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Introduction

E

General problem: solve

minE P(E ) + G (E )

with or without volume constraint.

Here P(E ) = Hd−1(∂E )
G is a (local or non-local)
functional depending on
the specific problem.



Isoperimetric problem

Fundamental example (G = 0):

min
|E |=V

P(E )



Isoperimetric problem

Fundamental example (G = 0):

min
|E |=V

P(E )

Solution:

E is a ball



In general competition between P and G =⇒ many possible
behaviors:

Can be simple and remain the ball (Gamow, 2 components BEC ...)

or be more complex



Periodic patterns

I Array of drops (Ohta-Kawasaki)

I Stripes (Shape memory alloys, dipolar ferromagnets ...)

I Others



Branching patterns

Shape memory alloys, uniaxial ferromagnets, type-I
superconductors ...



Main Questions

I Give a qualitative/quantitative description of minimizers
(when they exist)

I If the model is too complex, derive and study simpler models

Rk: related question, stability of minimizers (e.g quantitative
isoperimetric inequality)



Diffuse interface approximation

In many physical models/for numerical approximation often P(E )
replaced by

Eε(ρ) =

∫
|∇ρ|2 +

1

ε2
W (ρ)

W is a double well potential Coherence length ' ε

ρ

ε

1

Theorem (Modica-Mortola): Eε → P as ε ↓ 0.



Diffuse interface approximation

In many physical models/for numerical approximation often P(E )
replaced by

Eε(ρ) =

∫
|∇ρ|2 +

1

ε2
W (ρ)

W is a double well potential Coherence length ' ε

ρ

ε

1

Theorem (Modica-Mortola): Eε → P as ε ↓ 0.

We focus on 2 problems corresponding to 2 asymptotic limits of
the Ginzburg-Landau energy



The Ginzburg-Landau energy



Introduction

Superconductivity was first observed by Onnes in 1911 and has
nowadays many applications.



Meissner effect

In 1933, Meissner understood that superconductivity was related to
the expulsion of the magnetic field outside the material sample



Ginzburg Landau functional

In the 50’s Ginzburg and Landau proposed the model:

GL(u,A) =

∫
Ω
|∇Au|2 +

κ2

2
(1− ρ2)2dx +

∫
R3

|∇ × A− Bex |2dx

where u = ρe iθ is the order parameter, B = ∇× A is the magnetic
field, Bex is the external magnetic field, κ is the Ginzburg-Landau
constant and

∇Au = ∇u − iAu

is the covariant derivative.

ρ ∼ 0 represents the normal phase and ρ ∼ 1 the superconducting
one.



The various terms in the energy

For u = ρe iθ, |∇Au|2 = |∇ρ|2 + ρ2|∇θ − A|2.
In ρ > 0 first term wants A = ∇θ =⇒ ∇× A = 0
That is

ρ2B ' 0 (Meissner effect)

and penalizes fast oscillations of ρ

Second term forces ρ ' 1 (superconducting phase favored)

Last term wants B ' Bex . In particular, this should hold outside
the sample.



Two different regimes

κ < 1/
√

2 energy penalizes
interfaces between normal
and superconducting phases
(type-I)

ρ ' 0

ρ ' 1

κ > 1/
√

2 negative surface tension
=⇒ formation of vortices
(type-II)

u ' e iθ

ρ = 0



A remark about type-II

In the absence of magnetic field (A = Bex = 0) and letting
ε = κ−1, reduces to

GLε(u) =

∫
Ω
|∇u|2 +

1

2ε2
(1− |u|2)2

In dimension 2 formation of point vortices of energy

GLε(uε) = 2π| log ε|+ O(1)

(see BBH, SS, ...)



A branched transport limit for
type-I superconductors

(κ ↓ 0)
Results from CGOS’18, G’18



Our setting

We consider Ω = QL,T = [−L, L]2 × [−T ,T ] with periodic lateral
boundary conditions and take Bex = bexe3.

ρ'1

−T

bexe3

−L

T

L



First rescaling

We let

κT =
√

2α bex =
βκ√

2

and then

x̂ = T−1x û(x̂) = u(x)

Â(x̂) = A(x) B̂(x̂) = ∇× Â(x̂) = TB(x)

In these units,

coherence length ' α−1 penetration length ' T−1

We are interested in the regime T � 1, α� 1, β � 1.



The energy

The energy can be written as

ET (u,A) =
1

L2

∫
QL,1

|∇TAu|2 +
(
B3 − α(1− ρ2)

)2
+ |B ′|2

+ ‖B3 − αβ‖2
H−1/2(x3=±1)

I First term: penalizes oscillations + ρ2B ' 0 (Meissner effect)



The energy

The energy can be written as

ET (u,A) =
1

L2

∫
QL,1

|∇TAu|2 +
(
B3 − α(1− ρ2)

)2
+ |B ′|2

+ ‖B3 − αβ‖2
H−1/2(x3=±1)

I First term: penalizes oscillations + ρ2B ' 0 (Meissner effect)

I Second term: degenerate double well potential.

If Meissner then:(
B3 − α(1− ρ2)

)2 ' α2χ{ρ>0}(1− ρ2)2

Rk: wants B3 = α in {ρ = 0}
Similar features in mixtures of BEC
(cf GM ’15)



Crash course on optimal transportation

For ρ0, ρ1 probability measures

W 2
2 (ρ0, ρ1) = inf

{∫
QL×QL

|x − y |2dΠ(x , y) : Π1 = ρ0, Π2 = ρ1

}

Theorem (Benamou-Brenier ’00)

W 2
2 (ρ0, ρ1) = inf

µ,B′

{∫ 1

0

∫
QL

|B ′|2dµ : ∂3µ+ div′(B ′µ) = 0,

µ(0, ·) = ρ0, µ(1, ·) = ρ1}



The energy continued

ET (u,A) =
1

L2

∫
QL,1

|∇TAu|2 +
(
B3 − α(1− ρ2)

)2
+ |B ′|2

+ ‖B3 − αβ‖2
H−1/2(x3=±1)

I Third term: with Meissner and B3 ' α(1− ρ2) = χ,
divB = 0 can be rewritten as

∂3χ+ div′(χB ′) = 0

Benamou-Brenier =⇒ Wasserstein energy of x3 → χ(·, x3)



The energy continued

ET (u,A) =
1

L2

∫
QL,1

|∇TAu|2 +
(
B3 − α(1− ρ2)

)2
+ |B ′|2

+ ‖B3 − αβ‖2
H−1/2(x3=±1)

I Third term: with Meissner and B3 ' α(1− ρ2) = χ,
divB = 0 can be rewritten as

∂3χ+ div′χB ′ = 0

Benamou-Brenier =⇒ Wasserstein energy of x3 → χ(·, x3)

I Last term: penalizes non uniform distribution on the boundary
but negative norm =⇒ allows for oscillations



A non-convex energy regularized by a gradient term

If we forget the kinetic part of the energy, can make B ′ = 0 and

ET (u,A) =
1

L2

∫
QL,1

(
B3 − α(1− ρ2)

)2
+‖B3 − αβ‖2

H−1/2(x3=±1)

ρ=0

ρ=1

x3 = 1x3 = −1

=⇒ infinitely small oscillations of phases
{ρ = 0,B3 = α} and {ρ = 1,B3 = 0}
with average volume fraction β.

the kinetic term |∇Au|2 fixes the lengthscale.



Branching is energetically favored

ρ'1 ‖B3 − αβ‖2
H−1/2(x3=±1)

↓ 0

but interfacial energy ↑ ∞

ρ'1

x3 = 1x3 = −1

interfacial energy ↓
but

∫
QL,1
|B ′|2 ↑.

Landau ’43



Experimental data

Complex patterns at the boundary

Experimental pictures from Prozorov and al.



Scaling law

Theorem (COS ’15, See also CCKO ’08)

In the regime T � 1, α� 1, β � 1,

minET ' min(α4/3β2/3, α10/7β)

ρ'1

First regime: ET ∼ α4/3β2/3

Uniform branching,
‖B3 − αβ‖2

H−1/2(x3=±1)
= 0

ρ'1

Second regime: ET ∼ α10/7β
Non-Uniform branching,
‖B3 − αβ‖2

H−1/2(x3=±1)
> 0

fractal behavior



Scaling law

Theorem (COS ’15, See also CCKO ’08)

In the regime T � 1, α� 1, β � 1,

minET ' min(α4/3β2/3, α10/7β)

We concentrate on the first regime (uniform branching)

ρ'1

=⇒ α−2/7 � β.



Multiscale problem

B

ρ ' 1
B

penetration length

coherence length

ρ

domain size

sample size

From the upper bound construction, we expect

penetration length�coherence length�domain size�sample size

which amounts in our parameters to

T−1 � α−1 � α−1/3β1/3 � L.



A Hierarchy of models

From the separation of scales T−1 � α−1 � α−1/3β1/3 � L we
expect formally

Ginzburg-Landau

⇓ T ↑ ∞

Ginzburg-Landau+Meissner

⇓ α ↑ ∞

Sharp interface problem : Perimeter + transport

⇓ β ↓ 0

Small volume fraction limit : branched transportation model



The limiting functional

For µ a measure with µx3 =
∑

i φiδxi (x3) for a.e. x3 and µx3 ⇀ dx ′

when x3 → ±1,

I (µ) =

∫ 1

−1

∑
i

8π1/2

3
φ

1/2
i + φi ẋ

2
i dx3



Main theorem

Theorem (CGOS ’18)

After appropriate rescaling, ET converges to I (µ) in the limit
T−1 � α−1 � α−1/3β1/3 � L



Optimal microstructure in 2D

For a related 2D functional, we can prove (G’ 18) that the unique
minimizer is



Related ongoing work on:

I Non-uniform branching limit, DGR

I Similar questions in micromagnetism, BGZ (see also CDZ ’17)



A GL model with topologically
induced free discontinuities

(κ ↑ ∞)
Results from GMM ’17



Motivation: ripple phase in lipid bilayers

Two types of corrugations

Experimental pictures from Sackmann and al.



Two different profiles

Λ Λ/2

Λ phase symmetric Λ/2 phase asymmetric
=⇒ ±1/2 vortices =⇒ ±1 vortices

However, in Λ/2 phase ±1/2 vortices connected by line singularity!



Explanation: two ±1/2 vortices much cheaper than one ±1
=⇒ phase transition to Λ phase around the singularity

Λ/2−phase

Λ−phase



The model (after BFL ’91)
Ω ⊂ R2 convex (e.g. Ω = B1), u ∈ SBV (Ω,C) with Pu ∈ H1(Ω)
where

P : C→ C/{±1} is the canonical projection

• Pu ∈ H1 ⇐⇒ u+ = −u− on Ju
• if |u| > δ then Pu ∈ H1(Ω)
⇐⇒ u2 ∈ H1(Ω)

u−

u+

Ju

Energy:

Eε(u) =

∫
Ω
|∇u|2 +

1

2ε2
(1− |u|2)2 +H1(Ju) = GLε(u) +H1(Ju)

Mix between Ginzburg-Landau and Mumford-Shah



1/2 vortices are favored

Cost of ±1 vortex: Cost of two ±1/2 vortices:

2π| log ε| 2×
(

1
2

)2
2π| log ε|

Therefore half vortices are indeed energetically favorable.



Important observation

From now on, we fix g ∈ C∞(∂Ω,S1) with deg(g , ∂Ω) = d and
minimize under the condition u = g on ∂Ω.
Minimizers uε satisfy

Eε(uε) ≤ πd | log ε|+ C

If vε = u2
ε
|uε|(= re2iθ) ∈ H1(Ω),

Eε(uε) =
1

4
GLε(vε) +

3

4
GLε(|vε|) +H1(Juε)

=⇒ GLε(vε) ≤ 2π(2d)| log ε|+ C and deg(vε, ∂Ω) = 2d



Important observation

From now on, we fix g ∈ C∞(∂Ω,S1) with deg(g , ∂Ω) = d and
minimize under the condition u = g on ∂Ω.
Minimizers uε satisfy

Eε(uε) ≤ πd | log ε|+ C

If vε = u2
ε
|uε|(= re2iθ) ∈ H1(Ω),

Eε(uε) =
1

4
GLε(vε) +

3

4
GLε(|vε|) +H1(Juε)

=⇒ GLε(vε) ≤ 2π(2d)| log ε|+ C and deg(vε, ∂Ω) = 2d

Therefore classical GL theory applies to vε!



Some more notation from GL theory

For x1, · · · , x2d ∈ Ω and µ = 2π
∑

k δxk

vµ = e iϕµ
∏
k

x − xk
|x − xk |

with

{
∆ϕµ = 0 in Ω

vµ = g2 on ∂Ω.

Renormalized energy

W(µ) = lim
r↓0

{∫
Ω\Br (µ)

|∇vµ|2 − 4πd | log r |

}

where Br (µ) = ∪kBr (xk)



Theorem (GMM’ 17)

If uε minimizer of Eε and vε = u2
ε
|uε| , there exists (µ, u) minimizer of

min
u2=vµ

u=g on ∂Ω

{
1

4
W(µ) +H1(Ju)

}

with

I uε → u in L1

I vε → vµ in C∞loc(Ω\Sptµ)

We actually obtain a Γ−convergence result.
Proof combines ideas from GL (S ’98, J ’99, JS ’02, AP ’14 ...)
and free discontinuity problems (BCS ’07 ...)



Structure of the minimizers for the limit problem

Theorem (GMM’ 17)

For every fixed µ, and every minimizer u of

min
u∈SBV ,u2=vµ
u=g on ∂Ω

H1(Ju)

Ju is a minimal connection i.e. made of d segments connecting the
xk pairwise with minimal length and u ∈ C∞(Ω\Ju).

Idea of proof:
if u1 and u2 are competitors
(u1/u2)2 = 1 =⇒ u2 = (χE − χE c )u1

and E is ' area minimizing



Structure of the minimizers for ε > 0

Theorem (GMM ’17)

For 0 < ε� 1,

I The set Juε is closed and converges Hausdorff to Ju;

I Away from Sptµ, Juε is made of d segments;

I Away from Juε , uε is smooth (and solves the classical GL
equation).



Idea of proof

Based on Lassoued-Mironescu trick (write “uε =
√
vεϕε”) +

Wente to reduce to Mumford-Shah functional

min
ϕ=ψ on ∂Br (x0)

∫
Br (x0)

|∇ϕ|2 +H1(Jϕ ∩ Br (x0))

with

ψ = 1 if x0 /∈ Ju

ψ = 1

ϕ = 1

ψ = χE − χE c if x0 ∈ Ju\Sptµ

ϕ = 1

ψ = −1

ϕ = −1

ψ = 1

Ju

Use calibration arguments (ABDM ’03) to conclude.



GMM ’17 contains extensions to

I vortices of degree 1/m, m ∈ N
=⇒ minimal connections become Steiner type problems;

I diffuse interface version of Ambrosio-Tortorelli type.



”Les bulles de savon” J.B.S. Chardin

Merci pour votre attention!
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