
On a class of first-order algorithms for convex
problems with applications to imaging

Antonin Chambolle

CMAP, Ecole Polytechnique, CNRS, Palaiseau, France1

Journée de Bilan, Chaire EADS/MMNS – October 13, 2010

1Joint work with Thomas Pock, T.U. Graz, Austria

Outline

Topic: a primal-dual first order algorithm which is simple and
versatile

I the class of problems

I general algorithm

I O(1/N) efficiency

I accelerations

I examples

A general form

min
x∈X

F (Kx) + G (x)

where

I F ,G are “simple” convex functions

I K : X → Y is a linear, continuous operator from a Hilbert
space X to a Hibert space Y

I The problem is nonsmooth (for instance, F = | · |1)

Remark In most interesting infinite-dimensional cases, K is not
continuous, however, our complexity estimates will be dimension
independent (but the number of operations depends of course on
the size of the vectors...)

Example: image reconstruction

In image reconstruction, problems often involve

I very large arrays → high order methods are hard to use

I nonsmooth terms (l1 norms, total variation...)

Example: TV-deconvolution vs Wiener filtering

(i) original (ii) motion blurred (iii) Wiener (iv) TV

“Simple” convex functions

We say that F is simple if one knows how to compute the
“proximity” operator

proxτF (x) = arg min
z

{
τF (z) +

‖x − z‖
2

2
}

The Euler-Lagrange equation for the unique solution to this
problem writes

x − z + τ∂F (z) 3 0

where ∂F is the subgradient of F (which is of course not assumed
to have any smoothness).
Hence one usually writes

proxτF (x) = (I + τ∂F)−1(x)

as the “resolvent” operator of the subgradient.

An important remark

Moreau’s identity

x = (I + τ∂F)−1(x) + τ

(
I +

1

τ
∂F ∗

)−1 (x
τ

)
,

shows that F is simple iff F ∗ is, where F ∗ is the Legendre-Fenchel
conjugate of F defined by

F ∗(y) = sup
x
〈y , x〉 − F (x)

(And, F ∗∗ = F if F convex, l.s.c...)

Typical problems

• “ROF” denoising

minuλTV (u) +
1

2
‖u − g‖2

where
TV (u) = ‖∇u‖2,1 ≈

∑
i ,j

√
(ui+1,j − ui ,j)2 + (ui ,j+1 − ui ,j)2

is a discrete approximation of the total variation.
Here, x = u, K = ∇, F = λ‖ · ‖2,1, G = ‖ · −g‖2/2 and we are in
the presented framework. In particular, F is simple: the operator
proxτF is a component-by-component “shrinkage” of size τ :

arg min
z
τ‖z‖1,2 +

1

2
‖z − z0‖2

is given by zi ,j = (|zi ,j | − τ)+zi ,j/|zi ,j |.

• “ROF” deblurring

minuλTV (u) +
1

2
‖Au − g‖2

can be cast into our framework in two different ways. Either one
knows how to solve efficiently proxτ‖Au−g‖2/2, that is,

min
z
τ‖Az − g‖2 + ‖z − u‖2

which require to compute (I + τA∗A)−1 and we can simply let as
before x = u, K = ∇, F = λ‖ · ‖2,1, G = ‖A · −g‖2/2.
A variant is to let K = (∇,A) : X → Y , G = 0, and

F (y) = λ‖y∇‖2,1 +
1

2
‖yA − g‖2

which is also “simple”.

Why first order methods?

I Higher-order method such as Newton, for the above presented
problems, need information on the second derivative, and
smoothness, and require to invert huge matrices → need to
regularize the problem; fewer iteration but the cost per
iteration is huge

I Some first order methods work with no smoothness and there
is a hope to “adapt” them automatically to the smoothness of
the problem (work in progress...)

The dual problem

We have (cf Fenchel-Rockafellar)

inf
x
F (Kx) + G (x) = inf

x
sup
y
〈Kx , y〉 − F ∗(y) + G (x)

= sup
y
−F ∗(y) + inf

x
〈x ,K ∗y〉+ G (x)

= sup
y
−(F ∗(y) + G ∗(−K ∗y))

and existence of a saddle-point (x̂ , ŷ) under quite mild conditions:
for all (x , y) ∈ X × Y :

〈Kx̂ , y〉−F ∗(y)+G (x̂) ≤ 〈Kx̂ , ŷ〉−F ∗(ŷ)+G (x̂) ≤ 〈Kx , ŷ〉−F ∗(ŷ)+G (x)

Euler-Lagrange Equation

The saddle point must satisfy{
K ∗ŷ + ∂G (x̂) 3 0

Kx̂ − ∂F ∗(ŷ) 3 0

which also may be written(
0 K ∗

−K 0

)(
x̂
ŷ

)
+

(
∂G (x̂)
∂F ∗(ŷ)

)
3
(

0
0

)
This yields a “primal-dual” form of the problem, which shows the
symmetry between G and F ∗, and from which interesting
algorithms can be proposed.

Many methods...

There are numerous approaches to solve such problems (in smooth,
nonsmooth, simple, high or low-dimensional cases...) and research
has been very active since at least the 70’s (and even before).
An important concept is the “Proximal point” algorithm
(Martinet’70, Rockafellar’76):

Minimize the convex function H by iterating (I + τ∂H)−1

• Often conceptual since this might be as hard as solving
0 ∈ ∂H(x))
• However, many other algorithms can be shown to be particular
instances of this approach, and hence convergent (e.g.,
Eckstein-Bertsekas 1992)

Primal-Dual Proximal Point

• The class we investigate here derives from the idea to apply the
“proximal point” method to the Primal-Dual problem: the basic
idea should be to choose X 0 = (x0, y0) ∈ X × Y , pick τ > 0, and
let {

xn+1 = (I + τ∂G)−1(xn − τK ∗yn+1)

yn+1 = (I + τ∂F ∗)−1(yn + τKxn+1)

however in practice this is not implementable. An explicit approach
(where xn+1, yn+1 is replaced with xn, yn in the right-hand side) is
shown to diverge. The semi-implicit scheme (with for instance
xn, yn+1) is the standard “Arrow-Hurwicz” algorithm which is
shown converges under strong assumptions (on the time-steps, or
the domain of G ,F ∗) [Zhu-Chan’08,Esser’09,CP’10].

Primal-dual “extragradient”

It has been observed in the 70’s (Korpelevich 76, Popov 80) that a
slight modification of the primal-dual proximal point yields a
convergent scheme. The idea is to take an “extragradient step”,
by choosing {

xn+
1
2 = (I + τ∂G)−1(xn − τKyn)

yn+
1
2 = (I + τ∂F ∗)−1(yn − τKxn)

and then {
xn+1 = (I + τ∂G)−1(xn − τKyn+

1
2)

yn+1 = (I + τ∂F ∗)−1(yn − τKxn+
1
2)

Estimates (of type O(1/N)) are shown by Nemirovsky (2004). [A
forgotten Popov proposes a similar approach, 4 years after
Korpelevich though]

A drawback of these approaches is that they require to evaluate
proxτF and proxτG twice per iteration (which in fact could not be
a real issue if the convergence were twice faster than variants not
requiring this step, but we have checked experimentally that this is
not the case).

A general “approximate” extra-gradient framework

Algorithm 1.

I Initialization: Choose τ, σ > 0, θ ∈ [0, 1], (x0, y0) ∈ X × Y
and set x̄0 = x0.

I Iterations (n ≥ 0): Update xn, yn, x̄n as follows:
yn+1 = (I + σ∂F ∗)−1(yn + σKx̄n)

xn+1 = (I + τ∂G)−1(xn − τK ∗yn+1)

x̄n+1 = xn+1 + θ(xn+1 − xn)

The (simple) idea, here, is to use a semi-implicit scheme in one
variable (here, y), and an approximate “extra-gradient” (or
over-relaxation) in the other variable where the “gradient” is
simply replaced with the difference between the two last iterates.

Remark 1: in case K = Id this is strictly identical to a “Douglas
Rachford” splitting of ∂F and ∂G (PL Lions-Mercier, 1979)

Remark 2: when θ = 0 then this is the basic Arrow-Hurwicz
approach (1958). However, convergence is not clear in general
(but apparently occurs more often and faster than actually proved,
see e.g. Zhu-Chan’08). This will not be discussed in this talk (see
CP’10).

“Partial gap”

We measure the convergence using a variant of the primal-dual gap

G(x , y) = F (Kx) + G (x) + F ∗(y) + G ∗(−K ∗y) ≥ 0

which vanishes only when (x , y) is a saddle-point. For B1 ⊂ X and
B2 ⊂ Y we let

GB1×B2(x , y) = max
y ′∈B2

〈
y ′,Kx

〉
− F ∗(y ′) + G (x)

− min
x ′∈B1

〈
y ,Kx ′

〉
− F ∗(y) + G (x ′) ,

(G = GX×Y). Then, if B1 × B2 contains a saddle-point in its
interior, this is non-negative and is a (not very good) measure of
optimality for points in the interior of B1 × B2.

Convergence analysis in case θ = 1

Theorem Let L = ‖K‖ and assume there is a saddle-point (x̂ , ŷ).
Choose θ = 1, τσL2 < 1, and let (xn, x̄n, yn) be defined as in
Algorithm 1. Then:

(a) For any n,

‖yn − ŷ‖
2σ

2

+
‖xn − x̂‖

2τ

2

≤ C

(
‖y0 − ŷ‖

2σ

2

+
‖x0 − x̂‖

2τ

2
)

where the constant C ≤ (1− τσL2)−1;

(b) If we let xN = (
∑N

n=1 x
n)/N and yN = (

∑N
n=1 y

n)/N, for any
bounded B1 × B2 ⊂ X × Y the restricted gap has the
following bound:

GB1×B2(xN , yN) ≤ D(B1,B2)

N
,

where

D(B1,B2) = sup
(x ,y)∈B1×B2

‖x − x0‖
2τ

2

+
‖y − y0‖

2σ

2

Moreover, the weak cluster points of (xN , yN) are
saddle-points.

(c) If the dimension of the spaces X and Y is finite, then there
exists a saddle-point (x∗, y∗) such that xn → x∗ and yn → y∗.

Remarks: • Nemirovsky has a similar result but with a more
complex (of Extragradient type) scheme. He uses the full
primal-dual gap but this is only due to his assumption that the
domains of G and F ∗ (then B1 = domG , B2 = domF ∗), which we
do not want to make here.

• We can show that we get an estimate of the global gap if F and
G ∗ have full domain.

• This result shows convergence, but the rate, the way it
converges, and the measure of optimality are terrible: in practice,
the algorithm is too slow for some classes of problems (e.g., linear)

Convergence analysis (sketch)

Idea: the scheme has the general form{
yn+1 = (I + σ∂F ∗)−1(yn + σKx̄)

xn+1 = (I + τ∂G)−1(xn − τK ∗ȳ) ,

that is: 
∂F ∗(yn+1) 3 yn − yn+1

σ
+ Kx̄

∂G (xn+1) 3 xn − xn+1

τ
− K ∗ȳ

By definition of the subgradient it means that for any x , y :

F ∗(y) ≥ F ∗(yn+1) +

〈
yn − yn+1

σ
, y − yn+1

〉
+
〈
Kx̄ , y − yn+1

〉
G (x) ≥ G (xn+1) +

〈
xn − xn+1

τ
, x − xn+1

〉
−
〈
K (x − xn+1), ȳ

〉
,

which we sum to obtain

‖y − yn‖
2σ

2

+
‖x − xn‖

2τ

2

≥[〈
Kxn+1, y

〉
− F ∗(y) + G (xn+1)

]
−
[〈
Kx , yn+1

〉
− F ∗(yn+1) + G (x)

]
+
‖y − yn+1‖

2σ

2

+
‖x − xn+1‖

2τ

2

+
‖yn − yn+1‖

2σ

2

+
‖xn − xn+1‖

2τ

2

+
〈
K (xn+1 − x̄), yn+1 − y

〉
−
〈
K (xn+1 − x), yn+1 − ȳ

〉
.

The best would be to cancel the last term by choosing ȳ = yn+1

and x̄ = xn+1... but this totally implicit scheme is not
implementable (it is a proximal point iteration).
Our choice for θ = 1 corresponds to letting yn+1 − ȳ = 0
(semi-implicit) and xn+1 − x̄ = (xn+1 − xn)− (xn − xn−1), from
which we hope to get cancellations when we will sum the
inequality from n = 0 to N.

Then, summing and using τσ‖K‖2 < 1, we can show the thesis of
the theorem.

Accelerations

In case ∇F is Lipschitz, Nesterov (1983/2007) and Beck-Teboulle
(2008) have provided algorithms with O(1/N2) convergence (of
the objective F (Ax) + G (x)). We can check that our approach
yields a similar efficiency, provided it is slightly modified.
We recall that ∇F is 1/δ−Lipschitz if and only if F ∗ is
δ−uniformly convex:

F ∗(y ′) ≥ F ∗(y) +
〈
p, y ′ − y

〉
+
δ

2
‖y − y ′‖2

for any y , y ′ and p ∈ ∂F ∗(y). In this case, one easily checks that ŷ
is unique (not x̂). We can consider also the the symmetric case
where G is uniformly convex with constant γ (or ∇G ∗ is
1/γ − Lipschitz), in which case it is x̂ which is unique.

G uniformly convex

In that case, when (x , y) = (x̂ , ŷ) is a saddle-point, the gap[〈
Kxn+1, ŷ

〉
− F ∗(ŷ) + G (xn+1)

]
−
[〈
Kx̂ , yn+1

〉
− F ∗(yn+1) + G (x̂)

]
is easily shown to bound (γ/2)‖xn+1 − x̂‖2. In fact, our main
estimate can be modified as follows:

‖ŷ − yn‖
2σ

2

+
‖x̂ − xn‖

2τ

2

≥

+
‖ŷ − yn+1‖

2σ

2

+ (1 + 2γτ)
‖x̂ − xn+1‖

2τ

2

+ etc . . .

The trick now is to use variable time-steps σn, τn and a variable
factor θn, to make in particular the first lines of this equation look
like

‖ŷ − yn‖
2σn

2

+
‖x̂ − xn‖

2τn

2

≥

+
σn+1

σn

‖ŷ − yn+1‖
2σn+1

2

+ (1 + 2γτn)
τn+1

τn

‖x̂ − xn+1‖
2τn+1

2

+ · · ·

and it becomes evident that we can obtain something interesting
if we can choose the sequences (τn, σn)n in such a way that

σn+1

σn
= (1 + 2γτn)

τn+1

τn
> 1 .

This motivates a varying step variant of Alg. 1:

Algorithm 2.

I Initialization: Choose τ0, σ0 > 0 with τ0σ0L
2 ≤ 1,

(x0, y0) ∈ X × Y , and x̄0 = x0.

I Iterations (n ≥ 0): Update xn, yn, x̄n, θn, τn, σn as follows:
yn+1 = (I + σn∂F

∗)−1(yn + σnKx̄n)

xn+1 = (I + τn∂G)−1(xn − τnK ∗yn+1)

θn = 1/
√

1 + 2γτn, τn+1 = θnτn, σn+1 = σn/θn

x̄n+1 = xn+1 + θn(xn+1 − xn)

Estimate for Algorithm 2

Theorem Choose τ0 > 0, σ0 = 1/(τ0L
2), and let (xn, yn)n≥1 be

defined by Algorithm 2: then,

‖x̂ − xN‖2 ≤ τ2N

(
‖x̂ − x0‖

τ20

2

+ L2‖ŷ − y0‖2
)
.

So what? in fact, one can check that τn ≈ 1/(γn) for n (not too)
large, so that this is essentially a O(1/N2) convergence result.
It is less good than the estimate of Nesterov/Beck-Teboulle —
which here would estimate the dual objective
G ∗(−A∗yN) + F ∗(yN)− (G ∗(−A∗ȳ) + F ∗(ȳ))), which is shown to
control ‖xN − x̂‖2. However in practice we found our method
simpler and more efficient...

An interesting behaviour

10
0

10
1

10
2

10
3

10
−5

10
0

10
5

10
10

n

τ n

τ
0
=1e20

τ
0
=10

1/n

Figure: The figure shows the sequence τ ′n = γτn for n ≥ 1, Observe that
it behaves very fast like 1/n, in a way which is quite insensitive to the
initial τ ′0

More regularity and more acceleration

It is well known that if both G and F ∗ are uniformly convex (or
both F and G ∗ are C 1,1), resp. with parameter γ and δ, then one
can find strategies which yield linear convergence to the (unique)
saddle-point. It turns out that it is also the case for the proposed
approach.
Algorithm 3

I Initialization: Choose µ ≤ 2
√
γδ/L, τ = µ/(2γ), σ = µ/(2δ),

and θ ∈ [1/(1 + µ), 1]. Let (x0, y0) ∈ X × Y , and x̄0 = x0.

I Iterations (n ≥ 0): Update xn, yn, x̄n as follows:
yn+1 = (I + σ∂F ∗)−1(yn + σKx̄n)

xn+1 = (I + τ∂G)−1(xn − τK ∗yn+1)

x̄n+1 = xn+1 + θ(xn+1 − xn)

Estimate

Theorem Consider the sequence (xn, yn) provided by Algorithm 3.
Let

ω =
1 + θ

2 + µ
=

1 + θ

2
(

1 +
√
γδ
L

) < 1.

Then

γ‖xN− x̂‖2+(1−ω)δ‖yN− ŷ‖2 ≤ ωN
(
γ‖x0 − x̂‖2 + δ‖y0 − ŷ‖2

)

The interesting point here is that in particular the same Algorithm
1, with an appropriate choice of τ and σ (and θ = 1, although
1/(1 + µ) is theoretically better), converges linearly. An interesting
open question is whether there is some intrinsic way to “guess” the
parameters γ and δ when they are unknown, that is, to have some
meta-algorithm which functions as the “best” of the three
algorithms we have presented according to the situation.

Example: ROF denoising

The problem is

min
u
‖∇u‖2,1 +

λ

2
‖u − g‖2

and F = ‖ · ‖2,1, G = λ
2‖u − g‖2 is λ−uniformly convex so that

Alg. 2 can be used.

λ = 16 λ = 8
ε = 10−4 ε = 10−6 ε = 10−4 ε = 10−6

ALG1 214 (3.38s) 19544 (318.35s) 309 (5.20s) 24505 (392.73s)
ALG2 108 (1.95s) 937 (14.55s) 174 (2.76s) 1479 (23.74s)
AHMOD 64 (0.91s) 498 (6.99s) 122 (1.69s) 805 (10.97s)
AHZC 65 (0.98s) 634 (9.19s) 105 (1.65s) 1001 (14.48s)
FISTA 107 (2.11s) 999 (20.36s) 173 (3.84s) 1540 (29.48s)
NEST 106 (3.32s) 1213 (38.23s) 174 (5.54s) 1963 (58.28s)
ADMM 284 (4.91s) 25584 (421.75s) 414 (7.31s) 33917 (547.35s)
PGD 620 (9.14s) 58804 (919.64s) 1621 (23.25s) –
CFP 1396 (20.65s) – 3658 (54.52s) –

Table: (Matlab) Performance evaluation using a 256× 256 image. The
entries in the table refer to the number of iterations respectively the CPU
times in seconds the algorithms needed to drop the RMSE of the solution
below the error tolerance ε. The “–” entries indicate that the algorithm
failed to drop the error below ε within a maximum number of 100000
iterations.

The 3 leading methods

10
0

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

ROF: λ = 8.0

Iterations

E
rr

or

ALG2
AHMOD
AHZC
O(1/N2)

Figure: Convergence of AHZC and ALG2 for the experiment in the last
column of the Table

“Huber-ROF”

Now we investigate the minimization of

min
u
‖∇u‖α1,2 +

λ

2
‖u − g‖2 .

where
F (y) = ‖y‖α1,2 =

∑
i ,j

|~yi ,j |α

and

|~p|α =

{
|p|2
2α if |p| ≤ α
|p| − α

2 else.

It turns out that with this new model, F ∗ is α-uniformly convex.
Since G (u) = (λ/2)‖u − g‖2 is λ-uniformly convex we can use
Algo. 3. Experiments show that we reach machine precision in a
quite short number of iterations. We get a similar behaviour with a
restarted variant of Nesterov’s algorithm, which is shown to have
the same convergence rate.

λ = 5, α = 0.05
ε = 10−15

ALG3 187 (3.85s)
NEST 248 (5.52s)

Table: Performance evaluation using the image same image as for ROF
denoising. The entries in the table refer to the number of iterations
respectively the CPU times in seconds the algorithms needed to drop the
root mean squared error below the error tolerance ε.

10
0

10
1

10
2

10
3

10
−20

10
−15

10
−10

10
−5

10
0

Huber−ROF: λ = 5.0 , α=0.05

Iterations

E
rr

or

ALG3
Nesterov
O(ωN/2)

Figure: Linear convergence of ALG3 and NEST for the Huber-ROF
model. Note that after approximately 200 iterations, ALG3 reaches
machine precision.

Thank you for your attention.

