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Nonlinear fiber optics in communications

I A very efficient way to transmit
information : high data rates (up to
six time faster than satellites)

I Explosion of the field in the 1990’s,
due to development of
Erbium-doped amplifiers and lasers

I Wavelength division multiplexing
 capacities of more than 1 Tb/s



Optical fibers

Glass or plastic fiber that carries light along its length ;
Light is kept in the core by total internal reflection : the fiber acts
as a waveguide



Single mode/multimode fibers

Core diameter may be less than 10 times the wavelength of the
propagation light
 use of Maxwell equations



Nonlinear fiber optics plays an
important role in the design of such
high capacity systems

Agrawall : Applications of nonlinear
fiber optics

Limiting factors to be taken into account :

I Chromatic dispersion (monomode fibers)
 use of nonlinearity, or more efficiently, of dispersion
managed fibers

I Polarization mode dispersion (PMD) : linked to birefringence



The NLS equation in fiber optics

Maxwell equations for the electromagnetic field  
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~E : electric field

~P : polarization (depends nonlinearly on ~E )

Properties of the material : • isotropic
• centrosymmetric
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Weakly nonlinear WKB expansion :

~E = ε~E0 + ε2~E1 + ε3~E2 + ...

Ej(x
⊥, z , t) = Uj(x

⊥, t) ?
[
Ej(εz , ε2z , εt)e i(k0z−ω0t)

]
+ cc

(convolution in time)

Newell, Moloney, Nonlinear Optics



Assumptions :

I monomode fiber : only one mode Û(x⊥, ω) is confined

I polarization preserving

Then compatibility conditions for ~E1 and ~E2 give the NLS equation
for E0 :

i∂ζE0 −
1

2
k0”

∂2E0

∂τ2
+
ω0

c
n2|E0|2E0 = 0

with τ = ε(t − k ′0z), ζ = ε2z .

Many effects have been neglected...

The sign of k0” (GVD) determines whether the medium is
“focusing” or “defocusing”.



NLS : mathematical properties

One dimensional cubic nonlinear Schrödinger equation
(dimensionless form) :

i∂tu + λ∂2
xu + |u|2u = 0, x ∈ R, λ = ±1

Integrable by inverse scattering (Zakharov-Shabat, 1972)
 explicit soliton solutions

I Focusing case (λ=1) : “bright solitons”

u(t, x) = Aω(x − 2vt − s)e i(vx−v
2t+ωt+θ)

with
Aω(x) =

√
2ω sech(

√
ωx)

I Defocusing case (λ=-1) : No localized solution ;
“dark solitons” with |v | ≤ ρ, lim|x |→∞ |u(t, x)| = ρ.
v = 0 : “black soliton”



Soliton profiles



Conserved quantities :

I Energy :

N(t) =

∫
|u(t)|2dx = N(0)

I Hamiltonian :

H(t) =

∫
|∇u(t)|2dx − λ

2

∫
|u(t)|4dx = H(0)

Allow to show propagation of H1 solutions (N(t) and H(t) finite)
for all time, or along all the fiber

Remark : Global propagation also holds if only N(0) finite
(Strichartz estimates : dispersion inequalities in space +
convolution inequalities in time)



Remark : not always true ; 1-D focusing quintic NLS equation
(not physical)

i∂tu + ∂2
xu + |u|4u = 0

Explicit solution which blows up at t = 1 :

u(t, x) =
e
−i x2

4(1−t) e
i

1−t

√
1− t

31/4√
cosh 2x

1−t

“Critical L2 case” : the scale change

uµ(t, x) = µ−1/2u(
t

µ2
,
x

µ
)

preserves both the equation and the L2 norm.

Same phenomenon for the 2-D cubic NLS equation (but no explicit
solution)
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Dispersion managed fibers

In DM fibers, the group velocity dispersion varies with the distance
along the fiber  NLS equation is modified by (dimensionless
form)

i∂tu +
1

2
D(t)∂2

xu + |u|2u = 0

with
D(t) = d(t) + dm + m(t)

dm : residual dispersion (small) ; m : random process with zero
mean

d(z)

z



Case m=0 (no random perturbation) :

Lot of physical/numerical studies

Zharnitsky, Grenier, Jones, Turitsyn, Ph. D 2001 :
On large propagation distances, rescaled solution close to solution
of an averaged equation :

i∂tv + dm∂
2
xv + 〈Q〉(v , v , v) = 0

with

Q(v1, v2, v3, t) = T−1(t)(T (t)v1.T (t)v2.T (t)v3)

and T (t)u0 solution of

i∂tu + d(t)∂2
xu = 0

with u(0) = u0.

DM soliton = ground state of the averaged system (dm ≥ 0)



Asymptotic evolution of the pulse from Turitsyn et. al. Opt.
Comm. 1999

( )S.K. Turitsyn et al.rOptics Communications 163 1999 122–158128

Ž . Ž .Fig. 1. Evolution over one compensation period of DM soliton shown in normal bottom and logarithmic upper picture scales. In the
Ž . Ž . Ž .leading order the dynamics is self-similar bottom and is given by Eqs. 37 . It is seen that the dips appear at the beginning end and in the

˜Ž . ² : Ž .middle of the periodic cell. Dispersion map d z sdq d s"5q0.15, c z s1.

Ž Ž . w x.An important feature of the soliton carrier signal in general, chirped return-to-zero RZ formatted data 7 is that it can
Žbe described by a few main parameters, like pulse width, peak power, chirp parameter, and spectral width the latter can be



Case of random perturbations :

Garnier, Opt. Comm., 2002 : collective coordinate approach on
the complete model

We consider :

I dm = d(t) = 0

I m(t) = β̇(t) is a white noise i.e β̇ is Gaussian and
〈β̇(t)β̇(s)〉 = σ0δ(t − s)

natural if the correlation length of m is much less than the
deterministic characteristic length

Mathematical notations :

idu + ∂2
xu ◦ dβ + |u|2udt = 0, x ∈ R, t > 0

I β = β(t) : real valued Brownian motion

I ∂2
xu ◦ dβ : Stratonovich product



Global propagation of solutions :

Marty, PhD Thesis, 2005 : case |u|2u replaced by f (|u|2)u,
f smooth and bounded ; regular solutions.

AdB, A. Debussche, JFA 2010 : Global propagation of solutions if
N(0) is finite

I No Hamiltonian conservation  use of “Strichartz” estimates

I Representation of the solution :

u(t, x) = S(t, 0)u0 + i

∫ t

0
S(t, s)|u|2u(s)ds

with S(t, s) = e i(β(t)−β(s))∆ given by

S(t, s)ϕ(x) =

(
1

4πi(β(t)− β(s))

)1/2 ∫
e
i |x−y|2

4(β(t)−β(s))ϕ(y)dy

not a convolution in time.



Diffusion-approximation :

Continuity of the solution w.r. to the Brownian paths  

I m centered stationary process + classical ergodic assumptions

I v ε solution of

i∂tv + εm(t)∂2
xv + ε2|v |2v = 0

then uε(t, x) = v( t
ε2 , x) converges in law as ε goes to zero to the

solution of
idu + σ0∂

2
xu ◦ dβ + |u|2u dt = 0

with the same initial state, and with

σ2
0 = 2

∫ +∞

0
E[m(0)m(t)]dt

Also true with the addition of (small) residual dispersion ε2dm.



Remarks :

I A. Debussche, Y. Tsutsumi, JMPA 2011 :
Global propagation (for finite N(0)) still true for

idu + ∂2
xu ◦ dβ + |u|4u dt = 0

contrary to the deterministic case. Make use of “local
smoothing properties” of the linear equation.

I scaling argument : β(t) Brownian Motion  λ1/2β(t/λ) is
also a B.M.  |u|8u should be the critical nonlinearity in L2

(invariant by the L2 scaling)

I Global propagation in the cubic case still true with dm 6= 0,
hence d(t) 6= 0.

I Long distance behavior ?



Numerical simulations

R. Belaouar, AdB, A. Debussche : unj approximation of u(nδt, jδx)

I Splitting + spectral

I Finite differences in time and space

Crank-Nicolson :

i
δt (un+1

j − unj ) + χn√
δt

(u
n+1/2
j+1 − 2u

n+1/2
j + u

n+1/2
j−1 )

= 1
2 (|unj |2 + |un+1

j |2)u
n+1/2
j

(χn) : family of independent N (0, 1)

Relaxation scheme C. Besse, 1998

i
δt (un+1

j − unj ) + χn√
δt

(u
n+1/2
j+1 − 2u

n+1/2
j + u

n+1/2
j−1 ) = φ

n+1/2
j u

n+1/2
j

1
2 (φ

n−1/2
j + φ

n+1/2
j ) = |unj |2



Semi-discrete Crank-Nicolson :

i
un+1 − un

δt
+

χn√
δt

∆un+1/2 +
1

2
(|un|2 + |un+1|2)un+1/2 = 0

has order one in time :

lim
C→∞

P
(

max
n=0,··· , T

δt

|un − u(tn)|H1 ≥ Cδt
)

= 0

uniformly in δt, provided u0 ∈ H7 ; in addition, for any δ < 1 there
is a r.v. Kδ such that

max
n=0,··· , T

δt

|un − u(tn)|H1 ≤ Kδ(δt)δ

R. Marty, 2011 : Same result for Strang splitting and Lipschitz
nonlinearity



Ideas of proof :

I convergence of the scheme : compactness method

I use of a cut-off  Lipschitz nonlinearity

I linear case :

i
vn+1 − vn

δt
+

χn√
δt

∆vn+1/2 = 0

 |v̂(nδt, ξ)− v̂n(ξ)|2 = |1− e iMn(ξ)|2|v̂0(ξ)|2 with

Mn(ξ) =
n∑

k=0

[
√
δtχk |ξ|2 − 2 arctan(

√
δt

2
χk |ξ|2)]

which implies (martingale inequalities)

E
(

max
n=0,··· , T

δt

|vn − v(tn)|2L2

)
≤ Cα(δt)2αE(|v0|2H6α)
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Polarization mode dispersion

A phenomenon due to birefringence : the light is a vector field and
components of ~E travel with different group velocities

In realistic situations, birefringence parameters non uniform ;
random variations in orientations on a length scale of ∼ 100m with
zero average
Residual effects  pulse spreading, called polarization mode
dispersion (PMD)



Model for random variations of birefringence :
Way-Menyuk, 1994, 1996 :

i
∂A

∂z
+ bΣA + ib′Σ

∂A

∂t
+

d0

2

∂2A

∂t2

+ 5
6 |A|

2 A + (A∗σ3A)σ3A + 1
3

(
A∗1A

2
2

A∗2A
2
1

)
= 0,

b = ∆n : birefringence strength, b′ = db
dω and Σ is a 2× 2 matrix

with random coefficients depending on z

Assume (random) orientation angle θ such that

dθ

dz
= 2εα(z), ε2 =

`c
`
� b2

α : real valued centered Markov process, with unique ergodic
invariant measure
`c correlation length of α
+ averaging over fast oscillations  Manakov PMD equation



Manakov PMD equation
Garnier-Marty, 2006 :

i
∂X

∂t
(t, x)+

d0

2

∂2X

∂x2
(t, x)+

8

9
|X|2 X = −ib′σ(t)

∂X

∂x
− 1

6
(N − 〈N〉) ,

with

σ =

(
|ν1|2 − |ν2|2 2ν̄1ν̄2

2ν1ν2 −|ν1|2 + |ν2|2
)

= σ1m1(t)+σ2m2(t)+σ3m3(t)

and ν is obtained as

dν = i
√
γc(σ1ν(t) ◦ dW1(t) + σ2ν(t) ◦ dW2(t)) + iγsσ3ν(t)dt

σi : Pauli matrices

N : cubic term with random coefficients depending on ν

〈N〉 : same with averaged coefficients w.r.t. invariant measure of ν



PMD correlation length much smaller than deterministic length z0

 small parameter ε such that

I correlation length of order one

I fiber length of order ε−2

Then, setting Xε(t, x) = 1
εX( t

ε2 ,
x
ε ) and σε(t) = σ( t

ε2 ), we get the
evolution

i
∂Xε

∂t
(t, x) +

d0

2

∂2Xε

∂x2
(t, x) +

ib′

ε
σε(t)

∂Xε

∂x
(t, x) + Fνε(t)(Xε) = 0

with

Fνε(t)(Xε) =
8

9
|X|2X +

1

6
(Nε(X)− 〈N(X)〉)

and Nε is the same as N with ν(t) replaced by νε(t) = ν( t
ε2 )



Diffusion approximation :

Garnier-Marty, Wave Motion, 2006, linear case

AdB, M. Gazeau, to appear in Ann. Appl. Prob., full model

Under standard assumptions on the original (C2 valued) process ν
defining (m1,m2,m3) :

I Existence of a unique global adapted square solution in L2 for
all positive ε

I Moreover, if X0 ∈ H3, then for any stopping time τ with
τ < τ∗ a.s., the process Xε

τ (stopped at τ) converges to Xτ in
distribution in C ([0,T ],H1), where Xτ is the unique local
solution of

idX +

(
d0

2

∂2X

∂x2
+

8

9
|X|2X

)
dt + i

√
γ

3∑
k=1

σk∂xX ◦ dWk = 0



numerical simulations

Mean amplitude of each component
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Initial state : Manakov soliton



Evolution of the energy /pulse width (in mean)
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Same simulation with different initial state
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Evolution of the energy /pulse width (in mean)
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