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Sharp Interface Model

Sharp Interface Γ(t)

separating the domain

D = D−(t) ∪ Γ(t) ∪ D+(t).

Find U : D × [0,T ]→ Rm and Γ = Γ(t) with

U(x, t) =

{
U−(x, t) : x ∈ D−(t)
U+(x, t) : x ∈ D+(t)

and

U±,t +
d∑

i=1

fi (U±)xi = 0 in D±(t)

K[U−,U+] = 0 at Γ(t)

+IC/BC
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Multiscale Approach I
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Multiscale Approach I

Macroscale Model

Find U : D × [0,T ] → Rm and
Γ = Γ(t) with

U(x, t) =

{
U−(x, t) : x ∈ D−(t)
U+(x, t) : x ∈ D+(t)

and

U±,t +
d∑

i=1

fi (U±)xi = 0.

Microscale Model

For each t ∈ [0,T ] and x ∈ Γ(t)
find u : R× [0,∞)→ Rm with

ut +

(
d∑

i=1

fi (u)ni (x)

)
ξ

= 0

u(ξ, 0) =

{
UL : ξ < 0,
UR : ξ > 0,

such that the solution contains a
shock wave connecting states
u−

s→ u+ with

K[u−, u+] = 0, Γ̇(t) = s.
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Diffuse Interface Model

Diffuse interface in D.

Find Uε : D × [0,T ]→ Rm with

Uε
t +

d∑
i=1

fi (U
ε)xi = Rε[Uε] in D × (0,T )

+IC/BC

e.g. Rε[U] = ε∆U.
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Multiscale Approach II

Macro scale Micro scale
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Multiscale Approach II

Macroscale Model

Find U : D × [0,T ] → Rm and
Γ = Γ(t) with

U(x, t) =

{
U−(x, t) : x ∈ D−(t)
U+(x, t) : x ∈ D+(t)

and

U±,t +
d∑

i=1

fi (U±)xi = 0.

Microscale Model

For some ε > 0 and each t ∈ [0,T ]
and x ∈ Γ(t) find uε : R×[0,∞)→
Rm with

uεt +

(
d∑

i=1

fi (u
ε)ni (x)

)
ξ

= Rε[uε]

uε(ξ, 0) =

{
UL : ξ < 0,
UR : ξ > 0.
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Plan of the Talk

1) Interfaces in Porous Media

2) Interfaces in Compressible Liquid-Vapour Flow

3) Summary and Outlook
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1) Interfaces in Porous Media
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Interfaces in Porous Media

Overshoot Waves in Porous Media

Viscous fingering (Neuweiler&Schütz ’10)

Saturation front with overshoot (DiCarlo ’04)
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Interfaces in Porous Media

Macroscale Mathematical Model:

St + div (Vf (S)) = 0
div V = 0, V = Kλ∇P (P0)

Unknowns:
S = S(x, t) ∈ [0, 1] : saturation
P = P(x, t) : pressure
V = V(x, t) ∈ Rd : velocity Fractional flow function f

Microscale Mathematical Model:

sεt + div (vεf (sε)) = ε div
(
Kλ∇sε

)
,

div vε = 0, vε = Kλ∇pε
(Pε)
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Interfaces in Porous Media

Theorem
Let {sε}ε>0 be a family of regular solutions to an initial value problem for
(Pε) with S0 ∈ (L1 ∩ L∞)(Rd) and vε = v given.
Then, there exist a function S = S(t) ∈ (L∞ ∩ L1)(Rd) and a subsequence
of {sε}ε>0 such that

(i) limε→0 ‖S − sε‖L1 = 0.

(ii) S is a weak solution of (P0) with essinf{S0} ≤ S ≤ esssup{S0} a.e.

Monotone rarefaction-shock solution.
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Interfaces in Porous Media

Macroscale Mathematical Model:

St + div (Vf (S)) = 0
div V = 0, V = Kλ∇P (P0)

Unknowns:
S = S(x, t) ∈ [0, 1] : saturation
P = P(x, t) : pressure
V = V(x, t) ∈ Rd : velocity Fractional flow function f

Microscale Mathematical Model:
(Stauffer ’78, Hassanizadeh&Gray ’93, Van Duijn&Peletier&Pop ’07,... )

sεt + div (vεf (sε)) = ε div
(
Kλ∇ (sε+εγsεt )

)
div vε = 0, vε = Kλ∇pε,

(Pε)
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Interfaces in Porous Media

Theorem
Let {sε}ε>0 be a family of regular solutions to an initial value problem for
(Pε) with S0 ∈ (L1 ∩ L∞)(Rd) and vε = v given.
Then, there is a function S = S(t) ∈ Lp(Rd), p ∈ [1, 2], and a subse-
quence of {sε}ε>0 such that

(i) limε→0 ‖S − sε‖L2 = 0,

(ii) S is a weak solution of (P0).

Numerical convergence to sharp overshoot front.
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Interfaces in Porous Media

Overshoots as Shock Waves for (P0):

Buckley-Leverett flux. Characteristics for overshoot.

The limit S := limε→0 s
ε is not a (standard) Kruzkov solution of (P0).
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Numerics

Failure of Standard Approach for Planar Front:

St + div (vf (S)) = 0, v = (1, 0)T , S(x, 0) =

{
0.8 : x1 < 0

0 : x1 > 0

Overshoot Solution: S(x, t) =


0.8 : x1 < st

S∗ > 0.8 : st < x1 < st
0.0 : x1 > st

Monotone Finite-Volume Scheme:

S0
r =

1

|Tr |

∫
Tr

S(x, 0) dx,

Sn+1
r = Sn

r −
∆tn

|Tr |
∑

l∈N(r)

grl (Sn
r ,S

n
l )

(r ∈ I)

Saturation
Vertical Sampling.

Note: Convergence towards Kruzkov solution is proven.
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Numerics

A Heterogeneous Multiscale Method (Engel&Kissling&R. 10/11)

Front position at t = tn.

Step 1: For ε > 0 solve (Pε) in 1D and in micro-scale interval
(tn, tn + δt) for

sε(ξ, 0) =

{
Sn
l : ξ < 0

Sn
r : ξ > 0

Determine (only) S̄n
lr from solution.
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Numerics

Front position at t = tn.

Step 2: Flux balance for Tr (using a numerical flux g = grl)

|Tr |S̃r := |Tr |Sn
r −∆t(g(Sn

r , S
n
1 ) + g(Sn

r , S
n
2 ) + g(S̄n

lr ,S
n
l )) + dn

r
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Numerics

Front position at t = tn.
Front position at t = tn+1 for case (A).

Step 2: Flux balance for Tr (using a numerical flux g = grl)

|Tr |S̃r := |Tr |Sn
r −∆t(g(Sn

r , S
n
1 ) + g(Sn

r , S
n
2 ) + g(S̄n

lr , S
n
l )) + dn

r

Step 3: Update and front propagation for case (A): S̃r ≥ S̄n
lr

Sn+1
r = S̃r , dn+1

r = 0
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Numerics

Front position at t = tn. Front position at t = tn+1 for case (B).

Step 2: Flux balance for Tr (using a numerical flux g = grl)

|Tr |S̃r := |Tr |Sn
r −∆t(g(Sn

r , S
n
1 ) + g(Sn

r , S
n
2 ) + g(S̄n

lr ,S
n
l )) + dn

r

Step 3: Update and front propagation for case (B): S̃r < S̄n
lr

|Tr |Sn+1
r = |Tr |Sn

r −∆t(g(Sn
r , S

n
1 ) + g(Sn

r , S
n
2 ) + g(Sn

r ,S
n
r ))

dn+1
r = dn

r + ∆t(g(S̄n
lr ,S

n
l )− g(Sn

r , S
n
r ))
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Numerics

Planar Front with HMM:

St + div (Vf (S)) = 0, V = (1, 0)T , S(x, 0) =

{
0.8 : x1 < 0

0 : x1 > 0

Nonclassical Overshoot Solution: S(x, t) =


0.8 : x1 < st

S∗ > 0.8 : st < x1 < st
0.0 : x1 > st

Saturation at t = 0.5 Saturation at t = 0.7 Vertical Sampling.
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Numerics

Planar Front
Grid Convergence:
(V = (1, 0)T )

October 09, 2012 20



Numerics

Five-Spot
Waterflood:
(with Darcy)
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Numerics

Performance-Comparison:
Two-Phase Flow in 2D (Viscous Fingering with Darcy)

CPU-time

2D monotone FV- IMPES 165 min
HMM (solving microscale 1300 min

problem on the fly)

HMM (solving microscale 215 min
problem by kernel method)

1D
microscale problem over

0.1s
one edge

1D

microscale problem
1.2 · 10−4s

one edge (kernel method)

; 3D implementation within open source solver DuMuX
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3) Interfaces in Liquid-Vapour Flow
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Liquid-Vapour Flow

Macroscale Model: Euler Equations

ρt + div(ρv) = 0
(ρv)t + div(ρv ⊗ v + p(ρ)I) = 0

Unknowns:
ρ = ρ(x, t) ∈ (0, α) ∪ (β, b) : density
v = v(x, t) ∈ Rd : velocity

ρ

β b
α

Van-der-Waals pressure

Microscale Model: (in Lagrangian coordinates)

τt − vξ = 0

vt + p̃(τ)ξ = 0

Unknowns:

τ = τ(ξ, t) : specific volume
v = v(ξ, t) : longitudinal velocity

Jump conditions at phase boundary:

Js̃τ + vK = 0,

J−s̃v + p̃K = (d − 1)γκ,

+ entropy criterion.
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Liquid-Vapour Flow

The Riemann Problem for a modified system:(d = 2)

τt − vξ = 0
vt + p̃(τ)ξ = 0

The pressure p̃ satisfies

p̃(τ) = −ψ̃′(τ).

ψ̃κaux(τ) =

{
ψ̃(τ)− γκτ : τ ∈ (0, τMaxw

liq )

ψ̃(τ) : τ ∈ (τMaxw
vap ,∞).

Define the pressure p̃κ as the derivative of the convex hull of ψ̃κaux!
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Liquid-Vapour Flow

The Riemann Problem for the Final Microscale Model:

τt − vx = 0
vt + p̃κ(τ)x = 0

Riemann solutions: (Müller&Voss, Godlewski&Seguin ’06)

Typical Riemann pattern and sample Riemann problem
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Numerics (Engel, Jaegle, Zeiler)

Relaxation to spherical equilibrium: (density (upper line) and pressure)
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Numerics

Unsteady bubble in 3D:
(Spectral DG-code with ≈ 100000 elements and polynomial degree 3)

Initial radius Surface tension Inner state Outer state

rini = 0.42 γ = 0.0025 ρ = 0.3, |v| = 0.0 ρ = 1.83, |v| = 0.0

0 0.1 0.2 0.3 0.4
0.395

0.4

0.405

0.41

0.415

0.42

t

r

 

 

1D spherical symmetry
3D HMM

Pressure field and level set at t = 0.2, comparison with 1D reference solution
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Numerics

Droplets in Rotational-Symmetric Geometry:

Initial Density, Volume-Weighted Total Mass in Vapour Phase

Initial Density, Volume-Weighted Total mass in Elliptic Region.
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3) Summary and Outlook:

Construction of MultiD algorithms for flow problems with interfaces

Increase of efficiency is a key issue for HMM...

(Almost) no convergence analysis due to lack of theory
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