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Sharp Interface Model

Find U: D x [0, T] — R™ and I = I'(t) with

B U_()(7 t)ZX S D—(t)
U(x, t) = { Up(x,t):x € Di(t)

and

d
Use+ Y H(Us), = 0 inDs(t)

i=1
KlU-,Us] = 0 atl(¢)

Sharp Interface I'(t)
separating the domain
D = D_(t) UT(t) U Dy(t). ’

+IC/BC
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Multiscale Approach |

Macro scale Micro scale
ur,
U_
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I ur
/ L ue
/ ¢
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Multiscale Approach |

Macroscale Model

Find U : D x [0,T] - R™ and
I=T(t) with

[ U_(x,t):x € D_(t)
U(x,t) = { Ug(x, t):x € Di(t)

and

d
Use+ Y fi(Us), = 0.
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Microscale Model
For each t € [0, T] and x € I(t)
find u: R x [0,00) — R™ with

uy + (Z fi(u)n; x)) =0
¢
u(s,O):{ gt

£>0,
such that the solution contains a
shock wave connecting states
u_ > uy with

Klu—,us] =0, F(t) =




Diffuse Interface Model

Find US: D x [0, T] — R™ with

d
U+ > fi(U9), = R[UT inDx(0,T)
i=1

+IC/BC

e.g. R°[U] = cAU.

Diffuse interface in D.
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Multiscale Approach Il

Macro scale Micro scale

/ ¢

Interface
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Multiscale Approach Il

Macroscale Model

Find U : D x [0, T] - R™ and
I=T(t) with

[ U_(x,t):x € D_(t)
U(x,t) = { Ui(x,t):x € Dy(t)

and

d
Use+ > fi(Us), = O
i=1
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Microscale Model

For some £ > 0 and each t € [0, T]
and x € I'(t) find uv® : Rx [0, 00) —
R™ with

(Z fi(u®)n;i(x) > = R°[vf]
3

€(§ O) { UL ‘E < 07
R

&> 0.




Plan of the Talk

1) Interfaces in Porous Media
2) Interfaces in Compressible Liquid-Vapour Flow

3) Summary and Outlook
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1) Interfaces in Porous Media

October 09, 2012 [¢]



Interfaces in Porous Media

Overshoot Waves in Porous Media

5 10

5 20 25 30
Verical Distance (cm)

Saturation front with overshoot (DiCarlo '04)
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Interfaces in Porous Media

Macroscale Mathematical Model:

Se + div (VF(S)) =0 (Py) y
divV =0, V=K\VP 0
Unknowns: )
S = S5(x, t) € [0, 1] : saturation ]
P = P(x,t) : pressure R
V=V(x,t)e Rd - velocity Fractional flow function f

Microscale Mathematical Model:

s + div (v¥f(s9)) = ediv (KAVs®)

P
divve = 0, v¢ = KAV (Fe)
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Interfaces in Porous Media

Theorem

Let {s°}.~0 be a family of regular solutions to an initial value problem for
(P:) with Sp € (L* N L>®)(R9) and v = v given.

Then, there exist a function S = S(t) € (L>° N LY)(RY) and a subsequence
of {s°}.>0 such that

(i) limeso ||S — 5%, = 0.
(i) S is a weak solution of (Pp) with essinf{Sp} < S < esssup{Sp} a.e.

Saturation
o o o o
N > o [} -

o

Monotone rarefaction-shock solution.
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Interfaces in Porous Media

Macroscale Mathematical Model:

Nonlinear flux function for Buckley-Leverett

Se+div(VA(S) =0
divV =0, V=K\VP 0

Unknowns:
S = 5(x,t) € [0, 1] : saturation
P = P(x,t) : pressure o
V =V(x,t) e RY - velocity Fractional flow function f
= , :

Microscale Mathematical Model:
(Stauffer '78, Hassanizadeh&Gray '93, Van Duijn&Peletier&Pop '07,... )

sg 4 div (v¥f(s)) =

: (Pe)
divv® =0, v = KAVp®,
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Interfaces in Porous Media

Theorem

Let {s°}.~0 be a family of regular solutions to an initial value problem for
(P:) with Sp € (L* N L>®)(R9) and v = v given.
Then, there is a function S = S(t) € LP(RY), p € [1,2], and a subse-
quence of {s®}.~¢ such that

(i) limeso ||S — 5%, =0,

(i) S is a weak solution of (Pp).

Time T =0.003

0.6

0.4F

0.2|

0 0.5 1 15 2 25 3 35 4

Numerical convergence to sharp overshoot front.
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Interfaces in Porous Media

Overshoots as Shock Waves for (Pp):

Buckley-Leverett flux function _x
N p t S = T
/
06 I /
" £ (u_) 7 (ug)
02 L L :
7 X
Buckley-Leverett flux. Characteristics for overshoot.
The limit S := lim._, s° is not a (standard) Kruzkov solution of (Pp).
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Numerics

Failure of Standard Approach for Planar Front:

Se+div(vf(S)) =0,v=(1,0)T,  S(x,0)= { ngil - 8 J
- X1

0.8:x3 < st
Overshoot Solution:  S(x,t) =< S* > 0.8:st < x; < st
0.0:x1 > st
Monotone Finite-Volume Scheme:
0 1
Sr = — S(X7 0) dX,
|Tr| T, ( EI)
At" r
ST = ST D & (S S)

leN(r)
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Numerics

Failure of Standard Approach for Planar Front:

0.8:x1 <0

Se+div(vf(S)) =0,v=(1,0)7,  S(x,0)= { 0:x >0

Time =0.5

09 Time = 0.5
0.8 0.8
07 06}
0.6 0.6
~os o4
o4 oa
0.3 0.2
02! 02 |
01 o 02 04 06 08 1
b «
0z 04 o6 08
. Vertical Sampling.
Saturation piing

Note: Convergence towards Kruzkov solution is proven.
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Numerics

A Heterogeneous Multiscale Method (Engel&Kissling&R. 10/11)

A

Front position at t = t".
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Numerics

A Heterogeneous Multiscale Method (Engel&Kissling&R. 10/11)

Ml

Front position at t = t".

Step 1: For € > 0 solve (P:) in 1D and in micro-scale interval
(t", t" + §t) for

S/:€£<0
S5/:¢6>0

-]

Determine (only) S/} from solution.
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Numerics

Front position at t = t".

Step 2: Flux balance for T, (using a numerical flux g = gy)

| T|5 = | T.|S] — At(g(S7, S7) +&(S57, S5) +&(Sh, ) + df
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Numerics

Front position at t = t™ for case (A).

Front position at t = t".

Step 2: Flux balance for T, (using a numerical flux g = gy)
TS, = | T,|S7 — At(g(SP, ST) + g(SP. S5) + &(55. SP)) + d
Step 3: Update and front propagation for case (A): S > 3,’;
S35, gl
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Numerics

~ ~

= =

Front position at t = t". Front position at t = t"™* for case (B).
Step 2: Flux balance for T, (using a numerical flux g = gy)
| TS = | To|S) — At(g (57, ST) +&(S57, S5) +&(50, ) + df
Step 3: Update and front propagation for case (B): 5, < 5,’;
| TH ISPt = |T,|S; — At(g(S7, S7) + &(S7', S5) + &(S7, SF))
drtt =dp + At(g(S), ) — &(S7, S7))
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Numerics

Planar Front with HMM:

Se +div(VF(S)) =0, V= (1,0)7, S(x,0)= { 0.8:x <0 J

0:x1>0
0.8:x1 < st
Nonclassical Overshoot Solution:  S(x,t) =< S* > 0.8:st < x; < st
0.0:xy > st
Saturation at t = 0.5 Saturation at t = 0.7 Vertical Sampling.
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Numerics

approx. 2 000 elements approx. 5 000 elements
1 0.95
0.8
S
Planar Front 06 5
- ©
Grid Convergence: 04 o
_ T =
(V - (17 0) ) 0.2 g
0

approx. 50 000 elements approx. 200 000 elements
1 1

0.8

0.6

o
*

0.4
0.2

00 02 04 06 08
X

1

1
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Numerics

t=0.05 t=05

Five-Spot
Waterflood:
(with Darcy)

=] =] [=] o o
N s (=2} oo g
wetting saturation

o

o saluration 5o —

October 09, 2012 21



Numerics

Performance-Comparison:
Two-Phase Flow in 2D (Viscous Fingering with Darcy)

CPU-time , T=03
2D | monotone FV- IMPES 165 min
HMM (solving microscale 1300 min o

problem on the fly)

00 02 04 06 08
X

d
T=08

microscale problem over
P 0.1s

1b one edge

5 R &
wetting saturation

1D

% 02 04 05 08 1
il

~> 3D implementation within open source solver DuMuX
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Numerics

Performance-Comparison:
Two-Phase Flow in 2D (Viscous Fingering with Darcy)

CPU-time , T=03
2D | monotone FV- IMPES 165 min
HMM (solving microscale 1300 min o
problem on the fly)
HMM (solving microscale 215 min 02 04 00 03
problem by kernel method) r_os oss
1D microscale problem over 0.1s :
one edge "
microscale problem 4 b2 8
1b one edge (kernel method) 1.2-107s 0z 04 6o 08 1

~> 3D implementation within open source solver DuMuX
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3) Interfaces in Liquid-Vapour Flow
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Liquid-Vapour Flow

Macroscale Model: Euler Equations

pt + div(pv) =0
(pv), + div(pv @ v+ p(p)Z) = 0
Unknowns:
p=p(x,t) € (0,a) U(B,b) density
v=v(x,t)€R? velocity

B

Van-der-Waals pressure

Microscale Model: (in Lagrangian coordinates)

™ - v =0 Jump conditions at phase boundary:
V¢ + [3(7')5 = 0 [[§T+ V]] — 07
Unknowns: [-3v+p] = (d—1)yk,
T =1(§t) specific volume P fiterion
v=v(t) longitudinal velocity entropy criterion.
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Liquid-Vapour Flow

The Riemann Problem for a modified system:(d = 2)

P

T — ve =0
The pressure p satisfies
~ i
B(r) = —¢'(7). S —
specific volume T specific volume 7
1 -
1 _Max 1
|:1m L‘Q
., -
~ M \\\
. axw ~
Q/N)” (7) = (1) — YKRT .TG(O,Tqu ) \
au\T) =9 = . Maxw N
P(T) (= (Tvap , 00). ;.
\\\
specific volume T
Define the pressure p™ as the derivative of the convex hull of 5!
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Liquid-Vapour Flow

The Riemann Problem for the Final Microscale Model:

s
P
—
Pux
-
Maxw P
iq

Tt — Vyx =0 M

ve + ﬁH(T)X

Il
o

specific volume 7

A\l

Riemann solutions: (Miiller&Voss, Godlewski&Seguin '06)
phase houndary
with speed s

elementary elementary
wave wave
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Liquid-Vapour Flow

The Riemann Problem for the Final Microscale Model:

]

] P
3 o
| Prux

-

.
Tt — Vx =0 TN
K —
v + p(r), = 0

.

specific volume 7

A\l

Riemann solutions: (Miiller&Voss, Godlewski&Seguin '06)

18F ey (,0)
12| — = ()
i e
T gl ! ’
6
4 -
2 - i ——— ——
—; —GIS —[]Iﬁ {;—{174 —{JI_Z OI2
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Numerics (Engel, Jaegle, Zeiler)

Relaxation to spherical equilibrium: (density (upper line) and pressure)

t=0.00 t=5.00 1=50.00
2 2 2
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Numerics

Unsteady bubble in 3D:
(Spectral DG-code with ~ 100000 elements and polynomial degree 3)

Initial radius | Surface tension Inner state Outer state

ripi =042 | = 0.0025 p=03,|v|=00 | p=183, |v|=0.0

Pressure

—©— 1D spherical symmetry|
——3D HMM

0.1 02 03 04
t

Pressure field and level set at t = 0.2, comparison with 1D reference solution

October 09, 2012 28



Numerics

Droplets in Rotational-Symmetric Geometry:

Initial Density, Volume-Weighted Total Mass in Vapour Phase

Initial Density, Volume-Weighted Total mass in Elliptic Region.
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3) Summary and Outlook:

@ Construction of MultiD algorithms for flow problems with interfaces
@ Increase of efficiency is a key issue for HMM...

@ (Almost) no convergence analysis due to lack of theory

~ %, International Research
a SFB TRR 75 0%%o% Training Group

SimTech = NUpUS

— u
Cluster of Excellence
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