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Abstract

Evolution strategies are evolutionary algorithms that date back to the 1960s and that are most commonly
applied to black-box optimization problems in continuous search spaces. Inspired by biological evolution,
their original formulation is based on the application of mutation, recombination and selection in populations
of candidate solutions. From the algorithmic viewpoint, evolution strategies are optimization methods
that sample new candidate solutions stochastically, most commonly from a multivariate normal probability
distribution. Their two most prominent design principles are unbiasedness and adaptive control of parameters
of the sample distribution. In this overview the important concepts of success based step-size control, self-
adaptation and derandomization are covered, as well as more recent developments like covariance matrix
adaptation and natural evolution strategies. The latter give new insights into the fundamental mathematical
rationale behind evolution strategies. A broad discussion of theoretical results includes progress rate results
on various function classes and convergence proofs for evolution strategies.
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1 Overview

Evolution Strategies [1, 2, 3, 4], sometimes also re-
ferred to as Evolutionary Strategies, and Evolution-
ary Programming [5] are search paradigms inspired
by the principles of biological evolution. They belong
to the family of evolutionary algorithms that address
optimization problems by implementing a repeated
process of (small) stochastic variations followed by
selection: in each generation (or iteration), new off-
spring (or candidate solutions) are generated from
their parents (candidate solutions already visited),
their fitness is evaluated, and the better offspring are
selected to become the parents for the next genera-
tion.

Evolution strategies most commonly address the
problem of continuous black-box optimization. The
search space is the continuous domain, Rn, and solu-
tions in search space are n-dimensional vectors, de-
noted as x. We consider an objective or fitness func-
tion f : Rn → R,x 7→ f(x) to be minimized. We
make no specific assumptions on f , other than that
f can be evaluated for each x, and refer to this search
problem as black-box optimization. The objective is,
loosely speaking, to generate solutions (x-vectors)
with small f -values while using a small number of
f -evaluations.1

In this context, we present an overview of meth-
ods that sample new offspring, or candidate solu-
tions, from normal distributions. Naturally, such an
overview is biased by the authors’ viewpoints, and
our emphasis will be on important design principles
and on contemporary evolution strategies that we
consider as most relevant in practice or future re-
search. More comprehensive historical overviews can
be found elsewhere [6, 7].

In the next section the main principles are intro-
duced and two algorithm templates for an evolution
strategy are presented. Section 3 presents six evolu-
tion strategies that mark important conceptual and
algorithmic developments. Section 4 summarizes im-

1Formally, we like to “converge” to an essential global opti-
mum of f , in the sense that the best f(x) value gets arbitrarily
close to the essential infimum of f (i.e., the smallest f -value
for which all larger, i.e. worse f -values have sublevel sets with
positive volume).

portant theoretical results.

Symbols and Abbreviations Throughout this
chapter, vectors like z ∈ Rn are column vectors, their
transpose is denoted as z>, and transformations like
exp(z), z2, or |z| are applied component-wise. Fur-
ther symbols are

|z|= (|z1|, |z2|, . . . )> absolute value taken compo-
nent wise

‖z‖=
√∑

i z
2
i Euclidean length of a vector

∼ equality in distribution

∝ in the limit proportional to

◦ binary operator giving the component-wise prod-
uct of two vectors or matrices (Hadamard prod-
uct), such that for a, b ∈ Rn we have a ◦ b ∈ Rn
and (a ◦ b)i = aibi.

1. the indicator function, 1α = 0 if α is false or 0 or
empty, and 1α = 1 otherwise.

λ ∈ N number of offspring, offspring population size

µ ∈ N number of parents, parental population size

µw =
(∑µ

k=1 |wk|
)2
/
∑µ
k=1 w

2
k, the variance effec-

tive selection mass or effective number of par-
ents, where always µw ≤ µ and µw = µ if all
recombination weights wk are equal in absolute
value

(1+1) elitist selection scheme with one parent and
one offspring, see Section 2.1

(µ +, λ), e.g. (1+1) or (1, λ), selection schemes, see
Section 2.1

(µ/ρ, λ) selection scheme with recombination (if ρ >
1), see Section 2.1

ρ ∈ N number of parents for recombination

σ > 0 a step-size and/or standard deviation

σ ∈ Rn+ a vector of step-sizes and/or standard devi-
ations
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ϕ ∈ R a progress measure, see Definition 2 and Sec-
tion 4.2

cµ/µ,λ the progress coefficient for the (µ/µ, λ)-ES
[8] equals the expected value of the average of
the largest µ order statistics of λ independent
standard normally distributed random numbers
and is in the order of

√
2 log(λ/µ).

C ∈ Rn×n a (symmetric and positive definite) co-
variance matrix

C
1/2 ∈ Rn×n a matrix that satisfies C

1/2C
1/2> = C

and is symmetric if not stated otherwise. If C
1/2

is symmetric, the eigendecomposition C
1/2 =

BΛB> with BB> = I and diagonal matrix Λ
exists and we find C = C

1/2C
1/2 = BΛ2B> as

eigendecomposition of C.

ei the ith canonical basis vector

f : Rn → R fitness or objective function to be min-
imized

I ∈ Rn×n the identity matrix (identity transforma-
tion)

i.i.d. independent and identically distributed

N (x,C) a multivariate normal distribution with ex-
pectation and modal value x and covariance ma-
trix C, see Section 2.4.

n ∈ N search space dimension

P a multiset of individuals, a population

s, sσ, sc ∈ Rn a search path or evolution path

s, sk endogenous strategy parameters (also known as
control parameters) of a single parent or the kth
offspring; they typically parametrize the muta-
tion, for example with a step-size σ or a covari-
ance matrix C

t ∈ N time or iteration index

wk ∈ R recombination weights

x,x(t),xk ∈ Rn solution or object parameter vector
of a single parent (at iteration t) or of the kth
offspring; an element of the search space Rn that
serves as argument to the fitness function f :
Rn → R.

diag : Rn → Rn×n the diagonal matrix from a vector

expα : Rn×n → Rn×n,A 7→
∑∞
i=0(αA)i/ i! is

the matrix exponential for n > 1, otherwise
the exponential function. If A is symmetric
and BΛB> = A is the eigendecomposition of
A with BB> = I and Λ diagonal, we have
exp(A) = B exp(Λ)B> = B

(∑∞
i=0 Λi/i!

)
B> =

I + BΛB> + BΛ2B>/2 + . . . . Furthermore
we have expα(A) = exp(A)α = exp(αA) and
expα(x) = (eα)x = eαx.

2 Main Principles

Evolution strategies derive inspiration from princi-
ples of biological evolution. We assume a population,
P, of so-called individuals. Each individual consists
of a solution or object parameter vector x ∈ Rn (the
visible traits) and further endogenous parameters, s
(the hidden traits), and an associated fitness value,
f(x). In some cases the population contains only
one individual. Individuals are also denoted as par-
ents or offspring , depending on the context. In a
generational procedure,

1. one or several parents are picked from the pop-
ulation (mating selection) and new offspring are
generated by duplication and recombination of
these parents;

2. the new offspring undergo mutation and become
new members of the population;

3. environmental selection reduces the population
to its original size.

Within this procedure, evolution strategies employ
the following main principles that are specified and
applied in the operators and algorithms further be-
low.
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Environmental Selection is applied as so-called
truncation selection. Based on the individuals’ fit-
nesses, f(x), only the µ best individuals from the
population survive. In contrast to roulette wheel se-
lection in genetic algorithms [9], only fitness ranks are
used. In evolution strategies, environmental selection
is deterministic. In evolutionary programming, like
in many other evolutionary algorithms, environmen-
tal selection has a stochastic component. Environ-
mental selection can also remove “overaged” individ-
uals first.

Mating Selection and Recombination. Mating
selection picks individuals from the population to be-
come new parents. Recombination generates a single
new offspring from these parents. Specifically, we dif-
ferentiate two common scenarios for mating selection
and recombination.

fitness-independent mating selection and recom-
bination do not depend on the fitness values of
the individuals and can be either deterministic
or stochastic. Environmental selection is then
essential to drive the evolution toward better so-
lutions.

fitness-based mating selection and recombination,
where the recombination operator utilizes the fit-
ness ranking of the parents (in a deterministic
way). Environmental selection can potentially
be omitted in this case.

Mutation and Parameter Control. Mutation
introduces small, random and unbiased changes to
an individual. These changes typically affect all vari-
ables. The average size of these changes depends on
endogenous parameters that change over time. These
parameters are also called control parameters, or en-
dogenous strategy parameters, and define the notion
of “small”, for example via the step-size σ. In con-
trast, exogenous strategy parameters are fixed once
and for all, for example parent number µ. Parameter
control is not always directly inspired by biological
evolution, but is an indispensable and central feature
of evolution strategies.

Unbiasedness is a generic design principle of evo-
lution strategies. Variation resulting from mutation
or recombination is designed to introduce new, un-
biased “information”. Selection on the other hand
biases this information towards solutions with better
fitness. Under neutral selection (i.e., fitness indepen-
dent mating and environmental selection), all varia-
tion operators are desired to be unbiased. Maximum
exploration and unbiasedness are in accord. Evolu-
tion strategies are unbiased in the following respects.

• The type of mutation distribution, the Gaus-
sian or normal distribution, is chosen in order
to have rotational symmetry and maximum en-
tropy (maximum exploration) under the given
variances. Decreasing the entropy would intro-
duce prior information and therefore a bias.

• Object parameters and endogenous strategy pa-
rameters are unbiased under recombination and
unbiased under mutation. Typically, mutation
has expectation zero.

• Invariance properties avoid a bias towards a spe-
cific representation of the fitness function, e.g.
representation in a specific coordinate system or
using specific fitness values (invariance to strictly
monotonic transformations of the fitness values
can be achieved). Parameter control in evolution
strategies strives for invariance properties [10].

2.1 (µ/ρ +, λ) Notation for Selection
and Recombination

An evolution strategy is an iterative (generational)
procedure. In each generation new individuals (off-
spring) are created from existing individuals (par-
ents). A mnemonic notation is commonly used to
describe some aspects of this iteration. The (µ/ρ+, λ)-
ES, where µ, ρ and λ are positive integers, also fre-
quently denoted as (µ+, λ)-ES (where ρ remains un-
specified) describes the following.

• The parent population contains µ individuals.

• For recombination, ρ (out of µ) parent individu-
als are used. We have therefore ρ ≤ µ.
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• λ denotes the number of offspring generated in
each iteration.

• +, describes whether or not selection is addition-
ally based on the individuals’ age. An evolu-
tion strategy applies either ’plus’- or ’comma’-
selection. In ’plus’-selection, age is not taken
into account and the µ best of µ + λ individu-
als are chosen. Selection is elitist and, in effect,
the parents are the µ all-time best individuals.
In ’comma’-selection, individuals die out after
one iteration step and only the offspring (the
youngest individuals) survive to the next gen-
eration. In that case, environmental selection
chooses µ parents from λ offspring.

In a (µ, λ)-ES, λ ≥ µ must hold and the case λ = µ
requires fitness-based mating selection or recombina-
tion. In a (µ + λ)-ES, λ = 1 is possible and known
as steady-state scenario.

Occasionally, a subscript to ρ is used in order to
denote the type of recombination, e.g. ρI or ρW for
intermediate or weighted recombination, respectively.
Without a subscript we tacitly assume intermediate
recombination, if not stated otherwise. The nota-
tion has also been expanded to include the maxi-
mum age, κ, of individuals as (µ, κ, λ)-ES [11], where
’plus’-selection corresponds to κ = ∞ and ’comma’-
selection corresponds to κ = 1.

2.2 Two Algorithm Templates

Template 1 gives pseudocode for the evolution strat-
egy. Given is a population, P, of at least µ individ-
uals (xk, sk, f(xk)), k = 1, . . . , µ. Vector xk ∈ Rn
is a solution vector and sk contains the control or
endogenous strategy parameters, for example a suc-
cess counter or a step-size that primarily serves to
control the mutation of x (in Line 6). The values
of sk may be identical for all k. In each generation,
first λ offspring are generated (Lines 3–6), each by
recombination of ρ ≤ µ individuals from P (Line 4),
followed by mutation of s (Line 5) and of x (line 6).
The new offspring are added to P (Line 7). Over-
aged individuals are removed from P (Line 8), where
individuals from the same generation have, by defi-

Template 1 The (µ/ρ+, λ)-ES

0 given n, ρ, µ, λ ∈ N+

1 initialize P = {(xk, sk, f(xk)) | 1 ≤ k ≤ µ}
2 while not happy

3 for k ∈ {1, . . . , λ}
4 (xk, sk) = recombine(select mates(ρ,P))

5 sk ← mutate s(sk)

6 xk ← mutate x(sk,xk) ∈ Rn

7 P ← P ∪ {(xk, sk, f(xk)) | 1 ≤ k ≤ λ}
8 P ← select by age(P) // identity for ’+’

9 P ← select µ best(µ,P) // by f -ranking

Template 2 The (µ/µ+, λ)-ES

0 given n, λ ∈ N+

1 initialize x ∈ Rn, s, P = {}
2 while not happy

3 for k ∈ {1, . . . , λ}
4 sk = mutate s(s)

5 xk = mutate x(sk,x)

6 P ← P ∪ {(xk, sk, f(xk))}
7 P ← select by age(P) // identity for ’+’

8 (x, s)← recombine(P,x, s)

nition, the same age. Finally, the best µ individuals
are retained in P (Line 9).

The mutation of the x-vector in Line 6 always in-
volves a stochastic component. Lines 4 and 5 may
have stochastic components as well.

When select mates in Line 4 selects ρ = µ indi-
viduals from P, it reduces to the identity. If ρ = µ
and recombination is deterministic, as is commonly
the case, the result of recombine is the same parental
centroid for all offspring. The computation of the
parental centroid can be done once before the for
loop or as the last step of the while loop, simplifying
the initialization of the algorithm. Template 2 shows
the pseudocode in this case.

In Template 2, only a single parental centroid (x, s)
is initialized. Mutation takes this parental centroid
as input (notice that sk and xk in Line 4 and 5 are
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now assigned rather than updated) and “recombina-
tion” is postponed to the end of the loop, computing
in Line 8 the new parental centroid. While (xk, sk)
can contain all necessary information for this com-
putation, it is often more transparent to use x and
s as additional arguments in Line 8. Selection based
on f -values is now limited to mating selection in pro-
cedure recombine (that is, procedure select µ best is
omitted and µ is the number of individuals in P that
are actually used by recombine).

Using a single parental centroid has become the
most popular approach, because such algorithms are
simpler to formalize, easier to analyze and even per-
form better in various circumstances as they allow for
maximum genetic repair (see below). All instances of
evolution strategies given in Section 3 are based on
Template 2.

2.3 Recombination Operators

In evolution strategies, recombination combines in-
formation from several parents to generate a single
new offspring. Often, multi-recombination is used,
where more than two parents are recombined (ρ > 2).
In contrast, in genetic algorithms often two offspring
are generated from the recombination of two parents.
In evolutionary programming, recombination is gen-
erally not used. The most important recombination
operators used in evolution strategies are the follow-
ing.

Discrete or dominant recombination, denoted by
(µ/ρD +, λ), is also known as uniform crossover
in genetic algorithms. For each variable (com-
ponent of the x-vector), a single parent is drawn
uniformly from all ρ parents to inherit the vari-
able value. For ρ parents that all differ in each
variable value, the result is uniformly distributed
across ρn different x-values. The result of dis-
crete recombination depends on the given coor-
dinate system.

Intermediate recombination, denoted by (µ/ρI +,
λ), takes the average value of all ρ parents (com-
putes the center of mass, the centroid).

Weighted multi-recombination [12, 10, 13], denoted
by (µ/ρW +, λ), is a generalization of intermedi-
ate recombination, usually with ρ = µ. It takes
a weighted average of all ρ parents. The weight
values depend on the fitness ranking, in that bet-
ter parents never get smaller weights than infe-
rior ones. With equal weights, intermediate re-
combination is recovered. By using comma selec-
tion and ρ = µ = λ, where some of the weights
may be zero, weighted recombination can take
over the role of fitness-based environmental se-
lection and negative weights become a feasible
option [12, 13].2

In principle, recombination operators from genetic
algorithms, like one-point and two-point crossover
or line recombination [14] can alternatively be used.
However, they have been rarely applied in evolution
strategies.

In evolution strategies, the result of selection and
recombination is often deterministic (namely, if ρ = µ
and recombination is intermediate or weighted). This
means that eventually all offspring are generated by
mutation from the same single solution vector (the
parental centroid) as in Template 2. This leads, for
given variances, to maximum entropy because all off-
spring are independently drawn from the same nor-
mal distribution.3

The role of recombination in general is to keep the
variation in a population high. Discrete recombina-
tion directly introduces variation by generating differ-
ent solutions. Their distance resembles the distance
between the parents. However, discrete recombina-
tion, as it depends on the given coordinate system,
relies on separability: it can introduce variation suc-
cessfully only if values of disrupted variables do not
strongly depend on each other. Solutions resulting
from discrete recombination lie on the vertices of an
axis-parallel box.

2The sum of weights must be either one or zero, or recom-
bination must be applied to the vectors xk − x and the result
added to x.

3With discrete recombination, the offspring distribution is
generated from a mixture of normal distributions with differ-
ent mean values. The resulting distribution has lower entropy
unless it has a larger overall variance.
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Intermediate and weighted multi-recombination do
not lead to variation within the new population as
they result in the same single point for all offspring.
However, they do allow the mutation operator to in-
troduce additional variation by means of genetic re-
pair [15]: recombinative averaging reduces the effec-
tive step length taken in unfavorable directions by a
factor of

√
µ (or

√
µw in case of weighted recombi-

nation), but leaves the step length in favorable di-
rections essentially unchanged, see also Section 4.2.
This may allow increased variation by enlarging mu-
tations by a factor of about µ (or µw) as revealed in
Eq. (16), to achieve maximal progress.

2.4 Mutation Operators

The mutation operator introduces (“small”) varia-
tions by adding a point symmetric perturbation to
the result of recombination, say a solution vector
x ∈ Rn. This perturbation is drawn from a multivari-
ate normal distribution4, N (0,C), with zero mean
(expected value) and covariance matrix C ∈ Rn×n.
We have x+N (0,C) ∼ N (x,C), meaning that x de-
termines the expected value of the new offspring indi-
vidual. We also have x+N (0,C) ∼ x+C

1/2N (0, I),
meaning that the linear transformation C

1/2 gener-
ates the desired distribution from the vector N (0, I)
that has i.i.d. N (0, 1) components.5

Figure 1 shows different normal distributions in
dimension n = 2. Their lines of equal density
are ellipsoids. Any straight section through the 2-
dimensional density recovers a 1-dimensional Gaus-
sian bell. Based on multivariate normal distribu-
tions, three different mutation operators can be dis-
tinguished.

Spherical/isotropic (Figure 1, left) where the
covariance matrix is proportional to the identity,

4 Besides normally distributed mutations, Cauchy muta-
tions [16, 17, 18] have also been proposed in the context of
evolution strategies and evolutionary programming.

5Using the normal distribution has several advantages. The
N (0, I) distribution is the most convenient way to implement
an isotropic perturbation. The normal distribution is stable:
sums of independent normally distributed random variables
are again normally distributed. This facilitates the design and
analysis of algorithms remarkably. Furthermore, the normal
distribution has maximum entropy under the given variances.

i.e., the mutation distribution follows σN (0, I)
with step-size σ > 0. The distribution is
spherical and invariant under rotations about
its mean. Below, Algorithm 1 uses this kind of
mutation.

Axis-parallel (Figure 1, middle) where the co-
variance matrix is a diagonal matrix, i.e., the
mutation distribution follows N (0,diag(σ)2),
where σ is a vector of coordinate-wise standard
deviations and the diagonal matrix diag(σ)2 has
eigenvalues σ2

i with eigenvectors ei. The prin-
cipal axes of the ellipsoid are parallel to the co-
ordinate axes. This case includes the previous
isotropic case. Below, Algorithms 2, 3, and 4
implement this kind of mutation distribution.

General (Figure 1, right) where the covariance
matrix is symmetric and positive definite (i.e.
x>Cx > 0 for all x 6= 0), generally non-diagonal
and has (n2 + n)/2 degrees of freedom (control
parameters). The general case includes the pre-
vious axis-parallel and spherical cases. Below,
Algorithms 5 and 6 implement general multivari-
ate normally distributed mutations.

In the first and the second cases, the variations of
variables are independent of each other, they are un-
correlated. This limits the usefulness of the operator
in practice. The third case is “incompatible” with
discrete recombination: for a narrow, diagonally ori-
ented ellipsoid (not to be confused with a diagonal
covariance matrix), a point resulting from selection
and discrete recombination lies within this ellipsoid
only if each coordinate is taken from the same parent
(which happens with probability 1/ρn−1) or from a
parent with a very similar value in this coordinate.
The narrower the ellipsoid the more similar (i.e. cor-
related) the value needs to be. As another illustration
consider sampling, neutral selection and discrete re-
combination based on Figure 1, right: after discrete
recombination the points (−2, 2) and (2,−2) outside
the ellipsoid have the same probability as the points
(2, 2) and (−2,−2) inside the ellipsoid.

The mutation operators introduced are unbiased
in several ways. They are all point-symmetrical and
have expectation zero. Therefore, mutation alone will
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Figure 1: Three 2-dimensional multivariate normal distributions N (0,C) ∼ C
1/2N (0, I). The covariance

matrix C of the distribution is, from left to right, the identity I (isotropic distribution), the diagonal matrix(
1/4 0
0 4

)
(axis-parallel distribution) and ( 2.125 1.875

1.875 2.125 ) with the same eigenvalues (1/4, 4) as the diagonal matrix.
Shown are in each subfigure the mean at 0 as small black dot (a different mean solely changes the axis
annotations), two eigenvectors of C along the principal axes of the ellipsoids (thin black lines), two ellipsoids
reflecting the set of points {x : (x− 0)>C−1(x− 0) ∈ {1, 4}} that represent the 1-σ and 2-σ lines of equal
density, and 100 sampled points (however, a few of them are likely to be outside of the area shown).

almost certainly not lead to better fitness values in
expectation. The isotropic mutation operator features
the same distribution along any direction. The gen-
eral mutation operator is, as long as C remains un-
specified, unbiased towards the choice of a Cartesian
coordinate system, i.e. unbiased towards the repre-
sentation of solutions x, which has also been referred
to as invariance to affine coordinate system transfor-
mations [10]. This however depends on the way how
C is adapted (see below).

3 Parameter Control

Controlling the parameters of the mutation operator
is key to the design of evolution strategies. Consider
the isotropic operator (Figure 1, left), where the step-
size σ is a scaling factor for the random vector pertur-

bation. The step-size controls to a large extent the
convergence speed. In situations where larger step-
sizes lead to larger expected improvements, a step-
size control technique should aim at increasing the
step-size (and decreasing it in the opposite scenario).

The importance of step-size control is illustrated
with a simple experiment. Consider a spherical func-
tion f(x) = ‖x‖α, α > 0, and a (1+1)-ES with con-
stant step-size equal to σ = 10−2, i.e. with mutations
drawn from 10−2N (0, I). The convergence of the al-
gorithm is depicted in Fig 2 (constant σ graphs).

We observe, roughly speaking, three stages: up to
600 function evaluations, progress towards the opti-
mum is slow. In this stage the fixed step-size is too
small. Between 700 and 800 evaluations, fast progress
towards the optimum is observed. In this stage the
step-size is close to optimal. Afterwards, the progress
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Figure 2: Runs of the (1+1)-ES with constant step-size, of pure random search (uniform in [−0.2, 1]10),
and of the (1+1)-ES with 1/5th success rule (Algorithm 1) on a spherical function f(x) = ‖x‖α, α > 0
(because of invariance to monotonic f -transformation the same graph is observed for any α > 0). For each
algorithm there are three runs in the left plot and three runs in the right plot. The x-axis is linear in the
left and in log-scale in the right hand plot. For the (1+1)-ES with constant step-size, σ equals 10−2. For
the (1+1)-ES with 1/5th success rule, the initial step-size is chosen very small to 10−9 and the parameter
d equals 1 + 10/3. On the left, also the evolution of the step-size of one of the runs of the (1+1)-ES with
1/5th success rule is shown. All algorithms are initialized at 1. Eventually, the (1+1)-ES with 1/5th success
rule reveals linear behavior on the left, while the other two algorithms reveal eventually linear behavior in
the right hand plot.

decreases and approaches the rate of the pure random
search algorithm, well illustrated in the right subfig-
ure. In this stage the fixed step-size is too large and
the probability to sample better offspring becomes
very small.

The figure also shows runs of the (1+1)-ES with
1/5th success rule step-size control (as described in
Section 3.1) and the step-size evolution associated
to one of these runs. The initial step-size is far too
small and we observe that the adaptation technique
increases the step-size in the first iterations. After-
wards, step-size is kept roughly proportional to the
distance to the optimum, which is in fact optimal and
leads to linear convergence in the left subfigure.

Generally, the goal of parameter control is to drive
the endogenous strategy parameters close to their
optimal values. These optimal values, as we have
seen for the step-size in Figure 2, can significantly
change over time or depending on the position in

search space. In the most general case, the muta-
tion operator has (n2 + n)/2 degrees of freedom (see
Section 2.4). The conjecture is that in the desired
scenario lines of equal density of the mutation op-
erator resemble locally the lines of equal fitness [4,
p242f]. In case of convex-quadratic fitness functions
this resemblance can be perfect and, apart from the
step-size, optimal parameters do not change over time
(as illustrated in Fig. 3 below).

Control parameters like the step-size can be stored
on different “levels”. Each individual can have its
own step-size value (like in Algorithms 2 and 3), or
a single step-size is stored and applied to all individ-
uals in the population. In the latter case, sometimes
different populations with different parameter values
are run in parallel [19].

In the following, six specific evolution strategies
are outlined, each of them representing an important
achievement in parameter control.
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3.1 The 1/5th Success Rule

The 1/5th success rule for step-size control is based
on an important discovery made very early in the
research of evolution strategies [1]. A similar rule had
also been found independently before in [20]. As a
control mechanism in practice, the 1/5th success rule
has been mostly superseded by more sophisticated
methods. However, its conceptual insight remains
remarkably valuable.

Consider a linear fitness function, for example f :
x 7→ x1 or f : x 7→

∑
i xi. In this case, any point

symmetrical mutation operator has a success proba-
bility of 1/2: in one half of the cases, the perturbation
will improve the original solution, in one half of the
cases the solution will deteriorate. Following from
Taylors formula, smooth functions are locally linear,
that is, they appear to be more and more linear with
decreasing neighborhood size. Therefore, the success
probability becomes 1/2 for step-size σ → 0. On
most non-linear functions, the success rate is indeed
a monotonously decreasing function in σ and goes to
zero for σ →∞. This suggests to control the step-size
by increasing it for large success rates and decreas-
ing it for small ones. This mechanism can drive the
step-size close to the optimal value.

Rechenberg [1] investigated two simple but quite
different functions, the corridor function

f : x 7→
{
x1 if |xi| ≤ 1 for i = 2, . . . , n
∞ otherwise

and the sphere function f : x 7→
∑
x2i . He found

optimal success rates for the (1+1)-ES with isotropic
mutation to be ≈ 0.184 > 1/6 and ≈ 0.270 < 1/3,
respectively (for n→∞) [1].6 This leads to approxi-
mately 1/5 as being the success value where to switch
between decreasing and increasing the step-size.

Algorithm 1 implements the (1+1)-ES with 1/5th
success rule in a simple and effective way [21]. Lines
4–6 implement Line 8 from Template 2, including se-
lection in Line 7. Line 4 in Algorithm 1 updates the
step-size σ of the single parent. The step-size does
not change if and only if the argument of exp is zero.

6Optimality here means to achieve the largest expected ap-
proach of the optimum in a single generation.

Algorithm 1 The (1+1)-ES with 1/5th Rule

0 given n ∈ N+, d ≈
√
n+ 1

1 initialize x ∈ Rn, σ > 0

2 while not happy

3 x1 = x+ σ ×N (0, I) // mutation

4 σ ← σ × exp1/d(1f(x1)≤f(x) − 1/5)

5 if f(x1) ≤ f(x) // select if better

6 x = x1 // x-value of new parent

While this cannot happen in a single generation, we
still can find a stationary point for σ: log σ is unbi-
ased if and only if the expected value of the argument
of exp is zero. This is the case if E1f(x1)≤f(x) = 1/5,
in other words, if the probability of an improvement
with f(x1) ≤ f(x) is 20%. Otherwise, log σ increases
in expectation if the success probability is larger than
1/5 and decreases if the success probability is smaller
than 1/5. Hence, Algorithm 1 indeed implements the
1/5th success rule.

3.2 Self-Adaptation

A seminal idea in the domain of evolution strate-
gies is parameter control via self-adaptation [3]. In
self-adaptation, new control parameter settings are
generated similar to new x-vectors by recombination
and mutation. Algorithm 2 presents an example with
adaptation of n coordinate-wise standard deviations
(individual step-sizes).

First, for conducting the mutation, random events
are drawn in Lines 4–6. In Line 7, the step-size vector
for each individual undergoes (i) a mutation common
for all components, exp(ξk), and (ii) a component-
wise mutation with exp(ξk). These mutations are
unbiased, in that E logσk = logσ. The mutation
of x in Line 8 uses the mutated vector σk. After
selection in Line 9, intermediate recombination is ap-
plied to compute x and σ for the next generation.
By taking the average over σk we have Eσ= Eσk in
Line 10. However, the application of mutation and
recombination on σ introduces a moderate bias such
that σ tends to increase under neutral selection [22].

In order to achieve stable behavior of σ, the num-
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Algorithm 2 The (µ/µ, λ)-σSA-ES

0 given n ∈ N+, λ ≥ 5n, µ ≈ λ/4 ∈ N, τ ≈ 1/
√
n,

τi ≈ 1/n1/4

1 initialize x ∈ Rn, σ ∈ Rn+
2 while not happy

3 for k ∈ {1, . . . , λ}
// random numbers i.i.d. for all k

4 ξk = τ N (0, 1) // global step-size

5 ξk = τiN (0, I) // coordinate-wise σ

6 zk = N (0, I) //x-vector change
// mutation

7 σk = σ ◦ exp(ξk)× exp(ξk)

8 xk = x+ σk ◦ zk
9 P = sel µ best({(xk,σk, f(xk)) | 1 ≤ k ≤ λ})

// recombination

10 σ=
1

µ

∑
σk∈P

σk

11 x =
1

µ

∑
xk∈P

xk

ber of parents µ must be large enough, which is re-
flected in the setting of λ. A setting of τ ≈ 1/4
has been proposed in combination with ξk being uni-
formly distributed across the two values in {−1, 1}
[2].

3.3 Derandomized Self-Adaptation

Derandomized self-adaptation [23] addresses the
problem of selection noise that occurs with self-
adaptation of σ as outlined in Algorithm 2. Selection
noise refers to the possibility that very good offspring
may be generated with poor strategy parameter set-
tings and vice versa. The problem occurs frequently
and has two origins.

• A small/large component in |σk ◦ zk| (Line 8
in Algorithm 2) does not necessarily imply that
the respective component of σk is small/large.
Selection of σ is disturbed by the respective re-
alizations of z.

• Selection of a small/large component of |σk ◦zk|
does not imply that this is necessarily a favor-
able setting: more often than not, the sign of a
component is more important than its size and
all other components influence the selection as
well.

Due to selection noise, poor values are frequently
inherited and we observe stochastic fluctuations of
σ. Such fluctuations can in particular lead to very
small values (very large values are removed by selec-
tion more quickly). The overall magnitude of these
fluctuations can be implicitly controlled via the par-
ent number µ, because intermediate recombination
(Line 10 in Algorithm 2) effectively reduces the mag-
nitude of σ-changes and biases logσ to larger values.

For µ� n the stochastic fluctuations become pro-
hibitive and therefore µ ≈ λ/4 ≥ 1.25n is chosen to
make σ-self-adaptation reliable.

Derandomization addresses the problem of selec-
tion noise on σ directly without resorting to a large
parent number. The derandomized (1, λ)-σSA-ES is
outlined in Algorithm 3 and addresses selection noise
twofold. Instead of introducing new variations in σby
means of exp(ξk), the variations from zk are directly
used for the mutation of σ in Line 7. The variations
are dampened compared to their use in the mutation
of x (Line 6) via d and di, thereby mimicking the ef-
fect of intermediate recombination on σ [23, 24]. The
order of the two mutation equations becomes irrele-
vant.

For Algorithm 3 also a (µ/µ, λ) variant with re-
combination is feasible. However, in particular in the
(µ/µI , λ)-ES, σ-self-adaptation tends to generate too
small step-sizes. A remedy for this problem is to use
non-local information for step-size control.

3.4 Non-Local Derandomized Step-
Size Control (CSA)

When using self-adaptation, step-sizes are associated
with individuals and selected based on the fitness of
each individual. However, step-sizes that serve indi-
viduals well by giving them a high likelihood to be
selected are generally not step-sizes that maximize
the progress of the entire population or the parental
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Algorithm 3 Derandomized (1, λ)-σSA-ES

0 given n ∈ N+, λ ≈ 10, τ ≈ 1/3, d ≈
√
n, di ≈ n

1 initialize x ∈ Rn, σ ∈ Rn+
2 while not happy

3 for k ∈ {1, . . . , λ}
// random numbers i.i.d. for all k

4 ξk = τ N (0, 1)

5 zk = N (0, I)

// mutation, re-using random events

6 xk = x+ exp(ξk)× σ ◦ zk

7 σk = σ ◦ exp1/di

(
|zk|

E|N (0, 1)|
− 1

)
7b × exp1/d (ξk)

8 (x1,σ1, f(x1))← select single best(
{(xk,σk, f(xk)) | 1 ≤ k ≤ λ})

// assign new parent

9 σ= σ1

10 x = x1

centroid x. We will see later that, for example, the
optimal step-size may increase linearly with µ (Sec-
tion 4.2 and Eq. (16)). With self-adaptation on the
other hand, the step-size of the µth best offspring is
typically even smaller than the step-size of the best
offspring. Consequently, Algorithm 3 assumes often
too small step-sizes and can be considerably improved
by using non-local information about the evolution
of the population. Instead of single (local) muta-
tion steps z, an exponentially fading record, sσ, of
mutation steps is taken. This record, referred to as
search path or evolution path, can be pictured as a se-
quence or sum of consecutive successful z-steps that
is non-local in time and space. A search path carries
information about the interrelation between single
steps. This information can improve the adaptation
and search procedure remarkably. Algorithm 4 out-
lines the (µ/µI , λ)-ES with cumulative path length
control, also denoted as cumulative step-size adapta-
tion (CSA), and additionally with non-local individ-
ual step-size adaptation [25, 26].

In the (µ/µ, λ)-ES with search path, Algorithm 4,
the factor ξk for changing the overall step-size has

Algorithm 4 The (µ/µ, λ)-ES with Search Path

0 given n ∈ N+, λ ∈ N, µ ≈ λ/4 ∈ N, cσ ≈√
µ/(n+ µ), d ≈ 1 +

√
µ/n, di ≈ 3n

1 initialize x ∈ Rn, σ ∈ Rn+, sσ = 0

2 while not happy

3 for k ∈ {1, . . . , λ}
4 zk = N (0, I) // i.i.d. for each k

5 xk = x+ σ ◦ zk
6 P ← sel µ best({(xk, zk, f(xk)) | 1 ≤ k ≤ λ})

// recombination and parent update

7 sσ ← (1− cσ) sσ +

7b
√
cσ (2− cσ)

√
µ

µ

∑
zk∈P

zk

8 σ← σ ◦ exp1/di

(
|sσ|

E|N (0, 1)|
− 1

)
8b × expcσ/d

(
‖sσ‖

E‖N (0, I)‖
− 1

)
9 x =

1

µ

∑
xk∈P

xk

disappeared (compared to Algorithm 3) and the up-
date of σ is postponed until after the for loop. In-
stead of the additional random variate ξk, the length
of the search path ‖sσ‖ determines the global step-
size change in Line 8b. For the individual step-size
change, |zk| is replaced by |sσ|.

Using a search path is justified in two ways. First,
it implements a low-pass filter for selected z-steps,
removing high frequency (most likely noisy) infor-
mation. Second, and more importantly, it utilizes
information that is otherwise lost: even if all single
steps have the same length, the length of sσ can vary,
because it depends on the correlation between the
directions of z-steps. If single steps point into simi-
lar directions, the path will be up to almost

√
2/cσ

times longer than a single step and the step-size will
increase. If they oppose each other the path will be
up to almost

√
cσ/2 times shorter and the step-size

will decrease. The same is true for single components
of sσ.

The factors
√
cσ (2− cσ) and

√
µ in Line 7b guar-

anty unbiasedness of sσ under neutral selection, as
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usual.
All evolution strategies described so far are of

somewhat limited value, because they feature only
isotropic or axis-parallel mutation operators. In the
remainder we consider methods that entertain not
only an n-dimensional step-size vector σ, but also
correlations between variables for the mutation of x.

3.5 Addressing Dependencies Be-
tween Variables

The evolution strategies presented so far sample the
mutation distribution independently in each compo-
nent of the given coordinate system. The lines of
equal density are either spherical or axis-parallel el-
lipsoids (compare Figure 1). This is a major draw-
back, because it allows to solve problems with a long
or elongated valley efficiently only if the valley is
aligned with the coordinate system. In this section
we discuss evolution strategies that allow to traverse
non-axis-parallel valleys efficiently by sampling dis-
tributions with correlations.

Full Covariance Matrix Algorithms that adapt
the complete covariance matrix of the mutation dis-
tribution (compare Section 2.4) are correlated mu-
tations [3], the generating set adaptation [26], the
covariance matrix adaptation (CMA) [27], a muta-
tive invariant adaptation [28], and some instances of
natural evolution strategies [29, 30, 31]. Correlated
mutations and some natural evolution strategies are
however not invariant under changes of the coordi-
nate system [32, 10, 31]. In the next sections we
outline two evolution strategies that adapt the full
covariance matrix reliably and are invariant under
coordinate system changes: the covariance matrix
adaptation evolution strategy (CMA-ES) and the ex-
ponential natural evolution strategy (xNES).

Restricted Covariance Matrix Algorithms that
adapt non-diagonal covariance matrices, but are re-
stricted to certain matrices, are the momentum adap-
tation [33], direction adaptation [26], main vector
adaptation [34], and limited memory CMA-ES [35].
These variants are limited in their capability to shape

the mutation distribution, but they might be advan-
tageous for larger dimensional problems, say larger
than a hundred.

3.6 Covariance Matrix Adaptation
(CMA)

The covariance matrix adaptation evolution strat-
egy (CMA-ES) [27, 10, 36] is a de facto standard in
continuous domain evolutionary computation. The
CMA-ES is a natural generalization of Algorithm 4
in that the mutation ellipsoids are not constrained to
be axis-parallel, but can take on a general orientation.
The CMA-ES is also a direct successor of the gener-
ating set adaptation [26], replacing self-adaptation to
control the overall step-size with cumulative step-size
adaptation.

The (µ/µW , λ)-CMA-ES is outlined in Algo-
rithm 5. Two search paths are maintained, sσ and
sc. The first path, sσ, accumulates steps in the co-
ordinate system where the mutation distribution is
isotropic and which can be derived by scaling in the
principal axes of the mutation ellipsoid only. The
path generalizes sσ from Algorithm 4 to non-diagonal
covariance matrices and is used to implement cumu-
lative step-size adaptation, CSA, in Line 10 (resem-
bling Line 8b in Algorithm 4). Under neutral selec-
tion, sσ ∼ N (0, I) and log σ is unbiased.

The second path, sc, accumulates steps, disregard-
ing σ, in the given coordinate system.7 The co-
variance matrix update consists of a rank-one up-
date, based on the search path sc, and a rank-µ up-
date with µ nonzero recombination weights wk. Un-
der neutral selection the expected covariance matrix
equals the covariance matrix before the update.

The updates of x and C follow a common princi-
ple. The mean x is updated such that the likelihood
of successful offspring to be sampled again is maxi-
mized (or increased if cm < 1). The covariance ma-
trix C is updated such that the likelihood of success-
ful steps (xk−x)/σ to appear again, or the likelihood

7Whenever sσ is large and therefore σ is increasing fast,
the coefficient hσ prevents sc from getting large and quickly
changing the distribution shape via C. Given hσ ≡ 1, under
neutral selection sc ∼ N (0,C). The coefficient ch in line 11
corrects for the bias on sc introduced by events hσ = 0.
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Algorithm 5 The (µ/µW , λ)-CMA-ES

0 given n ∈ N+, λ ≥ 5, µ ≈ λ/2, wk =
w′(k)/

∑µ
k w
′(k), w′(k) = log(λ/2 + 1/2) −

log rank(f(xk)), µw = 1/
∑µ
k w

2
k, cσ ≈ µw/(n +

µw), d ≈ 1 +
√
µw/n, cc ≈ (4 + µw/n)/(n + 4 +

2µw/n), c1 ≈ 2/(n2 + µw), cµ ≈ µw/(n
2 + µw),

cm = 1
1 initialize sσ = 0, sc = 0, C = I, σ ∈ Rn+, x ∈ Rn

2 while not happy

3 for k ∈ {1, . . . , λ}
4 zk = N (0, I) // i.i.d. for all k

5 xk = x+ σC
1/2 × zk

6 P = sel µ best({(zk, f(xk)) | 1 ≤ k ≤ λ})
7 x← x + cmσC

1/2
∑
zk∈P

wkzk

8 sσ ← (1− cσ) sσ + // search path for σ√
cσ (2− cσ)

√
µw

∑
zk∈P

wkzk

9 sc ← (1− cc) sc + // search path for C

hσ
√
cc (2− cc)

√
µw

∑
zk∈P

wkC
1/2zk

10 σ ← σ expcσ/d
(

‖sσ‖
E‖N (0, I)‖

− 1

)
11 C← (1− c1 + ch − cµ) C +

c1scs
>
c + cµ

∑
zk∈P

wkC
1/2zk(C

1/2zk)>

where hσ = 1‖sσ‖2/n<2+4/(n+1), ch = c1(1 −
h2σ)cc(2 − cc), and C

1/2 is the unique symmetric
positive definite matrix obeying C

1/2 ×C
1/2 = C.

All c-coefficients are ≤ 1.

to sample (in direction of) the path sc, is increased.
A more fundamental principle for the equations is
given in the next section.

Using not only the µ best but all λ offspring can
be particularly useful for the “rank-µ” update of C
in line 11 where negative weights wk for inferior off-
spring are advisable. Such an update has been intro-
duced as active CMA [37].

The factor cm in Line 7 can be equally written as a
mutation scaling factor κ = 1/cm in Line 5, compare
[38]. This means that the actual mutation steps are

larger than the inherited ones, resembling the deran-
domization technique of damping step-size changes
to address selection noise as described in Section 3.3.

An elegant way to replace Line 10 is

σ ← σ exp(cσ/d)/2

(
‖sσ‖2

n
− 1

)
(1)

and often used in theoretical investigations of this
update as those presented in Section 4.2.

A single run of the (5/5W , 10)-CMA-ES on a
convex-quadratic function is shown in Fig. 3. For
sake of demonstration the initial step-size is chosen
far too small (a situation that should be avoided in
practice) and increases quickly for the first 400 f -
evaluations. After no more than 5500 f -evaluations
the adaptation of C is accomplished. Then the eigen-
values of C (square roots of which are shown in the
lower left) reflect the underlying convex-quadratic
function and the convergence speed is the same as
on the sphere function and about 60% of the speed
of the (1+1)-ES as observed in Fig. 2. The resulting
convergence speed is about ten thousand times faster
than without adaptation of C and at least one thou-
sand times faster compared to any of the algorithms
from the previous sections.

3.7 Natural Evolution Strategies

The idea of using natural gradient learning [39] in
evolution strategies has been proposed in [29] and
further pursued in [40, 31]. Natural evolution strate-
gies (NES) put forward the idea that the update of
all distribution parameters can be based on the same
fundamental principle. NES have been proposed as a
more principled alternative to CMA-ES and charac-
terized by operating on Cholesky factors of a covari-
ance matrix. Only later was it discovered that also
CMA-ES implements the underlying NES principle
of natural gradient learning [41, 31].

For simplicity, let the vector θ represent all param-
eters of the distribution to sample new offspring. In
case of a multivariate normal distribution as above,
we have a bijective transformation between θ and
mean and covariance matrix of the distribution, θ ↔
(x, σ2C).
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Figure 3: A single run of the (5/5W , 10)-CMA-ES on the rotated ellipsoid function x 7→
∑n
i=1 α

2
i y

2
i with

αi = 103(i−1)/(n−1), y = Rx, where R is a random matrix with R>R = I, for n = 10. Shown is the evolution
of various parameters against the number of function evaluations. Upper left: best (thick blue line), median
and worst fitness value that reveal the final convergence phase after about 5500 function evaluations where
the ellipsoid function has been reduced to the simple sphere; minimal and maximal coordinate-wise standard
deviation of the mutation distribution and in between (mostly hidden) the step-size σ that is initialized far
too small and increases quickly in the beginning, that increases afterwards several times again by up to
one order of magnitude and decreases with maximal rate during the last 1000 f -evaluations; axis ratio of
the mutation ellipsoid (square root of the condition number of C) that increases from 1 to 1000 where the
latter corresponds to αn/α1. Lower left: sorted principal axis lengths of the mutation ellipsoid disregarding
σ (square roots of the sorted eigenvalues of C, see also Fig. 1) that adapt to the (local) structure of the
underlying optimization problem; they finally reflect almost perfectly the factors α−1i up to a constant factor.
Upper right: x (distribution mean) that is initialized with all ones and converges to the global optimum in
zero while correlated movements of the variables can be observed. Lower right: standard deviations in the
coordinates disregarding σ (square roots of diagonal elements of C) showing the R-dependent projections
of the principal axis lengths into the given coordinate system. The straight lines to the right of the vertical
line at about 6300 only annotate the coordinates and do not reflect measured data.
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We consider a probability density p(.|θ) over Rn

parametrized by θ, a non-increasing function W f
θ :

R → R,8 and the expected W f
θ′ -transformed fitness

[42]

J(θ) = E(W f
θ′ (f(x))) x ∼ p(.|θ)

=

∫
Rn
W f
θ′ (f(x)) p(x|θ)dx , (2)

where the expectation is taken under the given sam-
ple distribution. The maximizer of J w.r.t. p(.|θ) is,

for any fixed W f
θ′ , a Dirac distribution concentrated

on the minimizer of f . A natural way to update θ
is therefore a gradient ascent step in ∇θJ direction.
However, the “vanilla” gradient ∇θJ depends on the
specific parametrization chosen in θ. In contrast, the
natural gradient, denoted by ∇̃θ, is associated to the
Fisher metric that is intrinsic to p and independent
of the chosen θ-parametrization. Developing ∇̃θJ(θ)
under mild assumptions on f and p(.|θ) by exchang-
ing differentiation and integration, recognizing that
the gradient ∇̃θ does not act on W f

θ′ , using the log-

likelihood trick ∇̃θp(.|θ) = p(.|θ) ∇̃θ ln p(.|θ) and fi-
nally setting θ′ = θ yields9

∇̃θJ(θ) = E
(
W f
θ (f(x)) ∇̃θ ln p(x|θ)

)
. (3)

A Monte-Carlo approximation of the expected value
by the average finally yields the comparatively simple
expression

∇̃θJ(θ) ≈ 1

λ

λ∑
k=1

preference weight︷ ︸︸ ︷
W f
θ (f(xk)) ∇̃θ ln p(xk|θ)︸ ︷︷ ︸

intrinsic candidate direction

(4)

8 More specifically, W f
θ : y 7→ w(Prz∼p(.|θ)(f(z) ≤ y))

computes the pθ-quantile, or cumulative distribution function,
of f(z) with z ∼ p(.|θ) at point y, composed with a non-
increasing predefined weight function w : [0, 1] → R (where

w(0) > w(1/2) = 0 is advisable). The value of W f
θ (f(x))

is invariant under strictly monotonous transformations of f .

For x ∼ p(.|θ) the distribution of W f
θ (f(x)) ∼ w(U [0, 1]) de-

pends only on the predefined w; it is independent of θ and
f and therefore also (time-)invariant under θ-updates. Given
λ samples xk, we have the rank-based consistent estimator

W f
θ (f(xk)) ≈ w

(
rank(f(xk))−1/2

λ

)
.

9We set θ′ = θ because we will estimate Wθ′ using the
current samples that are distributed according to p(.|θ)

for a natural gradient update of θ, where xk ∼ p(.|θ)
is sampled from the current distribution. The natu-
ral gradient can be computed as ∇̃θ = F−1θ ∇θ, where
Fθ is the Fisher information matrix expressed in θ-
coordinates. For the multivariate Gaussian distribu-
tion, ∇̃θ ln p(xk|θ) can indeed be easily expressed and
computed efficiently. We find that in CMA-ES (Al-
gorithm 5), the rank-µ update (Line 11 with c1 = 0)
and the update in Line 7 are natural gradient up-
dates of C and x, respectively [41, 31], where the kth
largest wk is a consistent estimator for the kth largest
W f
θ (f(xk)) [42].
While the natural gradient does not depend on

the parametrization of the distribution, a finite step
taken in the natural gradient direction does. This
becomes relevant for the covariance matrix update,
where natural evolution strategies take a differ-
ent parametrization than CMA-ES. Starting from
Line 11 in Algorithm 5, we find for c1 = ch = 0

C← (1− cµ) C + cµ
∑
zk∈P

wkC
1/2zk(C

1/2zk)>

= C
1/2

(
(1− cµ) I + cµ

∑
zk∈P

wkzkz
>
k

)
C

1/2

∑
wk=1
= C

1/2

(
I + cµ

∑
zk∈P

wk
(
zkz

>
k − I

))
C

1/2

cµ�1
≈ C

1/2 expcµ

(∑
zk∈P

wk
(
zkz

>
k − I

))
C

1/2 . (5)

The term bracketed between the matrices C
1/2 in the

lower three lines is a multiplicative covariance matrix
update expressed in the natural coordinates, where
the covariance matrix is the identity and C

1/2 serves
as coordinate system transformation into the given
coordinate system. Only the lower two lines of Eq. (5)
do not rely on the constraint

∑
k wk = 1 in order to

satisfy a stationarity condition on C.10 The last line
of Eq. (5) is used in the exponential natural evolution

10 For a given C on the right hand side of Eq. (5), we have
under neutral selection the stationarity condition E(Cnew) =
C for the first three lines and E(log(Cnew)) = log(C) for the
last line, where log is the inverse of the matrix exponential
exp.
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Algorithm 6 The Exponential NES (xNES)

0 given n ∈ N+, λ ≥ 5, wk = w′(k)/
∑
k |w′(k)|,

w′(k) ≈ log(λ/2 + 1/2) − log rank(f(xk)), ηc ≈
(5 + λ)/(5n1.5) ≤ 1, ησ ≈ ηc, ηx ≈ 1

1 initialize C
1/2 = I, σ ∈ R+, x ∈ Rn

2 while not happy

3 for k ∈ {1, . . . , λ}
4 zk = N (0, I) // i.i.d. for all k

5 xk = x+ σC
1/2 × zk

6 P = {(zk, f(xk)) | 1 ≤ k ≤ λ}
7 x← x+ ηxσC

1/2
∑
zk∈P

wkzk

8 σ ← σ expησ/2

(∑
zk∈P

wk

(
‖zk‖2

n
− 1

))
9 C

1/2 ← C
1/2 ×

expηc/2

(∑
zk∈P

wk

(
zkz

>
k −

‖zk‖2

n
I

))

strategy , xNES [31] and guarantees positive definite-
ness of C even with negative weights, independent
of cµ and of the data zk. The xNES is depicted in
Algorithm 6.

In xNES, sampling is identical to CMA-ES and en-
vironmental selection is omitted entirely. Line 8 re-
sembles the step-size update in (1). Comparing the
updates more closely, with cσ = 1 Eq. (1) uses

µw
∥∥∑

k wkzk
∥∥2

n
− 1

whereas xNES uses∑
k

wk

(
‖zk‖2

n
− 1

)
for updating σ. For µ = 1 the updates are the
same. For µ > 1, the latter only depends on the
lengths of the zk, while the former depends on their
lengths and directions. Finally, xNES expresses the
update Eq. (5) in Line 9 on the Cholesky factor
C

1/2, which does not remain symmetric in this case

(C = C
1/2 ×C

1/2> still holds). The term −‖zk‖2/n

keeps the determinant of C
1/2 (and thus the trace of

log C
1/2) constant and is of rather cosmetic nature.

Omitting the term is equivalent to using ησ + ηc in-
stead of ησ in line 8.

The exponential natural evolution strategy is a
very elegant algorithm. Like CMA-ES it can be inter-
preted as an incremental Estimation of Distribution
Algorithm [43]. However, it performs generally infe-
rior compared to CMA-ES because it does not use
search paths for updating σ and C.

3.8 Further Aspects

Internal Parameters Adaptation and self-
adaptation address the control of the most important
internal parameters in evolution strategies. Yet,
all algorithms presented have hidden and exposed
parameters in their implementation. Many of them
can be set to reasonable and robust default values.
The population size parameters µ and λ however
change the search characteristics of an evolution
strategy significantly. Larger values, in particular
for parent number µ, often help address highly
multimodal or noisy problems more successfully.

In practice, several experiments or restarts are ad-
visable, where different initial conditions for x and
σ can be employed. For exploring different popula-
tion sizes, a schedule with increasing population size,
IPOP, is advantageous [44, 45, 46], because runs with
larger populations take typically more function eval-
uations. Preceding long runs (large µ and λ) with
short runs (small µ and λ) leads to a smaller (rela-
tive) impairment of the later runs than vice versa.

Internal computational complexity Algo-
rithms presented in Sections 3.1–3.4 that sample
isotropic or axis-parallel mutation distributions have
an internal computational complexity linear in the
dimension. The internal computational complexity
of CMA-ES and xNES is, for constant population
size, cubic in the dimension due to the update of
C

1/2. Typical implementations of the CMA-ES
however have quadratic complexity, as they im-
plement a lazy update scheme for C

1/2, where C
is decomposed into C

1/2C
1/2 only after about n/λ

iterations. An exact quadratic update for CMA-ES
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has also been proposed [47]. While never considered
in the literature, a lazy update for xNES to achieve
quadratic complexity seems feasible as well.

Invariance Selection and recombination in evolu-
tion strategies are based solely on the ranks of off-
spring and parent individuals. As a consequence,
the behavior of evolution strategies is invariant un-
der order-preserving (strictly monotonous) transfor-
mations of the fitness function value. In particular,
all spherical unimodal functions belong to the same
function class, which the convex-quadratic sphere
function is the most pronounced member of. This
function is more thoroughly investigated in Section 4.

All algorithms presented are invariant under trans-
lations and Algorithms 1, 5 and 6 are invariant under
rotations of the coordinate system, provided that the
initial x is translated and rotated accordingly.

Parameter control can introduce yet further in-
variances. All algorithms presented are scale invari-
ant due to step-size adaptation. Furthermore, ellip-
soidal functions that are in the reach of the muta-
tion operator of the evolution strategies presented in
Sections 3.2 to 3.7 are eventually transformed, ef-
fectively, into spherical functions. These evolution
strategies are invariant under the respective affine
transformations of the search space, given the initial
conditions are chosen respectively.

Variants Evolution strategies have been extended
and combined with other approaches in various ways.
We mention here constraint handling [48, 49], fitness
surrogates [50], multi-objective variants [51, 52], and
exploitation of fitness values [53].

4 Theory

There is ample empirical evidence, that on many uni-
modal functions evolution strategies with step-size
control, as those outlined in the previous section, con-
verge fast and with probability one to the global op-
timum. Convergence proofs supporting this evidence
are discussed in Section 4.3. On multimodal func-
tions on the other hand, the probability to converge
to the global optimum (in a single run of the same

strategy) is generally smaller than one (but larger
than zero), as suggested by observations and theo-
retical results [54]. Without parameter control on
the other hand, elitist strategies always converge to
the essential global optimum,11 however at a much
slower rate (compare random search in Figure 2).

In this section we use a time index t to denote it-
eration and assume, for notational convenience and
without loss of generality (due to translation invari-
ance), that the optimum of f is in x∗ = 0. This
simplifies writing x(t) − x∗ to simply x(t) and then
‖x(t)‖ measures the distance to the optimum of the
parental centroid in time step t.

Linear convergence plays a central role for evolu-
tion strategies. For a deterministic sequence x(t) lin-
ear convergence (towards zero) takes place if there
exists a c > 0 such that

lim
t→∞

‖x(t+1)‖
‖x(t)‖

= exp(−c) (6)

which means, loosely speaking, that for t large
enough, the distance to the optimum decreases in ev-
ery step by the constant factor exp(−c). Taking the
logarithm of Eq. (6), then exchanging the logarithm
and the limit and taking the Cesàro mean yields

lim
T→∞

1

T

T−1∑
t=0

log
‖x(t+1)‖
‖x(t)‖︸ ︷︷ ︸

= 1
T log ‖x(T )‖/‖x(0)‖

= −c . (7)

For a sequence of random vectors we define linear
convergence based on Eq. (7) as follows.

Definition 1 (linear convergence). The sequence of
random vectors x(t) converges almost surely linearly
to 0 if there exists a c > 0 such that

−c = lim
T→∞

1

T
log
‖x(T )‖
‖x(0)‖

a.s.

= lim
T→∞

1

T

T−1∑
t=0

log
‖x(t+1)‖
‖x(t)‖

a.s. (8)

11 On a bounded domain and with mutation variances
bounded away from zero, non-elitist strategies generate a sub-
sequence of x-values converging to the essential global opti-
mum.
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The sequence converges in expectation linearly to 0
if there exists a c > 0 such that

−c = lim
t→∞

E log
‖x(t+1)‖
‖x(t)‖

. (9)

The constant c is the convergence rate of the algo-
rithm.

Linear convergence hence means that asymptoti-
cally in t, the logarithm of the distance to the opti-
mum decreases linearly in t like −ct. This behavior
has been observed in Figure 2 for the (1+1)-ES with
1/5th success rule on a unimodal spherical function.

Note that λ function evaluations are performed per
iteration and it is then often useful to consider a con-
vergence rate per function evaluation, i.e. to normal-
ize the convergence rate by λ.

The progress rate measures the reduction of the
distance to optimum within a single generation [1].

Definition 2 (progress rate). The normalized
progress rate is defined as the expected relative re-
duction of ‖x(t)‖

ϕ∗ = nE
(
‖x(t)‖ − ‖x(t+1)‖

‖x(t)‖

∣∣∣∣x(t), s(t)
)

= n

(
1− E

(
‖x(t+1)‖
‖x(t)‖

∣∣∣∣x(t), s(t)
))

, (10)

where the expectation is taken over x(t+1), given
(x(t), s(t)). In situations commonly considered in the-
oretical analyses, ϕ∗ does not depend on x(t) and is
expressed as a function of strategy parameters s(t).

Definitions 1 and 2 are related, in that for a given
x(t)

ϕ∗ ≤ −n logE
‖x(t+1)‖
‖x(t)‖

(11)

≤ −nE log
‖x(t+1)‖
‖x(t)‖

= nc . (12)

Therefore, progress rate ϕ∗ and convergence rate nc
do not agree and we might observe convergence (c >
0) while ϕ∗ < 0. However for n → ∞, we typically
have ϕ∗ = nc [55].

The normalized progress rate ϕ∗ for evolution
strategies has been extensively studied in various sit-
uations, see Section 4.2. Scale-invariance and (some-
times artificial) assumptions on the step-size typically
ensure that the progress rates do not depend on t.

Another way to describe how fast an algorithm ap-
proaches the optimum is to count the number of func-
tion evaluations needed to reduce the distance to the
optimum by a given factor 1/ε or, similarly, the run-
time to hit a ball of radius ε around the optimum,
starting, e.g., from distance one.

Definition 3 (runtime). The runtime is the first hit-
ting time of a ball around the optimum. Specifically,
the runtime in number of function evaluations as a
function of ε reads

λ×min
{
t : ‖x(t)‖ ≤ ε× ‖x(0)‖

}
= λ×min

{
t :
‖x(t)‖
‖x(0)‖

≤ ε
}

. (13)

Linear convergence with rate c as given in Eq. (9)
implies that, for ε→ 0, the expected runtime divided
by log(1/ε) goes to the constant λ/c.

4.1 Lower Runtime Bounds

Evolution strategies with a fixed number of parent
and offspring individuals cannot converge faster than
linearly and with a convergence rate of O(1/n). This
means that their runtime is lower bounded by a con-
stant times log(1/εn) = n log(1/ε) [56, 57, 58, 59, 60].
This result can be obtained by analyzing the branch-
ing factor of the tree of possible paths the algo-
rithm can take. It therefore holds for any opti-
mization algorithm taking decisions based solely on
a bounded number of comparisons between fitness
values [56, 57, 58]. More specifically, the runtime
of any (1+, λ)-ES with isotropic mutations cannot be
asymptotically faster than∝ n log(1/ε)λ/ log(λ) [61].
Considering more restrictive classes of algorithms can
provide more precise non-asymptotic bounds [59, 60].
Different approaches address in particular the (1+1)-
and (1, λ)-ES and precisely characterize the fastest
convergence rate that can be obtained with isotropic
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normal distributions on any objective function with
any step-size adaptation mechanism [62, 55, 63, 64].

Considering the sphere function, the optimal con-
vergence rate is attained with distance proportional
step-size, that is, a step-size proportional to the
distance of the parental centroid to the optimum,
σ = const × ‖x‖ = σ∗ ‖x‖/n. Optimal step-size
and optimal convergence rate according to Eqs. (8)
and (9) can be expressed in terms of expectation of
some random variables that are easily simulated nu-
merically. The convergence rate of the (1+1)-ES with
distance proportional step-size is shown in Figure 4 as
a function of the normalized step-size σ∗ = nσ/‖x‖.
The peak of each curve is the upper bound for the
convergence rate that can be achieved on any func-
tion with any form of step-size adaptation. As for
the general bound, the evolution strategy converges
linearly and the convergence rate c decreases to zero
like 1/n for n → ∞ [55, 65, 64], which is equiva-
lent to linear scaling of the runtime in the dimension.
The asymptotic limit for the convergence rate of the
(1+1)-ES, as shown in the lowest curve in Figure 4,
coincides with the progress rate expression given in
the next section.

4.2 Progress Rates

This section presents analytical approximations to
progress rates of evolution strategies for sphere, ridge,
and cigar functions in the limit n → ∞. Both one-
generation results and those that consider multiple
time steps and cumulative step-size adaptation are
considered.

The first analytical progress rate results date back
to the early work of Rechenberg [1] and Schwefel [3],
who considered the sphere and corridor models and
very simple strategy variants. Further results have
since been derived for various ridge functions, several
classes of convex quadratic functions, and more gen-
eral constrained linear problems. The strategies that
results are available for have increased in complex-
ity as well and today include multi-parent strategies
employing recombination as well as several step-size
adaptation mechanisms. Only strategy variants with
isotropic mutation distributions have been considered
up to this point. However, parameter control strate-
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Figure 4: Normalized convergence rate nc versus
normalized step-size nσ/‖x‖ of the (1+1)-ES with dis-
tance proportional step-size for n = 2, 3, 5, 10, 20,∞
(top to bottom). The peaks of the graphs repre-
sent the upper bound for the convergence rate of the
(1+1)-ES with isotropic mutation (corresponding to
the lower runtime bound). The limit curve for n to
infinity (lower black curve) reveals the optimal nor-
malized progress rate of ϕ∗ ≈ 0.202 of the (1+1)-ES
on sphere functions for n→∞.

gies that successfully adapt the shape of the mutation
distribution (such as CMA-ES) effectively transform
ellipsoidal functions into (almost) spherical ones, thus
lending extra relevance to the analysis of sphere and
sphere-like functions.

The simplest convex quadratic functions to be op-
timized are variants of the sphere function (see also
the discussion of invariance in Section 3.8)

f(x) = ‖x‖2 =

n∑
i=1

x2i = R2 ,

where R denotes the distance from the optimal solu-
tion. Expressions for the progress rate of evolution
strategies on sphere functions can be computed by de-
composing mutation vectors into two components z�
and z	 as illustrated in Fig. 5. Component z� is the
projection of z onto the negative of the gradient vec-
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Figure 5: Decomposition of mutation vector z into
a component z� in the direction of the negative of
the gradient vector of the objective function and a
perpendicular component z	.

tor ∇f of the objective function. It contributes pos-
itively to the fitness of offspring candidate solution
y = x+ z if and only if −∇f(x) · z > 0. Component
z	 = z − z� is perpendicular to the gradient direc-
tion and contributes negatively to the offspring fit-
ness. Its expected squared length exceeds that of z�
by a factor of n− 1. Considering normalized quanti-
ties σ∗ = σn/R and ϕ∗ = ϕn/R allows giving concise
mathematical representations of the scaling proper-
ties of various evolution strategies on spherical func-
tions as shown below. Constant σ∗ corresponds to
the distance proportional step-size from Section 4.1.

4.2.1 (1+1)-ES on Sphere Functions

The normalized progress rate of the (1 + 1)-ES on
sphere functions is

ϕ∗ =
σ∗√
2π

e−
1
8σ
∗2

− σ∗2

4

[
1− erf

(
σ∗√

8

)]
(14)

in the limit of n → ∞ [1]. The expression in square
brackets is the success probability (i.e., the proba-
bility that the offspring candidate solution is supe-
rior to its parent and thus replaces it). The first

term in Eq. (14) is the contribution to the normal-
ized progress rate from the component z� of the mu-
tation vector that is parallel to the gradient vector.
The second term results from the component z	 that
is perpendicular to the gradient direction.

The black curve in Figure 4 illustrates how the
normalized progress rate of the (1+1)-ES on sphere
functions in the limit n→∞ depends on the normal-
ized mutation strength. For small normalized muta-
tion strengths, the normalized progress rate is small
as the short steps that are made do not yield sig-
nificant progress. The success probability is nearly
one half. For large normalized mutation strengths,
progress is near zero as the overwhelming majority
of steps result in poor offspring that are rejected.
The normalized progress rate assumes a maximum
value of ϕ∗ = 0.202 at normalized mutation strength
σ∗ = 1.224. The range of step-sizes for which close to
optimal progress is achieved is referred to as the evo-
lution window [1]. In the runs of the (1+1)-ES with
constant step-size shown in Fig. 2, the normalized
step-size initially is to the left of the evolution win-
dow (large relative distance to the optimal solution)
and in the end to its right (small relative distance to
the optimal solution), achieving maximal progress at
a point in between.

4.2.2 (µ/µ, λ)-ES on Sphere Functions

The normalized progress rate of the (µ/µ, λ)-ES on
sphere functions is described by

ϕ∗ = σ∗cµ/µ,λ −
σ∗2

2µ
(15)

in the limit n → ∞ [2]. The term cµ/µ,λ is the ex-
pected value of the average of the µ largest order
statistics of λ independent standard normally dis-
tributed random numbers. For λ fixed, cµ/µ,λ de-
creases with increasing µ. For fixed truncation ratio
µ/λ, cµ/µ,λ approaches a finite limit value as λ and
µ increase [15, 8].

It is easily seen from Eq. (15) that the normalized
progress rate of the (µ/µ, λ)-ES is maximized by nor-
malized mutation strength

σ∗ = µcµ/µ,λ . (16)
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The normalized progress rate achieved with that set-
ting is

ϕ∗ =
µc2µ/µ,λ

2
. (17)

The progress rate is negative if σ∗ > 2µcµ/µ,λ. Fig-
ure 6 illustrates how the optimal normalized progress
rate per offspring depends on the population size pa-
rameters µ and λ. Two interesting observations can
be made from the figure.

• For all but the smallest values of λ, the (µ/µ, λ)-
ES with µ > 1 is capable of significantly more
rapid progress per offspring than the (1, λ)-ES.
This contrasts with findings for the (µ/1, λ)-ES,
the performance of which on sphere functions for
n→∞ monotonically deteriorates with increas-
ing µ [8].

• For large λ, the optimal truncation ratio is
µ/λ = 0.27, and the corresponding progress per
offspring is 0.202. Those values are identical
to the optimal success probability and result-
ing normalized progress rate of the (1+1)-ES.
Beyer [8] shows that the correspondence is no co-
incidence and indeed exact. The step-sizes that
the two strategies employ differ widely, however.
The optimal step-size of the (1+1)-ES is 1.224;
that of the (µ/µ, λ)-ES is µcµ/µ,λ and for fixed
truncation ratio µ/λ increases (slightly superlin-
early) with the population size. For example, op-
timal step-sizes of (µ/µ, 4µ)-ES for µ ∈ {1, 2, 3}
are 1.029, 2.276, and 3.538, respectively. If
offspring candidate solutions can be evaluated
in parallel, the (µ/µ, λ)-ES is preferable to the
(1+1)-ES, which does not benefit from the avail-
ability of parallel computational resources.

Equation (15) holds in the limit n → ∞ for any fi-
nite value of λ. In finite but high dimensional search
spaces, it can serve as an approximation to the nor-
malized progress rate of the (µ/µ, λ)-ES on sphere
functions in the vicinity of the optimal step-size pro-
vided that λ is not too large. A better approximation
for finite n is derived in [15, 8] (however compare also
[55]).

The improved performance of the (µ/µ, λ)-ES for
µ > 1 compared to the strategy that uses µ = 1 is
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Figure 6: Maximal normalized progress per offspring
of the (µ/µ, λ)-ES on sphere functions for n → ∞
plotted against the truncation ratio. The curves cor-
respond to, from bottom to top, λ = 4, 10, 40, 100,∞.
The dotted line represents the maximal progress rate
of the (1+1)-ES.

a consequence of the factor µ in the denominator of
the term in Eq. (15) that contributes negatively to
the normalized progress rate. The components z� of
mutation vectors selected for survival are correlated
and likely to point in the direction opposite to the
gradient vector. The perpendicular components z	
in the limit n → ∞ have no influence on whether a
candidate solution is selected for survival and are thus
uncorrelated. The recombinative averaging of muta-
tion vectors results in a length of the z�-component
similar to those of individual mutation vectors. How-
ever, the squared length of the components perpen-
dicular to the gradient direction is reduced by a factor
of µ, resulting in the reduction of the negative term
in Eq. (15) by a factor of µ. Beyer [15] has coined
the term genetic repair for this phenomenon.

Weighted recombination (compare Algorithms 5
and 6) can significantly increase the progress rate of
(µ/µ, λ)-ES on sphere functions. If n is large, the
kth best candidate solution is optimally associated
with a weight proportional to the expected value of
the kth largest order statistic of a sample of λ inde-
pendent standard normally distributed random num-
bers. The resulting optimal normalized progress rate
per offspring candidate solution for large values of
λ then approaches a value of 0.5, exceeding that of
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optimal unweighted recombination by a factor of al-
most two and a half [13]. The weights are symmetric
about zero. If only positive weights are employed and
µ = bλ/2c, the optimal normalized progress rate per
offspring with increasing λ approaches a value of 0.25.
The weights in Algorithms 5 and 6 closely resemble
those positive weights.

4.2.3 (µ/µ, λ)-ES on Noisy Sphere Functions

Noise in the objective function is most commonly
modeled as being Gaussian. If evaluation of a can-
didate solution x yields a noisy objective function
value f(x) + σεN (0, 1), then inferior candidate so-
lutions will sometimes be selected for survival and
superior ones discarded. As a result, progress rates
decrease with increasing noise strength σε. Introduc-
ing normalized noise strength σ∗ε = σεn/(2R

2), in
the limit n→∞, the normalized progress rate of the
(µ/µ, λ)-ES on noisy sphere functions is

ϕ∗ =
σ∗cµ/µ,λ√

1 + ϑ2
− σ∗2

2µ
(18)

where ϑ = σ∗ε /σ
∗ is the noise-to-signal ratio that the

strategy operates under [66]. Noise does not impact
the term that contributes negatively to the strategy’s
progress. However, it acts to reduce the magnitude
of the positive term stemming from the contributions
of mutation vectors parallel to the gradient direction.
Notice that unless the noise scales such that σ∗ε is in-
dependent of the location in search space (i.e., the
standard deviation of the noise term increases in di-
rect proportion to f(x), such as in a multiplicative
noise model with constant noise strength), Eq. (18)
describes progress in single time steps only rather
than a rate of convergence.

Figure 7 illustrates for different offspring popula-
tion sizes λ how the optimal progress rate per off-
spring depends on the noise strength. The curves
have been obtained from Eq. (18) for optimal values
of σ∗ and µ. As the averaging of mutation vectors re-
sults in a vector of reduced length, increasing λ (and
µ along with it) allows the strategy to operate using
larger and larger step-sizes. Increasing the step-size
reduces the noise-to-signal ratio ϑ that the strategy
operates under and thereby reduces the impact of
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Figure 7: Optimal normalized progress rate per off-
spring of the (µ/µ, λ)-ES on noisy sphere functions
for n → ∞ plotted against the normalized noise
strength. The solid lines depict results for, from
bottom to top, λ = 4, 10, 40, 100,∞ and optimally
chosen µ. The dashed line represents the optimal
progress rate of the (1+1)-ES [67].

noise on selection for survival. Through genetic re-
pair, the (µ/µ, λ)-ES thus implicitly implements the
rescaling of mutation vectors proposed in [2] for the
(1, λ)-ES in the presence of noise. (Compare cm and
ηx in Algorithms 5 and 6 that, for values smaller than
one, implement the explicit rescaling). It needs to be
emphasized though that in finite-dimensional search
spaces, the ability to increase λ without violating the
assumptions made in the derivation of Eq. (18) is
severely limited. Nonetheless, the benefits resulting
from genetic repair are significant, and the perfor-
mance of the (µ/µ, λ)-ES is much more robust in the
presence of noise than that of the (1+1)-ES.

4.2.4 Cumulative Step-Size Adaptation

All progress rate results discussed up to this point
consider single time steps of the respective evolution
strategies only. Analyses of the behavior of evolu-
tion strategies that include some form of step-size
adaptation are considerably more difficult. Even for
objective functions as simple as sphere functions, the
state of the strategy is described by several variables
with nonlinear, stochastic dynamics, and simplifying
assumptions need to be made in order to arrive at
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quantitative results.
In the following we consider the (µ/µ, λ)-ES with

cumulative step-size adaptation (Algorithm 4 with
Eq. (1) in place of Lines 8 and 8b for mathematical
convenience) and parameters set such that cσ → 0
as n → ∞ and d = Θ(1). The state of the strat-
egy on noisy sphere functions with σ∗ε = const (i.e.,
noise that decreases in strength as the optimal solu-
tion is approached) is described by the distance R of
the parental centroid from the optimal solution, nor-
malized step-size σ∗, the length of the search path s
parallel to the direction of the gradient vector of the
objective function, and that path’s overall squared
length. After initialization effects have faded, the dis-
tribution of the latter three quantities is time invari-
ant. Mean values of the time invariant distribution
can be approximated by computing expected values
of the variables after a single iteration of the strategy
in the limit n→∞ and imposing the condition that
those be equal to the respective values before that
iteration. Solving the resulting system of equations
for σ∗ε ≤

√
2µcµ/µ,λ yields

σ∗ = µcµ/µ,λ

√
2−

(
σ∗ε

µcµ/µ,λ

)2

(19)

for the average normalized mutation strength as-
sumed by the strategy [68, 69]. The corresponding
normalized progress rate

ϕ∗ =

√
2− 1

2
µc2µ/µ,λ

[
2−

(
σ∗ε

µcµ/µ,λ

)2
]

(20)

is obtained from Eq. (18). Both the average muta-
tion strength and the resulting progress rate are plot-
ted against the noise strength in Fig. 8. For small
noise strengths cumulative step-size adaptation gen-
erates mutation strengths that are larger than op-
timal. The evolution window continually shifts to-
ward smaller values of the step-size, and adaptation
remains behind its target. However, the resulting
mutation strengths achieve progress rates within 20
percent of optimal ones. For large noise strengths the
situation is reversed and the mutation strengths gen-
erated by cumulative step-size adaptation are smaller
than optimal. However, increasing the population
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Figure 8: Normalized mutation strength and normal-
ized progress rate of the (µ/µ, λ)-ES with cumula-
tive step size adaptation on noisy sphere functions
for n → ∞ plotted against the normalized noise
strength. The dashed lines depict optimal values.

size parameters µ and λ allows shifting the operating
regime of the strategy toward the left hand side of the
graphs in Fig. 8, where step-sizes are near optimal.
As above, it is important to keep in mind the limita-
tions of the results derived in the limit n→∞. In fi-
nite dimensional search spaces the ability to compen-
sate for large amounts of noise by increasing the pop-
ulation size is more limited than Eqs. (19) and (20)
suggest.

4.2.5 Parabolic Ridge Functions

A class of test functions that poses difficulties very
different from those encountered in connection with
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sphere functions are ridge functions,

f(x) = x1 + ξ

(
n∑
i=2

x2i

)α/2
= x1 + ξRα ,

which include the parabolic ridge for α = 2. The x1-
axis is referred to as the ridge axis, and R denotes
the distance from that axis. Progress can be made
by minimizing the distance from the ridge axis or by
proceeding along it. The former requires decreasing
step-sizes and is limited in its effect as R ≥ 0. The
latter allows indefinite progress and requires that the
step-size does not decrease to zero. Short and long
term goals may thus be conflicting, and inappropriate
step-size adaptation may lead to stagnation.

As an optimal solution to the ridge problem does
not exist, the progress rate ϕ of the (µ/µ, λ)-ES on
ridge functions is defined as the expectation of the
step made in the direction of the negative ridge axis.
For constant step-size, the distance R of the parental
centroid from the ridge axis assumes a time-invariant
limit distribution. An approximation to the mean
value of that distribution can be obtained by identi-
fying that value of R for which the expected change
is zero. Using this value yields

ϕ =
2µc2µ/µ,λ

nξ(1 +
√

1 + (2µcµ/µ,λ/(nξσ))2)
(21)

for the progress rate of the (µ/µ, λ)-ES on parabolic
ridge functions [70]. The strictly monotonic behavior
of the progress rate, increasing from a value of zero
for σ = 0 to ϕ = µc2µ/µ,λ/(nξ) for σ → ∞, is fun-
damentally different from that observed on sphere
functions. However, the derivative of the progress
rate with regard to the step-size for large values of σ
tends to zero. The limited time horizon of any search
as well as the intent of using ridge functions as local
rather than global models of practically relevant ob-
jective functions both suggest that it may be unwise
to increase the step-size without bounds.

The performance of cumulative step-size adapta-
tion on parabolic ridge functions can be studied us-
ing the same approach as described above for sphere
functions, yielding

σ =
µcµ/µ,λ√

2nξ
(22)

for the (finite) average mutation strength [71]. From
Eq. (21), the corresponding progress rate

ϕ =
µc2µ/µ,λ

2nξ
(23)

is greater than half of the progress rate attained with
any finite step size.

4.2.6 Cigar Functions

While parabolic ridge functions provide an envi-
ronment for evaluating whether step-size adaptation
mechanisms are able to avoid stagnation, the ability
to make continual meaningful positive progress with
some constant nonzero step-size is of course atypical
for practical optimization problems. A class of ridge-
like functions that requires continual adaptation of
the mutation strength and is thus a more realistic
model of problems requiring ridge following are cigar
functions

f(x) = x21 + ξ

n∑
i=2

x2i = x21 + ξR2

with parameter ξ ≥ 1 being the condition number
of the Hessian matrix. Small values of ξ result in
sphere-like characteristics, large values in ridge-like
ones. As above, R measures the distance from the
x1-axis.

Assuming successful adaptation of the step-size,
evolution strategies exhibit linear convergence on
cigar functions. The expected relative per iteration
change in objective function value of the population
centroid is referred to as the quality gain ∆ and de-
termines the rate of convergence. In the limit n→∞
it is described by

∆∗ =


σ∗2

2µ(ξ − 1)
if σ∗ < 2µcµ/µ,λ

ξ − 1

ξ

cµ/µ,λσ
∗ − σ∗2

2µ
otherwise

where σ∗ = σn/R and ∆∗ = ∆n/2 [72]. That rela-
tionship is illustrated in Fig. 9 for several values of
the conditioning parameter. The parabola for ξ = 1
reflects the simple quadratic relationship for sphere
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functions seen in Eq. (15). (For the case of sphere
functions, normalized progress rate and normalized
quality gain are the same.) For cigar functions with
large values of ξ, two separate regimes can be iden-
tified. For small step-sizes, the quality gain of the
strategy is limited by the size of the steps that can
be made in the direction of the x1-axis. The x1-
component of the population centroid virtually never
changes sign. The search process resembles one of
ridge following, and we refer to the regime as the
ridge regime. In the other regime, the step-size is
such that the quality gain of the strategy is effec-
tively limited by the ability to approach the optimal
solution in the subspace spanned by the x2, . . . , xn-
axes. The x1-component of the population centroid
changes sign much more frequently than in the ridge
regime, as is the case on sphere functions. We thus
refer to the regime as the sphere regime.

The approach to the analysis of the behavior of
cumulative step-size adaptation explained above for
sphere and parabolic ridge functions can be applied
to cigar functions as well, yielding

σ∗ =
√

2µcµ/µ,λ

for the average normalized mutation strength gener-
ated by cumulative step-size adaptation [72]. The
corresponding normalized quality gain is

∆∗ =


(
√

2− 1)µc2µ/µ,λ if ξ <

√
2√

2− 1

µc2µ/µ,λ

ξ − 1
otherwise .

Both are compared with optimal values in Fig. 10.
For small condition numbers, (µ/µ, λ)-ES operate in
the sphere regime and are within 20 percent of the op-
timal quality gain as seen above. For large condition
numbers, the strategy operates in the ridge regime
and achieves a quality gain within a factor of two of
the optimal one, in accordance with the findings for
the parabolic ridge above.

4.2.7 Further Work

Further research regarding the progress rate of evo-
lution strategies in different test environments in-
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Figure 9: Normalized quality gain of (µ/µ, λ)-ES on
cigar functions for n → ∞ plotted against the nor-
malized mutation strength for ξ ∈ {1, 4, 100}. The
vertical line represents the average normalized muta-
tion strength generated by cumulative step-size adap-
tation.

cludes work analyzing the behavior of mutative self-
adaptation for linear [22], spherical [73], and ridge
functions [74]. Hierarchically organized evolution
strategies have been studied when applied to both
parabolic ridge and sphere functions [75, 76]. Sev-
eral step-size adaptation techniques have been com-
pared for ridge functions, including, but not lim-
ited to, parabolic ones [77]. A further class of con-
vex quadratic functions for which quality gain results
have been derived is characterized by the occurrence
of only two distinct eigenvalues of the Hessian, both
of which occur with high multiplicity [78, 79].

An analytical investigation of the behavior of the
(1+1)-ES on noisy sphere functions finds that failure
to reevaluate the parental candidate solution results
in the systematic overvaluation of the parent and thus
in potentially long periods of stagnation [67]. Con-
trary to what might be expected, the increased dif-
ficulty of replacing parental candidate solutions can
have a positive effect on progress rates as it tends
to prevent the selection for survival of offspring can-
didate solutions solely due to favorable noise values.
The convergence behavior of the (1+1)-ES on finite
dimensional sphere functions is studied by Jebalia et
al. [80] who show that the additive noise model is in-
appropriate in finite dimensions unless the parental
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Figure 10: Normalized mutation strength and nor-
malized quality gain of the (µ/µ, λ)-ES with cu-
mulative step-size adaptation on cigar functions for
n → ∞ plotted against the condition number of the
cigar. The dashed curves represent optimal values.

candidate solution is reevaluated, and who suggest
a multiplicative noise model instead. An analysis
of the behavior of (µ, λ)-ES (without recombination)
for noisy sphere functions finds that in contrast to
the situation in the absence of noise, strategies with
µ > 1 can outperform (1, λ)-ES if there is noise
present [81]. The use of non-singleton populations
increases the signal-to-noise ratio and thus allows for
more effective selection of good candidate solutions.
The effects of non-Gaussian forms of noise on the per-
formance of (µ/µ, λ)-ES applied to the optimization
of sphere functions have also been investigated [82].

Finally, there are some results regarding the op-
timization of time-varying objectives [83] as well as

analyses of simple constraint handling techniques [84,
85, 86].

4.3 Convergence Proofs

In the previous section we have described theoretical
results that involve approximations in their deriva-
tion and consider the limit for n → ∞. In this sec-
tion, exact results are discussed.

Convergence proofs with only mild assumptions on
the objective function are easy to obtain for evolution
strategies with a step-size that is effectively bounded
from below and above (and, for non-elitist strate-
gies, when additionally the search space is bounded)
[63, 12]. In this case, the expected runtime to reach
an ε-ball around the global optimum (see also Defi-
nition 3) cannot be faster than ∝ 1/εn, as obtained
with pure random search for ε→ 0 or n→∞.12 Sim-
ilarly, convergence proofs can be obtained for adap-
tive strategies that include provisions for using a fixed
step-size and covariance matrix with some constant
probability.

Convergence proofs for strategy variants that do
not explicitly ensure that long steps are sampled
for a sufficiently long time typically require much
stronger restrictions on the set of objective functions
that they hold for. Such proofs however have the
potential to reveal much faster, namely linear con-
vergence. Evolution strategies with the artificial dis-
tance proportional step-size, σ = const×‖x‖, exhibit,
as shown above, linear convergence on the sphere
function with an associated runtime proportional to
log(1/ε) [88, 62, 80, 64]. This result can be eas-
ily proved by using a law of large numbers, because
‖x(t+1)‖/‖x(t)‖ are independent and identically dis-
tributed for all t.

Without the artificial choice of step-size, σ/‖x‖ be-
comes a random variable. If this random variable is
a homogeneous Markov chain and stable enough to
satisfy the law of large numbers, linear convergence
is maintained [88, 63]. The stability of the Markov
chain associated to the self-adaptive (1, λ)-ES on the

12 If the mutation distribution is not normal and exhibits a
singularity in zero, convergence can be much faster than with
random search even when the step-size is bounded away from
zero [87].
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sphere function has been shown in dimension n = 1
[89] providing thus a proof of linear convergence of
this algorithm. The extension of this proof to higher
dimensions is straightforward.

Proofs that are formalized by upper bounds on the
time to reduce the distance to the optimum by a given
factor can also associate the linear dependency of the
convergence rate in the dimension n. The (1 + λ)-
and the (1, λ)-ES with common variants of the 1/5th
success rule converge linearly on the sphere function
with a runtime of O(n log(1/ε)λ/

√
log λ) [90, 61].

When λ is smaller than O(n) the (1 + λ)-ES with a
modified success rule is even

√
log λ times faster and

therefore matches the general lower runtime bound
Ω(n log(1/ε)λ/ log(λ)) [61, Theorem 5]. On convex-
quadratic functions, the asymptotic runtime of the
(1+1)-ES is the same as on the sphere function and,
at least in some cases, proportional to the condition
number of the problem [91].

Convergence proofs of modern evolution strategies
with recombination, of CSA-ES, CMA-ES or xNES
are not yet available, however we believe that some of
them are likely to be achieved in the coming decade.
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[90] J. Jägersküpper: Algorithmic analysis of a ba-
sic evolutionary algorithm for continuous opti-
mization, Theoretical Computer Science 379(3),
329 – 347 (2007)
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