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INTRODUCTION

Motivation : this work is motivated by the study of two-phase flows invdlve
nuclear reactors in nominal, incidental or accidental ook

Several models and approaches :

@ "Micro"-scale models : fine description of liquigapor interface topologies

@ "Macro"-scale models : two-phase flow described as a mixture at
thermodynamical equilibrium

@ "Middle"-scale models : the so-called bi-fluid approach, takes into account
desequilibrium between both phases

We are interested in the numerical approximation of ondqaair bi-fluid averaged
model, the so-called-quation or Baer-Nunziato like model



THE 7-EQUATION MODEL

In one space dimension, the model reads

fole] fale’
E)tk u 3Xk = 0O(px - p1)s

0 0
a(aka) + &(akaUk) =0

Q)
P = axokd — Ak — W),

0 d 0
a(akaUk) + 6—)((0/k(QkU§ +Pw) — x

4 p] d
a(aké’ke.() + 6_)((a/k(9ker< + PIU) — Pl 2% = 0L — PIO(K — Pr) — U AUy — U)

OX

with ar+a;=1
u,, pi : interfacial velocity and pressure (to be precised)

We note that the system ii®nconservative with short form

ou
C S +BUS =SU)



THE GAS-DYNAMICS EQUATIONS WITH FRICTION AND GRAVITY TERMS

—> As a first-step, we consider the following model

0o + Oxou = 0,
8iou + x(oW + p) = g — oav,
8(0E) + dx(0Eu+ pu) = oug — pa’

whereg is the gravity constant andis the friction codficient.

—> In many codes, the very complex geometry of the core of a auciede is
modelled by means of a subgrid model

— Here we consider that the core is modelled as a porous mediurthatr is
related to the friction between the fluid and the fuel rodsaifum-clads.

Then,a models the wall-friction influence of the channels upon thifl
Remark on « and the source term stffness.

In practice, the magnitude of the friction dbeient« lies between & and 10, which
is by no mean a large value, but...



THE GAS-DYNAMICS EQUATIONS WITH FRICTION AND GRAVITY TERMS

—> One may be interested in long-time stationnary or neadiesinary flow
profiles. In dimensionless formy, is then multiplied by a large characteristic tifhe

a
ax —, e<1,
€

—> The spatial discretizatiox may be very coarse. Since the produsix will
play an important role in the consistency errors, it amotmtonsider here again

a
a~—, e<x1,
€

— Other applications more naturally lead to large frictioeficients...



THE GAS-DYNAMICS EQUATIONS WITH FRICTION AND GRAVITY TERMS

We are thus interested in
0o + Oxou = 0,
drou-+ (o +P) = 0g - 0=,
OK(0E) + x(Eu+ pu) = oug - 0=

for a small parameter < 1. Then we havel = O(e)

—> The limite — 0 can be considered as a model worst-case scenario forgtdiséin
accuracy of the method in the presence of friction souraa ter

Asymptotic analysis.Setu = Uy + eu; + O(€?), ande = E — 1?/2.
The model reads
U =0,
0o + €dyoUy = 0(62)
1
ou; = ;(Qg = 0xp) + O(e)
0:(0€) + edx(0eU + puy) = €oUy(g — aly) + O(€°)



THE GAS-DYNAMICS EQUATIONS WITH FRICTION AND GRAVITY TERMS

We are thus interested in
0o + Oyou = 0,
Brou + dx(0U” +p) = 09 - Q%U,
O (0E) + dx(EU+pu) = oug — Q%u2

for a small parameter < 1. Then we havel = O(e)

—> The limite — 0 can be considered as a model worst-case scenario forgtdiséin

accuracy of the method in the presence of friction souraa ter
Asymptotic analysis.Setu = Uy + eu; + O(€?), t = s/e ande = E — u?/2. The
long-time behaviour of the solutions is given by

Up = O,

ds0 + Oyouy = O(e),

1
ot = —(09 - xp) + O(e).
95(0€) + Ox(0et + pur) = ol (g — auy) + O(e)

See Hsiao-Liu, Nishihara, Junca-Rascle, Lin-Coulombell@mnbel-Goudon,
Marcati-Milani... for rigorous proofs. Sé for formal derivation



ONS  RELAXATION FOR THE LAGRANGIAN STEP  SOURCE TERMS AND NOTION OF

L AGRANGE-PROJECTION STRATEGY FOR THE GAS-DYNAMICS EQUAI

THE GAS-DYNAMICS EQUATIONS WITH FRICTION AND GRAVITY TERMS

Let us briefly recall that :

@ Eigenvalues are given by
u-c u u+c
wherec is the sound speed

@ Pressure laws may be strongly non linear, even tabulateidhwaakes diicult
the resolution

@ Time-step CFL restrictions are naturally based on acouwsties in
Godunov-type schemes

1
2

@ Acoustic waves are not expected to be predominant here &b bsince flows
aresubsonicandor with low Mach numbein nuclear reactors

max(|u + cl, IUI)

CONSISTENCY IN THE INTEGRAL SENSE ~ PROPERTI!



L AGRANGE-PROJECTION STRATEGY FOR THE GAS-DYNAMICS EQUATIONS ~RELAXATION FOR THE LAGRANGIAN STEP  SOURCE TERMS AND NOTION OF CONSISTENCY IN THE INTEGRAL SENSE ~ PROPERTII

OBJECTIVES

Our objective is to propose aumerical scheme:

@ able to deal with any pressure lgwv

@ stable under a more adapted time-step CFL restriction basadnd that does
not depend o

At 1
ma)(lul) = 3

@ andasymptotic-preserving



DEFINITION OF ASYMPTOTIC-PRESERVING

Definition of asymptotic-preserving schemel et us denote
@ Mé the initial model
@ MO the limit model
° gAtAX

° S

At,AX

the proposed numerical scheme
the limit numerical scheme

With little abuse in the notations, S is said to be asymptotic-preserving if
e foralle > 0,S;

ALAX
o S, is stable and consistent wit° : lim a;ax-0 S}

is stablé and consistent witMe : lim a0 S\, = M€
= MO

t,AX

In other words, asymptotic-preserving property meanaer of limits interchange

property

lim lim S‘ lim lim S;
00 ALAX-0 A T L 0 en0 Shuax

lindependently ot > 0, in some sense to be precised... 1
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How To REACH THESE OBJECTIVES ?

How to get the expected CFL restriction ?

- implicit treatment of the acoustic wavast ¢

- explicit treatment of the transport wavegpredominant, we want to keep accuracy)
— Lagrange-Projection strategy

(seeCoquel, Nguyen, Postel, Traklath. Comp 2010)

How to deal with any (possibly strongly nonlinear) presdarep ?
- overcome the non linearities, "linearization"

— Relaxation strategy

(seeChalons, CoquelNumer. Math. 2005)

How to get the asymptotic-preserving (AP) property ?

- upwind and implicit treatment of the source

— Notion of consistency with the integral form of the full méde
(seeGallice, Numer. Math. 200&nd

Chalons, Coquel, Godlewski, Raviart, SegW8AS 2010)

1145
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L AGRANGE-PROJECTION STRATEGY FOR THE GAS-DYNAMICS EQUATIONS

Let us first focus on
0o + Oyou =0
dou + Oy(o? +p) =0
0t(0E) + 0x(cEu+ pu) =0

Using chain rule arguments, we also have

010 + Udyo + 00U =0
010U + UdyoU + pUdyU + dxp = 0
O0toE + UdkoE + oEdsu + dpu= 0

so that splitting the transport part leads to

0o +005u =0 0o +Udyo =0
JtoU + pudiU + dxp = 0 OroU + Udyou = 0
0E + pEdsu + dspu= 0 O0wE + UdE =0

Lagrangian-step Transport-step

12/45
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L AGRANGE-PROJECTION APPROACH

The Lagrangian-step
0o +00xu =0
OroU + pUdyU + dxp = 0
0E + oEdcU + dipu =0

also writes
(9t‘r - 6mu =0
du+0onp=0
HE+dnpu=0

with 7 = 1/p andtdy = 9.

@ Eigenvalues are given bypc, 0, pc
@ Usual CFL conditions for time-explicit schemes write

At 1
— max(fpc) < =
AX X(D)_Z

The idea is to propose a time-implicit scheme to avoid thigetistep restriction
Question : How to do that in a very cheap way and for any pressus law ?

1345
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L AGRANGE-PROJECTION APPROACH

The Transport-step
0o +Udyo =0
OwoU + Udyou = 0
O0toE + UdoE =0

@ Eigenvalues are given hy
@ Usual CFL conditions for time-explicit schemes write

At max(ul) < 1
AX 2

The idea is then to propose a standard time-explicit scherkegp accuracy on the
(slow) contact waves

1445



RELAXATION FOR THE L AGRANGIAN STEP

GENERALITIES

The gas dynamics in Lagrangian coordinates :

T —0nu=0
U+ 0mp=0
HE+dnpu=0

with p = p(z, €) and
1

=E-ZU

e 5U

Due to the nonlinearities gf, the Riemann problem isfiiicult to solve.

The relaxation strategy :

@ Idea : to deal with a larger but simpler system
@ Design principle : to understangi(z, €) as a new unknown that we dendie

1545



RELAXATION FOR THE L AGRANGIAN STEP

GENERALITIES
The gas dynamics in Lagrangian coordinates :

Ot —0mu=0
u+0onp=0
HE+dnpu=0

The relaxation system :

HT—0mu=0

U+ 0nI1=0

HE + O0mIlu=0

A1 + a%mu = A(p - I0)

Recall that
Op + pcomu =0
At least formally, observe that
Alim M=p (if a>pc(r,e)
—+00

(see e.gChalons, CoulombeRnalysis and Applications 2008r a rigorous proof)

1645



RELAXATION FOR THE L AGRANGIAN STEP

PROPERTIES

The relaxation system :

T —0mu=0
U+ 0pll =0
KE +0mIIu=0

AT + a20mu = A(p — IT)

This system istrictly hyperbolic with the following eigenvalues
-a<0<a

The characteristic fields are éilhearly degenerate(the waves behave more or less
as linear waves)

The Riemann problem is explicitly solved

17/45
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RIEMANN SOLUTION FOR THE RELAXATION SYSTEM

The intermediate states are simply found thanks to the Rariiugoniot conditions
across each waves

UL Ur

X

Fic.: Approximate Riemann solver - general structure

1845



RELAXATION FOR THE L AGRANGIAN STEP

THE NUMERICAL SCHEME

As a consequence, the numerical strategy for solving thiiledum system

Ot —0mu=0
u+0onp=0
HE+dnpu=0

consistsat each time stepin
@ the classical Godunov scheme for the relaxation system

Ot —0nu=0
U+ 9,1 =0
6tE + (9ml_lu =0

A1 + a%dmu = 0

@ with initial data at equilibrium that is such thit= p

1945
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THE TIME-EXPLICIT GODUNOV SCHEME FOR THE RELAXATION SYSTEM

The relaxation system writes

Ot —0mu=0 Ot —0nu=0

U+ 0l =0 O(IT + au) + adym(IT+au) =0
o +adu=0 < A(IT — au) — adm(I1 + au) = 0
HE +0nIu=0 HE + O0mIIu=0

or equivalently

Ot — Opu =0
W' +adpwt =0
oW —adyw =0

OE+0nllu=0
with W W
-W
u= , II= +W, = =11+ au
2a 2

2045
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THE TIME-EXPLICIT GODUNOV SCHEME FOR THE RELAXATION SYSTEM

The relaxation system writes

Ot — Opu =0
oW + adpw' =0
ow —adgyw =0

OE+ 0pnllu=0
with W w
y= VoW g WrwW =TI+ au
2a 2

W= w - aflw - w',)
V_\Jr V\f + aAm( j+1 W;)
T =T Am(uﬁl/z — Uj_1/2)
B = Ej = amra/2Uis172 — Tjya2Ui-1/2)
with
W — W1 W+ W

j+1 +

i
Uir1/2 = % [Mjy12 = 72 o wi =T xay

NTEGRAL SENSE ~ PROPERTII

2145



AMICS EQUATIONS ~RELAXATION FOR THE LAGRANGIAN STEP  SOURCE TERMS AND NOTION OF C

L AGRANGE-PROJECTION STRATEGY FOR THE GAS-DY NCY IN THE INTEGRAL SENSE  PROPERTII

THE TIME-EXPLICIT GODUNOV SCHEME FOR THE RELAXATION SYSTEM
The time-explicit Godunov scheme for the relaxation systerwrites

— At

T = w - af o —w)

W= W= A (W — W)

=7+ A_Z"t(uj+l/2 = Uj-1/2)

E = B — £ (Mjs2Uis1y2 — Mjsay2Ui-1/2)
with W W

W W

j j+1 ] j+1

Uir1/2 = oA [Mjy12 = - W =11; + ay

Remarks.

@ This scheme applies for any pressure law !
@ The CFL condition for this time-explicit schemes write

At a< 1
AX T 2
that is, sincea = max(oc),

At 1
—m < =,
AX axfe) < 2

@ This scheme is stable and satisfies an entropy inequalityded thata > pc
(seeChalons, CoquelNumer. Math. 2005) 245



SOURCE TERMS AND NOTION OF CONSISTENCY IN THE INTEGRAL SENSE

THE GAS DYNAMICS IN L AGRANGIAN COORDINATES WITH FRICTION AND GRAVITY TERMS
—> Just for simplicity, we now focus on the barotropic case aig dhe gravity
— We propose to take into the source terms in the Lagrangign ste

T —0nu=0
OU+ Omp = —gu
€

Continuous asymptotic analysisu = 0 + euy + O(€?), t=s/e

O0sT — Oy = 0,

1
U = ——(9mp
a
Numerical asymptotic analysis.u= 0+ eu; + O(€?), t=s/e

@ usual splitting techniques do not work!
@ the numerical fluxy;,1/2 should seer

Idea : include the source term in the approximate Riemann sol&zdan the
previous relaxation system

2345
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RELAXATION SYSTEM WITH SOURCE TERMS
We consider the relaxation system

atT—amU =0
OU + Opll = —%u
A1+ a?dmu =0

and apply generalized (resp. classical) Rankine-Hugaglations across the
stationary (resp. non stationary) waves

t

U|_ UR

X
Fic.: Approximate Riemann solver - general structure

2445
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CONSISTENCY OF SIMPLE APPROXIMATE RIEMANN SOLVERS

Conservative system

oy o0
E + &F(U) =0

Consistency property with the integral foiffdarten-Lax-Van Leer formalism)

AX/2 Ax
W (x/At; UL, Ug)dx = 7(UL + Ur) = At(F(Ur) - F(UL))

—Ax/2

Conservative system with sources

ou 0
Consistency property with the integral foiisee also Gallice’s formalism)

AX/2 A
W (x/At; U, Ur)dx = ?X(uL + Ug) — At(F(Ug) — F(UL)) + AtAX S(UL, Ur)
—Ax/2

with S(U, U) = S(U)

2545



L AGRANGE-PROJECTION STRATEGY FOR THE GAS-DYNAMICS EQUATIONS ~RELAXATION FOR THE LAGR

EVALUATING THE SIX UNKNOWNS

Ot —0qu=0
U+ oIl = —gu
A1 + a20mu = 6
Consistency relations :3 equations
—a(r) - 7)) +altr—TR) = UL — Ur
—a(uf —u) +a(ur —ug) =g —I1, + gAml]
—a(Il; —II.) + a(llg — I1}) = a®(Ur — uy)

Mass conservation across each wave2;equations
U —ar. = UE —a‘l';:
Ug + arg = Uy + arg
U =ug=u
Generalized Rankine-Hugoniot relation at the interface :1 equation

I, - ;:—%Amu*

¥ 51Er - SOURCE TERMS AND NOTION OF CONSISTENCY IN THE INTEGRAL SENSE  PROPERTI
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THE TIME-EXPLICIT GODUNOV SCHEME WITH SOURCES
The time-explicit Godunov scheme writes

W= W - agn (W - W) - faAtu ,
\ﬁlj’ = V\F aﬁ( Wy — W) + "aAt U'a
T = ( 12 1*-1/2)
with U1y _ (WJ+ - V\Jf+1) _ 2a (Uj t U i1 - Hj)
€ 2ae + eAm  2ae + aAm 2 2a

Numerical asymptotic analysist = s/e
@ Multiply the first two equations by and lete — 0 :u =0
@ € — 0inthe last equation :

— As
T =T+ A_(U1j+1/2 = Uj-1/2),

PR S |
1j+1/2 — a Am
which is consistent with
OsT — OmUy = 0,

1
Up = —=0mPp
o

L AGRANGE-PROJECTION STRATEGY FOR THE GAS-DYNAMICS EQUATIONS ~RELAXATION FOR THE LAGRANGIAN STEP SOURCE TERMS AND NOTION OF CONSISTENCY IN THE INTEGRAL SENSE  PROPERTI]
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THE CLASSICAL EXPLICIT-IMPLICIT SPLITTING OPERATOR SCHEME
The classical explicit-implicit splitting operator schene

W= w - am(w* W) - faAtd
V_Tjr VV; ( j+1 VVI) + %aAtJJ
T =T+ Am( l12 = Uly)2)
with L) _ W —w,) _ }(Uj U j,, - Hj)
€ 2ae € 2 Am2a

Numerical asymptotic analysis.y = U + eu™ + O(?), t = s/e
o Multiply the first two equations by and lete — 0 :u® = 0
@ Make the diference of the first two equations anddet> O :
M, @
U+ Uy 1 Hl—Hj”
2 VM2 To T
@ Letthene — 0in the last equation :

_ As
T =T+ Fn(ul,j+l/2 = Ugj1/2),

Hj+1 - Hj Am
Upje1/2 = Vist2 — ——— = Viy12 + O(—
1j+1/2 i+1/2 2ae 1+1/2 ( € )
OsT — OmUy = 0,
which is clearly not consistent wit 1

Uy = ——0mPp
a

2845
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THE TIME-EXPLICIT GODUNOV SCHEME WITH SOURCES

The time-explicit Godunov scheme writes

W=w - a ags- (W —w' ) - aAtuJ 12
\ﬁ/j':vv’ aA‘( W, — W) + 2aAtyy,, ,
Tj ( hi12 — 171/2)
win ez v
2ae + aAm

About the CFL condition of such an explicit scheme.
@ The scheme is still based on the relaxation approximate &iarsolver, then

a1
AX 2

@ The change of variable= s/e gives

As €
JR— S_
2

In the limite — 0, we getAs = 0!!! Not satisfying

N STEP SOURCE TERMS AND NOTION OF CONSISTENCY IN THE INTEGRAL SENSE  PROPERTI

2945
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THE TIME-EXPLICIT GODUNOV SCHEME WITH SOURCES
The time-explicit Godunov scheme writes

VE* W — a (W " w",) — 2aAt uJ 12
\ﬁ/j' :w‘ a ( 1 \AF)+ ZaAtu J+1/2
Tj ( hi12 — 171/2)

U (W —wi,)

with =
€ 2ae + aAm

About the CFL condition of such an explicit scheme.
@ A possible cure is to implicit the centered part of the sotecm (see
Gosse-Toscani) in order to get a CFL condition of the follayviorm
a As €
———ac< -,
2ae + aAX AX 2
which gives in the limite — 0
@ As €
—— <z
a AT 2
Which is nothing but the classical parabolic time step restiction !
@ Here, recall however that our objective is to get rid of anyG&striction
involving c. We then propose to implicit both the convective part andsthece
term as before (the rigorous proof of non linear stabilitgti open at this
Stage) 3045



L AGRANC

E-PROJECTION STRATEGY FOR THE GAS-DYNAMICS EQU

THE TIME-IMPLICIT GODUNOV SCHEME FOR THE RELAXATION SYSTEM

The time-implicit Godunov scheme for the relaxation systenwrites

— At
vlrj* =w - l) 2aAt uJ 12
V_\jr = ( ]+1 W)+ aAt J+1/2
T =T+ Am( bep — U 1/2)
. Ui (W =W y)
with =
€ 2ae + aAm

Remarks.
@ This scheme still applies for any pressure law!
@ Updatingw* andw~ (how coupled) amounts to solvegpantadiagonal and
diagonally dominant system, and updatingfollows explicitly

RELAXATION FOR THE LAGRANGIAN STEP SOURCE TERMS AND NOTION OF CONSISTENCY IN THE INTEGRAL SENSE  PROPERTI
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THE TIME-IMPLICIT GODUNOV SCHEME FOR THE RELAXATION SYSTEM
The time-implicit Godunov scheme for the relaxation systenwrites

—, AL (T — W
VXJ-* = (WJ+ WJ:_ ) - aAtu 12
W= (W V\Jr) aAt UJ+1/2
=T+ Am( 12— Uz 1/2)
u W —w_,)
with j+1/2 _ j J+1
€ 2ae + aAm

Numerical asymptotic analysist = s/e
@ Multiply the first two equations by and lete —» 0:04; = 0
@ € — 0in the last equation :

— As _ —
=T+ A_(Ulj+1/2 = Uj-1p2),

115, 11
Bz = T Am
which is consistent with
OsT — OmUy = 0,

1
Uy = ——0mp
[07

¥ 51Er - SOURCE TERMS AND NOTION OF CONSISTENCY IN THE INTEGRAL SENSE  PROPERTI
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PROPERTI!

PROPERTIES AND OPEN QUESTIONS

Properties
Theexplicit or semi-implicit Lagrange-Projection scheme with sources

@ can be re-written as a conservative finite volume scheme

@ is Asymptotic-Preserving

@ can be extended to non linear friction terms with gravitythi® non barotropic

case, and to the multi-fluid case

Theexplicit Lagrange-Projection scheme with sources

@ is entropy satisfying

Open question

@ Is thesemi-implicit Lagrange-Projection scheme with sources entropy
satisfying ?

Remark

@ The Lagrangian part of thexplicit scheme coincides with the one proposed in
Chalons C., Coquel F., Godlewski E., Raviart P.-A., Seguin N
Godunov-type schemes for hyperbolic systems with paraaependent
source. The case of Euler system with fricfid8AS (2010)

3345



DESCRIPTION

—> Perfect gas equation of stagie= (y — 1)pe and
g=981m-s2, a=10st y=14
—> Initial condition

(0,u,p) = (10,0,100000), if x €[0, 0.35] N [0.65, 1],
(o,u,p) = (20,0,263902), if x €[0.35, 0.65].

—> Periodic boundary conditions

34/45
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SENSITIVITY WITH RESPECT TO THE SPACE STEP FOR LARGE FRICTION

P EXEXSP 0
i

densiy (kgim'a]

:

%.
|
/9

Fic.: Profile at timet = 0.01 s of the density obtained for a 100-cell, 1000-cell anda®€ell
grid with the LP-EXEX SP scheme and the reference solution.

P00 cls ©
LPINEX 1000 ol +
B e rclaranc soliion

densty (kgm’3)
———
e

xim)

Fig.: Profile at timet = 0.01 s of the density obtained for a 100-cell and 1000-cell gitti the
LP-IMEX scheme and the reference solution. 3545



SENSITIVITY WITH RESPECT TO THE SPACE STEP FOR LARGE FRICTION

Tas.: Comparison of the relative errors between the approximstédtions obtained with both
LP-EXEX SP and LP-IMEX schemes. The space domain is digetivith a 1 000-cell space
discretization anat = % for both schemes.

numerical scheme  epr(t = 0.01) err(y, t = 0.01) errP,t = 0.01)
LP-EXEXSP 1686931x 102 6.858335x 101 2.539820x 1072
LP-IMEX 3.959560x 104 1.195630x 102 5.635518x 107*

36/45
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SENSITIVITY WITH RESPECT TO THE TIME STEP

TP iEx o
reterenca saution ——

densiy (kgim'a]

[N RS e

Fic.: Profile at timet = 0.01 s of the density obtained for a 1000-cell grid with the IMFEIX
scheme and the reference solution.
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SENSITIVITY WITH RESPECT TO THE SPACE STEP FOR LARGE FRICTION

Tas.: Comparison of the relative!-errors obtained with the LP-IMEX scheme for a 1 000-cell
space discretization and twofldirentAt values.

numerical scheme At errfp,t = 0.01) err@,t = 0.01) err@,t = 0.01)

LP-IMEX % 3.959560x 104  1.195630x 102 5.635518x 10™*
LP-IMEX %) 2.607495x 10® 1.099137x 10°* 3.288768x 1073
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CONCLUSIONS AND FUTURE WORKS

Conclusions

- We have been interested in intermediate regimes (subfonis and coarse
meshes) and possible stationary or nearly stationary flows

- The limite — 0 is seen as a worst-case scenario "only"

- AP strategies turn out to beficient strategies in order to lessen the numerical
diffusion and get good numerical results even for coarse mésiteshat the proposed
numerical results show the benefit even i not of ordere or the solution not stationary)
Future works

-2D

- Low-Mach regimes

- Two-phase flow models
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THE TIME-EXPLICIT GODUNOV SCHEME FOR THE TRANSPORT STEP
The transport step of the Lagrange-Projection strategy wrtes

O +Udyo =0
{ dt(pu) + udy(pu) = 0
Ot(pE) + udx(oE) = 0

that iso X + udyX =0, with X =p, pu, pE

The time-explicit Godunov scheme for this equation writes
@ either (fully explicit approach)

At = - At —
ijl = Ax - C12X-1 (1 +(Usg2 — thl/z))xj Ax 12X
. . VVJ+ - V\jr+1
with u* = max@, 0), u™ = min(u, 0) anduj,1/» = o

@ or (semi-implicit approach)

At

At _ — At — —
Xt = X1+ — (1+(UJ+1/2 U 1/2))x X J+1/2XJ+1

j 12

with u* = max(, 0), u™ = min(u, 0) anduj;1/, = %



THE 7-EQUATION MODEL

In 1D and dimensionless form, the model reads
6ak 6ak
p i =0(px — 1),

0 0
a(aka) + &(akgkuk) =0

17} 0 o
a(akaUk) + &(Gk(gkuﬁ +PJ) - pi 8_xk = akokd — AUk — ),

0 d o
a(aka@) + &(ak(gk@ + PUk) — Pily % = akokkd — PIO(Px — Pr) — W A(U — Uy)

We assume that the drag force and pressure relaxatidficierts are given by

6(V) /l(U)
62

0= A= Uy

for a small parameter € . Then we have

P2 — p1 = O(€°), Uz — Uy = O(e)
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ASYMPTOTIC ANALYSIS
Following the Chapman-Enskog method, assume that

Pr=p1— P2 =0+ ept + O(e?)
U = U — Uy = 0+ ell + O(e?)

and set
P = a1p1 t+ @202
pU = a1p1U1 + a202U2
P = 1161 + @202
pPY = azpz

Theorem. A first-order approximation w.r.t of the 7-equation model is given by the
following differential drift-flux model

O + Opu =0

OpY + Ix(eYu+pY(1-Y)u) =0

AU + dx(pU? + p+ pY (1 - Y)U?) = pg

owpe + dx(peu+ pu+ pY(1 - Y)u?u) = pgu
with u; given by the (Darcy-like) dferential closure relation

Ye-pY),1 1.0
uluy = W(— - =)=k
pPL P2 p

SeeAmbroso-Chalons-Coquel-Galié-Godlewski-Raviart-88giMS 2008
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M ATHEMATICAL PROPERTIES

Eigenvalues of the Jacobian matRiU) + B(U) arealways realand given by
U Ux Ug=£Cg k=12

wherec is the sound speed of phase

Uk — Ck / [

U|_ !y UR

@ Riemann solutions are not known andfidult to calculatgapproximate

@ Pressure laws may be strongly non linear, even tabulated

@ Resonance occursiif = uy + ¢

@ The model is not conservative... 4315
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OBJECTIVES

Note that :

@ Time-step CFL restrictions are naturally based on acousties
(that are not predominant here, too bad!)

At
ma><(|uk+ck| [Uel, |u||)— >

@ Flows aresubsonicandor with low Mach numbem nuclear reactors

Our objective is to propose aumerical scheme:

@ able to deal with any equation of state and any chaice()

@ stable under a more adapted time-step CFL restriction basé@nsport waves
(that are predominant here so that accuracy is required)

At 1
maxX(|Ug|, |lU|) — < =
k’u)‘(l kl, Ui [) >3

@ andasymptotic-preserving
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ASYMPTOTIC ANALYSIS (PROOF)
—> Usingt = s/e we first have
€050 + OyoU = 0,
€0s0U + dy(oWF +p) = 09 — qu,
€05(0E) + 0x(0Eu + pu) = oug — Q%UZ

—> Multiplying the second equation kyand lettinge go to O gives
U =0

— Then insertingi = euy + O(€?) in the first equation, dividing by and lettinge go
to 0 gives
050 + dyou; = 0

— Then insertingu = eu; + O(€?) in the second equation and lettiago to O gives
Oxp = 09 — oarthy

— At last insertingu = euy + O(€?) in the third equation, dividing by and lettinge
go to O gives
05(0€) + Ox(0eU + puy) = oUyg — ool

which concludes the prod
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