+∞

Fd (ud , hd ) ≤ F̄ (h) .



Proof

The compactness follows from the uniform bound on
∫ 1
0 |h′d | and

Blaschke’s Theorem.

The lower bound comes from the relaxation result of
Bonnetier-Chambolle 02 (see also Fusco-Fonseca-Leoni-Morini 07)

The upper bound is obtained by considering hd = h (that we can
assume Lipschitz) and

ud (x , y) :=

{
e0 (x (1− dy) , 0) if y ≤ 1

d
,

0 if y ≥ 1
d
.

Using the p growth condition we then find

lim sup

∫

Ωh

W

(
∂u

∂x
,
1

d

∂u

∂y

)
dxdy ≃ lim sup

ep0
d

= 0 as d → +∞.



The limit case e
p
0 = d → +∞

The rescaled energy is again

Fd (u, h) :=

∫

Ωh

W

(
∂u

∂x
,
1

d

∂u

∂y

)
dxdy +

∫ 1

0

√
1

d2
+ |h′|2dx .

In this regime, we expect that both elastic and surface part of the
energy will contribute.

Notice that from a bound on the energy, we get no good bound on
|u|W 1,p(Ωh)...



The boundary layer

We expect that the elastic energy is concentrated in a region of
height O( 1

d
) (since it was concentrated in a region of height O(1)

in the original domain).



The boundary layer

We expect that the elastic energy is concentrated in a region of
height O( 1

d
) (since it was concentrated in a region of height O(1)

in the original domain).

=⇒ we have to rescale back this boundary layer

log d
BLd

h

log d
d

Set

BLdh :=
{
(x , y) : (x , y) ∈ [0, 1] × R+ , y ≤ log (d) < d hd (x)

}
.



Compactness

Proposition

If supFd (ud , hd ) < +∞ then
{
R2\Ωhd

}
converges in the

Hausdorff topology to R2\Ωh, where
h (x) := inf {lim inf hd (xd ) : xd → x}. Set

BLh :=
{
(x , y) : (x , y) ∈ [0, 1] ×R+ , 0 < h (x)

}
.

Then
{
BLdh

}
converges in the local Hausdorff topology to BLh.

Moreover, if vd : BLdh → R2 is defined by vd (x , y) :=
1
e0
ud

(
x , y

d

)

then there exists v ∈ W 1,p
(
BLh;R2

)
with v (x , 0) = (x , 0),

vdχBLd
h
⇀ v locally weakly in W 1,p

loc

(
BLh;R2

)
.



Proof

The convergence of the sets follows as previously

Regarding the elastic term, changing variables z = d y and
dividing by e0, we get

∫

BLd
h

W (e0∇vd )

ep0
dxdy ≤ C .

The p-growth of W then implies a uniform bound on |vd |W 1,p

from which the compactness follows.



The recession function

In the previous proof we saw that the quantity which naturally
arises is ∫

BLd
h

W (e0∇vd )

ep0
dxdy

It is thus natural to expect that the recession functional

W∞ (A) := lim sup
t→+∞

W (tA)

tp
for A ∈ R2×2.

will play a role We will assume that

(H3) W is quasiconvex.

(H4) There exist 0 < m < p, γ > 0 and L > 0 such that for
t |A| ≥ L,

∣∣∣∣W
∞ (A)−

W (tA)

tp

∣∣∣∣ ≤ γ
|A|p−m

tm
.



Recession function continued

Lemma

Suppose that W satisfies (H2), (H3) and (H4). If f : R → R
satisfies f (t) → +∞ for t → +∞ then

lim
e0→+∞

min
v(x ,0)=(x ,0)

∫

[0,1]×[0,f (e0)]

W (e0∇v)

ep0
dxdy

= min
v(x ,0)=(x ,0)

∫

[0,1]×[0,+∞)
W∞ (∇v) dxdy .

The proof is an adaptation of the proof of semicontinuity of
quasiconvex functionals.



Some comments

• Hypothesis (H3) is not necessary.

• The recession function appears naturally in relaxation results
for functionals with linear growth (see Fonseca-Müller 93)
where a condition similar to (H4) is also needed.

• To the best of our knowledge it is the first time it appears in
problems with p > 1 growth.



Lower and upper bound

Theorem

Assume W satisfies (H1)-(H4) and that (hd , ud ) is a sequence of
low energy converging in the sense of the previous proposition then

lim inf
d→+∞

Fd (ud , hd ) ≥

∫

BLh

W∞ (∇v) dxdy +

∫ 1

0

∣∣h′
∣∣+ 2H1 (Γcuts ) .

Conversely, for every pair (v , h) with v ∈ W 1,p
(
BLh;R2

)
,

v (x , 0) = (x , 0), and h : I → R a nonnegative lower
semicontinuous function of bounded pointwise variation,∫ 1
0 h (x) dx = 1, there exists a sequence {ud} ∈ W 1,p

(
Ωh;R2

)

with ud (x , 0) = e0 (x , 0), such that 1
e0
ud

(
x , y

d

)
⇀ v locally weakly

in W 1,p
(
BLh;R2

)
and

lim
d→+∞

Fd (ud , h) =

∫

BLh

W∞ (∇v) dxdy +

∫ 1

0

∣∣h′
∣∣+ 2H1(Γcuts ).



Proof

The liminf inequality follows from the previous Lemma.

For the recovery sequence, we can assume that h is Lipschitz and
that v has bounded support. Take then

ud (x , y) :=





e0v (x , dy) if y ≤ log(d)
d

,

e0v (x , log (d))
(
2− d

log(d)y
)

if
log(d)

d
≤ y ≤ 2 log(d)

d
,

0 if y ≥ 2 log(d)
d

.



Analysis of the minimizers

Let

CW := min
v(x ,0)=(x ,0)

∫

[0,1]×[0,+∞)
W∞ (∇v) dxdy .

Proposition

If CW ≥ 1 then the minimizer of

∫

BLh

W∞ (∇v) dxdy +

∫ 1

0

∣∣h′
∣∣+ 2H1 (Γcuts )

corresponds to a rectangle of length ℓmin =
(

1
CW

)1/3
, and v is

given by the minimizer of the elastic energy in the corresponding
boundary layer. If CW < 1 then the flat configuration is
minimizing.



Proof

• h has to be constant on each connected component of h 6= 0.

• In the boundary layer, v has to be chosen as the minimizer of
the elastic energy.

If h =
∑

diχ[ai ,bi ], set ℓi = bi − ai and hi =
di
ℓi
. Then the minimal

energy is given by

min
∑

i hi ℓi=1

CW

2

∑

i

ℓ2i +
∑

i

hi .

Assume, for the sake of contradiction, that two of the ℓi are

non-zero, say ℓ1 ≥ ℓ2 > 0. For η ∈
[
−h1,

ℓ2
ℓ1
h2

]
consider h1 + η

and h2 − η ℓ1
ℓ2
.



Since (ℓi , hi ) is minimizing and

(h1 + η) ℓ1 +
(
h2 − η ℓ1

ℓ2

)
ℓ2 = h1ℓ1 + h2ℓ2, we find that

η − η
ℓ1
ℓ2

≥ 0 ∀η ∈

[
−h1,

ℓ2
ℓ1
h2

]

and hence ℓ1 = ℓ2 from which we deduce that ℓi = ℓ for every i .
The minimization problem then reduces to

min
ℓ≤1

CW

2
Nℓ2 +

1

ℓ

where N is the number of intervals where h 6= 0. It is then clearly

optimal to take N = 1 and ℓmin = min

{
1,
(

1
CW

)1/3
}
.



The elastic dominant regime, Fd ,e0 ≃ e
p/3
0 d

2/3

The relevant parameter is η :=
(

d
e
p
0

)1/3
→ 0, so that the energy

scales like d
η . We thus consider the normalized energy:

Fη (u, h) := η

[∫

Ωh

W

(
∂u

∂x
,
1

d

∂u

∂y

)
dxdy +

∫ 1

0

√
1

d2
+ |h′|2dx

]
.

Notice that in this case, no bound on the total variation of h is
available and we expect that the configuration will get more and
more irregular.



The convergence result

Theorem

Let {(uη, hη)} be such that supFη (uη, hη) ≤ C , and set
µη := hη dx . Then there exists a subsequence (not relabeled) such
that {µη} weak-∗ converges to µ :=

∑+∞
i=1 diδci where di > 0

satisfy
∑+∞

i=1 di = 1. Moreover, there holds

lim inf
η→0

Fη (uη, hη) ≥ 3C
1/3
W

+∞∑

i=1

d
2/3
i .

Conversely, if µ :=
∑+∞

i=1 di δci then there exist a sequence
{(uη, hη)} of functions uη ∈ W 1,p

(
Ωhη ;R

2
)
, and nonnegative

Lipschitz functions hη such that µη := hηdx are probability
measures that weakly-∗ converge to µ, and

lim sup
η→0

Fη (uη, hη) ≤ 3C
1/3
W

+∞∑

i=1

d
2/3
i .



Proof

Since µη are probability measures, there exists a subsequence and a
probability measure µ such that µη weakly-∗ converges to µ.
Let :

y0 :=
1

2

√

e
p/3
0 d2/3

→ 0

ℓ := H1
(
Ωhη ∩ (I × {y0})

)
.

I ηℓ := Ωhη ∩ (I × {y0}).

I ηℓ = ∪+∞
i=1

[
aηi , b

η
i

]
.

ℓηi := bηi − aηi .

dη
i :=∣∣Ωhη ∩

([
aηi , b

η
i

]
× [y0,+∞)

)∣∣ .

a
η
1

ℓ
η
1

b
η
2

ℓ
η
2 y0

b
η
1

d
η
2

a
η
2

d
η
1

We assume that the dη
i are ordered in a decreasing way.



Notice that 1−
∑

i d
η
i ≤ y0 and thus limη→0

∑
i d

η
i = 1.

Let finally di := limη→0 d
η
i (which we can assume exists for every

i ∈ N up to further extraction).

Since Fd,e0 ≃ e
p/3
0 d2/3, by the computation in the scaling law, we

see that maxi ℓ
η
i ≤ Cη and thus

(
bηi − aηi

)
→ 0 for all i .

Hence we may assume that for some ci ∈ [0, 1], aηi → ci and
bηi → ci .



Let Ωη
i := Ωhη ∩

([
aηi , b

η
i

]
× [0,+∞)

)
, then for every i

Fη
(
uη, hη,Ω

η
i

)
≥ η

∫ b
η
i

a
η
i

∣∣h′η
∣∣ dx + η

∫

[aηi ,b
η
i ]×[0,y0]

W

(
∂u

∂x
,
1

d

∂u

∂y

)

≥ 2η
dη
i

ℓηi
+
η

d
min

u(x ,0)=e0(x ,0)

∫

[aηi ,b
η
i ]×[0,dy0]

W (∇u)

≥ 2η
dη
i

ℓηi
+
η

d
ep0

(
ℓηi
)2

min
v(x ,0)=(x ,0)

∫

[0,1]×

[

0,
dy0
ℓ
η
i

]

W (e0∇v)

ep0

= 2η
dη
i

ℓηi
+
η

d
ep0

(
ℓηi
)2

CW (1− ψ (η))

≥ 3C
1/3
W (1− ψ (η))1/3

(
dη
i

)2/3
,

where ψ (η) → 0 as η → 0 (we used that dy0/ℓ
η
i ≥ (e

p/3
0 d2/3)1/2).

Summing over i and letting η → 0, we get the liminf inequality.



Structure of the measure µ

Now for every ε > 0, let V ε :=
{
i ∈ N / dη

i < ε
}
. Then

∑

i∈V ε

dη
i =

∑

i∈V ε

(
dη
i

)1/3 (
dη
i

)2/3
≤ ε1/3

∑

i∈V ε

(
dη
i

)2/3

≤ Cε1/3
∑

i∈V ε

Fη
(
uη, hη,Ω

η
i

)

≤ Cε1/3Fη (uη, hη) ≤ Cε1/3 .



Structure of the measure µ continued

The number of islands such that dη
i > ε is uniformly bounded by

some constant Nε ≤
1
ε . For fixed ε > 0 let I ε :=

(
∪i∈V ε

[
aηi , b

η
i

])c
and µεη := hηχI ε dx . Then

{
µεη

}
converges weakly-∗ to

µε :=
∑Nε

i=1 diδci . Finally µε → µ since for every φ ∈ C ([0, 1])

|(µε − µ) (φ)| = lim
η→0

∫

I ε
hηφ dx ≤ C |φ|∞ ε1/3 .

Since µε weakly-∗ converges
∑

i∈N diδci , this ends the proof.



Upper bound
Every measure µ =

∑+∞
i=1 diδci can be approximated in energy by

the measures µN :=
∑N

i=1 di δci , and by slightly moving the points
ci , we may assume without loss of generality that none of them is
0 or 1.
For these measures, a recovery sequence is easily constructed:

• let ℓi :=
(

di
CW

)1/3
η,

• let hi :=
di
ℓi
,

• let hη a Lipschitz function very close to∑N
i=1 hiχ(ci−ℓi/2,ci+ℓi/2),

• Finally let uη be the minimizer of the elastic energy in Ωhη .

Remark: The minimizer of the limit functional, i.e.

min

{
+∞∑

i=1

d
2/3
i :

+∞∑

i=1

di = 1

}

is given by a single Dirac mass, i.e. d1 = 1 and di = 0 for i > 1.



Walfrido ’Morning in the Tropic’

Thank you for your attention!
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