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Evolution Strategies (ESs) are stochastic optimization algorithms rec-
ognized as powerful algorithms for difficult optimization problems in a
black-box scenario. Together with other stochastic search algorithms for
continuous domain (like Differential Evolution, Estimation of Distribu-
tion Algorithms, Particle Swarm Optimization, Simulated Annealing. . . )
they are so-called global optimization algorithms, as opposed to gradient-
based algorithms usually referred to as local search algorithms. Many
theoretical works on stochastic optimization algorithms focus on inves-
tigating convergence to the global optimum with probability one, under
very mild assumptions on the objective functions. On the other hand,
the theory of Evolution Strategies has been restricted for a long time
to the so-called progress rate theory, analyzing the one-step progress of
ESs on unimodal, possibly noisy functions. This chapter covers global
convergence results, revealing slow convergence rates on a wide class
of functions, and fast convergence results on more restricted function
classes. After reviewing the important components of ESs algorithms,
we illustrate how global convergence with probability one can be proven
easily. We recall two important classes of convergence, namely sub-linear
and linear convergence, corresponding to the convergence class of the
pure random search and to the optimal convergence class for rank-based
algorithms respectively. We review different lower and upper bounds
for adaptive ESs, and explain the link between lower bounds and the
progress rate theory. In the last part, we focus on recent results on lin-
ear convergence of adaptive ESs for the class of spherical and ellipsoidal
functions, we explain how almost sure linear convergence can be proven
using different laws of large numbers (LLN).
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10.1. Introduction

In this chapter we focus on numerical optimization where the functions to

be optimized are mapping D, a subset of the euclidian space R
d equipped

with the euclidian norm ‖.‖, into R and without loss of generality we as-

sume minimization. Moreover, we consider derivative free optimization

algorithms, i.e., algorithms that do not use derivatives of the function to

optimize. Often, those derivatives do not exist or are too costly to evalu-

ate. For instance, the function f can be given by an expensive numerical

simulation, a frequent situation in many real-world optimization problems.

Such a context is called black-box optimization. The objective function

f : D ⊂ R
d → R is modeled as a black-box that is able to compute, for a

given x ∈ R
d, the associated objective function value, f(x). The algorithms

considered in this chapter are Evolution Strategies (ESs), known as robust

and efficient algorithms for black-box optimization without derivative with

numerous successful applications to scientific and industrial problems. ESs

are just an instance of adaptive stochastic search algorithms where the

search space is explored by sampling probe points according to a (contin-
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uous) search distribution that can change (be adapted) during the search

process.

We assume for the moment that the optimization goal is to approach,

with the least search cost, i.e., the least number of function evaluations, a

solution x∗ such that f(x∗) ≤ f(x) for all x ∈ D and refer to Section 10.2.1

for a more suitable definition of x∗. The solution x∗ will be called global

optimum.

The simplest stochastic search algorithm for black-box optimization is

the pure random search (PRS), proposed by Brooks (1958) that samples

solutions independently with the same probability distribution defined over

D and takes as approximation, or estimate, of the optimal solution, the

best solution visited so far, where best refers to the solution having the

smallest objective function value. In PRS, the samples are independent and

identically distributed, therefore the exploration is “blind”—no feedback

from the objective function values observed is taken into account for guiding

the next steps. However, in general, the functions to optimize have an

underlying structure that can be exploited by optimization algorithms. This

fact was soon recognized after the introduction of the PRS in 1958 and

research on the algorithmic point of view focused on finding techniques to

adapt the search distribution according to the already observed solutions.

10.1.1. Adaptive Search Algorithms: A Tour d’Horizon

Adaptive search algorithms refer here to algorithms where the sampling

distribution—as opposed to PRS—is adapted along the search. We de-

note by Xn the best estimate of the (global) minimum after n iterations

and by Yn a probe point or candidate solution. In PRS, Y0, . . . , Yn, . . . are

independent and identically distributed (i.i.d.) over D, X0 = Y0 and

Xn+1 =

{

Yn if f(Yn) ≤ f(Xn) ,

Xn otherwise.
(10.1)

The probably most important concept in an adaptive algorithm is to probe

preferably in the neighborhood of the current solution since for non patho-

logical functions good solutions are usually close to even better ones. If

W0, . . . , Wn, . . . are i.i.d. with a probability measure usually centered in

zero, independent of the initial estimate X0, then Xn + Wn is the new

probe point and the update is given by

Xn+1 =

{

Xn + Wn if f(Xn + Wn) ≤ f(Xn) ,

Xn otherwise.
(10.2)
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This algorithm has different names like local random search (Devroye

and Krzyżak, 2002) or Markov monotonous search (Zhigljavsky and Zilin-

skas, 2008) and will be referred here—following the terminology for evo-

lutionary algorithms—as (1+1)-Evolution Strategy. The “(1+1)” notation

comes from the fact that one point Xn (the first “1” in (1+1)) is used to

generate another point Xn + Wn (the second “1” in (1+1)) and both are

compared to achieve the point Xn+1 (the best among Xn plus Xn + Wn is

kept). In ESs the random vectors (Wk)k∈N follow typically a multivariate

normal distribution with zero mean. The pioneers of Evolution Strategies

are I. Rechenberg (Rechenberg, 1973) and H.-P. Schwefel (Schwefel, 1981).

The term local random search suggests that a close neighborhood of Xn

is explored. The size of this neighborhood is determined by the dispersion

(or variance if it exists) of the distribution of Wn which is fixed once for all

in the local random search algorithm. However, it seems natural that this

dispersion needs to be adapted as well: in the first iterations, exploration

of the search space and thus a large dispersion should be preferred and in

the last iterations smaller dispersions are needed so as to converge. The

question of how to adapt the dispersion has been central in the field of

stochastic optimization. Consequently, many different methods have been

proposed to address this issue and, already in 1971, a survey of different

techniques was written by White (1971).

Before to review some important steps in this respect, we set a new

framework, restricting the distribution for the new probe point to a spher-

ical multivariate normal distribution. Let N0, . . . , Nn, . . . be i.i.d. multi-

variate normal random vectors where for each n, each coordinate of Nn

follows a standard normal distribution independent of the other coordi-

nates. A new probe point at iteration n is given by Xn + σnNn, where σn

is a strictly positive parameter, called step-size. Since the coordinates of

Nn are standard normally distributed, the parameter σn corresponds to the

standard deviation of each coordinate of Nn. The update for a so-called

(1+1)-ES with adaptive step-size reads

Xn+1 =

{

Xn + σnNn if f(Xn + σnNn) ≤ f(Xn) ,

Xn otherwise,
(10.3)

for the update of Xn plus an update equation for the step-size σn, (X0, σ0) ∈

D × R
+.

One basic principle behind step-size adaptive algorithms is to try bigger

steps if an improvement is observed, and smaller steps if a probe is unsuc-

cessful (Matyas, 1965). Schumer and Steiglitz (1968) propose to maintain a
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constant probability of success of around 1/5, where probability of success

is defined as the probability that the new probe point has an objective func-

tion value smaller than the current solution. This idea can also be found

in Devroye (1972) and Rechenberg (1973) and is known in the domain of

evolutionary algorithms under the name of 1/5th-success rulea.

Adaptivity of random search algorithms is not limited to a single pa-

rameter, like the step-size. The multivariate normal distribution used to

sample the new probe point has, besides its mean value, (d2 + d)/2 vari-

ation parameters—variances and covariances. These parameters reflect a

quadratic model. More recently, a surprisingly effective method has been

introduced to adapt all variances and covariances in the covariance ma-

trix adaptation (CMA) evolution strategy (Hansen and Ostermeier, 2001).

Three main ideas are exploited: (1) the search path (evolution path) over

a backward time horizon of about d iterations is pursued and its length

and direction are analyzed, (2) new probe points are favored in directions

where previously probe points were successful, (3) invariance properties are

maintained and the method is in particular invariant under the choice of

the coordinate system.

The methods outlined above sample only one new probe point. An

important ingredient of evolutionary algorithms however is to sample a

population of probe points. ESs loop over the following steps: (1) sample

new solutions from a multivariate normal distribution, (2) evaluate the ob-

jective function value of those solutions and (3) adapt the parameters of the

multivariate normal distribution (mean vector, step-size and/or covariance

matrix) using the observed data. The last step is a crucial step for an ES

to converge faster than random search as we will see later.

Following the terminology used for evolutionary algorithms, we might,

in the sequel, call parent the current search point Xn and offspring the new

probe points generated from Xn.

10.1.2. What to Analyze Theoretically?

Given an optimization algorithm, the first question usually investigated

is the one of convergence that can be formulated as: will the algorithm,

when time grows to infinity, get arbitrarily close to an optimum of the

optimization problem?

aA simple implementation can be found in (Kern et al., 2004): the step-size is multiplied
by α > 1 in case of success and divided by α1/4 otherwise. This algorithm will be
analyzed in Section 10.4.3.2.
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Fig. 10.1. Time evolution of the distance to the global minimum ‖Xn − x∗‖ of three
different (1+1)-algorithms on the function f : x #→ g(‖x − x∗‖), where g is strictly
monotonically increasing. For each algorithm, three trials on the left and three on the
right are shown. On the left, the jagged black line starting at 10−9 shows additionally
the step-size of one trial with adaptive step-size. The constant horizontal line shows the
step-size of the constant step-size algorithm, 10−2. The initial step-size of the adaptive
step-size algorithm was intentionally chosen much smaller than 10−2 in order to observe
the effect of the adaptation. On the right, the trials are shown in a log-log plot and
the adaptive step-size algorithm has an initial step-size equal to 10−2 to have a fair
comparison with the algorithm with constant step-size. From the right plot, we estimate
that the algorithm with constant step-size reaches a distance to the optimum of 10−3 in
at least 1012 function evaluations and is therefore more than 1 billion times slower than
the adaptive step-size algorithm.

Convergence is illustrated in Figure 10.1. The objective function to

be minimized is the sphere function defined as f(x) = ‖x‖. The global

minimum is here unique and equals 0. The optimization goal is thus to

approach 0 as fast as possible. Shown are 18 realizations (or runs) from

three different algorithms. The y-axis depicts the objective function value

of the best solution reached so far (note the log-scale) plotted against the

number of objective function evaluations (x-axis) regarded as execution

timeb. The three algorithms converge to the optimum: they approach zero

arbitrarily close when the time grows to infinity.

Global convergence can either refer to convergence to a local optimum

independently of the starting point or convergence to a global optimum.

The former is usually meant in the “deterministic” optimization commu-

nity, where it is often formulated as convergence to zero of the sequence of

bWe assume that the search cost (and thus the overall execution time) is mainly due to
the objective function evaluations and not to the internal operations of the algorithm.
This assumption is reasonable for many problems that are handled with evolutionary
algorithms.
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gradients associated to the candidate solutions. The latter is usually meant

in the “stochastic” optimization community.

Convergence results alone are of little interest from a practical viewpoint

because they do not tell us how long it takes to approach a solution. The

three algorithms presented in Figure 10.1 all converge with probability one

to the optimum. However, we clearly observe that they do not converge

at the same speed. The (1+1) with constant step-size is estimated to be

1 billion times slower than the (1+1) with adaptive step-size to reach a

distance to the optimum of 10−3.

Therefore, it is important to investigate, together with convergence, the

speed of convergence or convergence rate of an algorithm, i.e., to study how

fast the algorithm approaches the global minimum. The question of speed

of convergence can be tackled in different ways.

(1) We can study the speed at which the distance to x∗, ‖Xn − x∗‖, de-

creases to zero.

(2) We can study the hitting time τǫ of an ǫ-ball Bǫ(x
∗) around the op-

timum, τǫ = inf{n : Xn ∈ Bǫ(x
∗)} or the hitting time of a sublevel

set {x|f(x) ≤ f(x∗) + ǫ}. Assume E[τǫ] is finite, studying the rate of

convergence amounts to studying how E[τǫ] depends on ǫ when ǫ goes

to zero.

Convergence speeds are classified into classes (quadratic convergence,

linear convergence, sublinear convergence, . . . ) that we will define more

precisely in Section 10.2.3. For instance, the fastest algorithm depicted in

Figure 10.1, left, is in the linear convergence class (the logarithm of the

distance to the optimum decreases linearly with the number of function

evaluations). Within a class, constants, usually referred to as convergence

rates, determine more precisely the speed of convergence.

After investigating for a given class of functions to which convergence

class an algorithm belongs to, one is usually interested in estimating the

constants (convergence rates). Determining the convergence rate will al-

low to compare the speed of convergence of two algorithms from the same

convergence class. For instance, for the fastest algorithm depicted in Fig-

ure 10.1, left, for which the logarithm of the distance to the optimum de-

creases linearly, the convergence rate corresponds to the coefficient for the

linear decrease, i.e., the averaged slope of the three curves represented in

Figure 10.1. However, determining the constants analytically is in gen-

eral much more difficult than finding the convergence class (Nekrutkin and
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Tikhomirov, 1993) and requires further assumptions. Related to this last

question, one is interested in the scaling of the constants with respect to

the dimension of the search space.

An analysis in discrete search spaces is different in several respects. In

a discrete space one can consider the hitting time of the optimum, τx∗ =

inf{n : Xn = x∗}. Then, only the scaling of E[τx∗ ] with respect to the size

of the search space is investigated. For instance, if the domain is the set of

bit-strings of length d, D = {0, 1}d, one investigates the scaling of E[τx∗ ]

with respect to d.

10.1.3. Notations and Structure of the Chapter

We denote N the set of non-negative integers {0, 1, . . .}, denote R
+ the

set (0, +∞), denote Bǫ(x) the ball in R
d of center x and radius ǫ for the

euclidian norm, i.e., Bǫ(x) = {y ∈ R
d, ‖y − x‖ ≤ ǫ} and denote Vol(.) the

volume in R
d for the Lebesgue measure, i.e., Vol(A) =

∫

A dx. The volume

of the ball Bǫ(x) for all x is, for a fixed dimension d, proportional to ǫd,

more precisely

Vol(Bǫ(x)) =
πd/2ǫd

Γ(d
2 + 1)

, (10.4)

where Γ(.) is the gamma function. The Borel σ-algebra on R
d is denoted

B(Rd). The binary operator ∧ denotes either the logical conjunction or

the minimum between two real numbers. Technically, when a is a real

number and b a random variable, b : Ω → R then a ∧ b is a random

variable such that for each ω ∈ Ω, (a ∧ b)(ω) = min{a, b(ω)}. A vector

distributed according to a multivariate normal distribution with zero mean

vector and identity as covariance matrix is said to be distributed as N(0, Id).

The set of strictly increasing transformations on R is denoted M, namely

M = {g : R → R, ∀x, y such that x < y, g(x) < g(y)}.

For a real-valued function x +→ h(x), we introduce its positive part

h+(x) := max{0, h(x)} and negative part h− = (−h)+. In other words

h = h+ − h− and |h| = h+ + h−. In the sequel, we denote by e1 a unitary

vector in R
d and w.l.o.g. e1 = (1, 0, . . . , 0).

The organization of the chapter is the following. In Section 10.2 we

start by giving a rigorous definition of the optimization goal; define different

modes of convergence for sequences of random vectors; define linear conver-

gence and sub-linear convergence; illustrate simple proofs for convergence

(without convergence rate) for the (1+1)-ES and explain the invariance to
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strictly increasing transformations of ESs together with its consequences.

In Section 10.3 we analyze in detail the convergence class of the pure ran-

dom search and review lower and upper bounds of non-adaptive ESs. In

Section 10.4, we present tight lower bounds for step-size adaptive ESs and

link those results with the progress rate theory. We then explain how linear

convergence of adaptive ESs can be proven.

10.2. Preliminary Definitions and Results

In this section we come back on the mathematical formulation of a search

problem and define different modes of convergence needed throughout the

chapter, as well as important convergence classes for optimization. We

illustrate convergence proofs for the simple (1+1)-ES with fixed sample

distribution. We also explain the invariance of ESs to order preserving

transformations of the objective function and its consequences.

10.2.1. Mathematical Formulation of the Search Problem

The goal in numerical optimization is to approximate the global minimum

of a real valued function f defined on a subset D of R
d. Without further

assumptions on f , this problem may have no solution. First of all, f may

have no minimum in D, take for instance f(x) = x for x ∈ D = (0, 1) or

D = R, or the minimum may not be unique as for f(x) = sin(x) in D = R.

However, even if f admits a unique global minimum on D, this minimum

can be impossible to approach in practice: take for instance f(x) = x2 for

all x ∈ R\{1} and f(1) = −1. Then the global minimum of f is located in

1, however, it would be impossible to approach it in a black-box scenario.

To circumvent this, we take the approach from measure theory considering

classes of functions (instead of functions) where two functions belong to

the same class if and only if they are equal except on a set of measure

zero. Let ν be a measure on D, and f, g : D → R, then g belongs to the

class of f , denoted [f ], if g and f are equal almost everywhere, that is

ν{x, f(x) ,= g(x)} = 0. The generalization of the minimum of a function to

classes of functions is the so-called essential infimum defined for a function

f as

mν(f) = ess inf f = sup{b ∈ [−∞,∞], ν({x ∈ D : f(x) < b}) = 0},

(10.5)
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and which is constant for all g in [f ]. When the context is clear, we write

mν instead of mν(f) and we will not differentiate between the minimum of

the function class [f ] and of any g ∈ [f ].

If X is a random variable with probability measure ν, then Pr[f(X) <

mν ] = 0 and Pr[f(X) < mν + ǫ] > 0 for all ǫ > 0. The value mν depends

on ν but will be the same for equivalent measures—measures having the

same null sets. We denote in the following with m the essential infimum

with respect to the Lebesgue measure on D or, equivalently, with respect

to any probability measure with a strictly positive density everywhere on

D.

From now on, we assume that there exists a unique point x∗ in the

domain closure D, such that ν{x ∈ Bǫ(x
∗) : f(x) < m + δ} > 0 for all

ǫ, δ > 0. The definition of x∗ is independent of the choice of a function in

[f ]. Then, for any g ∈ [f ], the well-defined optimization goal is to approach

the unique global optimum x∗ ∈ D.

With the above definitions we obtain x∗ = 0 for f(x) = x and D = (0, 1),

and x∗ = 0 for f(x) = x2 for x ∈ R\{1} and f(1) = −1. However, not

all functions admit a global optimum according to our definition, take for

instance f(x) = x and D = R. For solving such a function in practice, one

expects an algorithm to generate Xn with limn→∞ Xn = −∞.

10.2.2. Different Modes of Convergence

If (xn)n∈N is a deterministic sequence of R
d, all possible definitions of con-

vergence are equivalent to the following: xn converges to x∗ if for all ǫ > 0,

there exists n1 such that for all n ≥ n1 ∈ N, ‖xn −x∗‖ ≤ ǫ. Notations used

are limn→∞ ‖xn − x∗‖ = 0 or limn→∞ xn = x∗.

However, for a sequence (Xn)n∈N of random vectors there exist different

modes of convergence inducing different definitions of convergence which

are not equivalent.

Definition 10.1 (Almost sure convergence). The sequence Xn con-

verges to a random variable X almost surely (a.s.) or with probability one

if

Pr[ lim
n→∞

Xn = X ] = 1 .

Except on an event of probability zero, all single instances of the sequence

(Xn)n converge to X . Both notations limn→∞ ‖Xn − X‖ = 0 a.s. or

limn→∞ Xn = X a.s. will be used, where a.s. stands for almost surely.
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A weaker type of convergence is convergence in probability.

Definition 10.2 (Convergence in probability). The sequence Xn con-

verges in probability towards X if for all ǫ > 0

lim
n→∞

Pr
[

‖Xn − X‖ ≥ ε
]

= 0.

Almost sure convergence implies convergence in probability.

Definition 10.3 (Convergence in p-mean or in Lp).

The sequence Xn converges towards X in p-mean or in Lp for p ≥ 1 if

E[‖Xn‖p] < ∞ and

lim
n→∞

E[‖Xn − X‖p] = 0 .

If p = 1 we say simply that Xn converges in mean or in expectation towards

X.

10.2.3. Convergence Order of Deterministic Sequences

Let a deterministic sequence (zn)n∈N converge to z ∈ R
d with zn ,= z for

all n, and let

lim
n→∞

‖zn+1 − z‖

‖zn − z‖q
= µ, with q ≥ 1 and µ ∈ (0, 1) . (10.6)

Depending on q and µ we define different orders of convergence.

Super-linear convergence, if µ = 0 or q > 1. If µ > 0, we speak about

convergence with order q > 1 and about quadratic convergence if q = 2.

Linear convergence, if q = 1 and µ ∈ (0, 1), where we have consequently

lim
n→∞

‖zn+1 − z‖

‖zn − z‖
= µ ∈ (0, 1) . (10.7)

Sub-linear convergence, if q = 1 and µ = 1. Furthermore, the sequence

(zn)n converges sub-linear with degree p > 0, if

‖zn+1 − z‖

‖zn − z‖
= 1 − cn‖zn − z‖1/p and cn → c > 0 . (10.8)

The distance to z is reduced in each iteration by a factor that ap-

proaches onec. For p = ∞ and c < 1, linear convergence is recovered.

cThis definition does not allow to characterize the convergence of all sequences converging
sub-linearly, for instance 1/(n log(n)) converges sub-linearly to zero but lies in between
convergence of degree 1 and 1 + ǫ for all ǫ > 0.
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Sub-linear convergence with degree p implies that

‖zn − z‖ ∼
(p

c

)p 1

np
. (10.9)

See Stewart (1995).

10.2.4. Log- and Sub-linear Convergence of Random

Variables

Since the limit of ‖zn+1−z‖
‖zn−z‖ is a random variable, defining convergence like

with Equations (10.6) or (10.7) is in general not appropriate. We could

use the deterministic sequence E[‖zn − z‖] instead of ‖zn − z‖. How-

ever, we rather use a weaker definition of linear convergence implied by

Equation (10.7): we say that a sequence of random variables converges

log-linearly, if there exits c < 0 such that

lim
n

1

n
ln

‖zn − z‖

‖z0 − z‖
= c . (10.10)

The definition of linear convergence in Equation (10.10) is implied by

Equation (10.7) since Equations (10.7) is equivalent to limk ln(‖zk+1 −

z‖/‖zk − z‖) = ln(µ) and by the Cesàro mean result we obtain

limn
1
n

∑n−1
k=0 ln(‖zk+1 − z‖/‖zk − z‖) = ln(µ) which after simplification

gives Equation (10.10) where c = ln(µ). Equation (10.10) implies also

that the logarithm of ‖zn − z‖ converges to −∞ like cn, suggesting the

name log-linear convergence. We will say that log-linear convergence or

linear convergence holds almost surely if there exists c < 0 such that

Equation (10.10) holds almost surely. We will say that log-linear conver-

gence or linear convergence holds in mean or expectation if there exists

c < 0 such that

lim
n

1

n
E

[

ln
‖zn − z‖

‖z0 − z‖

]

= c . (10.11)

Log-linear convergence is illustrated in Figure 10.2.

Following Equation (10.9), we will say that a sequence of random vari-

ables converges sub-linearly with degree p if ‖zn − z‖ converges to zero like
1

np . Sub-linear convergence is illustrated in Figure 10.3.

As explained in Section 10.1.2, speed of convergence and thus linear

and sublinear convergence can be alternatively defined with respect to the

hitting time of an ǫ-ball around the optimum, E[τBǫ
]. Linear convergence

corresponds to E[τBǫ
] increasing like K(− ln(ǫ)) = K ln(1/ǫ) where K > 0.

The constants−1/K and c play the same role and will typically decrease like
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Fig. 10.2. Illustration of the (log)-linear convergence: Time evolution of the distance
to the optimum of the (1+1)-ES with one-fifth success rule, three trials respectively, on
the function f : x ∈ R

10 #→ g(‖x‖), where g is strictly monotonically increasing. The
jagged line starting at 10−9 shows additionally the step-size of one of the trials with
adaptive step-size. The initial step-size has been chosen very small (10−9) compared to

the initial search points to show the capability to increase the step-size (during the first
100 evaluations). Left: log scale on y-axis: after about 100 evaluations, the logarithm
of the distance to the optimum decreases linearly, the slope of the curves corresponds
to the convergence rate c defined in Equation (10.10). Right: log scale on y-axis and
x-axis.
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Fig. 10.3. Illustration of sub-linear convergence with degree p: Time evolution of the
distance to the optimum from six runs of pure random search in a log-linear plot (left) and
a log-log plot (right). Each probe point is sampled uniformly at random in [−0.2, 0.8]10

on the function f : x #→ g(‖x‖), where g is strictly monotonically increasing. Apart from
the scale of the x-axis both plots are identical. In the log-log plot the graphs shape up
as linear with only stochastic deviations. According to Theorem 10.8, p = 1/d and here
d = 10.
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1/d, i.e., K will grow like d for evolution strategies. Sub-linear convergence

with degree p corresponds to E[τBǫ
] growing like (1/ǫ)1/p.

10.2.5. Simple Proofs for Convergence

Convergence alone can be quite easy to establish as we illustrate in the

first part of this section. We first recall the following corollary from the

Borel-Cantelli Lemma useful for proving almost sure convergence.

Lemma 10.4 (Sufficient condition for convergence). Let Yn be a se-

quence of random variables and Y be a random variable. If for all ǫ > 0,
∑

n Pr[|Yn − Y | > ǫ] < ∞, then Yn converges almost surely to Y .

Proof. The proof can be found in probability textbooks, see for instance

(Karr, 1993, p. 138). !

The previous lemma is implicitly or explicitly used to investigate con-

vergence of evolution strategies in (Baba, 1981; Rudolph, 2001; Greenwood

and Zhu, 2001).

In the sequel, we will prove convergence for the local random search

given in Equation (10.2) where (Wk)k∈N are i.i.d. with multivariate normal

distribution σN(0, Id) for σ > 0 (thus D = R
d) as common law. The

algorithm is thus a (1+1)-ES with fixed step-size equal to σ. The selection

is termed elitist as a new candidate solution is selected among the parent

and the offspring such that the best solution ever found cannot be lost. The

convergence is proven for functions with bounded sublevel sets.

Assumption 1 (bounded sublevel sets). For the function f , the sub-

level set {x|f(x) ≤ α} is bounded for every α ∈ R.

We are now going to prove that f(Xn) converges almost surely to m by

using Lemma 10.4. For δ > 0, we need to prove that
∑

n

Pr[|f(Xn) − m| > δ] < ∞ . (10.12)

We denote Aδ the set {x ∈ R
d, f(x) ≤ m+δ}, its complementary Ac

δ satisfies

thus Ac
δ = {x ∈ R

d, f(x) > m + δ}. Rewriting the condition (10.12), we

need to show that
∑

n

Pr[Xn ∈ Ac
δ] < ∞ . (10.13)
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Equation (10.13) will follow from (a) a constant lower bound for the proba-

bility to hit Aδ at any step and (b) elitist selection that prevents to escape

Aδ once it has been hit. First, we sketch the proof idea for (a).

Lemma 10.5. For any R > 0, there exists γ > 0 such that for all x ∈

BR(0), Pr[x + W0 ∈ Aδ] ≥ γ.

Proof. We sketch the idea of the proof and leave the technical details to

the reader. The definition of m (essential infimum of f) guarantees that

Vol(Aδ) is strictly positive. The probability that x + W0 hits Aδ is given

by the integral over Aδ of the density of a multivariate normal distribution

centered in x. This integral will be always larger or equal to the integral

when x is placed in BR(0) and at the largest distance from Aδ. The constant

γ will be this latter integral. !

The previous lemma together with elitist selection implies the following

lemma:

Lemma 10.6. Let R > 0 such that {x, f(x) ≤ f(X1)} ⊂ BR(0) and γ the

constant from Lemma 10.5, then Pr[Xn ∈ Ac
δ] ≤ (1 − γ)n.

Proof. Note first that R does exist because of Assumption 1 and that

the elitist selection ensures that for all n, Xn ∈ BR(0). Therefore, Pr[Xn ∈

Ac
δ] = Pr[Xn ∈ Ac

δ ∩ BR(0)]. Because of the elitist selection, once Xn

enters Aδ, the next iterates stay in Aδ such that if Xn does not belong

to Aδ it means that Xn−1 did not belong to Aδ and thus Pr[Xn ∈ Ac
δ ∩

BR(0)] = Pr[Xn ∈ Ac
δ ∩BR(0), Xn−1 ∈ Ac

δ ∩BR(0)]. By the Bayes formula

for conditional probabilities, we can write Pr[Xn ∈ Ac
δ ∩ BR(0), Xn−1 ∈

Ac
δ ∩ BR(0)] as Pr[Xn ∈ Ac

δ ∩ BR(0)|Xn−1 ∈ Ac
δ ∩ BR(0)] times Pr[Xn−1 ∈

Ac
δ ∩ BR(0)]. However, by Lemma 10.5, Pr[Xn ∈ Ac

δ ∩ BR(0)|Xn−1 ∈

Ac
δ ∩ BR(0)] ≤ 1 − γ such that we have now that

Pr[Xn ∈ Ac
δ ∩ BR(0)] ≤ (1 − γ) Pr[Xn−1 ∈ Ac

δ ∩ BR(0)]

and then by induction we obtain that Pr[Xn ∈ Ac
δ] = Pr[Xn ∈ Ac

δ∩BR(0)] ≤

(1 − γ)n. !

A direct consequence of Lemma 10.6 is the convergence of f(Xn) in prob-

ability since we have that Pr[Xn ∈ Ac
δ] converges to zero when n grows to

infinity. However, using now Lemma 10.6, we can also obtain the stronger

convergence, that is almost sure convergence. Indeed, we deduce from
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Lemma 10.6 that

∞
∑

n=1

Pr[Xn ∈ Ac
δ] ≤

∞
∑

n=1

(1 − γ)n =
1

γ

and thus applying Lemma 10.4, the almost sure convergence of f(Xn) to

m holds. In conclusion, we have proven the following theorem:

Theorem 10.7 (Almost sure convergence of (1+1)-ES). For f sat-

isfying Assumption 1, the (1+1)-ES with constant step-size σ > 0 converges

almost surely to m the essential infimum of f in the sense that

f(Xn) → m a.s.

The techniques illustrated in this section can be also used for disproving

convergence. Almost sure convergence implies convergence in probability

such that a necessary condition for convergence with probability one is

Pr[Xn ∈ Ac
δ] → 0 .

Rudolph is using this fact to disprove convergence with probability one

of the (1+1)-ES with one-fifth success rule on a multi-modal function

(Rudolph, 2001).

Over a compact set and without further assumptions on f , convergence

towards x∗ holds if σn

√

ln(n) → ∞ (Devroye and Krzyżak, 2002), i.e., if

σn decreases not too fast, global convergence is preserved. We will see later

that for step-size adaptive ESs, the step-size σn converges much faster to

0, more precisely limn→∞ σnαn < ∞ for some α > 1.

10.2.6. Invariance to Order Preserving Transformations

One important aspect of evolution strategies is their invariance with respect

to monotonically increasing transformations of the objective function. Re-

mind that M denotes the set of strictly increasing transformations on R.

For an ES, optimizing f or g ◦ f for g ∈ M is exactly the same, in that the

exact same sequence (Xn)n∈N is constructed when optimizing f or g◦f , pro-

vided the independent random numbers needed to sample the probe points

are the same. This is due to the fact that all the updates are only based

on the ranking of new solutions (which is preserved if g ◦ f is considered

instead of f) and not on their absolute objective function value. This prop-

erty is not true for all stochastic search algorithms, in particular not for the

simulated annealing algorithm where the selection of a new probe depends
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on the fitness difference between the current solution and the probe point

or for genetic algorithms with fitness proportionate selection.

Invariance to strictly increasing transformations is illustrated in Fig-

ure 10.4 where the function f : x +→ ‖x‖2 is plotted (in dimension 1 for the

sake of illustration) on the left together with two functions x +→ g(f(x)) for

g ∈ M (middle and right). Though the left function seems to be easier to

optimize (the function being convex and quadratic), the behavior of ESs on

the three functions will be identical, in the sense that the sequences (Xn)n

will be indistinguishable.

Fig. 10.4. Left: sphere function f : x #→ ‖x‖2. Middle and right: x #→ g(f(x))
for two different g ∈ M and d = 1. ESs are invariant to M in the sense that (Xn)n

generated when optimizing g ◦ f for any g ∈ M will be the same.

10.3. Rate of Convergence of Non-adaptive Algorithms

In this section, non-adaptive means that dispersion parameters of the sam-

pling distribution, like its width and shape, remain constant, however, the

sampling distribution can be shifted during the search. The local random

search algorithm described in Equation (10.2) is non-adaptive in this sense.

The (1+1)-ES described in Equation (10.3) is adaptive, in case σn changes

over time. Rates of convergence are investigated for the pure random search

first and for local random search algorithms afterwards.

10.3.1. Pure Random Search

We investigate the pure random search from Equation (10.1). We denote

µ the probability measure of the random vectors (Yn)n∈N. The probability

measure µ characterizes the probability to hit (Borel) sets of D: for a set

A included in D, Pr[Yn ∈ A] = µ(A). We start by looking at a simple case:
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Theorem 10.8 (Case of uniform sampling on the unit cube).

Let f be the spherical function f(x) = g(‖x − x∗‖) where g ∈ M and

with x∗ ∈ D =]0, 1[d. Let µ be the uniform distribution on D, then

for ǫ such that Bǫ(x
∗) ⊂ D, the first hitting time of Bǫ(x

∗) by Xn,

i.e., τBǫ
= inf{n ≥ 1 |Xn ∈ Bǫ(x

∗)} satisfies

E[τBǫ
] =

Γ(d
2 + 1)

πd/2

1

ǫd
. (10.14)

Proof. Since the objective function is the sphere function, the hitting

time of Bǫ(x
∗) by Xn corresponds to the hitting time of Bǫ(x

∗) by Yn,

such that τBǫ
= inf{n ≥ 1 |Yn ∈ Bǫ(x

∗)}. Let us denote the success

probability as p = Pr[Yn ∈ Bǫ(x
∗)]. Since the random variables (Yn)n∈N

are independent, the hitting time τBǫ
is the moment where the first success

is obtained in the experiment that consists in repeating independently trials

with two outcomes “Yn ∈ Bǫ(x
∗)”—corresponding to success—and “Yn /∈

Bǫ(x
∗)”—corresponding to failure—with probability p and 1 − p. Since

the random variables (Yn)n∈N are independent, τBǫ
follows a geometric

distribution with parameter p and E[τBǫ
] = 1/p.

Since µ is the uniform distribution on D and Bǫ(x
∗) ⊂ D, the probability

p = Pr[Yn ∈ Bǫ(x
∗)] = Vol(Bǫ(x

∗))
Vol(D) . Since Vol(D) = 1, with Equation (10.4)

we obtain the result. !

The arguments used in Theorem 10.8 transfer to more general objective

functions and sampling distributions if we consider the hitting time of the

set Aδ = {x, f(x) ≤ m + δ}, i.e.,

τAδ
= inf{n, Xn ∈ Aδ} = inf{n, f(Xn) ≤ m + δ} . (10.15)

We now assume that the search domain D is bounded and the sampling

distribution µ admits a density pµ(x) with respect to the Lebesgue measure

that satisfies the following assumption.

Assumption 2 (Bounded sample distribution). There exist c2, c1 >

0 such that c1 ≤ pµ(x) ≤ c2 for all x ∈ D.

In order to derive the dependence in ǫ and d of the expected hitting time,

we also need to make an assumption on the objective function:

Assumption 3 (Bounded volume of Aδ). There exists δ0 > 0 such

that for all δ > 0 and δ ≤ δ0, there exists two constants K1 and K2 such

that

K1ǫ
d ≤ Vol(Aδ) ≤ K2ǫ

d .
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We can now state the following theorem for PRS:

Theorem 10.9. Let f satisfy A 3 and the sampling distribution of PRS

satisfy A 2, then E[τAδ
] = Θ(1/ǫd). Specifically, the expected hitting time

of Aδ satisfies

1

K2c2

1

ǫd
≤ E[τAδ

] ≤
1

K1c1

1

ǫd
. (10.16)

Proof. The hitting time τAδ
defined in Equation (10.15) can be expressed

as the hitting time of the variable Yn, i.e., τAδ
= inf{n, Yn ∈ Aδ}. Note

that this would not have been the case if we would have considered the

hitting time of Bǫ(x
∗). The same arguments used in Theorem 10.8 hold

now here: at each iteration, Yn hits Aδ with probability p = Pr[Yn ∈ Aδ].

Because the Yn are independent, the expectation of τAδ
equals 1/p. It

remains now to estimate p. Since p =
∫

Aδ
pµ(x)dx, using A2, we have

that c1

∫

Aδ
dx ≤ p ≤ c2

∫

Aδ
dx, in other words c1Vol(Aδ) ≤ p ≤ c2Vol(Aδ).

Using the bounds of Vol(Aδ) from A3 we obtain the result. !

Both theorems state sub-linear convergence with degree 1/d of the pure

random search algorithm which is illustrated for the spherical function in

Figure 10.3.

10.3.2. Lower and Upper Bounds for Local Random Search

The local random search defined via Equation (10.2) includes a (1+1)-ES

with constant step-size and is a particular case of the so-called Markov

monotonous search algorithms.

10.3.2.1. A Detour Through Markov Monotonous Search

(Zhigljavsky and Zilinskas, 2008)

Definition 10.10 (Markov montonous search). A Markov chain se-

quence (Xn)n∈N that moreover satisfies f(Xn+1) ≤ f(Xn) with probability

one is called a Markov monotonous search sequence.

Informally, a sequence (Xn)n is a Markov chain if the value of the n-th

variable depends on the past variables only through the immediate prede-

cessor. A transition kernel can be associated to a Markov chain:

Definition 10.11 (Transition kernel). For a Markov chain (Xn)n the

transition kernels are the collection of Pn(., .) : R
d × B(Rd) → [0, 1] where

for each n, for each A ∈ B(Rd), Pn(., A) is a measurable mapping and for all
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x ∈ R
d, Pn(x, .) is a probability measure that characterizes the distribution

of the sequence: Pn(x,A) = Pr[Xn+1 ∈ A|Xn = x] for all x,A.

When Pn is independent of n, the Markov chain is homogeneous and

thus the local random search is an homogeneous Markov monotonous search

algorithm. However, if the random variable Wn is, for example, scaled using

a cooling schedule, say 1/(n + 1), i.e., a new probe point is Xn + 1
n+1Wn

the algorithm is not homogeneous.

Let Q be the transition kernel Q(x,A) = Pr[x + W0 ∈ A] representing

the probability that x + W0 belongs to A. The transition kernel for the

local random search can be written as

P (x,A) = δx(A)Q(x,Bc
f (x)) + Q(x,A ∩ Bf (x)) , (10.17)

where Bf (x) = {y ∈ R
d, f(y) ≤ f(x)} and Bc

f (x) denote its complement

and δx(.) is the probability measure concentrated at x, i.e., δx(A) = 1 if

x ∈ A and 0 otherwise.

10.3.2.2. Upper Bounds for Convergence Rates of Certain

Homogeneous Markov Monotonous Search

The question of how to choose the distribution Q(x, .) to converge “fast”

has been addressed by Nekrutkin and Tikhomirov (1993) and Tikhomirov

(2006). The main result is that for an appropriate choice of Q(x, .) one can

upper bound the expected hitting time of Mǫ defined as

Mǫ = {y ∈ Bǫ(x
∗) : f(y) < f(z) for every z ∈ Bc

ǫ (x
∗)}

by O(ln2(1/ǫ)) under mild assumptions on the objective function. The

result holds for a fixed dimension and thus the constant hidden in the O

notation depends on d. We now prove that the density associated to the

distribution Q(x, .) needs to have a singularity in 0.

Theorem 10.12. The density associated to the distribution Q(x, .) needs

to have a singularity in zero.

Proof. If the density of the sampling distribution is upper bounded, non-

adaptive algorithms cannot be faster than random search, because there

exists a PRS with uniform density larger than the upper bound over Mǫ

(for small enough ǫ). This PRS has in each iteration a larger probability for

hitting Mǫ and consequently a smaller expected hitting time. Therefore,

if the density is upper bounded, the upper bound of the expected hitting

hansen
Cross-Out

hansen
Typewriter
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hansen
Typewriter
in x

hansen
Cross-Out
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time cannot be essentially faster than 1/ǫd, i.e., cannot belong to o(1/ǫd).

!

The results by Tikhomirov (2006) have been established in the context

of homogeneous Markov symmetric search where Q admits a density q(x, y)

that can be written as q(x, y) = g(‖x − y‖) where g is a non-increasing,

non-negative left-continuous function defined on R
+ and normalized such

that q(0, .) is a density. More precisely for a fixed precision ǫ, Tikhomirov

(2006) proves that there exists a function gǫ that depends on the precision

ǫ such that for the associated Markov Monotonous search algorithm, the

hitting time of Mǫ satisfies on average Ex[τǫ] ≤ O(ln2(1/ǫ)). A slightly

worse upper bound with a function g independent of the precision ǫ can be

obtained (Zhigljavsky, 1991).

10.4. Rate of Convergence of Adaptive ESs

We focus now on the rate of convergence of adaptive ESs where the disper-

sion of the sampling distribution is adapted during the course of the search

process. Various results show that adaptive ESs cannot converge faster

than linear, with a convergence rate decreasing like 1/d when d goes to

infinity. This has been in particular proven by Nekrutkin and Tikhomirov

(1993) in the context of Markov Monotonous search (i.e., for a (1+1)-ES)

without showing the dependency in 1/d for the convergence rate though,

by Jägersküpper (2008) for (1+λ)-ES with isotropic sampling distributions

and by Teytaud and Gelly (2006) for general rank-based algorithms.

10.4.1. Tight Lower Bounds for Adaptive ESs

In this section, we establish tight constants for the lower bounds associated

to the (1+1)-ES with adaptive step-size defined in Equation (10.3) and

explain how the results generalize to the (1,λ)-ES with adaptive step-size.

The parent and step-size of an adaptive (1+1) or (1,λ)-ES are denoted

(Xn, σn). Both algorithms sample new points by adding to Xn random

vectors following a spherical multivariate normal distribution scaled by σn.

Whereas a single new probe point is created for the (1+1)-ES, λ independent

probe points are created in the case of the (1,λ)-ES where the best among

the λ points becomes subsequently the new parent.

We start by defining a specific artificial step-size adaptation rule where

the step-size is proportional to the distance to the optimum of the function
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to optimize. This algorithm is essentially relevant for spherical functions

as we will illustrate, however it can be defined for an arbitrary function f :

Definition 10.13 (Scale-invariant step-size). Let x∗ be the optimum

of a function f to optimize and (Xn, σn) be the parent and step-size at

iteration n of a (1,λ) or (1+1)-ES. If σn = σ‖Xn − x∗‖ for σ > 0, the

step-size is called scale-invariant.

We now define the expected log-progress towards a solution x∗.

Definition 10.14 (Expected log-progress). Let (Xn, σn) be the parent

and step-size of an adaptive ES, we define the expected conditional log-

progress towards a solution x∗ at iteration n as

ϕln(Xn, σn) := E

[

ln
‖Xn − x∗‖

‖Xn+1 − x∗‖

∣

∣

∣
Xn, σn

]

. (10.18)

The previous definition implicitly assumes that (Xn, σn) is a Markov Chain

but can be adapted to more general settings by replacing the condition-

ing with respect to (Xn, σn) by conditioning with respect to the past in

Equation (10.18). In the next lemma, we define the function F(1+1). We

will then give its interpretation in terms of expected log-progress.

Lemma 10.15 (Jebalia et al. (2008)). Let N be a random vector of

distribution N(0, Id). The map F(1+1) : [0, +∞] → [0, +∞] defined by

F(1+1)(σ) := E
[

ln− (‖e1 + σN‖)
]

, F(1+1)(+∞) := 0 and that can be writ-

ten as

F(1+1)(σ) =
1

(2π)d/2

∫

Rd

ln− ‖e1 + σx‖e−
‖x‖2

2 dx , (10.19)

otherwise, is continuous on [0, +∞] (endowed with the usual compact topol-

ogy), finite valued and strictly positive on ]0,∞[.

We will now prove that for σ ∈ [0, +∞[, F(1+1)(σ) is equal to (i) the ex-

pected log-progress achieved on the spherical functions g(‖x‖), g ∈ M by

the (1+1)-ES starting from e1 = (1, 0, . . .) and with step-size σ; (ii) the

expected log-progress of the (1+1)-ES with scale-invariant step-size. We

formalize and prove those results in the next lemma.

Lemma 10.16. Let σ ∈ [0, +∞[, on the class of spherical functions f(x) =

g(‖x‖), g ∈ M, F(1+1)(σ) coincides with (i) the expected log-progress of a

(1+1)-ES starting from e1 and with step-size σ, i.e.,

E

[

ln
‖Xn‖

‖Xn + σnN‖ ∧ 1

∣

∣

∣
Xn = e1, σn = σ

]

= F(1+1)(σ) ,
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Fig. 10.5. Left: Plot of σ #→ dF(1+1)(σ/d) where F(1+1) is defined in Equation (10.19)
for d = 5, 10, 30 (top to bottom). Right: Plot of σ #→ dF(1,5)(σ/d) where F(1,5) is
defined in Equation (10.25) for d = 5, 10, 30, top to bottom. The lowest line is the limit
of σ #→ dF(1,5)(σ/d) for d to infinity given in Equation (10.26).

(ii) the expected log-progress of the (1+1)-ES with scale-invariant step-size

(σn = σ‖Xn‖) at any iteration n, i.e., for all n ∈ N

ϕln(Xn, σn) = F(1+1)(σ) .

Proof. Starting from Xn = e1, a new search point sampled with a step-

size σ denoted e1 + σN is accepted if its objective function g(‖e1 + σN‖)

is smaller than the objective function of e1, which is equal to g(1). Thus,

‖Xn+1‖ is the minimum between g(‖e1 + σN‖) and g(1). The expected

log-progress will therefore be equal to ln ‖e1‖ − E [ln (‖e1 + σN‖ ∧ 1)]

which simplifies to E[ln− ‖e1 + σN‖] with ln−(x) := max(0,− ln(x)).

The second point (ii) will be proven together with Theorem 10.17 (see

Equation (10.43)). !

Plots of the function F(1+1) for different dimensions are given in Figure 10.5.

For a given dimension d, minus the maximum of the function F(1+1) is a

lower bound for the convergence rate of step-size adaptive (1+1)-ESs as

stated in the following theorem.

Theorem 10.17 (Convergence at most linear). Let (Xn, σn)n be gen-

erated by a (1+1)-ES with adaptive step-size, on any function f . Let y∗ be

any vector in R
d and E[| ln ‖Xn − y∗‖|] < +∞ for all n. Then

E [ln ‖Xn+1 − y∗‖] ≥ E [ln ‖Xn − y∗‖] − τ , (10.20)

where τ is a strictly positive constant defined as τ = supF(1+1)([0, +∞])

where F(1+1) is the real valued function defined in Equation (10.19). In
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particular, the convergence is at most linear with the best convergence rate

being −τ in the sense that for all n0 ∈ N

inf
n∈N,n>n0

1

n − n0
E ln

‖Xn − y∗‖

‖Xn0
− y∗‖

≥ −τ . (10.21)

The proof of Theorem 10.17 is presented on page 322.

Remark 10.18. Optimality can also be formulated with respect to the

expectation of ‖Xn − y∗‖ instead of ln ‖Xn − y∗‖ in the following manner:

Assume E[‖Xn − y∗‖] < ∞ for all n, then

E‖Xn+1 − y∗‖ ≥ E[‖Xn − y∗‖] τ
′

, (10.22)

where τ
′

= min F̃(1+1)([0, +∞]) with F̃(1+1)(σ) = E[‖e1 + σN‖ ∧ 1].

The two formulations are not equivalent. The constants −τ and ln(τ
′

)

play the same role but are not equal due to Jensen’s inequality that implies

for all σ

−F(1+1)(σ) = E[ln(‖e1 +σN‖∧1)] < lnE[‖e1 +σN‖∧1] = ln(F̃(1+1)(σ)) .

The formulation with the logarithm inside the expectation is compatible

with almost sure convergence (Auger and Hansen, 2006).

We will now prove that the lower bound given in Equation (10.21) is reached

on spherical functions by the (1+1)-ES with scale-invariant step-size and

an appropriate choice of σ. However before to state this result we formulate

the linear convergence in expectation of the (1+1)-ES with scale-invariant

step-size.

Proposition 10.19. On spherical functions, f(x) = g(‖x − x∗‖), g ∈ M,

the (1+1)-ES with scale-invariant step-size (σn = σ‖Xn − x∗‖) converges

linearly in expectation, moreover for all n0 ∈ N and for all n > n0

1

n − n0
E

[

ln
‖Xn − x∗‖

‖Xn0
− x∗‖

]

= −F(1+1)(σ) . (10.23)

The proof of Proposition 10.19 is presented on page 323. As a consequence,

lower bounds are reached for the (1+1)-ES with scale-invariant step-size

and σ chosen to maximize F(1+1).

Corollary 10.20. (Lower bound reached for ES with scale-

invariant step-size) The lower bound in Equation (10.20) is reached on

spherical functions f(x) = g(‖x − x∗‖) with g ∈ M for the scale-invariant
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step-size rule where at each n ∈ N, σn = σ(1+1)‖Xn − x∗‖ with σ(1+1) > 0

such that F(1+1)(σ(1+1)) = τ . Moreover, for all n0 ∈ N and for all n > n0

1

n − n0
E

[

ln
‖Xn − x∗‖

‖Xn0
− x∗‖

]

= −τ . (10.24)

The proof is presented together with the proof of Proposition 10.19 on

page 323.

Equations (10.23) and (10.24) imply linear convergence in expectation

as defined in Equation (10.11). However it does not only hold asymptotically

but also for any finite n and n0. We will prove in addition later that almost

sure linear convergence also holds.

The constant −τ corresponds thus to the convergence rate on spherical

functions of the (1+1)-ES with scale-invariant step-size where at each iter-

ation n, σn = σ(1+1)‖Xn − x∗‖. Because the convergence rate is reached,

the lower bound −τ is tight. Those results were presented in (Jebalia et al.,

2008). They hold for the (1+1)-ES, but the same analysis can be applied

to a (1,λ)-ES, resulting in optimality of the scale-invariant step-size (1,λ)-

ES where σ(1,λ) realizes the maximum of F(1,λ) defined as the expected

log-progress of a (1,λ)-ES

F(1,λ)(σ) = −E

[

ln min
1≤i≤λ

‖e1 + σNi‖

]

, (10.25)

where Ni are λ independent random vectors distributed as N(0, Id) (Auger

and Hansen, 2006).

10.4.2. Link with Progress Rate Theory

Developments of ESs are closely related to the so-called progress-rate theory

(Rechenberg, 1973) that constitutes the main core of the book called “The

Theory of Evolution Strategies” (Beyer, 2001). In this section we explain

the progress rate approach and its connexions with the convergence of scale-

invariant step-size ESs.

The progress rate is defined as a one-step expected progress towards the

optimal solution. Assuming w.l.o.g. that the optimum is x∗ = 0, we can

define the normalized expected progress ϕ∗ as

ϕ∗ = dE

[

‖Xn‖ − ‖Xn+1‖

‖Xn‖

]

= d

(

1 − E

[

‖Xn+1‖

‖Xn‖

])

.

The normalized log-progress can also be considered

ϕ∗
ln = d

(

E

[

ln
‖Xn‖

‖Xn+1‖

])

.
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It coincides with the expectation of Equation (10.18) times d. For an ES

with a spherical search distribution and on the sphere function, we define

additionally

σ∗ = dσn/‖Xn‖ .

As we will see in Section 10.4.3.2, the sequence (σn/‖Xn‖)n is an homoge-

neous Markov chain. To take out the dependency of σ∗ in n, it is in addition

assumed that σ∗ is constant, and thus that the step-size is scale-invariant

with σn = σ∗‖Xn‖/d. Consequently, the normalized progress ϕ∗ and ϕ∗
ln

are functions of σ∗ that are independent of n (the proof of this fact is simi-

lar to the proof of Lemma 10.16) and of further initial values. Moreover ϕ∗
ln

equals the convergence rate of ESs with scale-invariant step-size multiplied

by d, for example for the (1,λ), for all σ∗

dF(1,λ)(σ
∗/d) = ϕ∗

ln(σ∗) ,

or see Proposition 10.19 for the case of the (1+1)-ES. The function ϕ∗
ln

as a function of σ∗ was plotted in Figure 10.5. Progress rate derivations

are in general asymptotic for d to infinity so as to provide comprehensive

quantitative estimates for convergence rates. In general, in the limit for

d → ∞, ϕ∗ and ϕ∗
ln coincide (Auger and Hansen, 2006). As an example of

a simple asymptotic formula, we give the asymptotic progress ϕ∗ (or ϕ∗
ln)

on the sphere function for the (1,λ)-ES,

lim
d→∞

ϕ∗(σ∗) = c1,λσ∗ −
σ∗2

2
, (10.26)

where c1,λ is the expected value of the maximum of λ standard normal

distributions and usually is in the order of one.

10.4.3. Linear Convergence of Adaptive ESs

We have seen that convergence of adaptive ESs is at most linear and have

proven, on spherical functions, the linear convergence in expectation of the

artificial scale-invariant step-size (1+1)-ES where the step-size is scaled to

the distance to the optimum. In this section, we explain how the linear

convergence of real adaptation schemes can be analyzed. We assume that

f is a spherical function, f(x) = g(‖x‖) for g in M. We will first present

the proof of almost sure convergence of the (1+1)-ES with scale-invariant

step-size and will illustrate afterwards that the convergence of real step-size

adaptation schemes is the natural extension of this result.
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10.4.3.1. Almost Sure Linear Convergence of the (1+1)-ES Scale-

invariant Step-size

We remind that for the (1+1)-ES with scale-invariant step-size on

g(‖x‖), g ∈ M, for each n ∈ N we have σn = σ‖Xn‖ with σ ≥ 0. A

new probe point Xn + σ‖Xn‖Nn is accepted if ‖Xn + σ‖Xn‖Nn‖ ≤ ‖Xn‖

or normalizing by ‖Xn‖ if
∥

∥

∥

Xn

‖Xn‖ + σNn

∥

∥

∥
≤ 1. Therefore ‖Xn+1‖/‖Xn‖

satisfies

‖Xn+1‖

‖Xn‖
=

∥

∥

∥

∥

Xn

‖Xn‖
+ σNn1{‖ Xn

‖Xn‖
+σNn‖≤1}

∥

∥

∥

∥

, (10.27)

where 1{‖ Xn
‖Xn‖

+σNn‖≤1} = 1 if
∥

∥

∥

Xn

‖Xn‖ + σNn

∥

∥

∥
≤ 1 and zero otherwise.

We connect now linear convergence and law of large numbers by stating

the following technical lemma.

Lemma 10.21. For n ≥ 2, the following holds

1

n
ln

‖Xn‖

‖X0‖
=

1

n

n−1
∑

k=0

ln
‖Xk+1‖

‖Xk‖
, a.s. (10.28)

The proof of the lemma is trivial: using the property ln(a) + ln(b) = ln(ab)

for all a, b > 0 we find that both sides equal n−1 ln
∏n−1

k=0 ‖Xk+1‖/‖Xk‖.

Linear convergence defined in Equation (10.10) means that the left-hand

side (and thus the RHS) of Equation (10.28) converges to a constant. In

order to prove linear convergence, we exploit the fact that the right-hand

side is the sum of n random variables divided by n, suggesting the use of a

Law of Large Numbers (LLN):

Lemma 10.22 (LLN for independent random variables).

Let (Yn)n∈N be a sequence of independent, identically distributed, integrable

(E[|Y0|] < +∞) random variables. Then

1

n

n−1
∑

k=0

Yk −−−−→
n→∞

E[Y0] a.s.

In order to apply Lemma 10.22 to the (1+1)-ES with scale-invariant step-

size, it remains to be shown that the summands in the right-hand side of

Equation (10.28) are i.i.d. and integrable random variables:

Proposition 10.23. For the (1+1)-ES with scale-invariant step-size,

(ln (‖Xn+1‖/‖Xn‖) : n ∈ N) are independent identically distributed as
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ln−(‖e1 + σN‖) where N is a random vector following the distribution

N(0, Id).

For the technical details of the proof we refer to (Jebalia et al., 2009,

Lemma 7) where the result was proven in a slightly different setting where

the objective function include noises. A weaker result stating that the ran-

dom variables are orthogonal was proven in (Jebalia et al., 2008). Moreover,

we have seen in Lemma 10.15 that ln− ‖e1 +σN‖ is integrable such that we

can apply Lemma 10.22 and together with Lemma 10.21 obtain the almost

sure linear convergence of 1
n ln ‖Xn‖/‖X0‖:

Theorem 10.24. The (1+1)-ES with scale-invariant step-size converges

linearly almost surely on the sphere function:

lim
n→∞

1

n
ln

‖Xn‖

‖X0‖
= E[ln− ‖e1 + σN‖] = F(1+1)(σ), a.s.

The idea of using Laws of Large Numbers for analyzing the convergence of

evolution strategies was introduced in (Bienvenüe and François, 2003) and

used for analyzing ESs with scale-invariant step-size in (Auger and Hansen,

2006; Jebalia et al., 2008, 2009).

10.4.3.2. How to Analyze Linear Convergence of Real Step-size

Adaptation Schemes?

The linear convergence of real adaptation schemes will also follow from

applying a Law of Large Numbers. However, contrary to the scale-invariant

step-size case, the sequence (ln(‖Xn+1‖/‖Xn‖), n ∈ N) is not independent

and a different LLN needs thus to be apply. We will illustrate the different

steps of the analysis exemplary for the one-fifth success rule that we define

now precisely on spherical functions g(‖x‖), g ∈ M. Assume (Xn, σn) are

given, the next iterate (Xn+1, σn+1) is constructed in the following manner:

Xn+1 = Xn + σnNn1{‖Xn+σnNn‖≤‖Xn‖}, (10.29)

σn+1 = σn

(

α−1/4 + (α − α−1/4)1{‖Xn+σnNn‖≤‖Xn‖}

)

, (10.30)

where α > 1, i.e., the step-size is multiplied by α in case of success and

divided by α1/4 otherwise such that Equation (10.30) can be rewritten

σn+1 =

{

ασn if ‖Xn + σnNn‖ ≤ ‖Xn‖ ,

α−1/4σn otherwise,
(10.31)
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and (X0, σ0) ∈ R
d × R

+. The equivalent of Equation (10.27) is now

‖Xn+1‖

‖Xn‖
=

∥

∥

∥

∥

Xn

‖Xn‖
+

σn

‖Xn‖
Nn1{‖ Xn

‖Xn‖
+ σn

‖Xn‖
Nn‖≤1}

∥

∥

∥

∥

, (10.32)

where σ is replaced by σn/‖Xn‖. Because Equation (10.32) depends on the

random variable σn/‖Xn‖, the random sequence (ln(‖Xn+1‖/‖Xn‖), n ∈

N) will not be independent and, thus, the LLN for independent random

variables cannot be applied. However, ‖Xn‖/σn is a Markov chain whose

distribution can be defined in a simple way. Let Z0 = ‖X0‖/σ0, and define

Zn+1 =
1

α∗
‖Zne1 + Nn1{‖Zne1+Nn‖≤Zn}‖ , (10.33)

where α∗ = α−1/4 + (α − α−1/4)1{‖Zne1+Nn‖≤Zn}, i.e., corresponding to

the multiplicative factor in Equation (10.30). Then it is clear that Zn

is a Markov Chain and not difficult to show that Zn follows the same

distribution as ‖Xn‖/σn. The Markov chain Zn can be exploited to prove

linear convergence thanks to the following lemma.

Lemma 10.25. The following equality holds in distribution

1

n
ln

‖Xn‖

‖X0‖
=

1

n

n−1
∑

k=0

ln

∥

∥Zke1 + Nk1{‖Zke1+Nk‖≤Zk}

∥

∥

Zk
. (10.34)

The summands of the right-hand side of Equation(10.34) correspond to

replacing in the right-hand side of Equation (10.32), σn/‖Xn‖ by 1/Zn

and Xn/‖Xn‖ by e1. The proof of this lemma is similar to the proof of

Lemma 3 in (Jebalia et al., 2009). Its main ingredients are the isotropy of

the sampling distribution and of spherical functions. In addition, with

Equation (10.33) we have α∗Zk+1 =
∥

∥Zke1 + Nk1{‖Zke1+Nk‖≤Zk}

∥

∥ and

thus in distribution

1

n
ln

‖Xn‖

‖X0‖
=

1

n

n−1
∑

k=0

ln
α∗Zk+1

Zk
. (10.35)

Since (Zn) is a Markov chain, Equations (10.34) or (10.35) suggest to apply

a LLN for Markov chains. However, not all Markov chains satisfy a LLN.

The properties needed to satisfy a LLN are so-called stability properties,

namely ϕ-irreducibility, Harris recurrence and positivity that are explained

in the next following paragraphs.
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Given a homogeneous Markov chain (Zn)n ⊂ R, with transition ker-

nel P (., .) and denoting B(R) the Borel sigma-algebra on R, (Zn)n is ϕ-

irreducible if there exists a measure ϕ such that:

∀(x,A) ∈ R × B(R), ϕ(A) > 0, ∃ n0 ≥ 0 such that P n0(x,A) > 0 , (10.36)

where P n0(x,A) equals Pr[Zn0
∈ A|Z0 = x]. Another equivalent definition

for the ϕ-irreducibility of the Markov chain (Zn)n is: for all x ∈ R and for

all A ∈ B(R) such that ϕ(A) > 0, Pr[τA < +∞|Z0 = x] > 0, where τA is

the hitting time of Zn on A, i.e.,

τA = min{n ≥ 1 such that Zn ∈ A}.

If the last term of Equation (10.36) is equal to one, the chain is recurrent.

A ϕ-irreducible chain (Zn)n is Harris recurrent if:

∀A ∈ B(R) such that ϕ(A) > 0; Pr[ηA = ∞|Z0 = x] = 1, x ∈ R ,

where ηA is the occupation time of A defined as ηA =
∑∞

n=1 1{Zn∈A}.

A chain (Zn)n which is Harris-recurrent admits an invariant measure, i.e., a

measure π on B(R) satisfying:

π(A) =

∫

R

P (x,A)dπ(x), A ∈ B(R) .

If in addition this measure is a probability measure, the chain is called

positive. Positive, Harris-recurrent chains satisfy a LLN as stated in (Meyn

and Tweedie, 1993, Theorem 17.0.1) and recalled here.

Theorem 10.26 (LLN for Harris positive chains). Suppose

that (Zn)n is a positive Harris chain with invariant probability measure

π, then for any function G, satisfying π(|G|) :=
∫

|G(x)|dπ(x) < ∞, holds

lim
n→∞

1

n

n−1
∑

k=0

G(Zk) = π(G) . (10.37)

Therefore, in order to prove linear convergence of the (1+1)-ES with one-

fifth success rule, one can investigate the stability of Zn and prove that

Theorem 10.26 applies to the right-hand side of Equation (10.34) deducing

thus the convergence of 1
n ln (‖Xn‖/‖X0‖)d.

dIn fact, the right-hand side of Equation (10.34) can be written 1
n

∑
k G(Zk , Nk) with

G(z, Nn) = ln ‖ze1 + Nn1{‖ze1+Nn‖≤z}‖/z such that one needs to study the stability
of the Markov chain (Zk , Nk). However, the stability of (Zk, Nk) is a direct corollary of
the stability of Zk since Nk is independent of Zk.
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Theorem 10.27. If Zn is ϕ-irreducible, Harris-recurrent and positive with

invariant probability measure π and
∫

R

E
[

| ln ‖ze1 + N01{‖ze1+N0‖≤z}‖/z|
]

dπ(z) < ∞ ,

then the (1+1)-ES with one-fifth success rule converges linearly, more pre-

cisely

1

n
ln

‖Xn‖

‖X0‖
−−−−→
n→∞

∫

R

E
[

ln ‖ze1 + N01{‖ze1+N0‖≤z}‖/z
]

dπ(z) . (10.38)

Assuming that ‖X0‖/σ0 is distributed according to π, we can formu-

late a non-asymptotic linear convergence result (the equivalent of Equa-

tion (10.24)):

Theorem 10.28. If Zn is ϕ-irreducible, Harris-recurrent and positive with

invariant probability measure π,
∫

R

E[| ln ‖ze1 + N01{‖ze1+N0‖≤z}‖/z|]dπ(z) < ∞,

and Z0 ∼ π, then for all n0 ∈ N and for n > n0

1

n − n0
E

[

ln
‖Xn‖

‖Xn0
‖

]

=

∫

R

E
[

ln ‖ze1 + N01{‖ze1+N0‖≤z}‖/z
]

dπ(z).

Proving the stability is in general the most difficult part in the analysis

and has been achieved for the (1,λ)-ES with self-adaptation for d = 1 using

drift conditions (Auger, 2005). The convergence rate in Equation (10.38) is

expressed implicitly by means of the invariant distribution of the chain Zn.

However, it is also possible to derive a central limit theorem to characterize

the convergence of Equation (10.38) and, then derive confidence intervals

for a Monte Carlo estimation of the convergence rate. For this, a stronger

stability property needs to be satisfied, namely the geometric ergodicity.

Moreover, using the Fubini theorem, it is possible to prove that 1
n lnσn

converges to the same limit than 1
n ln ‖Xn‖

‖X0‖
and to prove an alternative

expression for the convergence rate, namely
∫

R

E
[

ln ‖ze1 + N01{‖ze1+N0‖≤z}‖/z
]

dπ(z) =

∫

R

E[ln(α∗(z))]dπ(z)

where α∗(z) is the multiplicative factor for the step-size change, i.e., α∗(z) =

α−1/4 + (α − α−1/4)1{‖ze1+N0‖≤z} (Auger, 2005). The fact that both σn

and ‖Xn‖ converge (log)-linearly at the same rate can be observed on the



320 A. Auger and N. Hansen

left plot in Figure 10.2 where we observe the same rate for the decrease of

ln ‖Xn‖ and lnσn.

The link between stability of the normalized chain ‖Xn‖/σn and lin-

ear convergence or divergence of ESs was first pointed out in Bienvenüe

and François (2003) and exploited in Auger (2005). Beyond the fact

that stability of Zn implies linear convergence, it is interesting to note

that the stability is a natural generalization of the scale-invariant step-

size update rule. Indeed, stability implies that after a transition phase,

the distribution of ‖Xn‖/σn will be close to the invariant distribution π,

i.e., ‖Xn‖/σn ≈ π whereas for the algorithm with scale-invariant step-size

we have ‖Xn‖/σn = σ. In other words, the scale-invariant step-size rule

approximates π by a constant. The benefit of this simplification is the pos-

sibility to derive explicit formulae for the convergence rates for d to infinity.

The transition phase is illustrated in Figure 10.2 where the experiment was

started in the tail of the invariant distribution: the step-size was chosen

very small equal to 10−9 such that Z0 is very large. The adaptation stage

lasts up to the iteration 150. Afterwards Zn = ‖Xn‖/σn “looks” stable as

both ‖Xn‖ and σn decrease at the same rate.

Other approaches to investigate linear convergence have been used on

the sphere and certain convex quadratic functions by Jägersküpper (2007,

2005) who derives lower and upper bounds on the time needed to halve the

distance to the optimum for a special one-fifth success rule algorithm. With

such an approach, it is possible to derive the dependence in the dimension

of the convergence rate. However, the approach seems less general in terms

of step-size update rules that can be tackled (Jägersküpper and Preuss,

2008).

10.5. Discussion and Conclusion

Stochastic optimization algorithms for numerical optimization are studied

in different communities taking different viewpoints. Showing (or disprov-

ing) global convergence on a broad class of functions is often a compara-

tively easy task. In contrast, proving an associated rate of convergence, or

convergence speed, is often much more intricate. In particular fast, i.e.,

linear convergence, with running times proportional to d log 1/ǫ, can only

be proven on comparatively restricted classes of functions or in the vicinity

of a well-shaped optimum. Here, d is the search space dimension and ǫ is a

precision to reach. Linear convergence is a general lower bound: rank-based



Theory of Evolution Strategies: A New Perspective 321

algorithms (and thus ESs) cannot be faster than linear with a convergence

rate decreasing like 1/d (see also Chapter 11).

We believe that global convergence is per se rather meaningless in prac-

tice. The (1+1)-ES with fixed step-size as well as the pure random search

converge with probability one to the global optimum of functions belonging

to a broad class, where the main assumption is that a neighbourhood of

the global optimum should be reachable by the search distribution with a

positive probability. However, the convergence rate is sub-linear with de-

gree 1/d, therefore, the running time is proportional to (1/ǫ)d. Even for

moderate dimension, e.g., d = 10, this is prohibitively slow in practice.

More promising upper bounds for the convergence rate can be achieved

for non-adaptive algorithms, when the sampling distribution admits a sin-

gularity. For a sampling distribution chosen depending on ǫ, the bound

is O(ln2(1/ǫ)), and it is slightly worse if we relax the dependency in ǫ.

Corresponding practical algorithms have yet to be implemented.

Adaptive ESs, however, do not converge to the global optimum with

probability one on such broad classes of functions, because they might

never recover from converging to a local optimum (Rudolph, 2001). Instead,

adaptive ESs have been shown to achieve linear convergence on restricted

function classes. For example, Jägersküpper (2007) lower and upper bounds

the time to halve the distance to the optimum with the (1+1)-ES with one-

fifth success rule on special ellipsoidal functions. Linear convergence can

also be investigated using the Markov chain ‖Xn‖/σn. We have illustrated

the corresponding proof techniques in the context of evolution strategies.

One might argue that linear convergence results on convex quadratic

functions are weak results because the class of functions is rather limited.

However, much slower convergence results are rather irrelevant in prac-

tice and linear convergence is not limited to convex quadratic functions:

(1) as pointed out in this chapter, the invariance of ESs to strictly mono-

tonic transformations implies the generalization of the result to the class

of functions {g ◦ f, g ∈ M, f convex quadratic}, that contains non-convex,

non-smooth functions; (2) linear convergence with a positive probability

(on a large class of functions) will imply linear convergence with probabil-

ity one of a restart version of the algorithm, where a constant distribution

is sampled simultaneously and the restart is conducted when a superior

solution is samplede; (3) robustness of the linear convergence in presence

of noise has been proven when using a scale-invariant-constant step-size

eThis idea was suggested to the authors first by Günter Rudolph.
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(Jebalia et al., 2009); (4) adaptation has been recognized as a key of the

success of evolution strategies also in practice.

10.6. Appendix

10.6.1. Proof of Theorem 10.17

We prove now Theorem 10.17 that was stated page 311.

Proof. We fix n and assume that we are at the iteration n of a (1+1)-ES

with adaptive step-size such that (Xn, σn) is known.

Maximal progress towards x∗ in one step: The next iterate Xn+1

either equals the sampled offspring Xn +σnNn or the parent Xn (depending

on what is the best according to f) and thus the distance between Xn+1

and y∗ is always larger or equal than the minimum between the distance

between the offspring and y∗ and the parent and y∗:

‖Xn+1 − y∗‖ ≥ min{‖Xn − y∗‖, ‖Xn + σnNn − y∗‖} . (10.39)

If a > 0, the minimum of (a, b) equals a min(1, b/a) such that

‖Xn+1−y∗ ‖ ≥ ‖Xn−y∗‖min{1, ‖
Xn − y∗

‖Xn − y∗‖
+

σn

‖Xn − y∗‖
Nn‖} . (10.40)

Taking the logarithm of the previous equation we obtain

ln ‖Xn+1 − y∗‖ ≥ ln ‖Xn − y∗‖+

ln

[

min

{

1,

∥

∥

∥

∥

Xn − y∗

‖Xn − y∗‖
+

σn

‖Xn − y∗‖
Nn

∥

∥

∥

∥

}]

. (10.41)

We assume that E[ln ‖Xn − y∗‖] < +∞ for all n such that we can take the

expectation in Equation (10.41) condition to (Xn, σn). We use the notation

ln−(x) = max(0,− ln(x)) such that ln (min(1, h(x))) = − ln−(h(x)). By

linearity of the expectation we obtain that

E[ln ‖Xn+1 − y∗‖|Xn, σn] ≥ ln ‖Xn − y∗‖−

E

[

ln−

∥

∥

∥

∥

Xn − y∗

‖Xn − y∗‖
+

σn

‖Xn − y∗‖
Nn

∥

∥

∥

∥

∣

∣

∣
Xn, σn

]

. (10.42)

The offspring distribution N(0, Id) being spherical, i.e., the direction of

N(0, Id) is uniformly distributed, it does not matter where the parent in-

ducing the offspring is located on the unit hypersphere and thus

E

[

ln−

∥

∥

∥

∥

Xn − y∗

‖Xn − y∗‖
+

σn

‖Xn − y∗‖
Nn

∥

∥

∥

∥

∣

∣

∣
Xn, σn

]

= F(1+1)

(

σn

‖Xn − y∗‖

)

,

(10.43)
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where F(1+1) is defined in Lemma 10.15. Using the same lemma, we know

that F(1+1) is continuous, the supremum τ := supF(1+1)([0, +∞]) is reached

and the step-size σF such that F(1+1)(σF ) = τ exists. Injecting this in

Equation (10.42) we obtain E[ln ‖Xn+1 − y∗‖|Xn, σn] ≥ ln ‖Xn − y∗‖ − τ

and consequently E[ln ‖Xn+1 − y∗‖] ≥ E[ln ‖Xn − y∗‖] − τ . !

10.6.2. Proof of Proposition 10.19 and Corollary 10.20

We prove Proposition 10.19 and Corollary 10.20 stated page 312.

Proof. If f(x) = g(‖x − x∗‖), Equation (10.42) with y∗ = x∗ is an

equality. If σn = σ‖Xn − x∗‖, we obtain E[ln ‖Xn+1 − x∗‖] = E[ln ‖Xn −

x∗‖] − F(1+1)(σ) or E[ln ‖Xn+1 − x∗‖] − E[ln ‖Xn − x∗‖] = −F(1+1)(σ).

Summing from n = n0, . . . , N , we obtain that E[ln ‖XN−x∗‖]−E[ln‖Xn0
−

x∗‖] = −(N −n0)F(1+1)(σ). Dividing by N we obtain Equation (10.23). If

σn = σF ‖Xn − x∗‖ where F (σF ) = τ , we obtain Equation (10.24). !
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