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An academic example

Framework

Motivating example

@ The simplest state constrained optimal control problem !

e Joint work with A. Hermant (for this section)
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An academic example

Framework

Data of the academic example

with

g(t) := (c —sin(at))go, c>0, a>0.
Time viewed as second state variable (7 = 1)
= (h—hg)/(h — hg) homotopy parameter

ho = miny(t), where y is the solution of unconstrained problem
h1 = h target value; numerical values are

go = 10, o = 10m, c=0.1, h1 = —0.001.
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An academic example

Framework

Unconstrained problem: optimal state
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An academic example

Framework

Neigborhood of limiting problem: when g > 0 is small

For 11 > 0 the state constraint is active (convex problem)

The contact set could be then for small x> 0:
© One point
@ A small interval

© A non connected set

Your guess ?
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An academic example

Framework

Neigborhood of limiting problem: when g > 0 is small

For 11 > 0 the state constraint is active (convex problem)

@ Structural result: the contact set is an interval

@ Quantitative result: first-order expansion of value of extreme
points of that interval !
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An academic example

Framework

Numerical results Il
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Setting: optimal control of a PDE
State equation

State equation

yt—Ay—i—’yy?’ = jyuin Q=Qx[0,T]
y = Oover X =0Qx][0,T],
y(-,0) = yo over Q,
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Setting: optimal control of a PDE
State equation

State equation

yt—Ay—i—’yy?’ = jyuin Q=Qx[0,T]
y = Oover X =0Qx][0,T],
y(-,0) = yo over Q,

where y € R, T >0

Q open bounded subset of R”, n € {2,3}, with C2-smooth
boundary 09,

w open subset of Q, Q, =w x [0, T], v € L2(Qw),

i,y injection from L2(Q,) — L?(Q)

Yo € Hl(Q).
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Setting: optimal control of a PDE

State equation

Functional spaces

H>1(Q) := {y € L3(0, T, H*(Q)); y: € L3(Q)},
H2Y(Q) = {y € H*'(Q); y = 0 over T}.

H>1(Q) < C([0, T], Hp (%))
HY(Q) c L%(Q), forn<3

We say that y € H>1(Q) is a state associated with u € L?(Q) if
(v, u) satisfies the state equation.
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Setting: optimal control of a PDE

State equation

Well-posedness of the state equation

Refs Bebernes-Kassoy 81, Tartar (Topics in nonlinear analysis, 78)

For given u € L2(Q,,), either the state equation has a unique
solution, or there exists a maximal time T € (0, T| such that the
state equation with time restricted to [0, — €] has, for alle > 0, a
unique solution, and |y(t)|e is not bounded over [0, T).
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Setting: optimal control of a PDE

State equation

Well-posedness of the state equation

Refs Bebernes-Kassoy 81, Tartar (Topics in nonlinear analysis, 78)

For given u € L2(Q,,), either the state equation has a unique
solution, or there exists a maximal time T € (0, T| such that the
state equation with time restricted to [0, — €] has, for alle > 0, a
unique solution, and |y(t)|e is not bounded over [0, T).

In any case we denote by y, the solution.

The implicit function theorem can be applied to the state equation.
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Setting: optimal control of a PDE
State equation

Optimal control problem

Cost function, with N > 0:

J(u,y) = ;/Q(y(x, t) — yq(x, t))?dxdt + I;I/ u?(x, t)dxdt.

w
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Setting: optimal control of a PDE
State equation

Optimal control problem

Cost function, with N > 0:

J(u,y) = ;/Q(y(x, t) — yq(x, t))?dxdt + I;I/ u?(x, t)dxdt.

w

State constraint

g(1) =1 /Q y(x. t)Pdx — C <. (1)
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Setting: optimal control of a PDE
State equation

Optimal control problem

Cost function, with N > 0:

J(u,y) = ;/Q(y(x, t) — yq(x, t))?dxdt + I;I/ u?(x, t)dxdt.

w

State constraint

g(1) =1 /Q y(x. t)Pdx — C <. (1)

Min J(u,y) s.t. the state equation and (1). (P
(1,y)eL?(Qu)xH?H(Q) (u.y) q (1). (P)
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Setting: optimal control of a PDE
State equation

Existence of a solution

Existence easily obtained when v > 0

Unclear if v < 0.
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Setting: optimal control of a PDE
State equation

Quadratic growth

We say that (7,¥) is a local solution of (P) that satisfies the
quadratic growth condition with parameter 6 € R, if it belongs to
F(P) and there exists p > 0 such that

J(u,y) > J(u,y)+9]ﬁ—u|f2(Qw) if (u,y) € F(P) and |u—1l;2(q,) < p-
(2)

If this holds for # = 0, we say that (&, ¥) is a local solution of (P).
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Setting: optimal control of a PDE
State equation

Quadratic growth

We say that (7,¥) is a local solution of (P) that satisfies the
quadratic growth condition with parameter 6 € R, if it belongs to
F(P) and there exists p > 0 such that

J(u,y) > J(u,y)+9]ﬁ—u|f2(Qw) if (u,y) € F(P) and |u—1l;2(q,) < p-
(2)

If this holds for # = 0, we say that (&, ¥) is a local solution of (P).

We say that (7, y) € F(P) satisfies the quadratic growth condition
if (2) holds for some # > 0 and p > 0.
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Setting: optimal control of a PDE
State equation

Definitions

Contact set:

I(g(y)) ={t €0, T]; g(y)(t) =0}.

Xw: restriction L2(Q) — L?(w)
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First-order optimality system

Unqualified optimality system

Abstract format:
G 12(Q,) x HZ'(Q) — L2(Q) x HX(R),

e =Dy +yy —iu
Gu.y) "< y(-0) — 3o )
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First-order optimality system

Unqualified optimality system

Abstract format:
G 12(Q,) x HZ'(Q) — L2(Q) x HX(R),
— Ay +y°® - in)
G(u,y) = ye .
(1:) < y(0) = o
Linearized state equation (well-posed):

ze— DAz +3yy2=i,vin @ z=0onX, z(-0)=0.
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First-order optimality system

Unqualified optimality system

Abstract format:
G L2(Qu) x Hy'(Q) — LA(Q) x H3(Q),
— Ay +y° - in)
G(u,y) = ye .
wn=("" Wy
Linearized state equation (well-posed):
z—Az+3yy2=i,vinQ z=0onY, z(-,0)=0.

Cost and constraint expressed as function of control:

J(u) = J(u,y)i Gu)(t) = g(yu(t) = 3lvu(t)* - C.
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First-order optimality system

Unqualified optimality system

Abstract format:
G L2(Qu) x Hy'(Q) — LA(Q) x H3(Q),
— Ay +y° - in)
G(u,y) = ye .
wn=("" Wy
Linearized state equation (well-posed):
z—Az+3yy2=i,vinQ z=0onY, z(-,0)=0.

Cost and constraint expressed as function of control:

J(u) = J(u,y)i Gu)(t) = g(yu(t) = 3lvu(t)* - C.

Abstract problem, where K = C([0, T])_:
Min J(u); G(u) € K, (AP)
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First-order optimality system

Abstract optimality conditions

Normal cone to the state constraints

Ni(h) = {n € M(0, T)1; supp(u) C h71(0)}.
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First-order optimality system

Abstract optimality conditions

Normal cone to the state constraints
Nk (h) = {n € M(0, T)4; supp(p) C h~1(0)}.
Generalized Lagrangian £ : L?(Q,) x R x M([0, T]):

L(u, 0, p) = aF (u) + {1, G(u))
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First-order optimality system

Abstract optimality conditions

Normal cone to the state constraints

Ni(h) = {n € M(0, T)1; supp(u) C h71(0)}.

Generalized Lagrangian £ : L2(Q,) x R x M([0, T]):

L(u, 0, p) = aF (u) + {1, G(u))

Set of generalized Lagrange multipliers

Ng(u) :={(a, u) € Ry xNk(G(v)); (o, 1) # 0; Dul(u, v, ) = 0}
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First-order optimality system

Optimality conditions I

With a local solution (u,y) of (P) is associated a non empty set of
generalized Lagrange multipliers.

explicit form of the constraint:

)
) <0, u>0, /0 £(y(0)dp(t) = 0.
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First-order optimality system

Use of the costate

Costate equation in the sense of transposition; formally

—pt —Ap+31y°p = aly —y4) +ydu(t) in D'(Q),
p('v T) 07
p = OonX.

and

aNu+ x,p =0 a.e. over Q,.
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First-order optimality system

Characterization of the qualification condition

Singular set = set of times for which the constraint is active and
the control has no influence on its time derivative:

Is(v) ={t € l(g(yu)); yu(-,t) =0 a.e. on w}
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First-order optimality system

Characterization of the qualification condition

Singular set = set of times for which the constraint is active and
the control has no influence on its time derivative:

Is(v) ={t € l(g(yu)); yu(-,t) =0 a.e. on w}

Let (u,y) be a feasible point of (P). Then

The set of singular multipliers is empty iff the singular set is empty.
This happens iff the set of Lagrange multipliers is nonempty and
bounded.

In the sequel we assume that the problem is qualified, in the sense
that the singular set is empty.
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First-order optimality system

Alternative formulation

Lemma

Let a and b be two functions of bounded variations in [0, T].

Suppose that one is continuous, and the other is right-continuous.
Then

T T
a(T7)b(T~) — a(0)b(0+) = /0 a(t)db(t) + /0 b(t)da(t). (3)

An application:

T T
/O /Q y(x; t)z(x, t)dxdp(t) = — /0 /Q [ye(x; £)z(x, £))+y (x, t)ze(x, t)
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First-order optimality system

Alternative costate

pli=p+g&(y)u=p+ynin [*(Q).
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First-order optimality system

Alternative costate

pli=p+g&(y)u=p+ynin [*(Q).
is solution in H>!(Q) of

—pt — AP + 3Pt = y—ys— (2By — 6y  +iu)p in Q,
pl('a T) = Oa
p'(t) = 0 on XL

Relations with the control:

Nu + X (p* — py) = 0 a.e. on w x [0, T].

therefor u has left and right limits in H1(Q).
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g tin trol of
First-order optimality system

Continuity of the control and multiplier

Lemma

Let (u,y) be a regular extremal of (P) and (p, p*, i1) the classical

and alternative costate and the multiplier associated with the state
constraint. Then (1) p is a continuous function of time and

u € C([0, T]; HY(w)), (ii) if at time t the state constraint is active
and [ y?(x,t)dx #0, then

0= ZEM) = ~Tr + / u(x, )y (x, t)dx —ly(8)[3,
u(t) = NIVy(8)]> + Ny ()]3 + [, y(x, t)p" (x, t)dx
Xwy (8)[3
1 (NP Ny (0l + [0 el e
o w( Xy (t)]5 Yo P )
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First-order optimality system

Proof of continuity

[-] jump function (e.g., [u](t) := u(tT) — u(t™)),

N[U] = [M]wa

and since g attains a maximum if [u] # 0:

My = b | lebvax = ] | e )(0)] <0
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First-order optimality system

Regularity over a boundary arc

Let (u,y) be a regular extremal of (P). Assume that the state
constraint is active over an interval [t, tz], where 0 < t; < tp < T.
Then p is absolutely continuous over [t1, tp].

J. Frédéric Bonnans Second-order optimality conditions The case of a state con



Second-order optimality system

Lagrangian

L(u,y,p,q,p) := )+ | p(Ay —vy® +ivu—yi) dxdt

/ EO/()n(e) + [ ab)(r(x.0) ~ yo()ix.

o\

Second-order directional derivative in direction (v, z):
Aw.2)i= NvI3+ [ (1= 6vplx thy(x, ) 2(x, e
Q

-
+ /0 12(t) Bdp(1).
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Second-order optimality system

Critical directions

C(u,y) set of critical directions, such that

g'(y(t)z(t) <0 over I(g(y)) , (4)
=0 over supp(p). (5)
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Second-order optimality system

Critical directions

C(u,y) set of critical directions, such that

g'(y(t)z(t) <0 over I(g(y)) , (4)
=0 over supp(p). (5)

The contact set has a finite structure if it is a finite union of touch
points and boundary arcs.
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Second-order optimality system

Critical directions

C(u,y) set of critical directions, such that

g'(y(t)z(t) <0 over I(g(y)) , (4)
=0 over supp(p). (5)

The contact set has a finite structure if it is a finite union of touch
points and boundary arcs.

Strict complementarity holds if the support of dy is the union of the
boundary arcs. In that case, a linearized direction (v, z) is critical iff

g'(y(t))z(t) =0 over boundary arcs, (6)
g'(y(7))z(7)) <0 foreach touch point 7.
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Second-order optimality system

Second-order necessary condition

Theorem

Let (u,y) be a qualified local solution of (P), with associated
multiplier . and costate p. If the contact set has a finite structure
and the hypothesis of strict complementarity holds, then

A(v,z) >0, forall (v,z)e C(u,y). (7)

v
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Second-order optimality system

Second-order sufficient conditions

Theorem

Let (u,y) be a regular extremal of (P). Then a sufficient condition
for the quadratic growth condition (2) is

A(v,z) >0, forall (v,z)€e C(u,y)\{0}. (8)

If, in addition, the contact set has a finite structure, then (8) is a
necessary condition for quadratic growth.
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Sensitivity analysis

Sensitivity analysis

Perturbed state equation:

ve =Dy +ay® = f+iwinQ, (9)
y = OoverX, (10)
y(-,0) = yo over Q. (11)

Localizing constraint
lu —all2 < p. (12)

J. Frédéric Bonnans Second-order optimality conditions The case of a state con



Sensitivity analysis

Perturbed problem

Let (&, ¥) be a local solution of (P) satisfying the quadratic growth
condition (2) for some 6 > 0 and p > 0. Assume that they satisfy
the qualification condition, and let (p, i) denote the associated
costate and Lagrange multiplier.

The perturbed optimal control problem is

Mi J .t (9)-(12); G(u) <0. P
(U:Y)€L2(Qu1;1)’l><H271(Q) (u,y) st (9)-(12); G(u) < (Ps)
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Sensitivity analysis

Path of perturbations

Denote by v(f) the value of problem (Py).
Methodology of B., Cominetti, Shapiro:

f(o) :=of + 30%h + o(d?),
perturbed linearized equation
ze—Az+3vy’z = fi+i,vin @; z=0onX, z(-,0)=0.(13)
The related linearized optimization problem is

J(@,7)(v,2);  g'(7(t))z(t) <0 over I(g(7)); (13)
(Lf1)

Min
(v,2)eL2(Qu)xH*1(Q)
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Sensitivity analysis

Quadratic subproblem

Min A(v,z +/_x,tfx,tdxdt Q
WA A2+ [ B0 (@
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) t o
Sensitivity analysis

Main result

Theorem

Let (a,y) be a qualified local solution of (P) satisfying the
quadratic growth condition (2). Then a) we have the following
expansion

v(f(o)) = val(P) + oval(Lg ) + %02 val(Q) + o(o). (14)

b) In addition we have that if (uy,y,) is a path of o(a?) solutions,
then |lu, — i|l2 = O(o), each weak limit-point in L?(Q,,) is a
strong limit-point, and is solution of problem (Q). If the latter has
a unique solution v, then a path u, of o(0?) solutions of (Py(y))
satisfies

U, =0+ ov+o(o). (15)
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Sensitivity analysis

References for alternative formulation

@ Bryson Denham, Dreyfus (1963): informal derivation,
high-order

Hager (1979) First-order constraints: Lipschitz stability
Maurer (1979), unpublished: rigorous derivation, high-order

Several related works by Maurer and Malanowski

FB and A. Hermant Second-order Analysis for Optimal Control
Problems with Pure State Constraints and Mixed
Control-State Constraints. Annals of I.H.P. - Nonlinear
Analysis 26 (2009), 561-598.
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Sensitivity analysis
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