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This document provides two comments on Section IV.B. Box Constraint Handling of [1].

1 Erratum
The formula under point 3) must have read
Vi & vi X 1,1 min(1per /(10n)) "

where a max is replaced by a min. The same error was found in an implementation (by
end of 2010).

2 Addendum

A modified and (presumably) better version of the box constraint (boundary) handling
algorithm also decreases the boundary penalty weights. This can lead to a speed-up by
a factor of two (e.g. on the example shown below).

Point 2) and 3) in Section IV.B. are replaced with the following. A history of 20+3n/A
normalized § L, values is kept. In each iteration the value is computed as the interquartile
range of all (unpenalized) objective function values divided by the denominator of (11)
from [1]
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6L, == IQR(L(x1),...,L(xy)) x [ 0% x %icjj (2)
j=1

in this respective iteration. Then

2) Equation (11) is replaced by
Yi = 2 X (SLU (3)

3) For each weight v;, i =1,...,n

(a) Increase «; if the component ¢ of the distribution mean, m;, is out-of-bounds:

let A
5my = i bl (4)
(o2 Cl



where b; is the boundary value violated by m;, that is, dm{ gives a violation
value measured in standard deviations of the sample distribution. Set the
threshold

Sin = 3 x max(1, v/n/ pe) (5)

and increase the respective weight according to
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(6)

(b) Decrease ; if v; > 5median(dL,) according to
Y i X exp (=2/3)0 77 (7)

This implies that the (dynamically changing) minimum value for ~; is the same
for all ¢. This is important in order to prevent unreasonable small values.

We set d, = min(1, per/(10n)).

4) For computing the penalty value in Equation (12), all §; are set to one.

The following figure shows a trial on the Ellipsoid function in 20-D, where the variables
indexed with 0, 2,4, ... have their lower bound set to 0.1. The magenta lines in the upper
left subplot show the evolution of ~;.
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A Method for Handling Uncertainty in Evolutionary
Optimization With an Application to Feedback
Control of Combustion

Nikolaus Hansen, André S. P. Niederberger, Lino Guzzella, and Petros Koumoutsakos

Abstract—We present a novel method for handling uncertainty
in evolutionary optimization. The method entails quantification
and treatment of uncertainty and relies on the rank based selection
operator of evolutionary algorithms. The proposed uncertainty
handling is implemented in the context of the covariance matrix
adaptation evolution strategy (CMA-ES) and verified on test
functions. The present method is independent of the uncertainty
distribution, prevents premature convergence of the evolution
strategy and is well suited for online optimization as it requires only
a small number of additional function evaluations. The algorithm
is applied in an experimental setup to the online optimization of
feedback controllers of thermoacoustic instabilities of gas turbine
combustors. In order to mitigate these instabilities, gain-delay or
model-based H ., controllers sense the pressure and command
secondary fuel injectors. The parameters of these controllers are
usually specified via a trial and error procedure. We demonstrate
that their online optimization with the proposed methodology
enhances, in an automated fashion, the online performance of the
controllers, even under highly unsteady operating conditions, and
it also compensates for uncertainties in the model-building and
design process.

Index Terms—Combustion, covariance matrix adaptation, evo-
lutionary algorithms (EAs), gain-delay control, gas turbines, ther-
moacoustic instabilities.

I. INTRODUCTION

NVIRONMENTAL considerations impose stringent
E emission regulations for modern gas turbines. These re-
quirements dictate the development of lean premixed combus-
tion systems operating with excess air to lower the combustion
temperature and decrease the NO, emission levels [37]. In
turn, the operation of the combustor in the lean regime makes it
prone to thermoacoustic instabilities that may cause mechanical
damage, energy losses by heat transfer to walls and increased
noise and pollutant emissions. Thermoacoustic instabilities
arise due to a feedback loop between pressure fluctuations, flow
velocity and heat release. Active control is a prevalent method
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to reduce thermoacoustic instabilities [21], [38]. In active con-
trol of gas turbine combustors, a feedback controller receives
input from pressure sensors and commands a secondary fuel
injection. The adjustment of the controller parameters into a
feasible working regime can be formulated as an optimization
problem distinguished by two important factors: The stochastic
nature of the combustion process introduces uncertainty in the
computation of the objective function value while the unsteady
operating conditions require the online tuning of the controller
parameters.

Evolutionary algorithms (EAs) are intrinsically robust to
uncertainties present in the evaluation of the objective function
due to the implementation of a population [5], [11]. In order to
improve their robustness to uncertainty, two common methods
are available. First, the implementation of larger population
size most often increases the robustness to uncertainty [6], [32].
Second, multiple objective function evaluations can be con-
ducted for each population member and the objective function
is usually represented by the mean value. Both approaches,
however, increase the number of function evaluations per
generation typically by a factor between three and 100. Hence
the large number of required function evaluations makes the
methods prohibitively expensive for applications requiring an
online optimization.

In this paper, we propose an alternative approach to enhance
the capabilities of EAs for online optimization under uncertain-
ties. We develop a novel uncertainty handling algorithm and,
motivated by the combustion problem, we demonstrate its ef-
fectiveness in the online optimization of a gain-delay and an
'H~ controller of an experimental combustor test-rig using the
CMA evolution strategy. The uncertainty handling method dis-
tinguishes uncertainty measurement and uncertainty treatment.
The uncertainty is measured by rank changes among members
of a population. This quantification of uncertainty is well suited
for any ranking-based search algorithm. It requires only a few
additional function evaluations per generation, and does not rely
on an underlying uncertainty distribution. The uncertainty mea-
surement is combined with two treatments for high uncertainty
levels to prevent the failure of the algorithm. The uncertainty
treatments aim to ensure that the signal-to-noise ratio remains
large enough to maintain the effectiveness of the evolutionary
optimization algorithm.

This paper is organized as follows. In Section II, the test rig,
built at ETH Zurich, is presented. We cast the optimization of the
controller parameters as an optimization problem under uncer-
tainties and we discuss previous work. We address the problem
of thermoacoustic instabilities for gas combustors and introduce

1089-778X/$25.00 © 2008 IEEE
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Fig. 1. TIlustration of the ETH combustor. Preheated air premixed with

methane enters the upstream duct, the flame is stabilized by the EV burner. All
dimensions in millimeters.

their handling by active control strategies. Section III addresses
evolutionary optimization under uncertainties. In Section IV,
the uncertainty handling method is introduced and combined
with the CMA evolution strategy. Section V presents the ver-
ification of the algorithm on test functions. Section VI reports
experiments on the test rig with the different controller struc-
tures for two operating conditions. This paper concludes with a
Summary and Outlook in Section VII.

II. ACTIVE CONTROL OF COMBUSTION INSTABILITIES IN AN
EXPERIMENTAL TEST RIG

In the following, we describe the ETHZ combustor test rig
where online optimization of controller parameters is performed
and review the common controller techniques.

A. Experimental Setup of the ETHZ Combustor Test Rig

A schematic illustration of the test rig built at ETH Zurich is
shown in Fig. 1. Preheated air premixed with natural gas flows
through mixers and flow straighteners into an upstream plenum
chamber duct. A downscaled, lab scale model for the ALSTOM
environmental (EV) swirl burner stabilizes the flame in recir-
culation regions near the burner outlet plane, the combustion
gases are guided through a downstream duct and they are sub-
sequently discharged. A MOOG magnetostrictive fuel injector
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installed close to the flame is used as control actuator. The pres-
sure signal is detected by water-cooled microphones distributed
along the ducts. Microphone 2, placed 123 mm downstream of
the burner, is used to deliver the sensor signal for the controller.

The operating conditions of the combustor are characterized
by the mass flow, the preheat temperature, and the ratio of the
actual to the stoichiometric air/fuel ratio A. For this study, a mass
flow of 36 gfs, a preheat temperature of 700 K, and A values
of 2.1 and 1.875 are considered. The resulting pressure spectra
are shown in Figs. 17 and 14. The case of A = 2.1 exhibits
a single large pressure peak at 220 Hz, whereas A = 1.875 is
characterized by one peak around 250 Hz and two smaller ones
in the 330 Hz range.

B. Actuators

Loudspeakers, often used as actuators in a laboratory settings,
are not feasible for industrial applications due to limited actua-
tion power. In contrast, secondary fuel injection of about 10%
of the total methane flow of 1 g/s yields roughly 6000 W, versus
30 W for a loudspeaker. The tradeoff between injection time de-
lays and increased NO,, emissions due to diffusion flames has
to be carefully negotiated and a suitable position for the injector
must be found.

C. Controllers

The simplest controller is known as phase-shift or gain-delay,
where the measured pressure signal is amplified and delayed by
a certain amount and then fed to the actuator [46]. This simple
strategy has found widespread use, but it often generates sec-
ondary peaks as the gain and phase are tuned to the dominant
frequency and they are not optimal in other frequency bands.
The model-based robust H ., controller design lets the engineer
specify regions where the disturbance should be reduced, and
the H . -optimization routine calculates the corresponding con-
troller [56]. Gain-delay control is convenient as there are only
two parameters to adjust. This is often done by trial-and-error
with satisfactory results if the spectrum of the instability fea-
tures only one dominant peak. Model-based H ., controllers on
the other hand offer larger design freedom and are generally as-
sociated with better performance. They involve, however, 10 to
20 parameters thus exacerbating their online optimization. In
addition, thermal transients during startup change the location
and height of the pressure peaks, and the (steady-state) model
of the process is not always accurate.

A combination of a model-based controller and an online op-
timization using EAs has been used to address these difficulties.
More specifically, an H, controller [44], [56] is shifted in the
frequency domain, while the gain and (optionally) an additional
delay are adjusted, resulting in two (three) parameters to be op-
timized. Note that in a gain-delay controller only the gain and
the delay are optimized by the algorithm. The cost function to
be minimized is selected as the equivalent continuous level of
the sound pressure

(pz) av

Leq = 10log g ~— )

ref

where (pz) o 18 the mean squared pressure and pyer = 20 uPa
the reference pressure.
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Fig. 2. Schematic diagram of the control setup.

The sound pressure level L is acquired from a measurement
of a few seconds for a given parameter setting. The measure-
ments are subject to a considerable uncertainty and a tradeoff
between uncertainty and speed in data acquisition can be iden-
tified. The accuracy of L is improved with longer evaluation
times. At the same time longer evaluation times decrease the
number of feasible completed measurements in a given time
span, and slow down the adaptation of the controller parame-
ters. This problem will be resolved by an adaptive evaluation
time for the acquisition of L.

D. Adaptive Controllers

Unsteady combustion introduces pressure waves in the com-
bustor. Their reflection from the boundaries modifies in turn
the combustion process resulting in a potentially unstable feed-
back cycle. Rayleigh [50] first noted that if the heat release is
in phase with the pressure fluctuations, the instability grows,
while combustion is stable if they are out of phase. In a study
of a swirl-stabilized premix burner [47], it was found that large
coherent structures are associated with this instability. The in-
teraction between flow instabilities and acoustic resonant modes
excites unstable modes, leading to periodic combustion in large-
scale structures. Fuel feedline dynamics are another mechanism
causing equivalence ratio fluctuations [3].

The adaptive reduction of the pressure oscillations can be
achieved by measuring the pressure with microphones, and em-
ploying a controller to command an actuating device, such as
a loudspeaker or a fuel injector. Fig. 2 shows the control setup
used for this study. The uncertainty input block models the un-
controlled combustor generating the pressure signal p,. The
plant P is the block that relates the control signal input u to
the pressure p. generated by altered combustion in case of fuel
injection. The sum of these two is the measured pressure signal
P that needs to be minimized. This signal is used by the con-
troller C' to generate the control signal u for the fuel injector.

Controllers can be built based on a model of the controlled
process. A so-called self-tuning regulator (STR) [22]-[24], [52],
[53] requires knowledge only of the total time delay between
actuation and sensing. STRs have shown some robustness to
changing operating conditions but for a combustor which is
already stable, the STR does not offer any advantages over a
model-based controller and may encounter numerical problems.

Adaptive controllers [8], [35] encounter problems in noisy
environments and a number of open questions remain regarding
algorithmic instabilities. A simple Rijke tube with very distinct
pressure peaks and low uncertainty level is considered in [13].

Loudspeakers are used as actuators for a neural network con-
troller, which requires an identification procedure beforehand.
In [48], a multiobjective modified strength Pareto evolutionary
algorithm has been used to optimize the fuel flow through dif-
ferent injection locations in an EV burner.

A range of lead/lag controllers [45] are optimized with a
(1+ 1)-ES in [49] and [55]. The influence of uncertainty and
the problem with long evaluation times are identified, and
a two-step evaluation procedure is proposed. The potential
problems with noisy evaluations arising from elitism and the
problem of premature convergence have been neglected and the
method employs a prespecified maximum number of iterations.

E. Evolutionary Algorithms (EAs) for Control

An in-depth overview of evolutionary algorithms applied to
controller optimization is given in [25]. One can distinguish be-
tween online and offline optimization. Online applications are
rare and due to safety and time-constraints only very few online
applications have been conducted in a real system [1], [43].

In order to evolve the controller either the controller parame-
ters are directly optimized [1], [19], or the design parameters of
control algorithms such as linear quadratic Gaussian (LQG) or
'H o are manipulated [20], and the controller is calculated auto-
matically. In order to improve the feasibility of the online ap-
plication of evolutionary algorithms, tuning of an existing con-
troller can be performed [39], [40]. Our method is based on this
latter approach.

III. OPTIMIZATION UNDER UNCERTAINTIES

The identification of effective parameters for adaptive con-
trollers can be formulated as an optimization problem, where a
combustor performance related objective function, for example
the time integral of the sound pressure in the combustor, is to
be minimized. A general formulation of such a time dependent
stochastic objective function L (also loss or cost function) reads

L:SxRy—R, (z,t)— f(z,t)+ Ns(z,t) ()
where £ € S C R™ is a (solution) vector of controller parame-
ters and ¢ is time. The objective function is defined by a deter-
ministic part f and a stochastic part Ny € R. The objective is
to find an (approximate) minimizer of the “true” function value
f. The distribution of /Ny is unknown and depends on the func-
tion f, as well as on & and ¢. The time dependency is relevant,
for example, in online control of a combustor as the operating
condition may be modified manually or may change during the
heating up of the rig. In general, however, the changes in time
are often negligible when compared with the variations in Ny
for each point in time. We assume that E[L(z,t)] = f(=z,t),
ie, E[Ni(z,t)] = 0forallz € R™ and all ¢ > 0, without
loss of generality. If the expectation value does not exist, we as-
sume the median of L(x,t) equals to f(x,t), for all =, t. This
assumption makes the definitions of f and Ny consistent with
the objective to find a minimizer of f. Furthermore, if, instead
of the median, we postulate a larger quantile (for example the
95%-tile) of L equals to f, this would imply trying to find a
more “robust” solution as the minimizer of f.



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

Equation (2) describes a generic uncertainty model. The
equation includes uncertainties that may appear at any stage of
obtaining the measurement L. Examples of such uncertainties
include the adjustment of the variable vector x, where the
dependency between Ny and f becomes evident, sometimes
called actuator noise [11].

From (2), we can immediately imply that in a ranking-based
algorithm uncertainties are problematic if and only if, for two
candidate solutions 1 and 2, the variation due to Ny (z) and
Ny (z2) exceeds the difference | f(z1)— f (x2)| such that their or-
dering reverses. If the uncertainties tend to exceed the difference
|f(z1) — f(z2)|, we cannot anymore conclude from two single
measurements, L(z) and L(zs), whether f(z1) > f(z2) or
f(z1) < f(x2) holds with a small enough error probability (in
a ranking-based search algorithm this is the only decision based
on the L-values). In other words, referring to | f(z1) — f(z2)| as
signal and to the variations from Ny as noise, the uncertainty is
problematic if and only if the signal-to-noise ratio is too small.
This observation readily implies that there can only be two ways
to cope with uncertainties for a ranking-based search algorithm:
1) increasing the signal or 2) reducing the uncertainty.

Efficient optimization techniques for problems with uncer-
tainties must address successfully at least one of these two is-
sues. A broad literature overview of uncertainties addressed in
evolutionary optimization is given in [33].

The most common technique to approach uncertainties in the
objective function value is resampling, that is the repeated eval-
uation of L(x) for a given solution = [2], [15], [18], [58]. A sta-
tistics L(z) of the repeated samples of L(z) replaces the single
measurement. Usually, the mean value is taken as statistics L
and the question whether it is an appropriate statistics for un-
certainty reduction is ignored. If the second moment E[N;]
exists, the variance of the mean statistics equals to the variance
of L divided by the number of independent samples and hence
the mean leads to a reduction of uncertainty. Taking the me-
dian as statistics reduces the uncertainty under much milder as-
sumptions than the mean. If E[N;] exists for some o > 0
then E[EZJ exists for any sufficiently large sample size (note
that E[N;"] = 1). If in addition, Ny has a continuous posi-
tive density in some neighborhood of the true median, then L
is asymptotically normally distributed with variance inversely
proportional to the sample size [36].

The main drawback of repeated evaluations is the increased
cost of the algorithm (in our case the evaluation of L is by far
the most time consuming part of the optimization). Given the
sphere function f(z) = ||z||* and Ny normally distributed with
standard deviation o. an evolution strategy can reach a final
distance to the optimum of B> oc /o, [9], [10]. Consequently,
to reduce the final distance to the optimum R by a factor of
« < 1 the number of necessary L-samples grows with a2,

Usually the number of necessary samples varies in time and
cannot be predicted in advance. In particular, in the early stages
of optimization, the signal-to-noise ratio is expected to be large
for two reasons. First, the distance between population mem-
bers is large producing more likely a large difference in objec-
tive function values. Second, the difference between L-values
of “bad” solutions is usually larger than for “good” solutions.
In order to reduce the associated cost, adaptive reevaluation
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methods have been proposed [2], [15], [18]. The number of
reevaluations is determined by the outcome of a statistical test,
for example the t¢-test [18], [58]. The choice of the solutions
to be reevaluated can depend on their ranking in the popula-
tion [2], [58] or on the empirical variances of the measurements
[18]. The number of reevaluations is limited by an upper bound
to avoid divergence and to maintain adaptivity in online applica-
tions. Despite these efforts, methods that reduce the uncertainty
based on reevaluations typically increase the number of function
evaluations per generation by a factor between three and a 100.

A slightly different approach to reduce the uncertainty uses
the already evaluated solutions. Instead of resampling L and
taking statistics of the samples a surrogate function (or meta-
model) is built from the already evaluated solutions [14], [17],
[54]. In case of “benign” uncertainty distributions, the surrogate
smooths the noisy landscape. For the CMA evolution strategy a
local quadratic surrogate model could speed up the convergence
on a noisy sphere function by a factor of two in small dimen-
sions [34]. In general, the surrogate approach will be less ef-
fective with increasing search space dimension or when a large
population spread is already realized by the underlying search
algorithm.

A third approach addresses uncertainties in the objective
function by using a large population, also referred to as implicit
averaging [33]. The effect of a large population size in an evolu-
tion strategy (ES) is twofold. First, the population spread can be
larger. For example, on the sphere function the optimal step-size
of the (p/pir, A)-ES is proportional to the parent number p,
given intermediate multirecombination and pz < A 3% n [51, p.
148]. Second, recombination smooths the effect of erroneous
selection in search space. Consequently, increasing only A
is inferior to resampling [9], [26], but increasing p and A is
preferable to resampling [S]. A prerequisite for this advantage
is that step-sizes are adapted properly, because the population
spread is decisive. Otherwise, increasing the population size
can even be counterproductive [26].

Modifications of the selection scheme have been proposed
to compensate for uncertainties. In a (1 + 1)-ES, a nonzero
threshold for accepting the offspring is advantageous [42]. In
the (u/ur, A)-ES, the optimal ratio between p and A is 0.5
[10] corresponding to a maximal step-size for a given A. The
stochastic tournament selection can be modified to make up
for the stochastics introduced by the uncertain selection [16],
while in evolution strategies the selection scheme is already
deterministic.

Overall, the handling of uncertainties in the objective function
has been mainly addressed by uncertainty reduction rather than
signal improvement. In this paper, we will use both approaches.
First, a resampling approach is taken and adopted to the specific
application to reduce the uncertainty. Second, and more impor-
tantly, the signal is improved explicitly by increasing the popu-
lation spread. Both approaches are controlled by a uncertainty
measurement and hence implemented in an adaptive way.

IV. AN UNCERTAINTY-RESISTANT EA

In this section, we describe an evolutionary algorithm that
serves to minimize an objective function as defined in Equation
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(2). The algorithm consists of two parts: A ranking-based evo-
lutionary algorithm, the CMA-ES, and the uncertainty handling
method. We first describe the CMA-ES and then introduce the
proposed novel uncertainty handling technique.

A. CMA Evolution Strategy

We employ the evolution strategy (ES) with covariance ma-
trix adaptation (CMA) [28]-[31]. This choice is motivated by
several reasons.

* CMA-ES is a non-elitist, continuous domain evolutionary
algorithm. Non-elitism avoids systematic fitness overvalu-
ation on noisy objective functions [5], because even solu-
tions with (erroneously) exceptionally good fitness values
survive only one generation.

* The selection in CMA-ES is solely based on the ranking
of solutions. This provides additional robustness in a noisy
environment. Ranking-based selection is in particular in-
variant to strictly monotonic (order-preserving) transfor-
mations of the value L.

* CMA-ES provides an effective adaptation of the search
distribution to the landscape of the objective function.

* CMA-ES can be reliably used with small population sizes
allowing for a fast adaptation in an online application.

The CMA-ES adapts the covariance matrix of a normal
search distribution to the given objective function topography.
On convex-quadratic objective functions, nearly optimal co-
variance matrices are thus achieved. The adaptation procedure
operates efficiently and independently of the given population
size, which is small by default. Particularly on nonseparable,
badly scaled problems, often a speedup by several orders of
magnitude can be achieved in terms of number of function
evaluations to reach a given function value and in terms of
CPU-time. The CMA-ES was evaluated on a variety of test
functions [7], [28], [29], [31] and was successfully applied to a
variety of real-world problems.!

The CMA-ES follows two fundamental design principles
employed in the development of the algorithm. The first design
principle is invariance. We distinguish between invariance to
transformations R — R of the function value L, as considered in
the beginning of this section, and invariance to transformations
S — S of the solution vector z in (2). The CMA-ES reveals in-
variance to rigid (angle-preserving) transformations of the solu-
tion vector, like translation, rotation and reflection, given that the
initial solution is transformed, respectively. The CMA-ES re-
veals invariance to overall scaling of the search space, given that
the initial scale o is chosen accordingly. Finally, The CMA-ES
reveals even invariance to any full rank linear transformation,
given that the initial covariance matrix is chosen, respectively.
Invariance properties induce equivalence classes of objective
functions and, therefore, allow for generalization of empirical
results.

Second, the variation of object and strategy parameters is un-
biased [12], [31]. Given random selection, that is an objective
function L(x) = rand that is independent of z, the first mo-
ment of the object parameters z is unbiased. The expectation of
newly generated solutions is equal to the weighted mean of the

ISee  http://www.inf.ethz.ch/personal/hansenn/cec2005.html
www.inf.ethz.ch/personal/hansenn/cmaapplications.pdf

and http:/

previously selected solutions. The second moment is described
by covariance matrix and step-size. The covariance matrix in
the CMA-ES is unbiased, because under random selection the
updated covariance matrix is equal to the previous covariance
matrix in expectation. Analogously, the step-size o is unbiased
on the log scale. For the second moment, the population vari-
ance, a bias towards increase or decrease will entail the danger
of divergence or premature convergence, respectively, whenever
the selection pressure is low. Next, we describe the algorithm in
detail.

Given an initial mean value T € R™, the initial covariance
matrix C = I and the initial step-size o € R, the )\ candidate
solutions z;, of one generation step obey

T =m+oy,, k=1,...,) 3)
where y;, ~ N (0, C) denotes a realization of a normally dis-
tributed random vector with zero mean and covariance matrix
C. Equation (3) implements mutation in the EA by adding a
random vector. The solutions x;, are evaluated on L and ranked
such that ;. » becomes the th best solution vector and y;., the
corresponding random vector realization.

In the remainder, we describe the updates of m, o, and C for
the next generation step. For p < A let

- Iz
(Z'l):Zwiyi;m wy > - 2> wy, >0, Zwizl 4)
=1 i=1

be the weighted mean of the p best ranked y;, vectors. The re-
combination weights sum to one. The so-called variance effec-
tive selection mass

et = 5 > 1 s)

will be used in the following. Given pi.g, the particular setting
of the recombination weights is, in our experience, secondary.
From the definitions follows 1 < peg < p and peg = p for
equal recombination weights. The role of g is analogous to the
role of the parent number . with equal recombination weights
and usually pes ~ \/4 is appropriate. Weighted recombination
is discussed in more detail in [4]. The mean of the new distribu-
tion becomes

n
m—m+o(y) = Z Wi\ (6)
im1

Equation (6) determines the center of the next population. The
equation implements selection by using p < A. Using dif-
ferent recombination weights must also be interpreted as se-
lection mechanism. The equation implements recombination by
taking a (weighted) mean of parental solutions.

For step-size control the “conjugate” evolution path p, € R™
is introduced. The evolution path cumulates an exponentially
fading pathway of the population mean in the generation se-
quence. Assuming that the optimal step-size leads to conjugate
steps, the length of the conjugate evolution path can be used as
adaptation criterion for o. If the evolution path is long, o must
be increased, whereas if the evolution path is short, o must be
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decreased. Initialized with p, = 0 the update of p, (so-called
cumulation) and o reads

P, — (1= co)py + Vo (2 — co)perC~ YD (y) (7

U<—U><exp<;—a (Hg—“H—1>> (8)
o Xn

where 1/c, > 1 determines the backward time horizon of
the evolution path p,, damping d, = 1 controls the change
magnitude of o, and ¥, is the expected length of a random
variable distributed according to A (0, I). The evolution path
is appropriately normalized. We have c-(/2) BD'B*,
where C = BD?B7 is an eigendecomposition of the sym-
metric, positive definite covariance matrix C.2 The transforma-
tion C~(/?) rescales (y) into an isotropic reference system.
Given y;., distributed according to A/ (0, C), as under random
selection, we can derive that \/@C_(l/ 2 (y) is distributed ac-
cording to N (0, I). Therefore, if p, ~ N (0,I) holds before
applying (7), the same holds after applying (7). The transfor-
mations make the expected length of p, independent of its ori-
entation and allow the comparison of the length of p_ with its
expected length X, in (8). Step-size o is increased if and only if
lp, |l > Xn,and decreased if and only if ||p, || < ¥ . In practice,
we use the approximation ¥, = v2I'((n 4 1)/2)/T\(n/2)~
V(1 =1/(4n) 4+ 1/(21n%)).

Similar to (7), an evolution path p, is constructed to update
the covariance matrix. The covariance matrix admits a rank-one
and a rank-u update

Pe — (L = ce)pe + hov/ce(2 — ce) et (Y) )

C — (1 —ceov)C + Ceov

T
PcPc
Hcov N~

rank-one update

1) — T
+ Ceov | 1 — WY YiA (10)
Hecov im1

rank-p update

where ceov < 1 is a learning rate, picoy > 1 determines the
portion between rank-one and rank-y updates, and h, = 0 if
ol > (1.54+1/(n—0.5)) Xn/1 — (1 — ¢, )20+, and 1
otherwise, where g is the generation counter. Consequently, the
update of p,. is stalled whenever p,, is considerably longer than
expected. This mechanism is decisive after a change in the envi-
ronment which demands a significant increase of the step-size,
whereas fast changes of the distribution shape are postponed
until after the step-size is increased to a reasonable value.

For the covariance matrix update the cumulation in (9) serves
to capture dependencies between consecutive steps. Depen-
dency information would be lost for ¢¢ = 1, as a change in sign
of pe or y,., does not matter in (10). The rank-one update is
particularly efficient with small offspring population sizes A.
Given c¢ o 1/n the rank-one update can reduce the number of
function evaluations needed to adapt to a straight ridge topog-
raphy roughly from O(n?) to O(n) [29]. The rank-u update

2Columns of B are an orthonormal basis of eigenvectors, BT B = BBT =
I. Diagonal elements of the diagonal matrix ID are square roots of the corre-
sponding positive eigenvalues. The matrix D can be inverted by inverting its
diagonal elements. From these definitions it follows that y, ~ o BDA (0,1)
which allows the generation of the random vector realizations on the computer.
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exploits the information prevalent in a large population. Given
a sufficiently large population, say A ~ n + 3, it reduces the
number of generations needed to adapt a complex but globally
constant topography roughly from O(n?) to O(n) [29].

The default parameter values for all parameters, namely
offspring population size A, parent number j, recombination
weights w;, camulation parameter ¢, step-size damping d,,
cumulation parameter ce, mixing number ficov, and learning
rate c.oy are as follows [28].

Selection and recombination

A=4+4+ [3lun|, p= {%J ,

In(pp+1) —Ini

m
pln(p+1)— 3210 j
7=1

w; = fori=1,...,pu.

Step-size control
Mot +2
N+ [leff + 37

o

off — 1
d,,:1-|-2><max(07 fo__1> + ¢
n+1

Covariance matrix adaptation

4
Cec = n—_"_47 Hecov = Meff
1 2
Ceov =

Hecov (n + \/§>2
2/1'eff -1 >

1
+(1- min (1, ————
< /Acov> < (n+2)2 + pog

A detailed discussion of the strategy parameters can be found in
[31]. The identification procedure for c.o, With rank-p update
is described in [29]. Parameters for step-size adaptation, ¢, and
d,, were accommodated for use with a large population size
in [28]. With increasing p.s the backward time horizon and the
change rate are reduced, such that the impact of step-size control
diminishes in particular for peg > n. All experiments in this
paper are conducted with the default parameter settings.

Finally, we note that the structure of CMA-ES bears simi-
larities with other stochastic optimization procedures; see, e.g.,
[57], as well as with recursive estimation procedures, in par-
ticular, the “Gauss-Newton” type [41, pp. 366, 371, 375]. The
analysis of these similarities and differences of these algorithms
are far beyond the scope of this paper.

B. Box Constraint Handling

In the present algorithm, parameter constraints are accounted
by introducing a penalty term in the cost function. This penalty
term quantifies the distance of the parameters from the feasible
parameter space. The feasible space is a hypercube defined by
lower and upper boundary values for each parameter. We imple-
ment a box boundary handling algorithm such that each evalu-
ated solution is guaranteed to lie within the feasible space. This
algorithm affects solely the evaluation of the solutions and en-
tails the following steps.

* The cost of a solution z is obtained by evaluating the func-

tion L at zf*2% where s is the feasible solution closest
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feas

to z (with minimal ||z'** — z||). Hence, a feasible solution
is evaluated itself and an infeasible solution is evaluated on
the boundary of the feasible space. The new feasible solu-
tion ' is used for the evaluation on L and for computing
a penalty term, and it is discarded afterwards.

* A penalty term is added to the function value L penalizing
infeasible solutions. The penalty depends on the distance
to the feasible space and is weighted and scaled in each co-
ordinate. The weights are set depending on observed func-
tion value differences in L and are increased if necessary,
depending on the distance of the distribution mean m to
the feasible space. The scaling is based on the covariance
matrix diagonal elements.

The complete boundary procedure, applied after the candidate
solutions of one generation are generated, reads as follows.

1) Initialization: Boundary weights ~y; are initialized once in
the first generation step as y; = 0, fore = 1,...,n.

2) Set weights: If the distribution mean m is out-of-bounds
and either the weights were not set yet or the second gen-
eration step is conducted, set forall: = 1,...,n

264¢

n
2y 1 .
o2 x 1 210“
J:

yi = (11)

where g is the median from the last 20 4+ 3n/\ genera-
tions of the interquartile range of the unpenalized objective
function values and C}; is the jth diagonal element of co-
variance matrix C. The setting in (11) is explained in con-
junction with (12) below.

Increase weights: For each component ¢, if the distribution
mean m; is out-of-bounds and the distance of m; to the
bound is larger than 3 x 0/C;; X max (1, v/n/peg) (the
typical distance to the optimum on the sphere function is
coordinate wise proportional to o\/n/ peg), the weight ;
is increased according to

3

~

i i x 1.1max(per/(10n))

This adjustment prevents the mean value of the distribu-
tion from moving too far away from the feasible domain
(where far is naturally defined in terms of the given search
distribution).
Compute the penalized function value for each candidate
solution z as

4

~

(xfoas _ lL)Z

de eas 1 S T
L(z) < L(z%) + 52%7 (12)
=1

&i
where £ is the feasible solution closest to x with
out-of-bounds components set to the respective boundary
values. Only zf is actually evaluated on L. Finally
& = o (09 (l0g(Cis) — (1/n) )y 10g(C5) ) )
scales the distance coordinate wise with respect to the co-
variance matrix of the distribution, disregarding its overall
size. The number 0.9 serves as regularizer to an isotropic
shape (choosing zero would make all ¢; isotropically equal
to one).

Given that zf*® —2; = ¢/Cj; is as large as typically sam-
pled by the given search distribution (i.e., a one-o sample)
then the ¢th summand in (12) equals ; X o2Cy; /& =
v x 2. With (11) we have v; x 02 ~ 285, which is a
desired contribution. In particular, the contribution of each
component (summand) becomes identical and, therefore,
the perturbation from the penalization on the covariance
matrix adaptation procedure is minimized.

The additive penalization in (12) is a quadratic function with
its minimum located on the boundary [27, p. 76]. Equation (12)
has two important properties. First, it guarantees that the min-
imum of the resulting function L cannot be outside the fea-
sible domain. Second, the construction results in a compara-
tively unproblematic function topography, because the partial
derivative O L(x)/dx; approaches zero if the distance 2 — ;
approaches zero from the infeasible domain. For 9 L(z)/0z; /+
0 a sharp ridge along the boundary can result which is quite un-
desirable.

C. Method for Handling Uncertainty

We introduce a novel uncertainty-handling (UH) method,
suitable for evolutionary optimization algorithms that em-
ploy rank based selection operators. The rank based selection
operation allows for a robust quantification and handling of
uncertainties in the cost function as shown in Sections V and
VI. We emphasize that the development of the proposed uncer-
tainty-handling method is independent of the other operators
employed in the evolutionary optimization algorithm. In the
present, the UH is discussed, without loss of generality, in its
implementation within the CMA-ES and the overall algorithm
is referred as UH-CMA-ES. The proposed uncertainty handling
preserves all invariance properties of the CMA-ES mentioned
above. The method, however, biases the population variance
when too large an uncertainty level is detected.

The uncertainty handling consists of two separate compo-
nents:

* quantification of the uncertainty effect on the ranking of

the members of the population;

* treatment of the uncertainty, if necessary, to prevent the

search algorithm from premature convergence.

1) Uncertainty Quantification: We propose a reevaluation
technique that provides a quantification of the uncertainty for
any ranking-based search algorithm. The uncertainty in the
objective function can affect a ranking-based search algorithm
only if changes of the ordering of solutions occur. Hence, the
uncertainty quantification is based on rank changes induced by
reevaluations of solutions. A small perturbation can be applied,
before the reevaluation is done, to cover “frozen noise,” i.e.,
when the objective function is not a random variable itself
but a single realization of a noisy function L. The uncertainty
quantification algorithm reevaluates each solution at most once
but an extension to more reevaluations is straightforward.

First the solutions to be reevaluated are selected at random.
Alternatively the best solutions might be selected for reevalu-
ation, while our preliminary tests did not indicate major dif-
ferences. More importantly, we conjecture that more scenarios
exist, where selecting the best solutions fails. One such scenario
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is the case of (seldom found) good outliers. Using the best solu-

tion then invariably selects the outlier and, therefore, the uncer-

tainty treatment might be applied too often. In order to circum-
vent this difficulty, solutions are chosen randomly.

Second, after reevaluation, the number of rank changes,
A;, that occur with the reevaluation of solution %, is com-
puted. Third, the measured rank changes are compared with a
threshold, or, in a sense, normalized leading to the uncertainty
measurement s. The algorithm reads

1) Set LV = L9 = [L(z;), fori = 1,...,), and let
L={LY LYk =1,..., A},

2) Compute Apeey, the number of
reevaluated using parameter r), <
fpr(ra X A), where the function fp,

|z] +1 with probability z — |

|z | otherwise

too long sequences without reevaluation set Ajeev = 1 if

Areev = 0 for more than 2/(r, X ) generations.

3) Reevaluate solutions. For each solution 7 = 1,..., Ajeev
(because the solutions of the population are i.i.d., we can,
w.l.o.g., choose the first A,ce solutions for reevaluation)

a) Apply a small perturbation: 'V = mutate(x;,¢),
where £}V # z; <= ¢ # 0. According to (3)
for the CMA-ES we apply mutate(z;,e) = =; +
eaN (0,C).

b) Reevaluate the solution: LV = L (z°V)

4) Compute the rank change A,;. For each chosen so-
Iution ©+ = 1,...,)Aeev the rank change value,
|A;] € {0,1,...,2X — 2}, counts the number of values
from the set £ \ {L,‘L?ld, L?ew} that lie between L}*V and
L', Formally we have

A; =rank(LI®%) — rank(L$)
— sign (rank(L?ew) — rank(L?ld))

solutions to be
1 ; AI'EEV =
R — 7Z,

T = :LJ To avoid

(13)

where rank (L;) is the rank of the respective function

value in the set £ = {L‘,;ld, LvVk=1,..., )\}.

5) Compute the uncertainty level, s. The rank change value,
A,;, is compared with a given limit AJ™. The limit is based
on the distribution of the rank changes on a random func-
tion L and the parameter §. Formally we have

Areev
1

> (2|Ai|

A
reev i=1

S =

— Ajm (rank(L?eW) — ]lL,l_mw>L?m)

— Agm (rank(L,‘;ld) - ]lL;_ald>L?ew) )
(14)

where AU™(R) equals the § x 50%ile of the set
{1 =R|,|2—R|,...,|]2A=1—RJ}, that is, for a
given rank R, the set of absolute values of all equally
probable rank changes on a random function L (where f
and Ny are independent of x). The summation for s in (14)
computes two values for A}}m and, therefore, respects the
symmetry between L' and Liev,

6) Re-rank the solutions according to their rank sum, i.e.,
rank(L9'Y) + rank(LPeV). Ties are resolved first using
the absolute rank change |A;|, where the mean A; =
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(1/Aveev) Z;\:“i Aj| is used for solutions ¢ > Apeey DOt

being reevaluated, and second using the (mean) function

value.
The parameters are set to 7y = max(0.1,(2/))), e = 1077,
and # = 0.2. A Matlab implementation for the computation of
the uncertainty measurement s from the set of function values
L (steps 4 and 5) is given in Appendix. In (14), differences be-
tween the rank change A; and the limit rank change Agm are
summed. Alternatively, only the sign of the difference could be
used thus placing less emphasis on single large deviations that
are typically observed in the presence of outliers. When only the
sign is used it will also be appropriate to average s in the gener-
ation sequence by choosing cs > 0 below.

2) Treatment of Uncertainty: The quantification of uncer-
tainty as described above is independent of algorithms devel-
oped for the treatment of this uncertainty. In this paper, we pro-
pose two methods for the treatment of uncertainty.

1) Increase of the evaluation (measuring) time of the con-
troller’s performance. Increasing the evaluation time aims
to reduce the uncertainty in the evaluation. In particular,
for the feedback controller of the combustion setup in-
creasing the evaluation time is more natural than taking the
mean value from multiple evaluations, as it avoids repeated
ramping up and down of the controller. Otherwise, dou-
bling the evaluation time is equivalent to taking the mean
of two evaluations.

2) Increase of the population variance. This treatment can
have three beneficial effects.

* The signal-to-noise ratio is most likely improved, be-
cause the solutions in the population become more
diverse.

* The population escapes search-space regions with too
low a signal-to-noise ratio, because in these regions the
movement of the population is amplified.

* Premature convergence is prevented.

The following uncertainty treatment algorithm is applied after
each generation step employing uncertainty measurement s.

S — (1 —cs)5+css
if 5 > 0 % apply uncertainty treatment
if feval < fmax
teval + min(auteval; tmax)
else
0 — Qy0
else if 5 < 0 % decrease evaluation time

teval — nlax(teval/ah 2‘:min)

Initialization iS teval = fmin and 5 = 0 and the parame-
ters are chosen to ¢ = 1, a, = 1 4+ 2/(n + 10), ap = 1.5,
tmin = 18, tmax = 10 s. If the uncertainty measurement value
5 exceeds zero, the evaluation time tqy4 1S increased. If tova) has
already reached its upper bound % ., Step-size o is increased.
Otherwise, if 5 is below zero, time teya] is decreased. An adap-
tive evaluation time tey,] proves to be particularly useful in the
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early stages of an optimization run or when the operating con-
dition is changed. In the later stages, the evaluation time will
usually reach the upper bound and the adaptation will become
ineffective.

3) Role of Parameters: We discuss the role of the parameters
of the uncertainty measurement and the uncertainty treatment
algorithm.

e r)n €]0,1], typically < 0.5, determines the fraction of
solutions to be reevaluated. For », = 0.3 a fraction of
30% of the solutions in the population is reevaluated. For
ryx = 1 each solution is evaluated twice. To establish a
sufficiently reliable uncertainty measurement 7 has to be
chosen large enough. To minimize the additional costs (in
terms of number of function evaluations), r, should be
chosen as small as possible.

* ¢ > 0 and ¢ < 1: Mutation strength for the reevaluation,
given relative to the recent mutation strength. To be able to
treat “frozen” noise similar as stochastic noise, € must be
set greater than zero, such that a slightly different solution
is used for the reevaluation. For the CMA-ES, according
to (3), we replace o by eo and m by z; for generating a
new solution to reevaluate x;. Note that for too small ¢
the mutation can most likely be influenced by numerical
precision.

* @ € [0, 1]: Control parameter for the acceptance threshold
for the measured rank-change value. The threshold 6 = 1
corresponds to the median rank change that occurs under
purely random selection. This is clearly an upper bound for
a reasonable setting of 6.

* c¢s: Learning rate for averaging the uncertainty measure-
ment s in the generation sequence. Decreasing c; will de-
crease the variance in the measurement s. Using ¢, = 0.5
instead of ¢; = 1.0 will have a similar effect to increasing
rx by a factor of two. Note that decreasing c; is inexpen-
sive when compared with increasing 7. On the other hand
decreasing ¢ introduces a time delay.

* a5 > 1: Factor for increasing the population spread (step-
size) when the measured uncertainty value is above the
threshold. Values larger than 2 are rarely reasonable. To
make divergence most unlikely, a, should be as small as
possible. This is particularly relevant when increasing the
population spread has no significant influence on the un-
certainty level, as it is the case with outliers.

* y: Factor for increasing the evaluation time when the mea-
sured uncertainty value is above the threshold. To achieve
fast enough changes, a; should be chosen large enough,
typically not smaller than 1.2.

* tmin» tmax are chosen based on pressure measurement data
and requirements of the technical facilities of the test rig.

The final parameter settings, given above, were specified
based on simulations of the uncertainty handling with the
CMA-ES on the sphere function. Different parameter settings
may be necessary when combining the uncertainty handling
with different evolutionary algorithms.

4) Applications of Uncertainty Handling for Feedback Con-
trollers: The two techniques, presented above, provide different
treatments of uncertainty during the optimization of the combus-
tion feedback controllers. The increase of the evaluation time is

the most straightforward way to implement resampling during
the operation of the controllers (and can be replaced by resam-
pling in another application using [teva1 ] as the number of sam-
ples). Different evaluation times were successfully applied to
combustion control in [49], [55]. Longer evaluation times re-
duce the amount of uncertainty and the controller parameters
can get closer to their desired values. For an unbounded eval-
uation time, UH-CMA-ES has the capability to approach the
optimum with arbitrary accuracy. In order to retain adaptability,
however, the evaluation time needs to have an upper bound.

The increase of o ensures that the evolution strategy remains
in a working regime where sufficient selection information is
available. This is important, as changing operating conditions
can affect the desired controller parameters and the algorithm
has to track these changes even in a late stage of the optimiza-
tion. The increase of o can only be useful if the introduced in-
crease in the population spread leads to an improved signal-to-
noise ratio. Our empirical observations show that this truly holds
for our application. In particular, we never observed divergence
of step-size o.

The upper bound for the evaluation time limits the possible
accuracy of the control parameters. The optimum cannot be
approximated with arbitrary accuracy if in its vicinity the
signal-to-noise ratio is too low. This failure is a property of the
evolution strategy in general and is actually not caused by the
uncertainty handling. The uncertainty handling only prevents
the step-size to become arbitrarily small. We believe that in
a noisy online application, where the optimum can change in
time, in the end a tradeoff exists between the objectives to retain
adaptability versus getting arbitrarily close to the optimum.

V. RESULTS ON TEST FUNCTIONS

The effect of increasing the evaluation time on the perfor-
mance of the algorithm is predictable. If the increment is fast
enough the algorithm will remain operating reliably and con-
verge to the optimum, while the time per function evaluation
will increase unboundedly. Hence, we are mainly interested
in the effect of the step-size increment. On certain multimodal
functions the increase of the step-size might occasionally help
to locate the domain of a better local optimum, but we believe
that this effect is of minor relevance. Overall, we do not expect
that the uncertainty-handling would impair the performance
of the algorithm on multimodal functions. Hence, we do not
include experiments in multimodal functions and we present
experiments on several unimodal functions with uncertainty.
These functions can also be interpreted as rugged, highly mul-
timodal (non-noisy) functions, because any single solution is
(virtually) never evaluated twice. The “reevaluations” are con-
ducted with a slightly mutated solution (compare point 3 in the
uncertainty measurement algorithm). Therefore, no difference
between “stochastic” and “frozen noise” can be observed.

The test functions obey

n

L(z) = f(5) + Ny(2) = 3 ailws — b)* + ti

=1

5)

eval

where a;,b € R are chosen function-dependent and the un-

certainty term is independent of x but scaled with tfval, and



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

CMA-ES without uncertainty handling UH-CMA-ES

10° ! 10
10 i\ 10° |

10’ t

function value
function value
>

10° 1 10}
4 | _1
107, 10000 20 107,
function evaluations
0 0
10 \ 10"
\ 3
R |
2| Wy 2L Q)
107N 10 B
WAy

smallest standard deviation
>

smallest standard deviation
o

10000 20000
function evaluations

10000 2
function evaluations

Fig. 3. Five runs on L.;, where n = 10, and tmin = tmax = 1. Left:
CMA-ES without uncertainty handling; right: UH-CMA-ES (with uncertainty
handling); top: function value of the population mean, f(m); bottom: stan-
dard deviation in the smallest principal axis. The uncertainty handling keeps the
smallest standard deviation above 10~* and prevents premature convergence.

£ > 0. While this test function is additively decomposable and
hence unrealistic simple, all our simulation results also hold for
non-decomposable (rotated) versions. Three functions are de-
rived, where 8 = 0.5.

LSCphere the isotropic sphere function, where a; = 1, for ¢ =
1,...,n,b=0,and N is standard Cauchy distributed.

L. the ellipsoid function, where a; = 106%(=1/(n=1) ' —
0,and N is standard normally distributed. The condition number
is 10%. The principal axis lengths are equidistant on the log scale.

Lgli the ellipsoid function Lgj;, where b = 5, and N is stan-
dard Cauchy distributed.

Fig. 3 shows five independent runs on L.j; in 10D. Pre-
mature convergence is observed without uncertainty handling
(CMA-ES, left). The smallest standard deviation o+/Amin,
where A, is the smallest eigenvalue of C, exhibits a drift
with all values clearly below 10~%. With uncertainty handling
(UH-CMA-ES, right) we choose tmin = tmax = 1 here for
simplicity, implying constant Z..,1 = 1. Therefore, only o is
changed by the uncertainty treatment. The smallest standard
deviation o/ Ay reaches a stationary value and does not drop
below 1072, If teya) is chosen much larger such that no rank
changes occur (non-noisy case), about 20% fewer function
evaluations are required to reach a function value of 1 (not
shown). Note that even though the smallest standard deviation
is larger than in cases without uncertainty handling, the func-
tion values are clearly better and give first evidence that the
uncertainty handling works effectively.

Fig. 4 shows a single run of UH-CMA-ES on Lj; in 8D. The
course of o (upper left) reveals that the uncertainty treatment
enters after about 2000 function evaluations. After about 5000
function evaluations, the adaptation of the covariance matrix is
completed. The eigenvalues of the covariance matrix correspond
to the inverse coefficients a; bof Ley; and indicate an almost
perfect adaptation to the function topography, despite the noisy
environment. In view of the fact that only o is changed to treat
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Fig. 4. Single run of the UH-CMA-ES (with uncertainty handling) on Le;,
where n = 8, and t;min = tmax = 1. Upper left: function value of the distri-
bution mean, f(m) (thick line with dots), step-size o (mostly increasing line),
ratio between largest and smallest principal axis length of C (flattening line).
Upper right: components of mean vector m. Lower left: coordinate-wise stan-
dard deviations o X v/C’;, where C}; is the ith diagonal element of C'. Lower
right: square root of eigenvalues of C'.
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Fig. 5. Single run of the UH-CMA-ES switching between L{) .. and L{]; at
3000 and 6000 function evaluations, where n = 5, 3 = 0.5 [see (15)], initial
o = 1072, initial t,,,; = 1. The graphs remain identical for any 3 > 0 given
a; = 1.5°3/7 Upper left: function value of the distribution mean f(m) (line
with dots), and Z.va1. Upper right: components of mean vector m. Lower left:
coordinate-wise standard deviations o X /C’;, where C}; is the ith diagonal

element of C. Lower right: square root of eigenvalues of C.

the noisy environment, this is a remarkable result. The mean
vector fluctuates around the optimum zero (upper right), while
the size of the fluctuations differs for different variables (coor-
dinates), according to their sensitivities a;.

Fig. 5 shows a single run of UH-CMA-ES, switching from
Lghere to LS, after 3000 function evaluations, and back again
after 6000 function evaluations. Here, ¢, = 1, tmax = 10
and oy, is shown in the upper left. The initial o is chosen far
too small. Consequently, o increases from 10~2 to 2 in the
beginning. During convergence on Lg’;here o dropsto2 x1071,
while t.y,) increases to the upper bound ¢,,x = 10. When the
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objective function is switched .y, drops to the lower bound,
because the uncertainty becomes negligible when compared
with the differences in the function values f. In addition, o
increases fast, because the optimum has been displaced. At
about 4000 function evaluations .y, Starts to increase again,
because the uncertainty term becomes significant. As expected,
the covariance matrix adapts to the new topography and the
z-variables move to the new optimum, arranged according to
their relevance. Switching back to Lg)here reveals a similar pic-
ture. The step-size increases, tov,) decreases, and the isotropic
topography has to be relearned. Because there is no distinct
coordinate system the relearning takes as much time as learning
the elliptic topography starting from a spherical distribution.
This procedure can be naturally accelerated by resetting the
covariance matrix. Further experiments, conducted with larger
dimensions, on non-quadratic objective functions, and with
z-dependent uncertainty terms, give similar results (not shown).

VI. EXPERIMENTAL RESULTS

A. Implementation of the Algorithm on the Test Rig

The UH-CMA-ES delivers a set of controller parameters to
be evaluated together with a requested function evaluation time.
The controller parameters undergo an affine transformation
from the interval [0, 1] onto respective intervals specified below,
and the initial values are set to the middle of the interval. The
controller is assembled and written to the real-time board. In
order to avoid any risks stemming from inappropriate parameter
settings delivered by the algorithm, the gain of the new con-
troller is ramped up over the course of 2 s, such that the human
operator can intervene in case of a developing harmful situation.
After the data acquisition has been completed, the controller
gain is ramped down, and an intermediate controller keeps
the combustor in a stable regime. Meanwhile, pressure data is
logged, a new controller is developed and transferred to the
real-time board. The total cycle time thus consists of ramping
the controller gain up and down (about 2 s each), pressure
data acquisition (determined by the algorithm, 1-10 s), data
logging (1 s) and UH-CMA-ES computation time (negligible).
The maximum time that pressure can be logged is currently
limited to 10 s, due to real-time board memory constraints. The
controller is sampled at 10 kHz, the frequency content of the
pressure signal warrants no aliasing effects during sampling.
For the following experiments, the preheat temperature and the
mass flow are kept constant at 700 K and 36 g/s, respectively.
Two values for the air/fuel ratio A are investigated, namely
A =21and A = 1.875.

B. Experiment: Gain-Delay Controller, Cold Start, A = 2.1
and Switch to A = 1.875

The combustor is fired up from ambient temperature, an op-
erating condition is set with a mass flow of 36 g/s, a preheat
temperature of 700 K, and an air/fuel ratio of A = 2.1, and
the gain-delay controller is turned on. As the system heats up,
the sound pressure level L, from (1) rises. Previous studies
have shown that the maximum absolute value of the gain for
a gain-delay controller decreases as the combustor heats up for
this operating condition. This is attributed to the fact that the

L ;A=2.1
ps
150}
140
130}
m \ R
B 1oph N o \
110( [ [
J —uncontrolled at 1000 s
100 Gain-Delay at 1000 s
—Gain-Delay at 4700 s
90

0 100 200 300 400 500
Frequency [Hz]

Fig. 6. Comparison of the uncontrolled and controlled spectra of the pressure
signal at 1000 s and 4700 s for the same gain-delay controller and A = 2.1.

Lo, [0BI Legandt, ., tova [S] controller parameters (2D)
10
147.2 —Gain
147 0.4 ,‘ W Delay
146.8 5 [/\] A A
146.6 R (AAS B VI AT

W 0.2 /

0 0
0 2000 4000 6000 8000 0
time [s]

—L —t
eq eval

2000 4000 6000 8000
time [s]

std in coordinates principal axes lengths of C

—Gain L ——axis 1
\ Delay axis 2
107
0 2000 4000 6000 80‘00 0 2000 4000 6000 8000

time [s] time [s]

Fig.7. Parameter evolution for the UH-CMA-ES optimization of a gain-delay-
controller. At 4800 s, the operating condition is changed from A = 2.1to A =
1.875.

low-frequency content of the pressure signal rises, and the re-
sulting low frequency components of the fuel injection tend to
alter the flame stabilization. The flame then flaps back and forth
and increases the uncertainty levels.

The heat-up phase is also evident in the pressure spectra of
the controlled combustor taken at 1000 s and 4700 s, shown in
Fig. 6. The plant is uncontrolled and gain-delay controlled (gain
—1.8 x 1074, delay 0.3 ms), the resulting L., are 159.87 dB,
146.90 dB, and 147.48 dB, respectively.

The UH-CMA-ES optimizes the gain and the delay of the
gain-delay controller. The evolution of the parameters is shown
in Fig. 7, where the gain interval [—3 x 10~%, 0] and the delays
from {0.1,0.2,...,1.5} ms are mapped onto [0, 1]. Previous ex-
periments with manual tuning have shown that actuator satura-
tion and flame stabilization problems occur if the gain is chosen
lower than —3 x 107, or the delay is higher than 1.5 ms. The
initial gain and delay passed to the UH-CMA-ES algorithm are
—1x 1077 and 1.5 ms, respectively. During the first 4800 s Leq
rises as the combustor heats up, and the optimal value of the gain
increases from about —2.5 x 10~ % at 1000 s to —1.8 x 10~ * at
4800 s. The rise of Lcq is related to the persistent change of the
system conditions during heat-up and seems to have no adverse
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Fig. 8. UH-CMA-ES optimization of a gain-delay controller for A = 2.1,
heating up. Function evaluations, from top plot down: 1-150; 150-250; 250-325;
325-390. Pentagrams show the best parameter set for each generation, the larger
they are, the later they have been acquired for each plot. The black polygon is
the convex hull of all controller parameter values tried in the given time range.

effect on the optimization. During the first 1000 s the evalu-
ation time increases and reaches 10 s, the maximum allowed.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

L ;A=2.1;fevals 395-900 L_ [dB]
eq €q

147.8
_ 1476
£
= 147.4
>
©
(0]
806 147.2

147

146.8

Fig. 9. UH-CMA-ES optimization of a gain-delay controller for A = 1.875.
Function evaluations 395-740 (4900-9800 s), see Fig. 8 for explanations.

That means uncertainty is becoming an issue. The standard de-
viations decrease during the first 4000 s and rise again as the
operating condition is changed. At 4800 s, the operating condi-
tion is changed from A = 2.1 to A = 1.875, and the evaluation
time is manually set to 1 s.

Four cost function landscapes for different time intervals are
shown in Fig. 8. They are obtained by Delauney triangulation
of a second-order polynomial fit to the L., results for the in-
dividual delay slices. Pentagrams show the best parameter set
for each generation; the larger they are, the later they have been
acquired for each plot. A black circle marks the last of the pen-
tagrams. The topmost plot shows the L., for the first 150 func-
tion evaluations (up to 1300 s). The plot shows that the gain
can be chosen quite negative; the overall landscape features
low Leq values. For the function evaluations from 150 to 250
(1300-2700 s), the evaluation time increases and yields results
with less uncertainty. A trend to less negative values for the gain
becomes apparent (the pentagrams indicating the best of the
generations are moving to the right), and the general background
uncertainty level rises (indicated by areas getting darker).

The black polygon is the convex hull of all controller param-
eter values tried in the given time range. The function evalua-
tions 250-325 (2700-3800 s), shown in the third plot, indicate
that the optimal value for the gain lies around —1.8 x 10~% and
a delay of 0.4-0.5 ms. The parameters evaluated are now nar-
rowed down to the smaller black polygon. If this result is com-
pared with the last plot showing function evaluations 325-390
(38004800 s), the optimal values for the gain and the delay are
confirmed, but the cost function evaluated L rises. This is in
accord with the observation that the combustor exhibits slowly
rising sound pressure levels for A = 2.1. Atrun 395 (4800 s), the
lambda value is changed to A = 1.875. This operating condi-
tions exhibits less thermal drift than the previous one. According
to Fig. 9, the changing operating conditions can clearly be dis-
cerned in the cost function L. The algorithm finds a new min-
imum, where the gain can be more negative for this case.

The evaluation time increases immediately again, indicating
no big improvement of the signal-to-noise ratio, even though
the controller is less close to its optimal regime. This suggests
that o should be increased together with teya1. The course of
o supports this conjecture. It increases by a factor of three and
shows the adaptive capability of the algorithm. It takes eight
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Fig. 10. Parameter evolution for the UH-CMA-ES optimization of a H o con-
troller for A = 1.875 (top) and the resulting cost function landscape (bottom).
Pentagrams show the best parameter set for each generation.

generations until the increase of o appears, and we do not know
whether this reflects a sensible adaptation or whether ¢ should
have increased beforehand. Finally, the UH-CMA-ES success-
fully adjusts the controller parameters to new improved values,
as shown in Fig. 7.

C. Experiment: H., Controller, Two Parameters Optimized,
A = 1.875

An H, controller has been designed for the operating con-
dition with A = 1.875, where the goal was to simultaneously
decrease the three peaks at 250 Hz and around 330 Hz. In order
to keep the number of parameters small and to speed up conver-
gence, only the gain and the frequency shift are optimized.

In the top plot of Fig. 10 the intervals for frequency shift,
[0.95,1.05], and gains [0.4, 1.1], are mapped onto [0, 1]. The
comparatively good values for L., in the beginning are related
to the short evaluation time. The shorter the evaluation time is,
the larger is its variation due to the uncertainty. Therefore, better
values occur more often. The bottom plot shows the cost func-
tion landscape. It is obtained by DACE, a Matlab toolbox for
working with Kriging approximations, which has been kindly

D. Experiment: Ho, Controller, Three Parameters Optimized,
A = 1.875

For the following experiment, three parameters are optimized
by the UH-CMA-ES, namely gain, frequency shift and time
delay of the H., controller. The evolution of the parameters
is shown in Fig. 11 (frequency shift interval [0.95, 1.05], gains
[0.4,1.1], delays [1, 10]). Since the cost function takes three ar-
guments, only four cost function landscapes with fixed delays
of 0.1 ms to 0.4 ms are shown in Fig. 12. The topmost plot cor-
responds to the bottom plot of Fig. 10, where only frequency
shift and gain are adjusted, but the delay is kept at 0.1 ms for
all experiments. Gain and frequency shift have similar values
but exhibit a larger variation. The minimum L., is lower for a
delay of 0.2 ms, and even lower for a delay of 0.3 ms, while it
increases again for 0.4 ms (bottom plot).

The Bode plots of the designed and optimized H ., controllers
are shown in Fig. 13. The superior performance of the H ., con-
troller goes hand in hand with a more complex shape. The opti-
mized controller has nearly the same phase as the designed one,
but the gain is lower. Since the delay is adjusted additionally,
it is possible to move the controller in the frequency domain
keeping the same phase.

As a result for the operating condition characterized by A =
1.875, the spectra achieved with the optimized gain-delay and
H~o controllers are compared with the uncontrolled plant in

3http://www2.imm.dtu.dk/~hbn/dace/



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

L_;delay 0.1 ms;A=1.875 L__ [dB]
eq eq

146.7
1466
1465
146.4
146.3

quency shift

Hw fre

0.6 0.8
Gain

L_;delay 0.2 ms;A=1.875 L__[dB]
eq eq

146.7
@ 146.6
>
2
g 146.5
S
tx 146.4
T
146.3
0'98.4 0.6 0.8 1
Gain
L _;delay 0.3 ms;A=1.875 L__[dB]
eq eq
PAd
146.7
@ 146.6
>
1<
3 146.5
8
tg 146.4
I
146.3
0‘98.4 0.6 0.8
Gain
L _;delay 0.4 ms;A=1.875 L__ [dB]
eq eq
1.05
146.7
K 146.6
)
=
3 146.5
S
e 146.4
i B

146.3

0'98.4 0.6 0.8 1
Gain

Fig. 12. UH-CMA-ES optimization of an . controller for A = 1.875. De-
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Fig. 14. The L., of the uncontrolled plant is 148.72 dB, the
gain-delay controller reduces it to 146.67 dB, and finally the
Hoo controller reaches 146.16 dB, which is about 15% lower
again. Moreover, the H., controller is able to simultaneously
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Fig. 13. Bode plots for the designed and the UH-CMA-ES-optimized H o con-
trollers for A = 1.875. Amplitude (top) and phase (bottom) of the controller.
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Fig. 14. Comparison of the pressure spectra when the plant is uncontrolled,
gain-delay and H .. controlled. Both controllers are UH-CMA-ES optimized,
A = 1.875.

push down all three peaks and to attain the flattest spectrum.
This is achieved thanks to the model-based approach, confer-
ring the most design freedom to the engineer.

E. Experiment: H., Controller, Two Parameters Optimized,
A=21

Finally, the UH-CMA-ES is used to improve an H., con-
troller designed for A = 2.1. The parameter evolution is shown
inFig. 15 at the top (frequency shift interval [0.95, 1.05], gain in-
terval [0.4,1.1]), and the cost function landscape at the bottom.
A lower gain decreases L.q compared with the designed con-
troller with gain one, but the frequency shift does not have a
decisive effect. The final standard deviations for gain and fre-
quency shift differ by a factor of about three (lower left of the
top plot of Fig. 15) reflecting the different sensitivities of the
parameters. The Bode plots of the designed and the optimized
controllers are shown in Fig. 16. The controller phase is quite
flat and, therefore, tolerant against frequency shifts. The com-
bustor pressure spectrum exhibits only one very distinct peak,
and it suffices to provide the right amount of gain and phase at
this frequency.

To compare the UH-CMA-ES optimized gain-delay and H .,
controllers with the uncontrolled plant, their spectra are plotted
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Fig. 16. Designed and UH-CMA-ES-optimized H . controller for A = 2.1.

in Fig. 17, the values of L.q are 159.87 dB, 147.48 dB, and
147.35 dB, respectively. They are shown for the plant which
has been running for several hours and is thus heated up. In this
case, the Ho, controller performs only slightly better than the
gain-delay controller, but the control signal contains about 10%
less energy.
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Fig. 17. Comparison of the uncontrolled with the gain-delay and H ., con-
trolled plant for A = 2.1. Both controllers are optimized by UH-CMA-ES.

VII. SUMMARY AND OUTLOOK

We have presented a novel evolutionary optimization algo-
rithm (UH-CMA-ES) for problems with uncertainties. The op-
timization algorithm consists of the well-known CMA-ES en-
hanced by a novel uncertainty handling algorithm. The evolu-
tionary algorithm is applied to the online optimization of feed-
back controllers in a combustor test rig. The uncertainties are
associated with the stochastic nature of the cost function and, in
the present application, with the online optimization of the con-
troller parameters.

The novel uncertainty-handling algorithm needs few addi-
tional cost function evaluations per generation and is, therefore,
well suited for online applications. The algorithm distinguishes
between uncertainty measurement and uncertainty treatment.
The uncertainty measurement is based on rank changes induced
by reevaluations of solutions. Two adaptive uncertainty treat-
ments are proposed: increasing the time for evaluating the con-
troller up to a prescribed bound, and increasing the population
diversity. Both treatments improve the signal-to-noise ratio. The
former reduces the uncertainty variance comparable to resam-
pling of solutions, while the latter improves the signal term
without additional function evaluations and with only minor
computational effort.

The algorithm has been validated on test functions and it
has been applied to the optimization of feedback controllers
of thermoacoustic instabilities, using secondary fuel injection
in a combustor test rig. The controllers employ gain-delay and
‘H~ control and their parameters have been optimized online
with the introduced UH-CMA-ES. The experiments show that
the algorithm can optimize different controller types and can
cope with changing operating conditions and high levels of un-
certainty. Our results indicate that model-based H ., controllers
perform best, and that they can be further improved through the
use of the UH-CMA-ES. The optimized solutions deviate sig-
nificantly from the originally designed solutions and can make
up for uncertainties in the model-building and design process,
as well as for time-varying plant characteristics.

Future work will include the acceleration of the self-tuning
process for the combustion control. First, algorithm internal pa-
rameter settings can be improved and be specifically adjusted
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to the small dimensionality of the problem. Second, the imple-
mentation on a test rig can be improved to shorten the ramping
times which are by far the most time consuming part in the ini-
tial phase of the controller tuning process. Furthermore in the
context of the UH-CMA-ES a more informed way of selecting
the appropriate uncertainty treatment can shorten the adaptation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

time considerably, in particular if the evaluation time can be re-
duced for a longer time interval.

APPENDIX

Matlab Implementation of the Uncertainty Measurement:

% acceptance threshold
%  ranks

% rankDelta:
% arfl.

%%% verify input argument sizes
if size(arfl,1) ~= size(arf2,1)

% compute ranks

[ignore idx] = sort([arfl arf2]);
[ignore ranks] = sort(idx);

ranks = reshape(ranks, lam, 2)’;

for i = 1:lamreev
sumlim(i) =

theta*50) +

theta*50) ;
end

%%% compute measurement

function [s ranks rankDelta] = noisemeasurement(arfl, arf2, lamreev, theta)
%

% Input:

% arfl, arf2 two 1xlambda arrays of function values, two values for
% each individual of the population. The first lamreev values in
% arf2 are new (re-)evaluations of the respective individual.

% lamreev: number of reevaluated individuals in arf2

% theta : parameter theta for the rank change limit

%

% Output:

% s noise measurement, s>0 means the noise measure is above the

2xlambda array of ranks of arfl and arf2 in the set

% [arf1 arf2], values are in [1:2*1lambdal

1xlambda array of rank movements of arf2 compared to
rankDelta(i) agrees with the number of values from
% [arf1 arf2] that lie between arfi1(i) and arf2(i).

error(’arfl and arf2 must agree in size 17);

elseif size(arfl1,2) ~= size(arf2,2)

error(’arfl and arf2 must agree in size 2’);
elseif size(arfi1,1) “= 1

error(’arfl and arf2 must be an 1xlambda array’);
end
lam = size(arfi1,2);

%%% compute rank changes into rankDelta

rankDelta = ranks(1l,:) - ranks(2,:) - sign(ranks(l,:) - ranks(2,:));

%%h% compute rank change limits using both ranks(1l,...) and ranks(2,...)

prctile(abé((l:Q*lam—l) - (ranks(1,i) - (ranks(1,i)>ranks(2,i)))),

prctile(abs((1:2*lam-1) - (ranks(2,i) - (ranks(2,i)>ranks(1,i)))),

s = mean(2*abs(rankDelta(l:lamreev)) - sumlim) ;
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