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Magnetic storage
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Micromagnetism

&

@ Continuous medium Q ¢ R3

@ Magnetization m: Q — S?
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Micromagnetism

Locally the magnetization is aligned with the applied field.
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Micromagnetism
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Stray-field

Magnetic field induced by the magnetization distribution

Hg(m) = =V¢(m)
where
Agb(m) = Msdiv(m) in Q
A¢(m) = 0 outside Q
[¢(m)] = 0 across 002

{ad’ )} —m- nacross 0

Hg(m) = —MsVA~"div(m) in R3

Hy(m) is the L?—orthogonal projection of —Msm on gradient
fields
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Micromagnetism

Brown’s free energy

2y HoMs
A IVmiek [ (=(mu)-5

Hd(m)'m_,UOMs/ Hext-m
RS Q
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Micromagnetism

Brown’s free energy
A/ |Vm|2+K/(1—(m-u)2)—“°Ms
Q Q 2

Euler-Lagrange equations (remember |m| = 1)

Hd(m)'m_,UOMs/ Hext-m
RS Q

2A 2K
Hopr = Am+ m-u)u+ Hy(m) + Hext = Am,
eff 110 Ms 110 Ms( ) d( ) ext

where A = \(x) is a Lagrange multiplier

1 98(M) _ Ettoctive field

Hetr = T oMe om
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Landau-Lifschitz equation

@ describes the evolution of the magnetization inside a
ferromagnetic material

%T:—yuomxHeff—kamxg?inQ
om
%—OonaQ

@ Hgy is the effective field, o > 0 damping parameter, v
gyromagnetic constant
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Need for finite element formulations

<m>= Uy

075.

<m>//u,

Comparison FE - FD for a circular disk
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NiFe nanodot : 100 nm thick and 10 nm height
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°8m_ mx H +am><a—m
W_ YO eff ot

© Herr = ;25 Am + 200 (m - u)u + Hy(m) + Hext
@ |m(x,t)| =1 is preserved
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oa—m—— mx H +am><a—m

@ Hpy = MmsAmjL o (M- u)U + Hg(m) + Hext
@ |m(x,t)| =1 is preserved

Non linear PDE, with non local terms and a non convex
constraint...
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oa—m—— mx H, +am><a—m

@ Heyr = Mi’/\ZAm“‘ ioMs (m-u)u + Hg(m) + Hext
@ |m(x,t)| =1is preserved

Non linear PDE, with non local terms and a non convex
constraint...

What does LLG equation look like ?
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oa—m—— mx H +am><a—m

© Herr = ;25 Am + 200 (m - u)u + Hy(m) + Hext
@ |m(x,t)| =1 is preserved

Non linear PDE, with non local terms and a non convex
constraint...

What does LLG equation look like ?

Forget constants Hgs = Am+ l.0.t...

om om
a—m:05ur89
on
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What does LLG equation look like ?

Several equivalent forms (formal)

mi—amx my=—mx Am
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What does LLG equation look like ?

Several equivalent forms (formal)

mi—amx my=—mx Am

mxmg=—mx(mxAm)+amx (mx m;)

ami+mx my=(Am— (Am- m)m)

Multiplying by m; and integrating, we arrive at

a/|mt|2 2dt/|v
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What does LLG equation look like ?

Several equivalent forms (formal)

mi—amx my=—mx Am

mxmg=—mx(mxAm)+amx (mx m;)

ami+mx my=(Am— (Am- m)m)

Multiplying by m; and integrating, we arrive at

Landau-Lifshitz form

(14 a®)my = —m x Am+ o(Am — (Am - m)m)
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Known mathematical results

@ Local existence of strong solutions [Carbou-Fabrie]

@ Global existence of strong solutions for small energy initial
data (2D) [Carbou-Fabrie]

@ Global existence of strong solutions for small energy initial
data (3D only on ellipsoids) [Beauchard-A.]

@ Global existence of weak solutions [Visintin, Soyeur-A.]

@ Nonuniqueness of weak solutions (only exchange)
[Soyeur-A.]

Strong=twice differentiable, Weak = only once differentiable
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Weak solutions

m e H'(Q x [0, T], $?) is a weak solution of (LLG) if
o Ve H'(Qx[0,T])

om 0¢
/mt-gb—a/mxm,-qﬁ:/meax-aX
. ] 1

I

This is due to the fact that
-2 a?(,- (m X 6x,) =2

o3 frne e 1T

m—_mxAm.

IVm( )I?
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What about the discretization

@ A lot of existing things (Finite differences, finite volumes,
finite elements, etc.). How to deal with the constraint
Im =17
@ How to have a weak formulation ? (FE)
@ Convergence towards a solution of LLG as §t,6x — 07?
@ Stability, consistency of the scheme ? (Explicit vs implicit)
@ Implementation (robustness, speed, efficiency, etc.)

@ Algorithmic issues (FFT or FMM for stray field, linear vs
non-linear systems)

@ Scientific computing (accuracy, e.g. NIST benchs),
dissipation but not overdissipation (« small)...
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A first explicit scheme

Idea 1 : Test with a function which is orthogonal to m at every
point (tangent plane formulation)

ami+mx my = (Am— (Am-m)m)

m" ~ m(nét), m" = >, mP¢; with Vi, |m?| =1,

n={w=>;wi¢;, wi-m!=0}.
@ Forall n> 0, Find v" € K, such that Vw € K,

(%) a/v”~w+/m”><v”-w_—/Vm”~Vw
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A first explicit scheme

Idea 1 : Test with a function which is orthogonal to m at every
point (tangent plane formulation)

ami+mx my = (Am— (Am-m)m)

m" ~ m(nét), m" = >, mP¢; with Vi, |m?| =1,

n={w=>;wi¢;, wi-m!=0}.
@ Forall n> 0, Find v" € K, such that Vw € K,

(%) a/v”~w+/m”><v”-w_—/Vm”~Vw

mi + §tv]

@ Setm™" =%, mtlg;, with mt! = L1
i P mi ot
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@ The problem (*) is linear. It possesses always a unique
solution v"
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@ The problem (*) is linear. It possesses always a unique
solution v"

@ After time and space linear interpolation, the solution
converges weakly to a weak solution of (LL) when §t — 0,
6x —0,and 25 — 0

@ Like an explicit scheme for the heat equation. Difficult to
use in practice (5t very small...)
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@ The problem (*) is linear. It possesses always a unique
solution v"

@ After time and space linear interpolation, the solution
converges weakly to a weak solution of (LL) when §t — 0,
6x —0,and 25 — 0

@ Like an explicit scheme for the heat equation. Difficult to
use in practice (5t very small...)

— Implicit schemes
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Implicit schemes

@ Some have been proposed by [Bartels-Prohl]
@ Non linear iteration

@ Although unconditionally stable, the convergence of the
Newton method is guaranteed only if 5‘572 is sufficiently
small
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Implicit schemes

@ Some have been proposed by [Bartels-Prohl]
@ Non linear iteration

@ Although unconditionally stable, the convergence of the
Newton method is guaranteed only if 5‘572 is sufficiently
small

— Need for a implicit, unconditionally stable scheme with a
linear iteration
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A new implicit scheme

@ ldea 2 :Vn >0, Find v" € K, such that Yw ¢ K,

a/v”-w+/m”+1xv”~w:—/Vm”*1-VW

Too difficult... (non linear)

m" 4 6tv"

°® mn+1 L
but [mn + 5tvn|

~ m" + 5tv™ + O(512)
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A new implicit scheme

@ ldea2:¥n> 0, Find v" € K, such that Vw € K,

a/v”-WJr/m”+1 xv”-w:—/Vm”“'VW

Too difficult... (non linear)
@ vn >0, Find v € K, such that Yw € K,

a/v”-w+/(m”+6t v”)xv”-w——/V(m”+6t v")-Vw
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The 6—scheme

Take 6 € [0,1]
@ Vn > 0, Find v" € K, such that Vw € K,

/av”-w+m”xv”-w+05t/Vv”-VW:—/Vm”-VW
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The 6—scheme

Take 6 € [0,1]
@ Vn > 0, Find v" € K, such that Vw € K,

/av”-w+m”xv”-w+05t/Vv”-VW:—/Vm”-VW

m? 4+ 6t v
@ Find m*' =S mM g, withm'!' = — — — "7
ZI i ¢l i |m;7 + St Vin’
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Energy decay and renormalization

@ For w € H' being such that |w| > 1 a.e. one has

JI7m

IVWI
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Energy decay and renormalization

@ For w € H' being such that |w| > 1 a.e. one has

[[sif <o

@ Q:Is it still true after discretization ? For w = ) ; w;¢; with

|w;| > 1 do we have

[[7S e

2
g/va\z?
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Energy decay and renormalization

@ For w € H' being such that |w| > 1 a.e. one has

[[sif <o

@ Q:Is it still true after discretization ? For w = ) ; w;¢; with

|w;| > 1 do we have

[[7S e

2
g/va\z?

@ Answer [Bartels] : Yes, for P!, if the mesh is Delaunay (2D)
or has diedral angles less than 7 (3D) (**)
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Convergence result

@ The #—scheme is well defined. It needs only to solve linear
problems and converges (weakly) after interpolation (and
subsequence extraction) to a weak solution of (LL) when
5t — 0 and dx — 0 provided ¢ > } and the meshes satisfy

(*)
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Convergence result

@ The #—scheme is well defined. It needs only to solve linear
problems and converges (weakly) after interpolation (and
subsequence extraction) to a weak solution of (LL) when
5t — 0 and dx — 0 provided ¢ > } and the meshes satisfy
™)

@ When 6 = } same result if moreover §t/5x — 0.
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Convergence result

@ The #—scheme is well defined. It needs only to solve linear
problems and converges (weakly) after interpolation (and
subsequence extraction) to a weak solution of (LL) when
5t — 0 and dx — 0 provided ¢ > } and the meshes satisfy
™)

@ When 6 = } same result if moreover §t/5x — 0.

@ When 6 < 1, same result if moreover 6¢/6x% — 0.
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2nd order in time...

A priori the renormalization stage forbids an order 2 formulation
(Im+6tv| =1+ E|v2 + O(6t4)

F. Alouges



2nd order in time...

A priori the renormalization stage forbids an order 2 formulation
(Im+6tv| =1+ E|v2 + O(6t4)
ldea 3 : Look for v L. m such that

m-+étv

rotve 3
o+ sty = M0 + 06

be 2nd order precise.
One finds v = my; + & N, my
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@ Vn > 0, Find v" € K, such that Vw € K,
n n n 5t n
av' -w—+m ><v-w+§ vv'.Vw

—5;/|Vm”+s|2v”- w = —/Vm”-VW
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@ Vn > 0, Find v" € K, such that Vw € K,
n n n 5t n
av' -w—+m ><v-w+§ vv'.Vw

—5;/|Vm”+s|2v”- w = —/Vm”-VW

m? + ot v/
@ Setm™! =3, mM™ g, with m™! = —L—
i P T mr et v
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@ Vn > 0, Find v" € K, such that Vw € K,
n n n 5t n
av' -w—+m ><v-w+§ vv'.Vw

—5;/|Vm”+s|2v”- w = —/Vm”-VW

m + 5t v/

@ Set m™! =S, mM g, with m!t! = —L — "7
2.0 m; o ’ |m? + 6t v

@ Energy decay control for s = 1, to the price of a slight non
linearity
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@ Vn > 0, Find v" € K, such that Vw € K,
n n n 5t n
av' -w—+m ><v-w+§ vv'.Vw
ot n+s|2,,n n
) vm'eEvt.w = — | vm" - Vw

m? + ot v/
@ Setm™! =3, mM™ g, with m™! = —L—
i P T mr et v

@ Energy decay control for s = 1, to the price of a slight non
linearity

@ For s = 0 the scheme still needs a linear problem to be
solved but is not robust. We can not prove existence (and
uniqueness of a solution)
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Idea 4
@ Vn> 0, Find v" € K, such that Vw € K,

/(”C)Zv”-w+m”xv”~w+5t/Vv”'VW
1+ 5 |Vmn|2 2

:/Vm”-VW
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Idea 4
@ Vn> 0, Find v" € K, such that Vw € K,

/(”C)Zv”-w+m”xv”~w+5t/Vv”'VW
1+ 5 |Vmn|2 2

:/Vm”-VW

m? + ot v/
@ Setm™! =3, mM™ g, with m™! = L
i P T mr ot vy
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Idea 4
@ Vn> 0, Find v" € K, such that Vw € K,

/(”C)Zv”-w+m”xv”~w+5t/Vv”'VW
1+ 5 |Vmn|2 2

= /an-VW
m? + 6t v/
@ Setm™! =S mM g, withm!' = L~ "I
2 M0 P T mr ot v

@ Energy decays along iterations
@ Linear iteration (existence and uniqueness of a solution)
@ convergence (with minor modifications)
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Conclusions

@ 1st order in time with cv proof

@ 2nd order in time stability (cv ?) proof
@ 1st order in space

@ FMM or NUFFT for stray field

@ Preconditionning of linear systems
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Applications

@ Comparison with finite difference/finite volumes codes and
experiments

@ Statics and Dynamics

@ NIST benchmark problems
@ nanodots

@ spin oscillators

°
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NIST Problem #4
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Spin oscillators
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