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Introduction



Introduction

Functions of bounded variation have a central position in many
problems in the Calculus of Variations.

Definition
Let u € L}(Q) then u € BV(Q) if

/|Du| sup /udivg0<+oo.
<pecl

|So|oo<1

Definition
A set E C R™ is called a set of finite perimeter if

P(E) ::/ |IDxE| < +o0.
RrRm

If E is a smooth set then P(E) = H™ (9E).



Typical functions in BV




Primal-Dual methods in image
processing



Examples of problems in image processing

Deblurring



Many problems in image processing can be model as solving a

minimization problem :
- / Dul + G(u)
Q

where G is a Isc convex function on L2,

Example : denoising with ROF corresponds to G(u) = 3 [, |u— f|?

It can also be used for inpainting, deblurring, zooming...



Many problems in image processing can be model as solving a
minimization problem :

A(u) ::/Q\DUHG(U)

where G is a Isc convex function on L2,

Example : denoising with ROF corresponds to G(u) = 3 [, |u— f|?
It can also be used for inpainting, deblurring, zooming...

Problem : How to solve the minimization problem ?



Idea of the method

Remind : The total variation is defined as
/ |Du| = sup —/ udivé
cecla
\£|oo<1

Hence the minimization problem rewrites

min J(u) = min sup — [ udivé+ G(u
ueBV (1) ”ergecgl()Q) /Q £ (1)

|§loo<1

= It is thus equivalent to finding a saddle point



The Arrow-Hurwicz method for finding saddle points

For a function K, this method is

81: =-V K(U 5)

% = VeK(u,€)

It is a gradient descent in the primal variable v and a gradient
ascent in the dual variable &.



When K(u,&) = —/ udivé + G(u) we find
Q

{VUK = —divE+ 0G(u)

V¢K = Du



When K(u,&) = —/ udivé + G(u) we find
Q

VuK = —divé + 9G(u)
V¢K = Du

which formally amounts to solve :

9 — dive — G (uv)

g =Du  [fo<1

This method proposed by Appleton and Talbot is the continuous
analogous of the method proposed by Chan and Zhu in the
discrete setting.



Theorem

Giving appropriate meaning to the previous system, there exists a
unique solution to the Cauchy problem.

Moreover, for G(u) = 5|u— f |2, there is convergence towards the
minimizer u of J and we have the a posteriori estimation

Oea] [ 1002 8|2
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This extends to :

» segmentation with geodesic active contours,

J(u) = /Q ¢(x)|Dul

» problems with boundary conditions



Interest of this continuous approach

» Give a better understanding of the discrete method

> Lead to new results also in the discrete setting (such as a
posteriori estimates)

» Give rise to more isotropic results (absence of discretization
bias)



Restauration by AT left and CZ right



Zoom on the top right corner



Numerical results




Sets with prescribed mean
curvature in periodic media



The Problem

Let g : R™ — R periodic, find a
compact set with
K=g




The Problem

Let g : R™ — R periodic, find a
compact set with
K=g

Example : If g = C > 0 then a solution is given by a ball.




Main result

In general there is no solution but

Theorem
Let g be periodic with zero mean and sufficiently small norm then
for every e there exists ¢’ € [0,¢] and a compact solution to

k=g+¢.



|dea of proof

Consider the volume constrained problem
f(v) := min P(E)—/g
|El=v E
then

Proposition

For every v > Q there exists a compact minimizer E, of this
problem.



E, satisfies the Euler-Lagrange equation
K=g+A
we can prove f is Lipschitz and

f'(v) =\



E, satisfies the Euler-Lagrange equation
k=g+A
we can prove f is Lipschitz and
f'(v) =\

= if we can find v with 0 < f/(v) < & we are done.



E, satisfies the Euler-Lagrange equation
k=g+A
we can prove f is Lipschitz and
f'(v) =\

= if we can find v with 0 < f/(v) < & we are done.

Since f ~ cv"n, we can find v, — +00 with f'(vn) — 0.



Behaviour of large volume minimizers
There exists ¢, a one-homogeneous convex function such that

letting
Wg— XG]R maxxy<1
y)<1
Pg =1 loo Pg =112 bg =111
Theorem

EV_ (le|> E +ZV

v

it holds




Variational problems in Wiener
spaces



The Wiener space

Definition
A Wiener space is a Banach space X with a Gaussian measure +y.

> if x* € X* then x — (x*,x) € L3(X).

> H = WL%(X).



Canonical cylindrical approximation

Let (x*)ien € X* be an orthonormal basis of 7. Then

Mm(x) == (5, x), ..o, (X0, X)).

Gives a decomposition of X 2 R™ @ X and 7 = v, ® 75, with
Ym, Vi Gaussian measures on R™, X1 respectively.

For u € L1(X),



Gradient and Divergence

In this context one can define a notion of gradient and divergence
such that

Proposition
For smooth enough ® and u,

/ udiv, ® dy = —/[Vu,d)] dvy.
X X

= This gives definitions of Sobolev and BV functions as in the
Euclidiean setting.
We say that E is of finite Gaussian perimeter if

P(EY= [ IDxel < +oc.



Isoperimetric inequality

Definition N
o(t) = v({{xm, x) < t}) o)
a(v) = 1(v). E= (o) < o)
U(v) = P ({{xm: x) < a(v)}). :

Theorem (Isoperimetric inequality)

The half spaces are the only isoperimetric sets i.e. for every set E,

Py(E) = U(~(E)).



The Ehrhard symetrization

Definition
Let E C X and m € N. The Ehrhard symmetral of E is :

Xm

a(Ep—1xE)




The Ehrhard symetrization

Definition
Let E C X and m € N. The Ehrhard symmetral of E is :

Xm

a(Ep—1xE)




Approximation of the perimeter
in Wiener spaces



A Modica-Mortola result

Idea : approximate the perimeter with
w
J=(u) ::/ E]Vu\z + ﬂdfy
X 2 3

where W is a double-well potential.




A Modica-Mortola result

Idea : approximate the perimeter with
w
J=(u) ::/ E]Vu\z + ﬂdfy
X 2 3

where W is a double-well potential.

Problem : No compactness in
the strong L%(X) topology
=> we have to consider the weak topology.



A Modica-Mortola result

Idea : approximate the perimeter with
w
J=(u) ::/ E]Vu\z + ﬂdfy
X 2 3

where W is a double-well potential.

Problem : No compactness in
the strong L%(X) topology
=> we have to consider the weak topology.

But the perimeter is NOT Isc for this topology...



We thus have to compute the relaxation of the perimeter :

F(u) :=inflim{P,(E,) / En,— u}.



We thus have to compute the relaxation of the perimeter :

F(u) :=inflim{P,(E,) / En,— u}.

Since P,(E®) < P,(E),

F(u) = inflim{P,(ES) | ES— u}.



Relaxation of the perimeter

Xm

If u(x) = u((x1, x)) and Em = {{x5, x) < aou((x{,x))}

o(u(x1))

En — uand Py(E) = / \/U?(u) + |Dyul?dryy.
R

=

DA



Main results

Theorem
The relaxation of the perimeter for the weak L%(X ) topology is
given by

/ \VU?(u) + |Dyul?dy if0<u<1
F(u) =

otherwise.

Theorem
The functionals J. T-converge for the weak L?Y(X ) topology to
cw F where cyy is the usual constant.



Some observations

The functional F appears in an alternative proof of the
isoperimetric inequality by functional inequalities :

u (/Xu d’y) < F(u).



Some observations

The functional F appears in an alternative proof of the
isoperimetric inequality by functional inequalities :

u (/Xu d’y) < F(u).

If u:= Tyxeg, letting t — 0 we get the isoperimetric inequality.



Some observations

The functional F appears in an alternative proof of the
isoperimetric inequality by functional inequalities :

u (/Xu d’y) < F(u).

If u:= Tyxeg, letting t — 0 we get the isoperimetric inequality.

= the theory of Bakry-Ledoux on functional inequalites and
convergence to equilibrium in diffusion process.



Convexity of minimizers of
variational problems in Wiener
spaces



Convexity of minimizers of variational problems in Wiener
spaces

Problem : Let g € L%(X) be a convex function and v € [0,1], is
the minimizer of

min P.(E +/ d
A(E)mv v() Eg Y

convex ?



Convexity of minimizers of variational problems in Wiener
spaces

Problem : Let g € L%(X) be a convex function and v € [0,1], is
the minimizer of

min P.(E +/ d
A(E)v v() Eg Y

convex ?

By the co-area formula, for "large” v, this minimizer is a level-set
of the minimizer of

1
[ 10+ [ w-gp ar
X X



Problem : Let F : H— R U {+0c} and g € L3(X) be two convex
functions we want to study the convexity of the solution of

. 1
min )J(u) :_/)<F(Dm,u)—i—2/x(u—g)2 dvy.

vel?(X



Strategy of proof

» Approximate the infinite dimensional problem by finite
dimensional ones.

» Prove the convexity in the finite dimensional case.

» Pass to the limit.



The finite dimensional problem

Theorem
F:R™ = RU{+o00} and g € LZ(R™) convex then the solution of

1
min FDu—i—/ u—g)3dy
ueLg(Rm)/Rm (D) +3 [ (w-g)

is convex.

Idea of proof : construct convex sub- and super-solutions and use a
result of Alvarez, Lasry and Lions to construct a solution.



Relaxation and Representation formulas

Definition
For u € L3(X),
/ F(Dyu) :=  sup / —udivy, ® — F*(®) dvy.
X PEFCL(X,H) /X
Theorem

For u € BV, (X)

S

/F(D ) /F(v )d +/F°O<dD7u>d\D5 \
u) = u)dry u
x X X d| D3 ul K




Proposition
Let F be a proper Isc convex function then the functional
Jx F(Dyu) is the relaxation of the functional defined as

Jx F(Vu)d~y foru e Wt (X).

If F has p-growth, then it is also the relaxation of the functional
[x F(Vu)dvy defined on the smaller class FC}(X).



The infinite dimensional problem

Idea of proof : Let g, := E,,g and u,, be the minimizer of

1
min  Jp,(u) ::/ F(Dyu)+/(u—gm)2d7
u=Enu X 2 X

by the finite dimensional Theorem, u,, is convex and u,, = 0 = U
is convex.



The infinite dimensional problem

Idea of proof : Let g, := E,,g and u,, be the minimizer of

. 1
min Jm(u) ::/ F(Dyu) + /(u—gm)zd’y
u=Enu X 2 X

by the finite dimensional Theorem, u,, is convex and u,, = 0 = U
is convex.

Yu € FCL(X),

Ju)= lim Jn(u) > lim d(um) > J(@)

m—+00 m——+o00



The infinite dimensional problem

Idea of proof : Let g, := E,,g and u,, be the minimizer of

min Jm(u) ::/XF(D,YU)—l—;/X(u—gm)zd’y

u=Enu

by the finite dimensional Theorem, u,, is convex and u,, = 0 = U
is convex.

1
Yu € FCu(X),

Ju)= lim Jn(u) > lim d(um) > J(@)

m—+00 m——+o00

= By the relaxation Theorem, @ is the minimizer of J.



For F one homogeneous with linear growth, we can define the
anisotropic perimeter

Pe(E) ::/XF(DVXE)

then

Theorem
For v large enough, the minimizer of

min  Pr(E +/ d
L, PrE)T | & dv

is unique and convex.



Some perspectives

> Look for more accurate algorithms solving the Primal-Dual
system.

> Investigate the case of existence of compact solutions to
k = g when the mean of g is positive.

» Look for analog problems in quasi-periodic/stochastic media.

» Better understand the link between symmetrizations and
functional inequalities.

» Study representation formulas for more complex integrals.

» Define a mean curvature flow in the Wiener space.



"1l calcolo delle variazioni & [...] una foresta da esplorare, piuttosto
che un palazzo da costruire.”
Ennio De Giorgi

"La tour de Babel" P. Bruegel



" Les bulles de savon” J.B.S. Chardin

Merci pour votre attention !
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