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Goal : Determining the shape of an object from measurements of the electromagnetic
far-field it scattered

ui

usDielectric Object

incident field

scattered field

scattered far-field

us∞

Ω

Direct scattering problem : find us knowing ui and Ω
Inverse scattering problem : find Ω knowing us (us∞ from far-field point of view)
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Two main approaches
Pros and cons

Two main approaches

Two traditionnaly approaches to solve those kind of problems :

1 Sampling methods : find the solution of a linear Fredholm equation of the first
kind

2 Non-linear optimization schemes : reconstruction is performed iteratively from an
initial guess
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Two main approaches
Pros and cons

Sampling methods

Sampling methods such as the linear sampling method (LSM) :

No need to solve the direct nor adjoint scattering problem

Quick solve

Very little a priori information is needed (nor the number of scatterers, nor if the
object is penetrable or not, nor which kind of boundary conditions is satisfied by
the total field on the boundary)

Lack of precision

Only provides a reconstruction of the support of the scatterer (no way to find the
point value of the index of refraction in the case of inhomogenious scattering)
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Two main approaches
Pros and cons

Iterative methods

Iterative methods such as the gradient method (with level-set framework) :

Can reach a good accuracy

Slow solve

Local convergence, so need a ”not too bad” first approximation

Need a priori information on the scatterer

Need to solve forward and adjoint problems
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Two main approaches
Pros and cons

Topological gradient method

Topological gradient method :

Can create and destroy inclusions : topology changes naturaly handled during the
process of optimization

Can be used iteratively or not

Need a priori information on the scatterer as the gradient method.

Need to solve forward and adjoint problems

Dimitri Nicolas joint work w/ G. Allaire and H. Haddar Hybrid methods for inverse scattering problems



Introduction
The coupling

Focus on the Topological Gradient computation
Numerical simulations

Focus on the second order computation
Numerical simulations

Conclusions and futur work
Questions?

Annexe

Two main approaches
Pros and cons

Second order shape derivative method

Second derivative of the shape functionnal (iterative method too) :

Can reach a better accuracy than first order or accelerate the convergence rate

Slower solving than iterative method : need to solve more forward and adjoint
problems

Local convergence too

Need a priori information on the scatterer too

How to approximate the best way the second order shape derivative.
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Details on methods

Idea : Coupling between the linear sampling method, the gradient method with the
level-set formalism and the topological gradient method and/or second order schemes.
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Idea : Coupling between the linear sampling method, the gradient method with the
level-set formalism and the topological gradient method and/or second order schemes.

The linear sampling method used to find quickly an initial guess whose accuracy
depends on a cutoff parameter.
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Idea : Coupling between the linear sampling method, the gradient method with the
level-set formalism and the topological gradient method and/or second order schemes.

The linear sampling method used to find quickly an initial guess whose accuracy
depends on a cutoff parameter.

The level-set method used to go closer to the true shape (if close enough
already...)
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Idea : Coupling between the linear sampling method, the gradient method with the
level-set formalism and the topological gradient method and/or second order schemes.

The linear sampling method used to find quickly an initial guess whose accuracy
depends on a cutoff parameter.

The level-set method used to go closer to the true shape (if close enough
already...)

Whenever the use is needed (by a posteriori information first), use of the
topological gradient method to get other connected component and to accelerate
the convergence.
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Idea : Coupling between the linear sampling method, the gradient method with the
level-set formalism and the topological gradient method and/or second order schemes.

The linear sampling method used to find quickly an initial guess whose accuracy
depends on a cutoff parameter.

The level-set method used to go closer to the true shape (if close enough
already...)

Whenever the use is needed (by a posteriori information first), use of the
topological gradient method to get other connected component and to accelerate
the convergence.

Use of second order approximation to get a better accuracy.
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Helmholtz in the dielectric case

We look first for the scattered plane wave u ∈ H2
loc (R

2) such as :































∇.(
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µ
) + k2ǫu = 0 in R

2

u = ui + us in R
2

lim
R→∞

∫

SR

|∂ru
s − ikus |2ds = 0

Ω1

Ω2

Γ

ǫ1, µ1

n

ǫ2, µ2
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The minimization problem

We can write us as :

us =
e ik|x|

|x |
1
2

(us∞(x̂) + O(
1

|x |
))

with x̂ = x
|x|

∈ S1 and us∞ the far-field up to a constant.

For an incident plane wave ui (x) = e ikx.d , we measure in d ∈ S1 directions

us,mes
∞ (x̂ , d) the far field computed for the true shape

us∞(Γ)(x̂ , d) the far field computed for the current iteration shape

The problem :

Find Γmin which minimize the following functionnal :

J (Γ) :=
1

2
‖u∞(Γ) − umes

∞ ‖2
L2(S1×S1)
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The Linear Sampling method

The far field pattern us∞ defines the far-field operator F : L2(S1) → L2(S1) by

(Fg)(x̂ ) :=

∫

S1
us∞(x̂ , d)g(d)ds(d)

The Linear Sampling method is to find g = g(., z) ∈ L2(S1) of :

Fgz (x̂) = φ∞(x̂ , z)

where z ∈ R
2 and φ∞(., z) is the far-field pattern of the fundamental solution φ(., z)

of the Helmholtz equation.

[Colton D., Kress R., Inverse acoustic and electromagnetic scattering theory, Second
edition, Applied Mathematical Science, 93. Springer-Verlag, Berlin, 1998]
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The Linear Sampling method

The far field pattern us∞ defines the far-field operator F : L2(S1) → L2(S1) by

(Fg)(x̂ ) :=

∫

S1
us∞(x̂ , d)g(d)ds(d)

The Linear Sampling method is to find g = g(., z) ∈ L2(S1) of :

Fgz (x̂) = φ∞(x̂ , z)

where z ∈ R
2 and φ∞(., z) is the far-field pattern of the fundamental solution φ(., z)

of the Helmholtz equation.

The more gz is high, the more there is a chance z ∈ Ω.

[Colton D., Kress R., Inverse acoustic and electromagnetic scattering theory, Second
edition, Applied Mathematical Science, 93. Springer-Verlag, Berlin, 1998]
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The Linear Sampling method

The far field pattern us∞ defines the far-field operator F : L2(S1) → L2(S1) by

(Fg)(x̂ ) :=

∫

S1
us∞(x̂ , d)g(d)ds(d)

The Linear Sampling method is to find g = g(., z) ∈ L2(S1) of :

Fgz (x̂) = φ∞(x̂ , z)

where z ∈ R
2 and φ∞(., z) is the far-field pattern of the fundamental solution φ(., z)

of the Helmholtz equation.

The more gz is high, the more there is a chance z ∈ Ω.

Need of a ”cutoff” value.

[Colton D., Kress R., Inverse acoustic and electromagnetic scattering theory, Second
edition, Applied Mathematical Science, 93. Springer-Verlag, Berlin, 1998]
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The Gradient method

The general form of a shape derivative in the direction θ is

J ′(Ω)(θ) =

∫

∂Ω
νθ.nds

where the function ν defines the descent direction θ with :

θ = −νn

Update of the shape with :
Ωn+1 = (Id + tθ)(Ωn)

where t > 0 is a small descent step. Formally :

J (Ωn+1) = J (Ωn)− t

∫

∂Ω
ν2ds + O(t2)
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The Gradient method : Level-Set framework

Shape Ω is characterized by the zero level-set of a function φ.

The level-set method will move the shape Ω (hence φ) by solving the following
Hamilton-Jacobi advection equation

∂φ

∂t
+ V | ∇φ |= 0
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The Gradient method : Level-Set framework

Shape Ω is characterized by the zero level-set of a function φ.

The level-set method will move the shape Ω (hence φ) by solving the following
Hamilton-Jacobi advection equation

∂φ

∂t
+ V | ∇φ |= 0

1 Find the descent direction V by computing the shape derivative of the
functionnal we want to minimize : advection velocity V = −ν
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The Gradient method : Level-Set framework

Shape Ω is characterized by the zero level-set of a function φ.

The level-set method will move the shape Ω (hence φ) by solving the following
Hamilton-Jacobi advection equation

∂φ

∂t
+ V | ∇φ |= 0

1 Find the descent direction V by computing the shape derivative of the
functionnal we want to minimize : advection velocity V = −ν

2 Solve the H-J equation to get the new moved shape characterized by φ = 0.
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The Topological Gradient method

Look at each point x0 of the mesh if it is fruitful to create a small infinitesimal

inclusion.

Two problems : the non-perturbed problem and the one perturbed by the add of a ball
of size ρ at the point x0.

Definition

χ the characteristic function of Ω1

χωρ
the characteristic function of ωρ

χρ = χ+ χωρ

Ω1

Ω2

Γ

ǫ1, µ1

n

ǫ2, µ2

ωρ

x0

ρ
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The Topological Gradient method

Definition

The topological gradient is defined by the Taylor expansion :

J (χρ) = J (χ) + ρdDJ(x0) + o(ρd )

with the cost function J defined before.

We then get a map x0 → DJ(x0). The more DJ(x0) is negative, the more we should
create a small inclusion at the point x0.

Need of a ”cutoff” value also

[Sokolowski, A. Zochowski, On the topological derivative in shape optimization, SIAM
J. Control Optim., 37, pp.1251-1272 (1999)]
[Céa J., Garreau S., Guillaume P., Masmoudi M., The shape and topological
optimizations connection, Compute. Methods Appl. Mech. Engrg 188, 713-726 (2000)]
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Computation of DJ

Computation of DJ

We get the topological gradient DJ(x0) (For each point x0 of the underlying grid) for
an inclusion of medium n°1 (µ1, ǫ1) into a matrix of medium n°2 (µ2, ǫ2) :

Topological Gradient expression

DJ(x0) = ℜ{
−2π(µ2 − µ1)

µ2(µ1 + µ2)
∇uχ(x0).∇pχ(x0)− πk2(ǫ2 − ǫ1)uχ(x0)pχ(x0)}

with uχ and pχ solutions of the forward (2) and adjoint (3) problems respectively.
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A way to handle topology changes
A way to improve the speed of convergence

Parameters

Implementation in scilab and Fortran.

Simulations over a uniform 60x40 grid

10 incident plane waves and 10 measures over 360°

1% noise

Wavelenght λ = 1
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A way to handle topology changes

Big square is 0.5 wide and little square 0.3 wide. Both separated by 0.3
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Figure: Initialisation of a square with a rectangle (little square missed on purpose)
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Figure: 4th iteration with the Level-Set method
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Figure: 5th iteration with the Topological Gradient method
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A way to handle topology changes

Topological gradient succeeded in finding the little square with

very few measurements

a wavelenght 3 times larger than the size of the little square
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Figure: Initialisation with the Linear Sampling method
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Figure: 2nd iteration with the Level-Set method
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Figure: 3rd iteration with the Topological Gradient method
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A way to improve the speed of convergence
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Figure: Convergence history with and without the use of the Topological Gradient
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The second order shape derivative
BFGS approximation

The second order derivative

Let Ωn+1 = (I + θ̃)(Ωn). The Taylor series of J ′(Ωn+1)(θ) yields for each θ

J ′(Ωn+1)(θ) = J ′(Ωn)(θ) + (J ′)′(Ωn)(θ, θ̃) + ...

So we got to find θ̃ by solving

−J ′(Ωn)(θ) = (J ′)′(Ωn)(θ, θ̃) ∀θ

But in this above formula, (J ′)′ is complicated. We got, for θ fixed, to solve a PDE
for each θ̃ we set. So we use a BFGS approximation in finite dimension to simplify and
see what happens.
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The second order shape derivative
BFGS approximation

BFGS approximation

A way to find this θ̃ is to use a Quasi-Newton method with an approximation of the
inverse of the so-called Hessian matrix (J ′)′.

We use the following BFGS approximation (in finite dimension) :

BFGS : approximation of the inverse of the Hessian

H−1
k+1 = (I −

dkδ
T
k

dT
k δk

)TH−1
k (I −

dkδ
T
k

dT
k δk

) +
δkδ

T
k

dT
k δk

with dk = ∇J (xk+1)−∇J (xk) and δk = xk+1 − xk . We parametrize Γk = ∂Ωk so
that ∀k, the number of points of Γk be the same. Hence we can approximate J ′(Γk )
by ∇J (xk), ∀k such that xk ∈ Γk .
Then,

θ̃k = −H−1
k ∇J (xk)
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Better accuracy and speed of convergence

Better accuracy and speed of convergence

Figure: 15th iteration with a usual first order method
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Better accuracy and speed of convergence

Better accuracy and speed of convergence

Figure: 15th iteration with BFGS method

Dimitri Nicolas joint work w/ G. Allaire and H. Haddar Hybrid methods for inverse scattering problems



Introduction
The coupling

Focus on the Topological Gradient computation
Numerical simulations

Focus on the second order computation
Numerical simulations

Conclusions and futur work
Questions?

Annexe

Better accuracy and speed of convergence

Better accuracy and speed of convergence

Figure: Blue : Second order derivative, green : normal method
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Conclusions

The Linear Sampling method allow to get a first approximation. The Level-Set
method, which converges only locally, can get us closer to the true shape.

The Topological Gradient allow us to get other connected components we
eventually missed from the beginning.

The topological Gradient can improve the speed of convergence of the algorithm
if we use it at the right moment.

Second order schemes is only slightly better than first order method on first tests.

⇒ Still the question to know when to use the topological gradient effciently.

⇒ Better implementation of the topological gradient method for faster computation.

⇒ Find the true second order shape derivative and use it in an iterative method
(approximations will be needed).
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Questions ?

Thank you !
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A Lagrangian method

Use of the following lagrangian to determine the adjoint

L(s, t) =
1

2
‖ s∞(s) − smes

∞ ‖2
L2(S1×S1)

+ℜ{

∫

BR

[−
1

µ
∇s∇t̄ + k2ǫst̄]−

∫

SR

[TR(s) − g ]t̄}

that leads to the forward and adjoint problem (2) and (3). By taking v = uχρ
− uχ

and q = pχρ
− pχ, where uχρ

and pχρ
are the respective solution of (4) and (5), v is

then solution of the following problem :































∇.(
∇v

µχρ

) + k2ǫχρ
v = ∇.(χωρ

[
1

µ
]∇uχ) + k2[ǫ]χωρ

uχ in BR

v = usχρ
− usχ in BR

1

µ

∂v

∂n
+ TR (v) = 0 on SR

(1)

q is solution of the adjoint problem of this above problem (not written here)
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Forward and adjoint problems































∇.(
∇uχ

µχ

) + k2ǫχuχ = 0 in BR

uχ = ui + usχ in BR

1

µ

∂uχ

∂n
+ TR (uχ) = g on SR

(2)































∇.(
∇pχ

µχ

) + k2ǫχpχ = 0 in BR

pχ = pi + psχ in BR

1

µ

∂pχ

∂n
+ TR (pχ) = Sχ

∞ on SR

(3)
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Perturbed forward and adjoint problems



































∇.(
∇uχρ

µχρ

) + k2ǫχρ
uχρ

= 0 in BR

uχρ
= ui + usχρ

in BR

1

µ

∂uχρ

∂n
+ TR (uχρ

) = g on SR

(4)



































∇.(
∇pχρ

µχρ

) + k2ǫχρ
pχρ

= 0 in BR

pχρ
= pi + psχρ

in BR

1

µ

∂pχρ

∂n
+ TR (pχρ

) = Sχ
∞ on SR

(5)

with

Sχ
∞ = µTR(H(u∞(χ)− umes

∞ )) +
∂H

∂n
(u∞(χ)− umes

∞ )
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Difference between (J ′)′ and J ′′

If J (x) and x lives in a linear space then we have (J ′)′ = J ′′. But we have J (Ω)
and Ω is not a linear space. We use the parameter θ to define the variations of Ω. And
even if θ lives in a linear space, we have the following :

(Ω + θ) + θ̃ 6= Ω+ (θ + θ̃)

Indeed by definition Ω + θ = (I + θ)(Ω), so

(Ω+ θ) + θ̃ = (I + θ̃) ◦ (I + θ)(Ω) = (I + θ+ θ̃ ◦ (I + θ))(Ω) = Ω+ (θ+ θ̃ ◦ (I + θ)(Ω))

We got the following relation between (J ′)′ and J ′′ :

J ′′(Ω, θ, θ̃) = (J ′)′(Ω, θ, θ̃)− J ′(Ω, θ.∇θ)

[J. Simon. Second variation for domain optimization problems. In Control and
estimation of distributed parameter systems,Birkhäuser (1989), 361-378]
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Plot of exterior normals

Figure: 15th iteration with 2nd order method and plot of exterior normals
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