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Motivations

Developing self-propulsion at
micro-scales?

Application in human diagnostics and
therapy...
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Model swimmer/fluid
The swimmer is described by the vector (ξ, p) such as :

ξ is a function which defines the shape of the swimmer.

p = (c,R) ∈ R3 × SO(3) parametrizes the swimmer’s position.

The swimmer changes its shape =⇒ ξ(t) pushes the fluid.
The fluid reacts, under the Stokes Equation[

−ν∆u +∇p = f ,
divu = 0.

Self-propulsion constraints =⇒
{ ∑

Forces = 0
Torque = 0

⇐⇒


∫
∂Ω

DNp,ξ

(
(∂pΦ)ṗ + (∂ξΦ)ξ̇

)
dx0 = 0∫

∂Ω
x0 × DNp,ξ

(
(∂pΦ)ṗ + (∂ξΦ)ξ̇

)
dx0 = 0.

As a result the swimmer moves, under the ODE

ṗ = V (p, ξ)ξ̇ .

[Dal Maso, Desimone, and Marandotti, 2010]
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(∂pΦ)ṗ + (∂ξΦ)ξ̇

)
dx0 = 0.

As a result the swimmer moves, under the ODE
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Controllability issues

{
ṗ = V (p, ξ)ξ̇
p0

Questions
Is it possible to control the state of the system (ξ and p)
using as controls only the rate of shape changes d

dt ξ?
Does the boundary have an effect on the controllability of
the swimmer?

?

?

∂B

?

P0

PG
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The swimmers

The swimmer that we consider consists of n spheres connected
by the swimmer’s arm.
The change of the swimmer’s shape consists in changing the
length of its arms (ξi)i .

where S := ( 2a√
3
,+∞)3, the lower bound being chosen in order to avoid overlaps of

the balls, P = R2 × R, and the functions Xi are now defined as

Xi(ξ, c, α, r) = c + Rθ(ξiti + r) ∀i ∈ {1, 2, 3} .

Notice that the functions Xi are still analytic in (ξ, c, θ), and we use them to compute
the instantaneous velocity on the sphere Bi

vi =
∂Xi

∂t
(ξ, c, θ, r) = ċ + θ̇e3 × (ξiti + r) + Rθtiξ̇i ,

where e3 is the vertical unit vector. Eventually, due to the symmetries of the system,
the swimmer stays in the horizontal plane.

2.3. The four sphere swimmer moving in space (4S). We now turn to
the more difficult situation of a swimmer able to move in the whole three dimensional
space and rotate in any direction. In this case, we fix N = 4 and we consider a regular
reference tetrahedron (S1, S2, S3, S4) with center O ∈ R3 such that dist(O,Si) = 1

and as before, we call ti = �OSi for i = 1, 2, 3, 4.
The position and orientation in the three dimensional space of the tetrahedron

are described by the coordinates of the center c ∈ R3 and a rotation R ∈ SO(3), in
such a way that d = 6.

We place the center of the ball Bi at xi = c + ξiRti with ξi > 0 for i = 1, 2, 3, 4
as depicted in Fig. 2.3 and forbid possible rotation of the spheres around the axes. A
global rotation (R �= Id) of the swimmer is however allowed.

The four ball cluster is now completely described by the list of parameters X =

(ξ, c,R) ∈ S × P, where S := (
�

3
2 ,+∞)4 and P = R3 × SO(3). Again, the lower

bound for ξi is chosen in order to avoid overlaps of the balls.

x4

e1,4

x1

x2

x3

r1,2

Fig. 2.3. The four sphere swimmer (4S).

Furthermore, the function Xi are now defined as

Xi(ξ, c,R, r) = c + R(ξiti + r) ∀i ∈ {1, 2, 3, 4} ,

which are still analytic in (ξ, c,R), from which we compute the instantaneous velocity
on the sphere Bi

vi =
∂Xi

∂t
(ξ, c,R, r) = ċ + ω × (ξiti + r) + Rtiξ̇i

6

ξ2
ξ1

ξ3

ξ4

ξ1

ξ2

Four sphere swimmer
Three sphere swimmer
[Golestanian, Najafi 2004]

Example of stroke
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Controllability’s result in R3 [Alouges, DeSimone,
Heltai, Lefevbre, Merlet (Preprint)]
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6

The 4-sphere swimmer is globally
controllable on R3.

The 3-sphere swimmer is globally
controllable on R.

Does the presence of a wall modify the swimmer’s reachable
set?

L. Giraldi



Influence of the wall - Main results [Alouges, G]
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(ξ, c, θ, r) = ċ + θ̇e3 × (ξiti + r) + Rθtiξ̇i ,

where e3 is the vertical unit vector. Eventually, due to the symmetries of the system,
the swimmer stays in the horizontal plane.

2.3. The four sphere swimmer moving in space (4S). We now turn to
the more difficult situation of a swimmer able to move in the whole three dimensional
space and rotate in any direction. In this case, we fix N = 4 and we consider a regular
reference tetrahedron (S1, S2, S3, S4) with center O ∈ R3 such that dist(O,Si) = 1

and as before, we call ti = �OSi for i = 1, 2, 3, 4.
The position and orientation in the three dimensional space of the tetrahedron

are described by the coordinates of the center c ∈ R3 and a rotation R ∈ SO(3), in
such a way that d = 6.

We place the center of the ball Bi at xi = c + ξiRti with ξi > 0 for i = 1, 2, 3, 4
as depicted in Fig. 2.3 and forbid possible rotation of the spheres around the axes. A
global rotation (R �= Id) of the swimmer is however allowed.

The four ball cluster is now completely described by the list of parameters X =

(ξ, c,R) ∈ S × P, where S := (
�

3
2 ,+∞)4 and P = R3 × SO(3). Again, the lower

bound for ξi is chosen in order to avoid overlaps of the balls.

x4

e1,4

x1

x2

x3

r1,2

Fig. 2.3. The four sphere swimmer (4S).

Furthermore, the function Xi are now defined as

Xi(ξ, c,R, r) = c + R(ξiti + r) ∀i ∈ {1, 2, 3, 4} ,

which are still analytic in (ξ, c,R), from which we compute the instantaneous velocity
on the sphere Bi

vi =
∂Xi

∂t
(ξ, c,R, r) = ċ + ω × (ξiti + r) + Rtiξ̇i

6

The 4-spheres swimmer is globally
controllable on an dense open set.

y

y

θ

θ =
π

2

For any initial condition (y0, θ0)
such that θ0 6= π

2 , the swimmer
can reach every (yG, θG) given
(θG 6= π

2 ).

If θ0 = π
2 then the swimmer

cannot change its angle and it
moves only on a straight line
defined by itself. (i.e., the
dimension of
Lie(ξ1,ξ2,y,

π
2 )(V1,V2) is equal to 3.
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Outline of the proof

ṗ =
M∑

i=1

Vi (p, ξ)ξ̇

By studying the dimension of the subspace Lie(p,ξ)((Vi )i=1..M ) which denotes
the set of all tangent vectors V (p, ξ) in Lie((Vi )i=1..M ).

By using the limit and the case without wall

By calculation of Lie Brackets and application of Nagano (1966)
Hermann (1963) theorem [Lobry 1970], we show that there are two
kinds of orbit :

the orbit with a 3 dimensional Lie space (if θ0 = π
2 ).

the others such that the dimension is equal to 4.
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Conclusion and outlook

Influence of the boundary.

?

Optimal strokes.
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