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Introduction



Many problems in image processing can be solved by minimizing

J(u) =

∫
Ω
|Du|+ G (u)

where G is a convex lsc function on L2.

Example : the denoising using the ROF model corresponds to

G (u) = λ
2
|u − f |2

can be used for zooming, deblurring, inpainting etc...



Our approach extends to :

I more general convex functionals with at least linear growth

J(u) =

∫
Ω
F (x ,Du) + G (u)

where F is convex in p and F (x , p) ≥ C |p|α with α ≥ 1,

I problems with boundary conditions.



Idea of the method

Reminder : The total variation is de�ned as∫
Ω
|Du| = sup

ξ∈C1
c

(Ω)

|ξ|∞≤1

∫
Ω
u div ξ

The minimization problem then reads

min
u∈BV

J(u) = min
u∈BV

sup
ξ∈C1

c
(Ω)

|ξ|∞≤1

−
∫

Ω
u div ξ + G (u)

⇒ It can thus be recasted as a saddle point problem



The Arrow-Hurwicz Method

For a function K , the Arrow-Hurwicz method reads


∂u
∂t = −∇uK (u, ξ)

∂ξ
∂t = ∇ξK (u, ξ)

It is a gradient descent in the Primal variable u and a gradient

ascent in the Dual variable ξ.



If K (u, ξ) = −
∫

Ω
u div ξ + G (u) then

∇uK = − div ξ + ∂G (u)

∇ξK = Du

which formally leads to :
∂u
∂t = div ξ − ∂G (u)

∂ξ
∂t = Du |ξ|∞ ≤ 1

This is exactly the method proposed by Appleton and Talbot. It

corresponds to the continuous analogue of the method proposed by

Chan and Zhu.
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Theorem
The Cauchy problem associated with the previous system as a

unique solution.

Moreover, if G (u) = λ
2
|u − f |2 then this solution converges toward

the minimizer u of J and we have the a posteriori estimate

|u − u| ≤ 1

2

 |∂tu|
λ

+

√
|∂tu|2
λ2

+
8|Ω|

1

2

λ
|∂tξ|





Crucial observation

Formally we have :(
− div ξ + ∂G (u)

−Du

)
·
(

u

ξ

)
= ∂G (u) · u ≥ 0

Thus the operator de�ning the system is monotone.



Maximal monotone operators

De�nition
Let H be a Hilbert space. An operator A on H is monotone if :

∀x1, x2 ∈ D(A), (A(x1)− A(x2), x1 − x2) ≥ 0.



De�nition
It is called maximal monotone if it is maximal in the set of

monotone operators.

Proposition

Let ϕ be a convex lsc function on H then ∂ϕ is maximal monotone.

Reminder : p ∈ ∂ϕ(x) if for every y

ϕ(y)− ϕ(x) ≥ p · (y − x).



Theorem
For every u0 ∈ D(A), there exists a unique function u(t) from

[0,+∞[ in H such that

I u(t) ∈ D(A) for every t > 0

I u(t) is Lipschitz on [0,+∞[, i.e du

dt
∈ L∞(0,+∞;H).

I −du

dt
∈ A(u(t)) for a.e. t.

I u(0) = u0.

I if u and û are two solutions then |u(t)− û(t)| ≤ |u(0)− û(0)|.



Application to �nding saddle points

Theorem (Rockafellar 68)

Let K be a proper saddle function. Assume that K is lsc in y and

usc in z then the associated Arrow-Hurwicz operator T is maximal

monotone.



Idea of the proof

Let

H(y , z∗) = sup
z

z∗ · z + K (y , z)

We then have :

Lemma
H is a lsc convex function and

(y∗, z∗) ∈ T (y , z)⇔ (y∗, z) ∈ ∂H(y , z∗)

Unfortunately, this theorem doesn't apply directly !
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Application to the initial problem

We remind that we look for a saddle point of

K (u, ξ) = −
∫

Ω
u div ξ + G (u)

We then let

H(u, ξ∗) = sup
|ξ|∞≤1

〈ξ, ξ∗〉 −
∫

Ω
u div ξ + G (u)

=

∫
Ω
|Du + ξ∗|+ G (u)

H is a lsc convex function !
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We can thus de�ne the maximal monotone T by

(u∗, ξ∗) ∈ T (u, ξ)⇔ (u∗, ξ) ∈ ∂H(u, ξ∗)

Problem : compute T .



Characterization of T

Proposition

(u∗, ξ∗) ∈ T (u, ξ) if and only if :

I u ∈ BV ∩ L2 and ξ ∈ H1
0 (div) with |ξ|∞ ≤ 1.

I u∗ + div ξ ∈ ∂G

I

∫
Ω
|ξ∗ + Du| = 〈ξ∗, ξ〉+

∫
Ω

[ξ,Du]



About convergence...

Proposition

For the denoising problem, there is convergence towards the

minimizer u.

Key idea of the proof :

It rests on the simple estimate

d

dt

(
|u − u|2 + |ξ − ξ|2

)
≤ −C |u − u|2



and the a posteriori estimates

Proposition

There holds the following a posteriori estimates

|u − u| ≤ 1

2

 |∂tu|
λ

+

√
|∂tu|2
λ2

+
8|Ω|

1

2

λ
|∂tξ|


Idea of the proof :

We start from

u =f +
1

λ
(div ξ − ∂tu)

ū =f +
1

λ
div ξ̄

To obtain

|u − ū|2 =
1

λ
〈div(ξ − ξ̄)− ∂tu, u − ū〉



Numerical illustration

Illustration of the stopping criterion



Interest of the continuous approach

I Leads to a better understanding of the discrete model

I Gives answers that were still unknown in the discrete model

I Gives rise to less anisotropical algorithms



Restauration by AT on the left and CZ on the right



Zoom on the top right corner.
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