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The inverse problem / Motivation

Radar, Sonar, Mine detection, Infrastructure imaging, Non destructive testing, - - -

Sources/Receivers

=

Known background

Inverse problem: Determine the geometry of inclusions from the
knowledge of diffracted fields associated with several incident waves.

@ Physical properties of the inclusions are not known (a priori)

@ Spectrum of the incident waves in the resonant region

= Sampling methods are good candidates



Examples of applications

Radar, Sonar, Mine detection, Infrastructure imaging, Non destructive testing, - - -

Imaging of urbain infrastructures with GPR:

Visualise complex structures
(pipelines, deposits, mines, .. .)
buried in the ground (few meters),
from electromagnetic measure-
ments

Microwave biomedical imaging:
Use microwaves (moderate frequencies)
for diagnosis of malignancies or functional
monitoring. .
Advantages. cheap cost, absense of side
effects.

Prototype of experimental measurements



Sampling methods

Examples of sampling methods: Linear Sampling Method (Colton-Kirsch,
1996), Factorization method (Kirsch, 1998), Probe Method (Potthast, 2001),
Reciprocity Gap Sampling Method (Colton-Haddar, 2005), ...)

Principle: Associate with a sampling point z of the probed domain a criterion
G(z) that indicates whether z is in the interior or the exterior of the scatterer.

(4+) Non-iterative, the computation of G does not require a forward solver.
(=) Require a large amount of multistatic-data (many transmitters-receivers).

Goal: Reduce the required number of sources/receivers by using multiple
frequencies, or even better: a time dependent data



Relevance of time dependent data

Use of realistic measurments: causal sources and short pulses (GPR
applications)

@ Provide naturel “multi-frequency” reconstruction criteria

Incorporate arrival time information in the reconstruction procedure

@ Naturel dependance of regularization parameters on the frequency



A model problem

Inverse scattering from a perfect conductor

Sources/Receivers

— 0
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Total field wiot (-, o)
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x: causal function with compact support.

xo € I': location of the sources/receivers

Inverse problem: Determine D from the knowledge of uiot(z, ¢, xg) for all
teRandall z and zg in T’



A model problem

Inverse scattering from a perfect conductor

Incident field:
X(t = |z — 20l)

uinc<x7 t; x()) = 47r|x _ .CE'O|

Scattered field:
Usca += Utot — Uinc

Near-Field operator:
(N)(x,t) := / / Usea (T, T — to, o) (X0, t0)ds(x)dty z €T, tER
RJT

Principle of the Linear Sampling Method (LSM): characterize the inclusion
D using the range of this operator.



Factorization of the operator N/

Linearity of the map: uine — Ugsca

= N¢ is the scattered field associated with the incident field

SLE ¢(z, t) ::/R/Fuinc(z,t—to,zo)qﬁ(xo,to)ds(:zzg)dto

Therefore:

N¢ =G(SLy ¢)
Where

Gf :==u(z,t)[rxr

u=—f 0D x R,

(0w —A)u=0  (R*\D) xR,
{u—() (R3\ D) x R_



Factorization of the operator N/

The solution u can be represented as a retarded potential

P(zo,t — |7 — x0])

u(z,t) = (SLop¢)(z,t) = oD dr|x — x|

ds(zg)

= Boundary integral equation: Sgpp = —f on 0D x R.

Analysis of retarded potentials via Laplace transform in H3 (R, H1/%(T")),
o > 0 (Bamberger & Ha-Duong, 1986)

Sop : HE(R, H-'/2(0D)) — HP~ (R, H/?(dD))
Sop « HY(R, H'/?(8D)) — HY (R, H~'/*(0D))

Hence: G f = —SLgp 5511) f, and

N = —SLsp 555 SLQIS

Thm: NV : H2(R,H-Y/?(T)) — H;?(R, H'/?(T")) is bounded and injective
with dense range.



Time Domain Sampling

@ ldea: Test range of N with “point sources”

Gz r(w,t) = A Ul U Z|), (z,t) e R\ {z} xR

dr|r — 2|
e Thm 1: ¢, -|rxr is in the range of G if an only if z € D

o For z € D: g(—¢z,r|aD><R) = (]52,7'|F><]R

o For z € D the function ¢, r|rxr cannot belong to the range of G:
point source is singular at z but solutions to the wave equation are
not (unique continuation argument is needed here)

o Thm 2: SL{ : H2(R, H~Y2(T")) — HAX(R, H/%(dD)) is injective
with dense range.

Recall that:

N =G o SL{




Theoretical Justification of LSM

Main Theorem: Let 7 € R.
(1) If z € D then for all € > 0 there exists g5 . € H2(R, H~'/(I)) such that

||N92,r - ¢z,'r||H;2(R,H1/2(r)) <
lim ISLE 95 1 (r, 11 (DY) < 00
Moreover, for fixed e:
Jim 95 -l a2, r-1/2(r)) = 00, and
Jim ISLE 95 a1 v, 51 (DY) =
(2) If 2 ¢ (DUT) then for any ¢¢ . € H2(R, H~'/(I)) such that
P_{% ||N9§:,'r - ¢z,r||H;2(R,H1/2(r)) =0
it holds that
Lim (195 -\l 2 (e, r-172(ry) = 004 and

lim ISLE 95 e (r, 151 (DY) =



Algorithmic Aspects

@ A regularization is needed to solve the near field equation, e.g.
(e+NiNa)gs, =Njozr

@ Dimension of discretized matrix is huge
Example: 10 sources/receivers, 100 time steps yield unknown g _ of
dimension 10 10 100 = 10*
o Convolution structure of the kernel saves some memory
o System matrix N4 has a large kernel
o Compute a sufficient number of the first singular values/vectors of
N4 (only necessitates evaluation of matrix-vector products) to
approximate Ny

@ The choice of 7 in g¢ . in the latter theorem seems arbitrary. For
numerical implementation it is not arbitrary since support in time of
the density g% . has to be truncated.



Numerical Examples |

wave speed=1, source ~ sin(4t)e_1‘6(t_3)2, Ac = 27/4 =~ 1.6, full
aperture, 1% added random noise
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Numerical Examples Il

wave speed=1, source ~ sin(4t)e_1'6(t_3)2, Ac = 2m/4 =~ 1.6, full
aperture, 1% added random noise




Numerical Examples IlI

(a) wave speed=1, source ~ sin(4t)e~16(=3)° X\ = 27/4 ~ 1.6, full
aperture, 1% added random noise. (b) Frequency domain reconstruction
at central wave number k. = 4 using standard frequency domain linear
sampling method
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Sampling Methods with Far Field data

Physical Setting — Radar, Sonar, Microwave applications

Incident plane wave £ : direction of observation

& 2

@ Incident travelling wave front uin.(x,t;0) := x(t — 6 - x)
The function x has compact support and is zero for t < T = sup,p |z|.

@ Scattered field: wugc. (-, ;0) solves

attusca - A“sca =0 (Q X R)7
Usca = —Uinc (8D X R)y
Usca = 0 (Q X (_0070))

o Far field: u.(£,t;0) = lm ugea(r€, 7 +t;0) for £ €S, t € R

@ Thm: g, (r€,t0) = us (&, —7;0) /1 +O(1/r?) as r — oo



Mathematical Setting — Inverse problem

@ Measured Data: uq.(&,s,0) for all £,0 € S and all s € R.

o Far-field operator:
fg g, //uoo 57 — S0, ) (0 80)d80d9

@ Fyg is the farfield associated with

Ha)(w.t) = [ [ x(t=s0—0-0)g(0,50)d8s0

'H, is the time domain Herglotz operator.

@ Thm: For all a > 0, the operator
H,y o HY'?(0,a; L2(S)) — H¥2(~T,T + a; HY/2(D) is bounded
and injective.



Factorizing the Far Field Operator

@ For a single layer potential uw = SLyp the far field is given by

U (6,1) = (RO)(£,1) = / Dot + € - x0)dao

Thus, Fg=—R S;}, Hy g
@ Thm 1: Setting F, 1= —O;x x F

Fy=H; 00,8550 Hy

@ Thm 2: 8t5511) possesses the following coercivity property: Let a > 0 then

a
/0 /8D 5t55£>(¢)¢dwdt > C||w||§173/2(0,a;H—1/2(r))

for all v» € H*/%(0,a; H/?(0D))



Range Inclusions

Thm: 7, : H'?(0,a; LX(S)) — H=5/2(0,a; L*(S)) is a positive and
selfadjoint operator that has a “square root”
B HY*(0,a; L*(S)) — L*(0,a; L*(S)) such that

Fy=B*B

Moreover the following inclusions hold:

Rg (H;; : HY(~T,a+T; H-Y2(0D)) — H5/2(0, a; L2(S)))
N
Rg (B* . L2(0,a; LX(S)) — H™52(0, a: L2<S)))
N
Rg (H;; L H™32(—T, T + a; HY(OD)) — H™5/2(0, a; Hl/Q(aD))>



Characterization of D

Test functions: we use the far fields associated with the point sources

X(t =7 — |z —2|)

, zeR3 ,teR.
4| — 2| * \ iz

¢z,7’ ({B, t) =

2,07'(&-71;) ::X(t_7+€'2)/(477)7 £€S,tER

Main Thm: Let 7 > 0 et let a > 0 such that the far field ¢2° is
supported in S x [0, a] for all sampling points z € Q D D. Then

o €Rg(B*) <= z€D.

Remark: Numerically B* = (F,)'/2.



Conclusion and Outlook

Conclusion:
@ Inverse scattering in the time domain
@ Factorization of near field and far field operators

@ Linear sampling method in the time domain domain for near field
data

@ Factorization method in the time domain for far field data
@ Both methods use measurements of causal waves

@ Implementation difficult - huge dimension

Outlook:
@ Penetrable media, Electromagnetic problem
@ Exploit sampling in time with the parameter 7
@ Implementation of suitable data structures and faster SVD
°

Other regularizations



