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Engineering activities during the life cycle of an

January 9, 2012
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Figure: Life-cycle of a product/service/utility
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Scope of the presentation
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Figure: Design phases
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What is our technical objective?

PROPULSION
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Figure: Portfolio of technical performances
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Performances
Aerodynamic: Drag,
Mass: Maximum Weight,
Acoustics: Perceived Noise Level,
Energy: Maximum Electric Power,

Propulsion: Specific Fuel Consumption...
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A naive presentation of the engineering challenge

m A target 7 is given to the variable y*. This target can evolve during
the time of the design.

m These performances are uncontrolled for many reasons (lack of
knowledge, variability, approximation, dependency, ...).

m The amount of available information Z for each variable y* evolves
during the time of the design (either over the knowledge of the input
variables, parameters, mesurements, availability of numerical
models).

m At a given time of the design, these technical performances must be
estimated with a level of confidence.
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A naive presentation of the engineering challenge
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Figure: Evolution of a performance during the design phase
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A naive presentation of the engineering challenge
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Figure: An uncertainty study at a given time of the design
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A naive presentation of the engineering challenge

Performance y,
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A naive presentation of the engineering challenge

In a probabilistic framework, two main goals can be identified:

To control the stochastic behaviour of the performances y* to reach
the initial or adapted target T .

To estimate on-demand some measures of risks during the time of
the design.
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A naive presentation of the engineering challenge

In a probabilistic framework, two main goals can be identified:

To control the stochastic behaviour of the performances y* to reach
the initial or adapted target 7.

To estimate on-demand one or several measures of risks
during the time of the design. —> This is a new discipline for
engineers and where we focus our current efforts!
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What kind of information do we manipulate?

m A reference database (Y7, - ,Y}) that is enriched during the
design cycle.
m A panoply of numerical models H = {hy,--- , hp} that is

enriched during the design cycle.

m A quantification of the uncertainties attached to the inputs of
the numerical models represented by a statistical law Px that is
enriched during the design cycle

m A definition of the target 7 and its associated level of confidence
« to be reached that is enriched during the design cycle.

m A global computational budget B that can be allocated at
different times of the design cycle.
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What kind of information do we manipulate?

m Reference model h*: Usually not
accessible, expression of a natural or a
complex technical object.

m Theoretical model hy,: Scientific
expert activity (theoretical solution of v T e
a PDE system, ...), corresponding to e Nomoteamoge
the level of understanding and . —
simplification of the problem.

—— Original phenomenon h.,

m Numerical model hnum: Numerical
solution of the theoretical model
(effects of meshing, choice of a
numerical scheme)

m Implementation model h: Software
implementation of the model on a
given hardware architecture (computer
accuracy, choice of coding rules, ..).
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What kind of information do we manipulate?

h; is a numerical representation of the phenomenon, and is represented by a
function (also called “model”) belonging to F(X; x ©;,)).

y —— Original phenomenon h,
Implementation model h
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What kind of information do we manipulate?

Page 10

Dimension: h is classically a real function belonging to F(RF x RT,R®).
Even if the dimension of x can be large, most of the engineering problems
we are focused on only contain P < 50 and Q < 5.

Computational budget: A single computation of h can be very expensive.
The computational budget | will be represented by the number m of runs
affordable to solve the problem.

Black box/white box: h is either a black box (the inner operations of the
model are not accessible), a grey box (part of the inner operations is
accessible) or a white box (all the operations of the model are accessible).

Mathematical properties: the basic mathematical properties (regularity,
monotony, linearity or non linearity towards certain parameters) may be
unknown to the engineer.

Domain of validity: h should be delivered with its domain of validity
Vi CRP x RT.
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What kind of information do we manipulate?

Example:
m Model h;: Linear regression based on a database D,
m Model hy: Neural network based on a database D,

m Model h3: Linear PDE model based on a simplified geometry Gs and
solved by numerical method M

m Model hs: Linear PDE model based on a simplified geometry Gs and
solved by numerical method M>

m Model hs: Linear PDE model based on a complex geometry G¢ and
solved by numerical method M1

m Model hg: Non linear PDE model based on a simplified geometry Gs and
solved by numerical method M

m Model hp: Non linear PDE model based on a complex geometry G¢ and
solved by numerical method M3
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Outline
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Notations

m Variable of interest: Y* with values y* € R® and unknown statistical law

Q

m Reference database: ((Xi,Y7),---,(X};,Y*)) or (Y1,---,Y5) when the
Xj's are not observed

m Model h: he H ={hy,--- ,hp}, h:(x,0) € X x O —~y=h(x,0)ey

m Computational budget B: m simulations (Xi, h(Xk,0)),_; .. ,, with X;
iid following Px.

m Features of interest: (p;(Q))jcs,pi(Q) € F;. Also abusively noted p(Y7).

Page 12 EADS
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Definitions

Definition: A contrast function is defined by:

V: Fx)Y —R
(py) = V(py)

mF=R:
m Mean-squared contrast: W(p,y) = (y — p)?
m F = {Set of density function}:

m Log-contrast: V(p,y) = —log(p(y))
m Lr-contrast: W(p,y) = ||p|I3 — 20(y)

age 13 EADS
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Definitions

Definition: Given (V,F,Q), the risk function Ry is a real function
defined as:

VpeF, Rulp) = /y W(p, v) Qdv) = Evg [¥(p, V)

= p = pn(0)
m Ry(h,0) =Evy-wq [V(pn(0), Y7)]
m Some classical risk functions:

m The mean-squared contrast gives a distance between means:
Ru(h,0) = (E[Y*] — pn(6))* + Var [Y"]

m The log-contrast gives the Kullbach-Leiber divergence between pdfs:
Ru(h,0) = KL(~~, pr(0)) — E [log(Y*)], where
KL(g1,82) = [ log(£:(v) g1(y) dy
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Pb 1: Mono feature estimation by a single model approach

Let Q be the unknown probability measure associated to the real random
variable Y* defined over (R?, B(R®),Q). Our main goal is to predict
one feature p(Q) of the distribution Q.

General description of the statistical problem

We want to develop robust estimation procedures of the feature p based
upon the availability of a reference database (Y7, --,Y}), a numerical

model h(x,8), with X following Px and a computational budget B that

can be spent either m times all at once or in an adptative way.
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Pb 1: Mono feature estimation by a single model approach

Examples of probabilistic measures of risk p(Y*)

Mean:
Variance:
Quantile:

Probability:
CDF:
PDF:

Page 15

pu(Y") =E[Y"]
po(Y") = Var[Y7]
pa(Y*) = aq,(Y")
pp(Y") =P(Y" € Dp)
pear(Y") =P (Y™ <y*)
Ppdfr(Y*) = = (y*)

eF=R
eF=R,
cF=R,
eF=10,1]

€ F = Fur(R?,[0,1])
€F = Four(R,R,)
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Pbl: Example of density prediction

Suppose that (X7, Y1), ..., (X}, Y}) are available.

n

m Calibration of # by mean-Squares minimization

n

~ 1
Ops = Argmin = § (Y7 — h(XF,6))?
00 Py
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Pbl: Example of density prediction

Suppose that (X7, Y1), ..., (X}, Y}) are available.

n

m Calibration of # by mean-Squares minimization

n

~ 1
Ops = Argmin = § (Y7 — h(XF,6))?
00 Py

m Prediction of p R
Compute the probability density of h(X,8ps) under X ~ Px

— fMS
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Pbl: Example of density prediction

Other M-estimators...
m Kullback-Leibler minimization KL(fi, ;) = [}, log( f—l) f
- f = density of Y*, fy = density of h(X, 6)
- Goal: Find 6 that minimizes KL(f, fy).
m Two difficulties
- f is unknown — replaced by " =137 4y,
- fy untractable — replaced by a simulation density (Kernel,

projection, etc...) (fe’" =1 Sy Ko (- = h(X;,0)), X o~ ]Px>
m M-estimator
Ox = Argmin KL(f", ") = Argmin — = Z log(f,")(Y7)
0ecO 0cO

m Prediction R
Compute the probability density of h(X,0x.) under X ~ Px

— fK[_
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Question ?

What is the "best" estimator of f

fMS or fKL 7
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Pb 1: Toy application

m Y =sin(X*)+00le, X" Le~N(0,1)
m A(X,0) = 01 + 6> X + 63 X3, X ~P* = N(0,1)
m n=>50and m=10°

Kernel smoothing

‘\' /on empirical data
\
A
\
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Pb 1: Toy application

m Y =sin(X*)+00le, X" Le~N(0,1)
m A(X,0) = 61 + 62 X + 63 X3, X ~P* = N(0,1)
m n=>50and m=10*

Density predictions

~
54
©
@4
—— true pdf
—— log-contrast pdf
0 | reg-contrast pdf
S mean-contrast pdf
=== experimental data pdf
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Pb1l: Theoretical results from N. Rachdi PhD Thesis

Under some conditions on the contrast W and under tightness conditions,
for all € > 0, with high probability it holds:

N KGw) n (e
0 < Ru(h) ~ jof (Ru(h0) < 02 (142 (i + En))

where K(E,3 v); K(Eﬁ p) Some concentration constants and B,, a bias factor

a2 EADS
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Pb1l: Theoretical results from N. Rachdi PhD Thesis

Under some conditions on the contrast W and under tightness conditions,
for all € > 0, with high probability it holds:

N Kw) N (e
0 < Ru(h) ~ jof (Ru(h0) < 02 (142 (i + En))

where K(E/3 v); K(Eﬁ p) Some concentration constants and B,, a bias factor

m Nonasymptotic result, i.e valid for all n,m > 1

m infoco (Rw(h,0)) = the minimal risk we can achieve for W
= Modeling error (mesh size ..., model complexity)

/n
complexity and size of the databases

Page 20 EADS

w [ow (1 + \/E(K(%h) + Bm)) = Statistical error linked to model
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Proof Ingredients

to identify empirical processes

m Step 1: def. (9\“, + def. 6y + assumptions
we prove that 3a, b, ¢, (¢ — 0) such that

m Step 2: two empirical processes suprema

m Step 3: union bound + tightness

Page 21 EADS
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Proof Ingredients

to identify empirical processes

m Step 1: def. Oy + def. Oy + assumptions
we prove that 3 a, b, ¢, (¢m — 0) such that

~ . a b «
R‘U(e‘u) < 522 (R\U(Q)) + % ||G"||W(,€,w) + ﬁ HKm”P(,iJ,) + Cm -

m Step 2: two empirical processes suprema

m Step 3: union bound + tightness
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Proof Ingredients

to identify empirical processes

m Step 1: def. Oy + def. Oy + assumptions
we prove that 3 a, b, ¢, (¢m — 0) such that

a b
7 1Gnllw,.uy + = HKTnHPw,,) + Cm -

Ry(B) < jnf (Rw(0) + = NG

m Step 2: two empirical processes suprema

m Step 3: union bound + tightness
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Proof Ingredients

to identify empirical processes

m Step 1: def. by + def. Oy + assumptions
we prove that 3 a, b, ¢, (¢m — 0) such that

~ . a b N
Ru(Ov) < 9'2}; (Rw(0)) + 7 Gallwew) + NG K2, 4y + Em -

m Step 2: two empirical processes suprema

® Gn(-) :==Vn(Qn — Q)(-); Wiy ={y €Y= V¥(s(}), y), A€V}

o K5() = vVm(Pr — P)(); Prow = {x € X > w(h(x,0))(\), (6,) € © x ¥}
m Step 3: union bound + tightness
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Proof Ingredients

to identify empirical processes

m Step 1: def. Oy + def. Oy + assumptions
we prove that 3 a, b, ¢, (¢m — 0) such that
m

~ . a b N
Ry (Ov) < 9'22) (Ru(0)) + 7 Gallwiw) + NG 1Kl py + €m -

m Step 2: two empirical processes suprema

® Gn() == v/n(Qn— Q)(-); Wiew) ={y €Y= V¥(k(N),y), X €V}

o Kin(:) = v/m(Pr, = P)(:) Piep = {x € X = w(h(x,0)(N), (6,A) € © x V}
m Step 3: union bound + tightness

o tightness --» "complexity" of classes of functions W, v), P(x,n)
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Proof Ingredients

to identify empirical processes

m Step 1: def. Oy + def. Oy + assumptions
we prove that 3 a, b, ¢, (¢m — 0) such that
m

~ . a b N
Ru(Ov) < 9'22) (Ru(0)) + n Gallwiw) + NG 1K llPy 4y + €m -

m Step 2: two empirical processes suprema

® Gn(-) :==Vn(Qn — Q)(-); Wiy ={y €Y= V¥(s(A), y), A€V}

o K5() = vVm(Pr — P)(); Prom = {x € X s (h(x,0))(\), (6,) € © x ¥}
m Step 3: union bound + tightness

e tightness --» Bracketing entropy of the classes W, w), P(x,n)
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Pb1l: Theoretical results from N. Rachdi PhD Thesis

m Compare Rys(Oyr) and Rys(0y)
study the difference  Ry» (@wp) — Ruye (@w)

m By definition of fyr: Rys(Bur) — Rur(By) < 0 for all By

m Question : RW(EW) - R\up(gw) <
0? a.s?w.h.p? in L17?---difficult in general?

Feature of interest: p? = E(Y) --» WP : (p,y) — (p— y)?

Model: h(X,0) = &(X) -0, &= (¢1,..., %) orho. w.r.t Px
Suppose: Y; = ®(X;) - 0" +¢;, E(g;)=0i.id

e Let 2 W-estimators: Gur = Argming.g S.7, (Y; — E®(X) - 0)? and
Bureg = Argmingeo 357, (¥ = ©(X) - 6)°

o Result:

Page 22 Ex;,v)1..n (Rw(b\w) — Rue (/éw)) <0 E[«\l_‘,b
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Inverse Problems Applications

N. Rachdi, JC. Fort & T. Klein Stochastic Inverse Problem with Noisy
Simulator (2011) submitted

m Fuel Mass data:

[ Reference Fuel Masses [kg] |

7918 | 7671 | 7719 | 7839 | 7912 | 7963 | 7693 | 7815
7872 | 7679 | 8013 | 7935 | 7794 | 8045 | 7671 | 7985
7755 | 7658 | 7684 | 7658 | 7690 | 7700 | 7876 | 7769
8058 | 7710 | 7746 | 7698 | 7666 | 7749 | 7764 | 7667

m Model (noisy simulator):

INPUT SOFTWARE oureur

m Goal: Identify SFC (Specific Fuel Consumption)

Page 23 EADS
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Pb 2: Mono feature estimation by a panoply of models

Let Q be the unknown probability measure associated to the real random
variable Y* defined over (R?, B(R®), Q). Our main goal is to predict
one feature p(Q) of the distribution Q.

General description of the statistical problem

We want to develop robust estimation procedures of a feature p based
upon the availability of a reference database (Y7, - ,Y}), a panoply of
numerical models H = {hy,--- , hp}, with h; € F(X; x ©;,)) and X;
following Px;, and a computational budget 3. B can be split into D
computational budgets B;, each one corresponding to m; simulations of
the model h; either all at once or in an adptative way.
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Pb 3: Multi feature estimation by a single model

Let Q be the unknown probability measure associated to the real random
variable Y* defined over (R?, B(R®), Q). Our main goal is to predict
several feature (p;(Q))jes of the distribution Q.

General description of the statistical problem

We want to develop robust estimation procedures of several features
(pj(Q))jes) based upon the availability of a reference database
(Y3,---,Y;), a numerical model h(x, #), with X following Px and a
computational budget B that can be spent either m times all at once or
in an adptative way.
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Pb 4: Multi feature estimation by a panoply of models

Let Q be the unknown probability measure associated to the real random
variable Y* defined over (R?, B(R®), Q). Our main goal is to predict
several feature (p;(Q))jes of the distribution Q.

General description of the statistical problem

We want to develop robust estimation procedures of several features
(pj(Q))jes) based upon the availability of a reference database
(Y3,---,Y;), a panoply of numerical models # = {h1,--- , hp}, with

hi € F(X; x ©;,Y) and X; following Px, and a computational budget 5.
BB can be split into D computational budgets B;, each one corresponding
to m; simulations of the model h; either all at once or in an adptative way.
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» Description

Conclusion
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Conclusion

m V-estimators Oy
- Constants improvement in risk bound inequalities

- Central Limit Theorems

m Duality estimation-prediction
- Rigorous analysis, functional study of contrast functions

- More academic results

m Extension to model selection
- For a given purpose (quantile study, threshold prob. etc... ), what
model to choose ?

- Formalize the notion of "model granularity"

- # classical model selection — we know the "best" model... but too

expensive

EADS
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