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Motivations

Evolution Strategies (ES): state-of-the-art methods for stochastic 
black-box optimization in continuous domain	

in particular CMA-ES algorithm	
!
Often argued in the EC field that theory lags behind “practice” 	

still true for ES … but less true than 15 years ago	
!
!
!

Give an overview of the rigorous convergence result	
guarantee of  “fast” convergence on some functions	

!
Explain where and how theory is useful for algorithm design	
!
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Objectives of the tutorial



Theory of Evolution Strategies

Basics notion for theory in continuous domain	
“interesting” theoretical questions and 	

their relationship to practice	
!
Linear convergence of adaptive algorithms	
	 	 illustrate benefits and limitations of theory wrt experiments	

!
Progress rate theory	

provides “tights” lower bounds on convergence rates and 	
give optimal parameter settings	

!
Information geometry perspective 	

where theory sheds new light on “old” algorithms and 	
gives new perspectives for algorithm design
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Theory vs Experiments	

Theory and experimental work complement each other very well	

• theoretical results can hold for class of functions (infinite # of f)	

experiments done on single functions  
    (often) on functions  where theory cannot be tackled	

	 	 	 	 	 	 	 need theoretical results to generalize (like invariance)	

• theory can reveal unexpected results that one would not have 	 	

thought about (testing)	

• theory finds inspiration in simulation / experiments 
simulations are useful to test quickly (promising) hypothesis 
    for algorithm design: both theory and experiments are essential	

!
!

invariance /  surprising results (that cannot be tested)
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Essential infimum

Optimization in Continuous 

Minimize f : D ⇢ Rn ! R+

qµ = ess inf f

qµ

PrX⇠µ(f(X) < qµ) = 0

PrX⇠µ(f(X) < qµ + ✏) > 0 for all ✏

i.e. find essential infimum f(x⇤) = ess inf f

depends on µ
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A Simple Continuous Algorithm	
(1+1)-ES

While not happy
Initialize X0 2 Rn

X̃t = Xt + �N (0, Id)

If f(X̃t)  f(Xt)
Xt+1 = X̃t

t = t+ 1

Given f : Rn ! R+, � > 0

2-D multivariate normal	
 distribution density

Sampling density

N (0, Id)

(1+1)-ES constant step-size

comparison-based algorithm
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A Simple Continuous Algorithm	
(1+1)-ES

While not happy
Initialize X0 2 Rn

X̃t = Xt + �N (0, Id)

If f(X̃t)  f(Xt)
Xt+1 = X̃t

t = t+ 1

Given f : Rn ! R+, � > 0

(1+1)-ES constant step-size

This algorithm 	
will never hit the optimum

8x 6= x0, 8t > 0, Pr(Xt = x) = 0

Because for a continuous random variable Y 
Pr(Y = x) = 0 for all x
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A Simple Continuous Algorithm	
(1+1)-ES

While not happy
Initialize X0 2 Rn

X̃t = Xt + �N (0, Id)

If f(X̃t)  f(Xt)
Xt+1 = X̃t

t = t+ 1

Given f : Rn ! R+, � > 0

(1+1)-ES constant step-size

This algorithm 	
will never hit the optimum

8x 6= x0, 8t > 0, Pr(Xt = x) = 0
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Instead we have
Pr(Y 2 B(x, ✏)) > 0 for all x

the algorithm can approximate the optimum 	
with arbitrary precision



Discrete versus Continuous	
Hitting Time

T = inf{t 2 N,Xt = x

?}

Discrete domain: hitting time of the optimum

T✏ = inf{t 2 N,Xt 2 B(x?, ✏)}

Continuous domain: hitting time of epsilon-ball around optimum

(alternative) T✏ = inf{t 2 N, |f(Xt)� f(x?)|  ✏}

fix an arbitrary ✏, define

T✏ = T (✏, n)
Note: depends also on dimension, and other parameters

= inf{t 2 N, kXt � x

?k  ✏}
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Hitting Time versus Convergence

T✏ = inf{t 2 N,Xt 2 B(x?, ✏)}

()

lim
t!1

Xt = x

?

Finite hitting time for all epsilon

translate that an algorithm approximates the 	
optimum with arbitrary precision

T✏ < 1 for all ✏ > 0

Convergence towards the optimum
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�� > 0, �T� < � such that �Xt � x�� < � for all t � T�()

under  some regularity conditions on	
 the algorithm and the function	

e.g.) (1+1)-ES on a spherical function



On Convergence alone …

A theoretical convergence result is a “guarantee” that the algorithm 
will approach the solution in infinite time

lim
t!1

Xt = x

?

But a convergence result alone is pretty meaningless in practice as it 
does not tell how fast the algorithm converges

need to quantify how fast 
the optimum is approached

often the first/only question investigated about an optimization algorithm
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Quantifying How Fast the Optimum is Approached	

For a fixed dimension

dependency in ✏ of T✏

find ✏ 7! ⌧(✏, n)

convergence speed of

Xt towards x
?

Scaling wrt the dimension

find n 7! ⌧(✏, n)
dependency of convergence

rate wrt n

Compromises to obtain such results:	
 asymptotic in n, in epsilon / t
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Hitting Time versus Convergence

✏

T✏T✏ T✏

two side of a coin, measuring

the hitting time T✏ given a fixed precision ✏
the precision kXt � x

?k (or ✏) given the iteration number t
kX

t
�
x

?
k

t

fixed precision

fix
ed

 c
os

t
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Linear Convergence
kX

t
�
x

?
k

t

� c

n

=
�y

�x

log

kXt � x

?k
kX0 � x

?k ⇡ � c

n
t

kXt+1 � x

?k
kXt � x

?k ⇡ exp

⇣
� c

n

⌘

log

kXt+1 � x

?k
kXt � x

?k ⇡ � c

n
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Linear slope in log-scale

rate of convergence



Linear Convergence
kX

t
�

x

?
k

t

� c

n

=
�y

�x

lim

t!1

1

t
log

kXt � x

?k
kX0 � x

?k = � c

n

log

kXt � x

?k
kX0 � x

?k ⇡ � c

n
t

kXt+1 � x

?k
kXt � x

?k ⇡ exp

⇣
� c

n

⌘

Different formal statements (not exactly equivalent)
almost surely

E [kXt+1 � x

?k]
E [kXt � x

?k] = exp

⇣
� c

n

⌘

E log

kXt+1 � x

?k
kXt � x

?k = � c

n

in expectation

Connection with Hitting Time formulation

T✏ ⇡
n

c
log

✏0
✏
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kXt+1 � x
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kXt � x
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Pure Random Search	
Simple Convergence Rate Analysis	

f : x 7! kx� x

?k2, x? 2]0, 1[n

sample uniformly, keep best solution seen	
blind algorithm

Xt = argmin{f(Y1), . . . , f(Yt)}

Pure Random Search

Convergence with probability one

lim

t!1
Xt = x

?
almost surely

proof ingredients: Pr(kY � x

⇤k  ✏) � �(> 0)
X

t

Pr(kXt � x

⇤k > ✏) 
X

t

(1� �)t < 1 implies a.s. convergence 	
(corollary of Borel Cantelli lemma)

sample Yt ⇠ U[0,1]n i.i.d.
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Pure Random Search	
Simple Convergence Rate Analysis	

Theorem: For all ✏ such that B(x

?, ✏) ⇢]0, 1[n

E(T✏) =
�(n/2 + 1)

⇡n/2

1

✏n

proof idea: T✏ follows a geometric distribution with parameter p(✏, n) = Pr [Y 2 B(x

?, ✏)]

E[T✏] =
1

p(✏, n)

kXt � x

?k ⇠ �(n/2 + 1)1/np
⇡

1

t1/n

Formulation via hitting time

Formulation via convergence rate

same convergence rate for (1+1)-ES with constant step-size
17
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Rate of convergence Hitting time!
scaling

Convergence Rates - Hitting time
Wrap up

Pure Random Search!
!
(1+1)-ES constant step-size

Linear Convergence (fixed n)!
! !!!!!+!        
Linear dependence wrt n

n

c
log

✏0
✏

lim

t!1

1

t
log

kXt � x

?k
kX0 � x

?k = � c

n

E [kXt � x

?k] = exp

⇣
� c

n

⌘t
E [kX0 � x

?k]
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Adaptive Stochastic Search Algorithms

While not happy

Initialize X0 2 Rn

X̃t = Xt + �N (0, Id)

If f(X̃t)  f(Xt)
Xt+1 = X̃t

t = t+ 1

Given f : Rn ! R+, � > 0

the step-size � needs to be adapted

(1+1)-ES
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optimal step-size on f(x) = kxk2

�t = �?kXtk

step-size proportional to the distance	
 to the optimumadapt the scaling of the mutation
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Adaptive Stochastic (Comparison-Based) 
Optimization Algorithms	

Step-size adaptive algorithms

Matyas, Random optimization, 1965	
Schumer, Steiglitz, Adaptive step size random search, 1968	
Devroye, The compound random search,1972	
Rechenberg, Evolution Strategies (ES), One-fifth success rule,1973	
Schwefel, Self-adaptive Evolution Strategies (SA-ES), 1981	
Ostermeier, Hansen, Path-Length Control (CSA), 1994, 2001

Covariance matrix adaptive algorithms

Kjellström, Gaussian Adaptation, 1969	
Hansen, Ostermeier, Covariance Matrix Adaptation ES, 2001	
Glasmachers, Schaul, Yi, Wiestra, Schmidhuber, Exponential Natural ES, 2010	
!

Linear convergence on wide class of 
functions (ample empirical evidence)

Learn second order information 	
solve efficiently ill-conditioned non-separable problems (ample 
empirical evidence)

State-of-the-art algorithm
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(1+1)-ES with One-fifth Success Rule	
Step-size adaptive algorithm

While not happy

Given f : Rn ! R+

Initialize X0 2 Rn, �0 > 0

˜Xt = Xt + �tN (0, Id)

If f( ˜Xt)  f(Xt)

Xt+1 =
˜Xt

�t+1 = exp(1/3)�t
Else

�t+1 = exp(�1/3)1/4�t
t = t+ 1

decrease step-size otherwise

Rule of thumb: maintain a 
success probability of 1/5

increase step-size if success
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Linear Convergence	
General Lower Bounds

General Lower Bound (Jägersküpper, GECCO 2006)

Teytaud, Gelly PPSN 2006: general lower bounds for comparison-based algorithms

Auger, Hansen GECCO 2006, Jebalia, Auger, Liardet 2007: tight lower bounds, 
explicit asymptotic (in n) estimates 	
	 	 	 	 	 	 	 	 	 related to progress rate theory (Beyer, Arnold)
	 	 	 	 	 	 	 	 	 	 	 	 important for algorithm design

Independently of how the mutation is adapted and on which function is 
optimized, the (1+λ) and (1,λ)-ES (λ > 1) need

⌦(n log(1/✏)�/ ln(�))
function evaluations (w.o.p.) until the approximation error is at most 	
an ε-fraction from the initial one.

23

no comparison-based algorithm can be faster than linear convergence



Linear Convergence - Upper bound	
(1+1)-ES with one-fifth success rule	

Upper Bound on the sphere (Jägersküpper, GECCO 2006)

Consider a (1+λ)-ES with one-fifth success rule optimizing the SPHERE 
function f(x) = kxk2 , then the algorithm needs

function evaluations until the approximation error is an ε-fraction
from the initial one.

O(n log(1/✏)�/
p
ln�)

Jägersküpper, TCS 2006: results on certain convex-quadratic functions 
where linear dependency in the condition numbers is proven

24

(1+λ)-ES with one-fifth success rule  converges linearly on the sphere function



Linear Convergence on Scaling-Invariant Functions	
Markov Chain Approach

Proof Idea

�
� ln

⇤��⇤
⇤��⇤ ���⇥

��⇥
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= G
✓
Zi :=

Xi
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◆

homogeneous Markov chain 	
on some functions
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Linear Convergence on Scaling-Invariant Functions	
Markov Chain Approach

Proof Idea
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On which class of functions, for which algorithms do we have	
   	
1.          is a homogeneous Markov chain?	
!
2.          is stable?

(Zt)

(Zt)
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Remaining questions



Answer to 1. 

Class of functions: scaling-invariant functions
f is scaling-invariant if for all ⇢ > 0, x,y 2 Rn

Linear Convergence of Comparison-based Step-size Adaptive Randomized Search via Stability of Markov Chains, Auger, Hansen, 2014, 
http://arxiv.org/abs/1310.7697 28

f(x)  f(y) , f(x? + ⇢(x� x

?))  f(x? + ⇢(y � x

?)) .

Examples: if f(x) = g(kxk) for any norm k k and g : R+ ! R strictly increasing.

In particular all convex-quadratic functions are scaling invariants

Class of algorithms

Scale and translation invariant step-size adaptive randomized search

In particular step-size adaptive Evolution Strategies

http://arxiv.org/abs/1310.7697


Linear Convergence on Positively Homogeneous Functions of a Comparison Based Step-Size Adaptive Randomized 
Search: the (1+1) ES with Generalized One-fifth Success Rule, Auger, Hansen, 2014, http://arxiv.org/abs/
1310.8397

Answer to 2. When the MC is stable

f(⌘x) = ⌘↵f(x)

29

The chain associated to the (1+1)-ES with one-fifth success rule is stable 
on positively homogeneous functions

The chain associated to the (1,λ)-ES with self-adaptation is stable on the 
SPHERE function (Auger, TCS 2005)	

presumably also on positively homogeneous functions

Presumably stability can be proven for many more algorithms

http://arxiv.org/abs/1310.8397


Benefits and Limitations of Theory 	
Linear CV of Adaptive Stochastic Search Algorithms 

Linear convergence is proven on whole class of functions (pos. 
homogeneous functions) containing infinitely many functions	
	 	 	 	 	 	 	 impossible to experiment on all those functions	
!
Stability of Zt implies that the step-size is roughly proportional to the 
distance ||Xt||	
!
Proofs limited to a few algorithms (not CMA yet), not on all functions 
where we want to check the convergence	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 resort to experiments	
!
MC approach does not allow to obtain explicit estimates for  the 
convergence rate	
!
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Theory of Evolution Strategies

Basics notion for theory in continuous domain	
“interesting” theoretical questions and 	

their relationship to practice	
!
Linear convergence of adaptive algorithms	
	 	 illustrate benefits and limitations of theory wrt experiments	

!
Progress rate theory	

provides “tight” upper bounds on convergence rates and 	
give optimal parameter settings	

!
Information geometry perspective 	

where theory sheds new light on “old” algorithms and 	
gives new perspectives for algorithm design
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Definition: Progress Rate and Quality Gain

Progress Rate

Quality Gain

one step expected progress in the search space

one step expected progress in the objective space

Log Progress

How do these quantities depend on the strategy and parameters?
32

�� := n
�
1 � E

�
f (Xt+1)
f (Xt )

��

'ln := E[lnkXt k � lnkXt+1k]

= E

ln
kXt k
kXt+1k

�
⇡ E


1 � kXt+1k

kXt k
�
= '⇤/n

'⇤ := nE
" kXt k � kXt+1k

kXt k

#
= n

 
1 � E

" kXt+1k
kXt k

#!



(1+1)

Def. (1+1)-ES Def. Scale-invariant step-size

�t = ��Xt � for some � > 0

Def. Conditional Log-Progress

Initialize X0 � Rn , t = 0
while not happy

compute �t

Yt = Xt + �tN (0, In )

Xt+1 =

�
��
��

Yt if f (Yt ) � f (Xt )
Xt otherwise

t = t + 1

Def. Spherical Function

f (x) = g(�x�), where g increasing

33

not a practical step-size adaptation

independent of t since our algorithm is 	
time-homogenous

they are equivalent for our algorithm

'ln(Xt ,�t )
:= E[lnkXt k � lnkXt+1k | Xt ,�t ]
= lnkXt k � E[lnkXt+1k | Xt ,�t ]



(1+1)

Define                                                    for σ > 0 
• e1 = [1, 0,…, 0] 
•                              independently 

Upper bound of the log-progress

For (1+1)-ES with adaptive σt,  
Log-progress for scale-invariant σt

For (1+1)-ES with σt = σ||Xt||,  

The upper bound is reached by the scale-invariant step-size	
with [Jebalia et al. 2008]� = argmax F1+1(�)

�ln(Xt ,�t ) = F1+1(�)�ln(Xt ,�t ) � sup
��[0,�)

F1+1(�)

N � N (0, In )

F1+1(�) = E[max(� ln�e1 + �N �,0)]

34

'ln(Xt ,�t ) = lnkXt k � E[lnkXt+1k | Xt ,�t ]



(1, λ)

Define                                                  for σ > 0 on spherical functions 
• e1 = [1, 0,…, 0] 
•                              independently 

Upper bound of the log-progress

For (1, λ)-ES with adaptive σt,  

Log-progress for scale-invariant σt

For (1, λ)-ES with σt = σ||Xt||,  

The upper bound is reached by the scale-invariant step-size	
with [Auger et al. 2011]

Initialize X0 � Rn , t = 0
while not happy

compute �t

for i = 1, . . . ,�
Yt, i = Xt + �tN (0, In )

Xt+1 = argmin
x�{Yt,1, ...,Yt,� }

f (x)

t = t + 1

Ni � N (0, In )

�ln(Xt ,�t ) � sup
��[0,�)

F(1,�) (�)

�ln(Xt ,�t ) = F(1,�) (�)

Def. (1, λ)-ES

� = argmax F(1,�) (�)

35

F(1,�) (�) = �E[ min
1i�

lnke1 + �Ni k]
'ln(Xt ,�t ) = lnkXt k � E[lnkXt+1k | Xt ,�t ]



Optimal 

Let σ* = nσ. For n → ∞

lim
n��

nF(1,�) (��/n) = c1:��
� � (��)2

2

On spherical functions, for a large n,

� =
c1:�

n

c1:� = E[max(N1, . . . ,Nn )]
Ni � N (0,1)

where

The RHS is maximized when

36

'(1,�) (�) ⇡ c1:�� �
n�2

2
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How helpful?
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• To evaluate how close step-size adaptation is to the optimal one	
• To design new step-size adaptation

38

[Hansen et al. 2014]



(µ/µ

Def. (µ/µw, λ)-ES

• (1, λ)-ES is recovered when  
w1 = 1 and wi = 0 for i > 1 

!
• How much can we gain by using  

all the information to update Xt? 

39

Given wi 2 R
Initialize X

0

2 Rn , t = 0

while not happy

compute �t

for i = 1, . . . ,�

Yt, i = Xt + �tN (0, In )

sort Yt, i w.r.t. f and

denote the ith best as Yt, i:�
Xt+1

= Xt +
P�

i=1

wi ⇥
�
Yt, i:� � Xt

�

t = t + 1



Normalized Quality Gain for 

Normalized Quality Gain on the Sphere Function 

�(Xt ,�t ) =
n
2
E
� f (Xt ) � f (Xt+1)

f (Xt )
| Xt ,�t

�
=

n
2

�
1 � E

� �Xt+1�2
�Xt �2

| Xt ,�t

��

Let               . For n → ∞ ��
t =

n�t

�Xt �

ci:λ : the expectation of the ith largest among λ i.i.d. r.v. from N(0, 1)

For given weights, the RHS is maximized when

TODO: Should I put log-progress instead of Normalized 

, then

[Arnold 2005]

�� := lim
n��

�(Xt ,�t ) =

���
i=1 wici:�

�2

2
��

i=1 w
2
i

�� := ��
t =

��
i=1 wici:�
��

i=1 w
2
i

lim
n��

�(Xt ,�t ) = ��
t

��

i=1

wici:� �
(��

t )2
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Optimal Recombination Weight for 

Let                         and                       .  Then                              .

[Arnold 2005]

µw :=

�
��

��

i=1

w2
i

�
��

�1

�� =
�
µw

��

i=1

c2
i:�
�1/2

�� =
1
2

��

i=1

c2
i:�

For optimal wi , the optimal normalized quality gain is

with                                   and

cf. for (1, λ)-ES (w1 = 1, wi = 0 for i > 1), �� =
c2

1:�
2

⇒ we gain the factor                    by introducing weighted recombination 
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is a unit vector, μw controls the length of ww̃ = [w̃1, . . . , w̃� ]



Comparison of Normalized Progress Rate
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Progress Rate Theory: 
More results on Noisy Sphere, Parabolic Ridge	
!
!
Used to design new algorithms	
• Mirrored Sampling [Brockhoff et al. 2010]	

• Median Success Rule (step-size adaptation) [Ait Elhara et al. 2013]	

!
Limitations	
• based on the approximation (n → ∞)	
• sometimes based on other approximations (not easy to appraise 

the validity of the result)	
• existence of the stationary distribution assumed	
• scale-invariant step-size is not practical	

!
Connection to Markov chain approach for linear convergence:	
!
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H.-G. Beyer: The Theory of Evolution Strategies (Springer Verlag, 2001)  
Hansen, N., D.V. Arnold, and A. Auger (2015). Evolution Strategies. In Janusz Kacprzyk and Witold Pedrycz (Eds.): 
Handbook of Computational Intelligence, Springer 

In “progress rate” approach, it is assumed that

kXtk
�t

is constant

by assuming �t = �kXtk (remove stochasticity), while for a step-size

adaptive algorithm it is the norm of a Markov chain.



Theory of Evolution Strategies

Basics notion for theory in continuous domain	
“interesting” theoretical questions and 	

their relationship to practice	
!
Linear convergence of adaptive algorithms	
	 	 illustrate benefits and limitations of theory wrt experiments	

!
Progress rate theory	

provides “tights” lower bounds on convergence rates and 	
give optimal parameter settings	

!
Information geometry perspective 	

where theory sheds new light on “old” algorithms and 	
gives new perspectives for algorithm design
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Black-Box Search Template

� �������� ��������������������������!� � : R� ⇥ R


�������!������������������������� �� �����������������!� ⇥

������������������

�� ������������������� ��(�) : ��, . . . , �⇥ ⇤ R�

�� 	������� ��, . . . , �⇥ �� �

�� ����������������� � � �(�, ��, . . . , �⇥, �(��), . . . , �(�⇥))

����
���	� �� 	� R�

m

{�|(��m)�C��(��m) = ���}

����
���
��	�
�������
���
���
�
� m+ �N (�,C)
������
 : ��:=(m,C)(	) =

�⇥
(�⇥)�|C|

exp
�
� �� (	�m)�C��(	�m)

⇥

• Covariance Matrix Adaptation Evolution Strategies (CMA-ES) [N. Hansen et al, 2001-2014]	
• Exponential Natural Evolution Strategies (xNES) [T. Glasmachers et al, 2010]
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Change of Perspective: Optimization of 

Natural Evolution Strategies (NES) [D. Wierstra et al, 2008, 2014]

   Optimization of x  →  Optimization of θ 	
!
      Search Space X  →  Statistical Manifold Θ 	
	 	 	 	 	 	 	 equipped with the Fisher metric I	
Objective function f  →  Function J of θ

Objective of the update of  θ

Expectation of f over Pθ: J (�) =
�

X
f (x)p� (x)dx

“adds one degree of smoothness”[T. Glasmachers. PGMO-COPI 2014]

• typically,  	

• by Markov inequality, Pr[| f (x) � f � | < �] � 1 � J (�)� f �

�

inf
�

J (�) = f � = essinf
x

f (x)

minimization of J ⇒ minimization of f46



Gradient Descent on 

Natural Gradient [S. Amari, 1998]

Instead of taking the “vanilla” gradient                                    
that gives the steepest direction in the Euclidean sense

�J (�) =
� �J

��1
, ..., �J

��n

�T

�J (�)
��J (�)� = lim

��0
��1 argmax

�����
J (� + �)

taking the “natural” gradient                                    	
that gives the steepest direction w.r.t. the KL-divergence

�̃J (�)
��̃J (�)�

= lim
��0
��1 argmax
DKL(P� �P�+�)��2

J (� + �)

�̃J (�) = I(�)�1�J (�)

considered also as the gradient on the differential manifold Θ	
equipped with the Fisher metric in the given coordinate θ
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Update of 

Stochastic Natural Gradient Descent

�̃J (�) |�=� t = �̃J (�) |�=� t

= �̃(
�

f (x)p� (x)dx) |�=� t

=

�
f (x)�̃(p� (x)) |�=� t dx

=

�
f (x)p� (x)�̃ ln(p� (x)) |�=� t dx

� 1
�

��

i=1

f (xi )�̃ ln(p� (xi )) |�=� t
[log-likelihood trick]

[Monte-Carlo Approx.]

x1, . . . , x� are i.i.d. from p� t

�p� (x) = p� (x)� ln(p� t )

Parameter update

� t+1 = � t + �
1
�

��

i=1

f (xi )�̃ ln(p� (xi )) |�=� t � : learning rate 	
(i.e., step-size)

is analytically derivable for some probability models, e.g., normal distributions�̃ ln(p� (x))

[exchange of int. and diff.]
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Information Geometric Optimization

Quantile-based Objective Transformation

Not invariant to increasing transformations of f

1
�

��

i=1

f (xi )�̃ ln(p� (xi )) |�=� t�
1
�

��

i=1

(g � f )(xi )�̃ ln(p� (xi )) |�=� t

�
f (x)p� (x)dx �

�
(g � f )(x)p� (x)dx

not woking well without η adaptation because of this defect

W f
� t

(x) = w
�
P� t [X : f (X ) � f (x)]

�

� w
�
#{xi : f (xi ) < f (x)}/�� x1, . . . , x� � P� t

f (x) ��

• w: non-increasing	
• scaled in [w(1), w(0)] at each iteration	
• invariant to any increasing transformation, (g ○ f)

[Y. Ollivier et al. (2011)]

Parameter Update:

wrk(xi ) =
1
�
w
� rk(xi ) � 1/2

�

�
, where rk(xi ) = #{x j : f (x j ) � f (xi )}

� t+1 = � t + �
��

i=1

wrk(xi )�̃ ln(p� (xi )) |�=� t
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Instantiation
Multivariate Normal Distribution N(m, C)

= Pure rank-µ update CMA-ES [Hansen et al. 2003]

mt+1 = mt + �m

��

i=1

wrk(xi ) (xi � mt )

Ct+1 = Ct + �C

��

i=1

wrk(xi )
�
(xi � mt )(xi � mt )T � Ct �

[Glasmachers et al. 2010]	
[Akimoto et al. 2010]

Multivariate Bernoulli Distribution with probability parameter θ

= Population Based Incremental Learning (PBIL) [Baluja et al. 1995]

[Ollivier et al. 2011]

pmf:� t+1 = � t + �
��

i=1

wrk(xi ) (xi � � t ) p� (x) =
d�

i=1

�xii (1 � �i )1�xi
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How is this perspective helpful?	
Theoretical Aspects

Twofold approximation of the solution to the ODE
d�(t)

dt
= �̃J� t (�) |�=� (t )

� t+� = � t + ��̃J� t (�) |�=� t

� t+� = � t + �
��

i=1

wrk(xi )�̃ ln(p� (xi )) |�=� t

Euler Discretization

η → 0

Monte-Carlo Approx.

λ → ∞

1. Convergence analysis of the ODE solution	
• variant with isotropic Gaussian [Akimoto et al. 2012][Glasmachers et al. 2012]	

• full Gaussian [Beyer 2014]	
!
!
2. Convergence analysis of the infinite population model [Akimoto 2012]	

• Pure rank-mu update CMA with fitness proportional weight	
•                           and its geometric convergence is proven on f(x)= xTAxlim
t��

Cond(Ct A) = 1
51

convergence of the ODE solution on a quadratic function and a C2 function



How is this perspective helpful? 	
Algorithm design and understanding

Deriving algorithm variants from the same principle as CMA	
• Linear time/space variants with restricted Gaussian for large scale problem	

- R1-NES [Sun et al. 2013]	
- VD-CMA [Akimoto et al. 2014] 	

Provide new interpretation of existing algorithms	
• Active CMA [Jastrebski et al. 2006] is interpreted as the natural gradient  

estimation with baseline [Sun et al. 2009] (technique to reduce the estimation variance)	

• Separable CMA [Ros et al. 2008] is derived from the IGO with Gaussian with  
diagonal covariance matrix [Akimoto et al. 2012]	

!
Still, Information Geometric framework does not cover “many” 
relevant aspects for robust algorithm design:	

• choice of some parameters (learning rate, …)	
• cumulation, …
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Summary

Basics notion for theory in continuous domain	
“interesting” theoretical questions and 	

their relationship to practice	
!
Linear convergence of adaptive algorithms	
	 	 illustrate benefits and limitations of theory wrt experiments	

!
Progress rate theory	

provides “tights” lower bounds on convergence rates and 	
give optimal parameter settings	

!
Information geometry perspective 	

where theory sheds new light on “old” algorithms and 	
gives new perspectives for algorithm design
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Not covered topics

54

Invariance	
allow to generalize an empirical result on a function to a set of (infinitely 
many) functions	

• invariance to order preserving transformation of f	
• invariance to affine transformation of the search space X	

- translation	
- rotation	
- coordinate-wise scaling	

!
Unbiasedness of the parameter update	
!
Rapid divergence on a linear function	
!
and many more.


