Sur quelques problèmes variationnels avec pénalisation d'interfaces

Soutenance d'HDR

Michael Goldman

CNRS, LJLL, Paris 7

17 décembre 2018

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction

General problem: solve

 $\min_E P(E) + G(E)$

with or without volume constraint.

Here $P(E) = \mathcal{H}^{d-1}(\partial E)$ G is a (local or non-local) functional depending on the specific problem.

Isoperimetric problem

Fundamental example (G = 0):

 $\min_{|E|=V} P(E)$

Isoperimetric problem

Fundamental example (G = 0):

 $\min_{|E|=V} P(E)$

Solution:

E is a ball

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

In general competition between P and $G \implies$ many possible behaviors:

Can be simple and remain the ball (Gamow, 2 components BEC ...)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

or be more complex

Periodic patterns

Array of drops (Ohta-Kawasaki)

Stripes (Shape memory alloys, dipolar ferromagnets ...)

Branching patterns

Shape memory alloys, uniaxial ferromagnets, type-I superconductors ...

Main Questions

- Give a qualitative/quantitative description of minimizers (when they exist)
- If the model is too complex, derive and study simpler models

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Rk: related question, stability of minimizers (e.g quantitative isoperimetric inequality)

Diffuse interface approximation

In many physical models/for numerical approximation often P(E) replaced by

$${\sf E}_arepsilon(
ho) = \int |
abla
ho|^2 + rac{1}{arepsilon^2} {\sf W}(
ho)$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Theorem (Modica-Mortola): $E_{\varepsilon} \rightarrow P$ as $\varepsilon \downarrow 0$.

Diffuse interface approximation

In many physical models/for numerical approximation often P(E) replaced by

$$E_{arepsilon}(
ho) = \int |
abla
ho|^2 + rac{1}{arepsilon^2} W(
ho)$$

Theorem (Modica-Mortola): $E_{\varepsilon} \rightarrow P$ as $\varepsilon \downarrow 0$.

We focus on 2 problems corresponding to 2 asymptotic limits of the Ginzburg-Landau energy

The Ginzburg-Landau energy

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction

Superconductivity was first observed by Onnes in 1911 and has nowadays many applications.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Meissner effect

In 1933, Meissner understood that superconductivity was related to the expulsion of the magnetic field outside the material sample

Ginzburg Landau functional

In the 50's Ginzburg and Landau proposed the model:

$$GL(u,A) = \int_{\Omega} |\nabla_A u|^2 + \frac{\kappa^2}{2} (1-\rho^2)^2 dx + \int_{\mathbb{R}^3} |\nabla \times A - B_{ex}|^2 dx$$

where $u = \rho e^{i\theta}$ is the order parameter, $B = \nabla \times A$ is the magnetic field, B_{ex} is the external magnetic field, κ is the Ginzburg-Landau constant and

$$abla_A u =
abla u - iAu$$

is the covariant derivative.

 $\rho \sim$ 0 represents the normal phase and $\rho \sim$ 1 the superconducting one.

(日) (同) (三) (三) (三) (○) (○)

The various terms in the energy

For
$$u = \rho e^{i\theta}$$
, $|\nabla_A u|^2 = |\nabla \rho|^2 + \rho^2 |\nabla \theta - A|^2$.
In $\rho > 0$ first term wants $A = \nabla \theta \Longrightarrow \nabla \times A = 0$
That is

 $\rho^2 B \simeq 0$ (Meissner effect)

and penalizes fast oscillations of ρ

Second term forces $ho\simeq 1$ (superconducting phase favored)

Last term wants $B \simeq B_{ex}$. In particular, this should hold outside the sample.

Two different regimes

 $\kappa < 1/\sqrt{2}$ energy penalizes interfaces between normal and superconducting phases (type-I)

$$\begin{split} \kappa > 1/\sqrt{2} \mbox{ negative surface tension} \\ \Longrightarrow \mbox{ formation of vortices} \\ \mbox{ (type-II)} \end{split}$$

A remark about type-II

In the absence of magnetic field ($A = B_{ex} = 0$) and letting $\varepsilon = \kappa^{-1}$, reduces to

$$\mathit{GL}_{arepsilon}(u) = \int_{\Omega} |
abla u|^2 + rac{1}{2arepsilon^2}(1-|u|^2)^2$$

In dimension 2 formation of point vortices of energy

$$GL_{\varepsilon}(u_{\varepsilon}) = 2\pi |\log \varepsilon| + O(1)$$

(see BBH, SS, ...)

A branched transport limit for type-I superconductors $(\kappa \downarrow 0)$

Results from CGOS'18, G'18

Our setting

We consider $\Omega = Q_{L,T} = [-L, L]^2 \times [-T, T]$ with periodic lateral boundary conditions and take $B_{ex} = b_{ex}e_3$.

First rescaling

We let

$$\kappa T = \sqrt{2}\alpha$$
 $b_{\text{ex}} = \frac{\beta\kappa}{\sqrt{2}}$

and then

$$\widehat{x} = T^{-1}x \qquad \qquad \widehat{u}(\widehat{x}) = u(x) \widehat{A}(\widehat{x}) = A(x) \qquad \qquad \widehat{B}(\widehat{x}) = \nabla \times \widehat{A}(\widehat{x}) = TB(x)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In these units,

coherence length $\simeq \alpha^{-1}$ penetration length $\simeq T^{-1}$ We are interested in the regime $T \gg 1$, $\alpha \gg 1$, $\beta \ll 1$.

The energy

The energy can be written as

$$E_{T}(u,A) = \frac{1}{L^{2}} \int_{Q_{L,1}} |\nabla_{TA}u|^{2} + (B_{3} - \alpha(1 - \rho^{2}))^{2} + |B'|^{2} + ||B_{3} - \alpha\beta||^{2}_{H^{-1/2}(x_{3} = \pm 1)}$$

First term: penalizes oscillations + $\rho^2 B \simeq 0$ (Meissner effect)

・ロト・日本・モト・モート ヨー うへで

The energy

The energy can be written as

$$E_{T}(u,A) = \frac{1}{L^{2}} \int_{Q_{L,1}} |\nabla_{TA}u|^{2} + (B_{3} - \alpha(1-\rho^{2}))^{2} + |B'|^{2} + ||B_{3} - \alpha\beta||^{2}_{H^{-1/2}(x_{3}=\pm 1)}$$

First term: penalizes oscillations $+ \rho^2 B \simeq 0$ (Meissner effect)

(cf GM '15)

Second term: degenerate double well potential.

If Meissner then: $(B_3 - \alpha(1 - \rho^2))^2 \simeq \alpha^2 \chi_{\{\rho > 0\}} (1 - \rho^2)^2$ Rk: wants $B_3 = \alpha$ in $\{\rho = 0\}$ Similar features in mixtures of BEC

Crash course on optimal transportation

For ρ_0 , ρ_1 probability measures

$$W_2^2(\rho_0, \rho_1) = \inf\left\{\int_{Q_L \times Q_L} |x - y|^2 d\Pi(x, y) : \Pi_1 = \rho_0, \ \Pi_2 = \rho_1\right\}$$

Theorem (Benamou-Brenier '00)

$$W_2^2(
ho_0,
ho_1) = \inf_{\mu,B'} \left\{ \int_0^1 \int_{Q_L} |B'|^2 d\mu : \partial_3\mu + \operatorname{div}'(B'\mu) = 0, \ \mu(0,\cdot) =
ho_0, \ \mu(1,\cdot) =
ho_1
ight\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The energy continued

$$E_{T}(u,A) = \frac{1}{L^{2}} \int_{Q_{L,1}} |\nabla_{TA}u|^{2} + (B_{3} - \alpha(1 - \rho^{2}))^{2} + |B'|^{2} + ||B_{3} - \alpha\beta||^{2}_{H^{-1/2}(x_{3} = \pm 1)}$$

Third term: with Meissner and B₃ ≃ α(1 − ρ²) = χ, div B = 0 can be rewritten as

$$\partial_3 \chi + \operatorname{div}'(\chi B') = 0$$

Benamou-Brenier \implies Wasserstein energy of $x_3 \rightarrow \chi(\cdot, x_3)$

The energy continued

$$E_{T}(u,A) = \frac{1}{L^{2}} \int_{Q_{L,1}} |\nabla_{TA}u|^{2} + (B_{3} - \alpha(1 - \rho^{2}))^{2} + |B'|^{2} + ||B_{3} - \alpha\beta||^{2}_{H^{-1/2}(x_{3} = \pm 1)}$$

Third term: with Meissner and B₃ ≃ α(1 − ρ²) = χ, div B = 0 can be rewritten as

$$\partial_3 \chi + \operatorname{div}' \chi B' = 0$$

Benamou-Brenier \implies Wasserstein energy of $x_3 \rightarrow \chi(\cdot, x_3)$

► Last term: penalizes non uniform distribution on the boundary but negative norm ⇒ allows for oscillations

A non-convex energy regularized by a gradient term

If we forget the kinetic part of the energy, can make B' = 0 and

$$E_{T}(u,A) = \frac{1}{L^{2}} \int_{Q_{L,1}} \left(B_{3} - \alpha(1-\rho^{2}) \right)^{2} + \|B_{3} - \alpha\beta\|_{H^{-1/2}(x_{3}=\pm 1)}^{2}$$

 \implies infinitely small oscillations of phases { $\rho = 0, B_3 = \alpha$ } and { $\rho = 1, B_3 = 0$ } with average volume fraction β .

the kinetic term $|\nabla_A u|^2$ fixes the lengthscale.

Branching is energetically favored

$$||B_3 - \alpha \beta||^2_{H^{-1/2}(x_3 = \pm 1)} \downarrow 0$$

but interfacial energy $\uparrow\infty$

interfacial energy \downarrow but $\int_{Q_{L,1}} |B'|^2 \uparrow$.

Landau '43

Experimental data

Complex patterns at the boundary

Experimental pictures from Prozorov and al.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Scaling law

Theorem (COS '15, See also CCKO '08)

In the regime $T \gg 1$, $\alpha \gg 1$, $\beta \ll 1$,

min
$$E_T \simeq \min(lpha^{4/3}eta^{2/3}, lpha^{10/7}eta)$$

First regime: $E_T \sim \alpha^{4/3} \beta^{2/3}$ Uniform branching, $\|B_3 - \alpha\beta\|_{H^{-1/2}(x_3 = \pm 1)}^2 = 0$

Second regime: $E_T \sim \alpha^{10/7}\beta$ Non-Uniform branching, $||B_3 - \alpha\beta||^2_{H^{-1/2}(x_3=\pm 1)} > 0$ fractal behavior

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Scaling law

Theorem (COS '15, See also CCKO '08) In the regime $T \gg 1$, $\alpha \gg 1$, $\beta \ll 1$, min $E_T \simeq \min(\alpha^{4/3}\beta^{2/3}, \alpha^{10/7}\beta)$

We concentrate on the first regime (uniform branching)

$$\implies \alpha^{-2/7} \ll \beta.$$

Multiscale problem

From the upper bound construction, we expect

 $penetration \ length \ll coherence \ length \ll domain \ size \ll sample \ size$

which amounts in our parameters to

$$T^{-1} \ll \alpha^{-1} \ll \alpha^{-1/3} \beta^{1/3} \ll L.$$

A Hierarchy of models

From the separation of scales $T^{-1} \ll \alpha^{-1} \ll \alpha^{-1/3} \beta^{1/3} \ll L$ we expect formally

 $\Downarrow \quad \beta \downarrow \mathbf{0}$

Small volume fraction limit : branched transportation model

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The limiting functional

For μ a measure with $\mu_{x_3} = \sum_i \phi_i \delta_{x_i(x_3)}$ for a.e. x_3 and $\mu_{x_3} \rightharpoonup dx'$ when $x_3 \rightarrow \pm 1$,

$$I(\mu) = \int_{-1}^{1} \sum_{i} \frac{8\pi^{1/2}}{3} \phi_{i}^{1/2} + \phi_{i} \dot{x}_{i}^{2} dx_{3}$$

Main theorem

Theorem (CGOS '18)

After appropriate rescaling, E_T converges to $I(\mu)$ in the limit $T^{-1} \ll \alpha^{-1} \ll \alpha^{-1/3} \beta^{1/3} \ll L$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Optimal microstructure in 2D

For a related 2D functional, we can prove (G' 18) that the unique minimizer is

Related ongoing work on:

- Non-uniform branching limit, DGR
- Similar questions in micromagnetism, BGZ (see also CDZ '17)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A GL model with topologically induced free discontinuities $(\kappa \uparrow \infty)$

Results from GMM '17

Motivation: ripple phase in lipid bilayers

Two types of corrugations

・ロト ・聞ト ・ヨト ・ヨト

ъ

Experimental pictures from Sackmann and al.

Two different profiles

However, in $\Lambda/2$ phase $\pm 1/2$ vortices connected by line singularity!

Explanation: two $\pm 1/2$ vortices much cheaper than one ± 1 \implies phase transition to Λ phase around the singularity

The model (after BFL '91)

 $\Omega \subset \mathbb{R}^2$ convex (e.g. $\Omega = B_1$), $u \in SBV(\Omega, \mathbb{C})$ with $Pu \in H^1(\Omega)$ where

 $P:\mathbb{C}
ightarrow \mathbb{C}/\{\pm 1\}$ is the canonical projection

Energy:

$$E_{\varepsilon}(u) = \int_{\Omega} |\nabla u|^2 + \frac{1}{2\varepsilon^2} (1 - |u|^2)^2 + \mathcal{H}^1(J_u) = GL_{\varepsilon}(u) + \mathcal{H}^1(J_u)$$

Mix between Ginzburg-Landau and Mumford-Shah

1/2 vortices are favored

Cost of ± 1 vortex: $2\pi |\log \varepsilon|$

Cost of two $\pm 1/2$ vortices: $2 \times \left(\frac{1}{2}\right)^2 2\pi |\log \varepsilon|$

・ロト ・四ト ・ヨト ・ヨト

3

Therefore half vortices are indeed energetically favorable.

Important observation

From now on, we fix $g \in C^{\infty}(\partial\Omega, \mathbb{S}^1)$ with deg $(g, \partial\Omega) = d$ and minimize under the condition u = g on $\partial\Omega$. Minimizers u_{ε} satisfy

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\begin{split} E_{\varepsilon}(u_{\varepsilon}) &\leq \pi d |\log \varepsilon| + C \\ \text{If } v_{\varepsilon} &= \frac{u_{\varepsilon}^{2}}{|u_{\varepsilon}|} (= re^{2i\theta}) \in H^{1}(\Omega), \\ E_{\varepsilon}(u_{\varepsilon}) &= \frac{1}{4}GL_{\varepsilon}(v_{\varepsilon}) + \frac{3}{4}GL_{\varepsilon}(|v_{\varepsilon}|) + \mathcal{H}^{1}(J_{u_{\varepsilon}}) \\ \Longrightarrow GL_{\varepsilon}(v_{\varepsilon}) &\leq 2\pi(2d) |\log \varepsilon| + C \text{ and } \deg(v_{\varepsilon}, \partial \Omega) = 2d \end{split}$$

Important observation

From now on, we fix $g \in C^{\infty}(\partial\Omega, \mathbb{S}^1)$ with deg $(g, \partial\Omega) = d$ and minimize under the condition u = g on $\partial\Omega$. Minimizers u_{ε} satisfy

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$E_{\varepsilon}(u_{\varepsilon}) \leq \pi d |\log \varepsilon| + C$$

If $v_{\varepsilon} = \frac{u_{\varepsilon}^{2}}{|u_{\varepsilon}|} (= re^{2i\theta}) \in H^{1}(\Omega)$,
 $E_{\varepsilon}(u_{\varepsilon}) = \frac{1}{4}GL_{\varepsilon}(v_{\varepsilon}) + \frac{3}{4}GL_{\varepsilon}(|v_{\varepsilon}|) + \mathcal{H}^{1}(J_{u_{\varepsilon}})$
 $\implies GL_{\varepsilon}(v_{\varepsilon}) \leq 2\pi(2d) |\log \varepsilon| + C \text{ and } \deg(v_{\varepsilon}, \partial\Omega) = 2d$

Therefore classical *GL* theory applies to v_{ε} !

Some more notation from GL theory

For
$$x_1, \cdots, x_{2d} \in \Omega$$
 and $\mu = 2\pi \sum_k \delta_{x_k}$

$$v_{\mu} = e^{i \varphi_{\mu}} \prod_{k} rac{x - x_{k}}{|x - x_{k}|} \qquad ext{with} \qquad \begin{cases} \Delta \varphi_{\mu} = 0 & ext{in } \Omega \\ v_{\mu} = g^{2} & ext{on } \partial \Omega. \end{cases}$$

Renormalized energy

$$\mathbb{W}(\mu) = \lim_{r \downarrow 0} \left\{ \int_{\Omega \setminus B_r(\mu)} |\nabla v_{\mu}|^2 - 4\pi d |\log r| \right\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $B_r(\mu) = \cup_k B_r(x_k)$

Theorem (GMM' 17)

If u_{ε} minimizer of E_{ε} and $v_{\varepsilon} = \frac{u_{\varepsilon}^2}{|u_{\varepsilon}|}$, there exists (μ, u) minimizer of

$$\min_{\substack{u^2=v_{\mu}\\=g \text{ on }\partial\Omega}} \left\{ \frac{1}{4} \mathbb{W}(\mu) + \mathcal{H}^1(J_u) \right\}$$

with

$$\blacktriangleright$$
 $u_arepsilon o u$ in L^1

•
$$v_{\varepsilon} \rightarrow v_{\mu}$$
 in $C^{\infty}_{loc}(\Omega \setminus \operatorname{Spt}\mu)$

We actually obtain a Γ -convergence result. Proof combines ideas from GL (S '98, J '99, JS '02, AP '14 ...) and free discontinuity problems (BCS '07 ...)

Structure of the minimizers for the limit problem

Theorem (GMM' 17)

For every fixed μ , and every minimizer u of

 $\min_{u\in SBV, u^2=v_{\mu}\atop u=g \text{ on }\partial\Omega} \mathcal{H}^1(J_u)$

 J_u is a minimal connection i.e. made of d segments connecting the x_k pairwise with minimal length and $u \in C^{\infty}(\Omega \setminus J_u)$.

Idea of proof: if u_1 and u_2 are competitors $(u_1/u_2)^2 = 1 \implies u_2 = (\chi_E - \chi_{E^c})u_1$ and E is \simeq area minimizing

Structure of the minimizers for $\varepsilon > 0$

Theorem (GMM '17)

For $0 < \varepsilon \ll 1$,

- The set $J_{u_{\varepsilon}}$ is closed and converges Hausdorff to J_{u} ;
- Away from $Spt\mu$, $J_{u_{\varepsilon}}$ is made of d segments;
- Away from J_{u_ε}, u_ε is smooth (and solves the classical GL equation).

Idea of proof

Based on Lassoued-Mironescu trick (write " $u_{\varepsilon} = \sqrt{v_{\varepsilon}}\varphi_{\varepsilon}$ ") + Wente to reduce to Mumford-Shah functional

$$\min_{\varphi=\psi \text{ on }\partial B_r(x_0)} \int_{B_r(x_0)} |\nabla \varphi|^2 + \mathcal{H}^1(J_{\varphi} \cap B_r(x_0))$$

with

Use calibration arguments (ABDM '03) to conclude.

GMM '17 contains extensions to

- ▶ vortices of degree $1/m, m \in \mathbb{N}$
 - \implies minimal connections become Steiner type problems;

diffuse interface version of Ambrosio-Tortorelli type.

"Les bulles de savon" J.B.S. Chardin

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Merci pour votre attention!