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Nonlinear fiber optics in communications

> A very efficient way to transmit
information : high data rates (up to
six time faster than satellites)

» Explosion of the field in the 1990's,
due to development of
Erbium-doped amplifiers and lasers

» Wavelength division multiplexing
~~ capacities of more than 1 Tb/s




Optical fibers
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Glass or plastic fiber that carries light along its length;

Light is kept in the core by total internal reflection

: the fiber acts
as a waveguide



Single mode/multimode fibers
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Nonlinear fiber optics plays an
important role in the design of such
high capacity systems

Agrawall : Applications of nonlinear
fiber optics

Limiting factors to be taken into account :

» Chromatic dispersion (monomode fibers)
~> use of nonlinearity, or more efficiently, of dispersion
managed fibers

» Polarization mode dispersion (PMD) : linked to birefringence



The NLS equation in fiber optics

Maxwell equations for the electromagnetic field ~~

1 O0’E 1 9P
2 at2 +AE V(dIVE) OC2W

E : electric field

P : polarization (depends nonlinearly on E)

Properties of the material : e isotropic
e centrosymmetric

LP(x,t) = /t YO (xt, t — 1)E(t)dt
/// t—t,t—ty, t — t3)(E(t1).E(t2))E(t3)dtydtrdts



Weakly nonlinear WKB expansion :

E = €Eo + 6251 =+ €3E2 4 ...

Ei(xt, z,t) = Ui(x*, t) % [€(e2, 22, et) el oz =w0t)] 4 ¢
(convolution in time)

Newell, Moloney, Nonlinear Optics



Assumptions :

» monomode fiber : only one mode D(XJ',(.U) is confined

> polarization preserving

Then compatibility conditions for El and Eg give the NLS equation
for & :

0%&,
:8450 — *kg” TO + —n2|50|250 =0

with 7 = g(t — k}z), ( = £%z.
Many effects have been neglected...

The sign of ky" (GVD) determines whether the medium is
“focusing” or “defocusing”.



NLS : mathematical properties

One dimensional cubic nonlinear Schrodinger equation
(dimensionless form) :

i0iu+ X\2u+ [ufPu=0, xR, A= +1

Integrable by inverse scattering (Zakharov-Shabat, 1972)
~ explicit soliton solutions

» Focusing case (A=1) : “bright solitons”

u(t,x) = Au(x — 2vt — s)ei(VX—V2t+wt+9)
with
A, (x) = V2w sech(v/wx)

» Defocusing case (A=-1) : No localized solution;
“dark solitons” with |v| < p, lim o |u(t,x)| = p.
v =0 : “black soliton”



Soliton profiles
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Conserved quantities :

» Energy :
N(®) = | lu() P = N(O)

» Hamiltonian :
H() :/\Vu(t)\zdx—;\/|u(t)|4dX: H(0)

Allow to show propagation of H' solutions (N(t) and H(t) finite)
for all time, or along all the fiber

Remark : Global propagation also holds if only N(0) finite
(Strichartz estimates : dispersion inequalities in space +
convolution inequalities in time)



Remark : not always true; 1-D focusing quintic NLS equation
(not physical)
i0cu+ 0%u + |u|*u =0

Explicit solution which blows up at t =1 :

i

2
67’4(17t)e],7t 31/4

v1i-t \/cosh%

u(t,x) =

“Critical L? case” : the scale change

t x
u (t7X) = M71/2U(7, 7)
g 12

preserves both the equation and the L2 norm.

Same phenomenon for the 2-D cubic NLS equation (but no explicit
solution)



NLS critique _time=0.8 ¢ =2




Dispersion managed fibers

In DM fibers, the group velocity dispersion varies with the distance
along the fiber ~~ NLS equation is modified by (dimensionless
form)

1
i0su + 5D(t)8>2<u + |u]Pu=0
with
D(t) = d(t) + dm + m(t)
dm : residual dispersion (small); m : random process with zero
mean

A

P o




Case m=0 (no random perturbation) :
Lot of physical/numerical studies

Zharnitsky, Grenier, Jones, Turitsyn, Ph. D 2001 :
On large propagation distances, rescaled solution close to solution
of an averaged equation :

i0:v + dmd2v 4+ (Q)(v,v,v) =0

with

Qvi, va,v3,t) = T H(E)(T(e)va. T(t)v2. T(t)vs)
and T(t)up solution of
iOpu+ d(t)02u =0

with u(0) = wo.

DM soliton = ground state of the averaged system (d, > 0)



Asymptotic evolution
Comm. 1999

of the pulse from Turitsyn et
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Fig. 1. Evolution over one compensation period of DM soliton shown in normal (bottom) and logarithmic (upper picture) scales. In the

leading order the dynamics is self-similar (bottom) and is given by Egs. (37). It is scen that the dips appear at the beginning (end) and in the
middle of the periodic cell. Dispersion map d(z) =d + (d) = +5+0.15, c(z) = 1.



Case of random perturbations :

Garnier, Opt. Comm., 2002 : collective coordinate approach on
the complete model

We consider :
» dn=d(t)=0

> m(t) = B(t) is a white noise i.e 3 is Gaussian and
(B(t)B(s)) = o0d(t — s)
natural if the correlation length of m is much less than the
deterministic characteristic length

Mathematical notations :

idu+ 9%uodf + |ulPudt =0, x €R, t >0

» 3 = fB(t) : real valued Brownian motion

» 92uodp : Stratonovich product



Global propagation of solutions :

Marty, PhD Thesis, 2005 : case |u|?u replaced by f(|u|?)u,
f smooth and bounded ; regular solutions.

AdB, A. Debussche, JFA 2010 : Global propagation of solutions if
N(0) is finite

» No Hamiltonian conservation ~~ use of “Strichartz” estimates
» Representation of the solution :

u(t,x) = S(t,0)up + i/ot S(t,s)|ul?u(s)ds

with S(t,s) = e/(B()=B()A given by

1 [ e
St = (g —sy) ] €7 ey

not a convolution in time.



Diffusion-approximation :

Continuity of the solution w.r. to the Brownian paths ~

» m centered stationary process + classical ergodic assumptions

> v© solution of
i0;v +em(t)02v + 2|v[Pv = 0

then u°(t,x) = v(Z%, x) converges in law as & goes to zero to the

solution of
idu 4 0002u o dB + |ul?u dt =0

with the same initial state, and with
+oo
og = 2/ E[m(0)m(t)]dt
0

Also true with the addition of (small) residual dispersion £2d,,.



Remarks :

» A. Debussche, Y. Tsutsumi, JMPA 2011 :
Global propagation (for finite N(0)) still true for

idu+ 02uodB + |uf*u dt =0

contrary to the deterministic case. Make use of “local
smoothing properties” of the linear equation.

» scaling argument : 3(t) Brownian Motion ~» A\Y23(t/\) is
also a B.M. ~ |u[®u should be the critical nonlinearity in L?
(invariant by the L2 scaling)

» Global propagation in the cubic case still true with d,, # 0,
hence d(t) # 0.

» Long distance behavior?



Numerical simulations

R. Belaouar, AdB, A. Debussche : ul approximation of u(ndt, jox)
» Splitting + spectral
» Finite differences in time and space
Crank-Nicolson :

(%( n+1 (7)_‘_ Xn (un+1/2_2 n+1/2+un—|—1/2)

N AR J—1
_ %(|u”]2+]u”+1]2) n+1/2

(xn) : family of independent A/(0, 1)
Relaxation scheme C. Besse, 1998

i +1 n n+1/2 n+1/2 n+1/2 n+1/2 n+1/2
*(Un n)+ 5 (_/+1 —2u U )= ¢J' Yj

St
%(¢n 1/2+¢n+1/2)_’ n’2



Semi-discrete Crank-Nicolson :

.Upy1 —
+5t ﬁAUn+1/2 + (|Un| + |Un+1| )un+1/2 =0

has order one in time :

lim P( max _ |un — u(ta)| i = cat) =0

C—o0 ,,:0,...751;

uniformly in 0t, provided ug € H' ; in addition, for any § < 1 there
is a r.v. K5 such that

max _ |up — u(ty)|m < Ks(0t)°
n0,. T

R. Marty, 2011 : Same result for Strang splitting and Lipschitz
nonlinearity



Ideas of proof :

» convergence of the scheme : compactness method
» use of a cut-off ~» Lipschitz nonlinearity
> linear case :

Vnt1 — Vp Xn
+ Av, =0
St \/& +1/2

> [0(nt,€) — Un(€)? = |1 — ™ ©2[9(&)[* with

M) = SVFtniléf? — 2arctan( Yt i€

k=0

which implies (martingale inequalities)

E( max | |vo— v(tn)%) < Ca(0t)E(|v0l30)

.
n=0,, L
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Polarization mode dispersion

A phenomenon due to birefringence : the light is a vector field and
components of E travel with different group velocities

In realistic situations, birefringence parameters non uniform;
random variations in orientations on a length scale of ~ 100m with
zero average

Residual effects ~~ pulse spreading, called polarization mode
dispersion (PMD)

“F‘“wg




Model for random variations of birefringence :
Way-Menyuk, 1994, 1996 :
OA OA | do A

i— + bEA + by —
,az+ t 8t+28t2

5 IARA + (AtosA 1 (AA
6 03 )U3A+3 - Y

b = An : birefringence strength, b’ = % and X is a 2 X 2 matrix

with random coefficients depending on z
Assume (random) orientation angle 6 such that

do L

— = 2ea(z e2="«<p

dZ ( )7 g

« : real valued centered Markov process, with unique ergodic
invariant measure

£, correlation length of «

-+ averaging over fast oscillations ~» Manakov PMD equation



Manakov PMD equation
Garnier-Marty, 2006 :

,0X do 9°X 8 v 2 W) oX 1
i (E:X)+ 5 55 (6x)+5 X o)~ (N = (),
with
_ (P = |ef? 201 B
7= ( 22U —|1/1|2 + ’V2’2 = o1my(t)+oama(t)+o3ms(t)

and v is obtained as
dv = i\/yc(o1v(t) o dWi(t) + oo (t) o dWa(t)) + ivsosv(t)dt

o; : Pauli matrices
N : cubic term with random coefficients depending on v

(N) : same with averaged coefficients w.r.t. invariant measure of v



PMD correlation length much smaller than deterministic length zg
~» small parameter ¢ such that

» correlation length of order one

» fiber length of order ¢ 2

Then, setting X°(t,x) = 1X(%, %) and o.(t) = o (%), we get the
evolution

.OX® do %X ib oX®
IW(t,X)—F 5 8 a0 ( ) ?Ug(t)g(t,X)—i—Fue(t)(xa):O

with

Fue(t)(xe)—*lxl2x+ N=(X) = (N(X)))

6(

and N° is the same as N with v(t) replaced by v°(t) = v(%)



Diffusion approximation :
Garnier-Marty, Wave Motion, 2006, linear case
AdB, M. Gazeau, to appear in Ann. Appl. Prob., full model
Under standard assumptions on the original (C? valued) process v
defining (my, mp, m3) :
» Existence of a unique global adapted square solution in L? for
all positive

» Moreover, if Xo € H3, then for any stopping time 7 with
T < 7" a.s., the process X: (stopped at 7) converges to X in
distribution in C([0, T], H'), where X, is the unique local

solution of
do 0°X 8 E
. 2 . _
idX + (28X2 +gX| X> dt + 'ﬁkgleké’xX o dW, =0



numerical simulations

Mean amplitude of each component

Initial state : Manakov soliton




Evolution of the energy /pulse width (in mean)
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Same simulation with different initial state
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Evolution of the energy /pulse width (in mean)
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