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Abstract

This thesis considers variable metrics in the context of stochastic, function-value
free optimization in continuous search spaces. We argue that the choice of a (vari-
able) metric or equivalently the choice of a coordinate system can be decoupled
from the underlying optimization procedure. Anadaptive encodingprocedure
is presented, that is in principle applicable to any optimization procedure, and is
proved to recover thecovariance matrix adaptation evolution strategy(CMA-ES)
when applied to a simple isotropicevolution strategywith step-size adaptation.
The proof suggests that adaptive encoding should be able to improve the perfor-
mance of many stochastic optimization algorithms in particular on ill-conditioned,
non-separable objective functions.



1 Introduction

Evolutionary Computation(EC) orEvolutionary Algorithms(EAs) is a collection
of meta-heuristics that borrow concepts from the biological evolution and have
become popular in the last decades. In this work we consider EC in the context of
stochastic searchor optimization. In a search or optimization problem we consider
an objective, cost, loss, error, or fitness function

f : S → R . (1)

In general, the objective is to find a candidate solution point x ∈ S in the search
space with a low objective function value (w.l.o.g. we consider minimization only).
In this work we will additionally confine ourselves to the black-box scenario. The
function f is considered as black box and information onf can only be aquired
by its evaluation. A sequence of pairs(x, f(x)) can be generated and utilized
in order to propose further candidate solutions. Evaluations of f are regarded as
expensive and therefore the objective becomes two-fold. (1) achieving a solution
with a low objective function value and (2) evaluating only asmall number of
candidate solutions. These two objectives are conflicting.

1.1 Historical Ontology

Evolutionary Algorithms (EAs) can be historically dividedinto four branches.

• Evolutionary Programming [25] invented in the 1960’s for evolving Finite
State Machines.

• Evolution Strategies (ESs) [65] invented in the 1960’s for experimental op-
timization in engineering.

• Genetic Algorithms (GAs) [41] invented in the 1960’s for the studies of
adaptive behavior with cellular automata and particularlypopularized with
[27].

• Genetic Programming [51] invented in the 1990’s for evolving computer pro-
grams.

The probably most important difference of the approaches relates to their rep-
resentation of the search problem.Evolution StrategiesandEvolutionary Program-
minguse a real-parameter vector and are considered to mimic evolution on a phe-
notype level.Genetic Algorithmsuse binary (bit-string) representation and mimic

1
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Figure 1: Evolutionary view of randomized black-box search. With kind permis-
sion of Marc Schoenauer

a biological genotype. More recently,real-codedGenetic Algorithms have been
proposed [18, 23] using an entirely different set of mutation and recombination
operators than their binary counterparts.Genetic Programmingoperates on tree
representations. In the following we focus our discussion to real-parameter repre-
sentations and investigate EAs as stochastic search procedures.

1.2 A Generic Stochastic Search Procedure

In biological evolutionindividualsare a natural entity. Consequently, bio-inspired
optimization methods are often viewed and displayed as operating on a population
of individuals, that is, in other words, a set of candidate solutions. The population
cycle of an evolutionary algorithm is displayed in Figure1. The main components
of the cycle areparental selection—crossover, mutation—evaluation—survival se-
lect. The sets of Genitors and Offspring (yellow ovals) are completely replaced
when operators “Selection” or “Crossover, Mutation,. . . ” are applied respectively
(rectangular boxes). The Parents set might or might not be replaced entirely with
the Survival Selection. For example, in elitist strategiesthe best individual will al-
ways survive in the Parents population.Newcandidate solutions are only generated

2



Initialize distribution parametersθ
while termination criterion not met

Sampleλ independent points from distributionP (x|θ)→ x1, . . . ,xλ

Evaluate the sampled candidate solutionsx1, . . . ,xλ onf
Updateparametersθ ← Fθ(θ, (x1, f(x1)), . . . , (xλ, f(xλ)))

Figure 2: Probabilistic view of randomized black-box search. f : R
n → R is the

objective function

for the Offspring population.
One important aspect is that systematic improvements, as a rule, only take place

with the green Selection operators whereas the Crossover, Mutation,. . . operator
will usually not lead to an improvement of solutions.

Figure2 takes a different viewpoint of a stochastic search procedure. Here, the
procedure is centered around sampling a parameterized distribution. This view-
point was adopted withestimation of distribution algorithms[52]. Only the distri-
bution to generate a new Offspring population is parameterized. This is sufficient,
as only the Offspring population actually containsnewcandidate solution points in
Figure2. All remaining operators are integrated in the Update parameters prode-
cure, where the parameters of the sample distribution are updated. In principle, any
stochastic search algorithm can be displayed in both view points. Evolution strate-
gies can often easily be cast into the probabilistic view [49] and the development
of covariance matrix adaptation[37] was facilitated by this view point.

1.3 The Objective Revised

Assuming thatS ⊂ R
n is a subset ofRn, then a more concise requirement on a

search algorithm is to convergence to the optimum inS. This objective is feasible,
given some reasonable assumptions on the properties off . Even more concise we
would like to associate arate to the convergence. Evolution strategies indeed have
been proved, in particular cases, to exhibitlog-linear convergence[6], where for
the distance to the global optimum,Rk, holds

3



lim
k→∞

1

k
log

Rk

R0
= lim

k→∞
1

k
(log Rk − log R0)

= lim
k→∞

1

k
log Rk − lim

k→∞
1

k
log R0

= lim
k→∞

1

k
log Rk

=
c

n
. (2)

Here,k denotes the iteration step andc is a constant. We can conclude that the
convergence rate is independent of the initial distance to the optimumR0. For a
negative constantc the algorithm converges to the optimum (forc > 0 it diverges),
whereexp(c) reflects the factor by which the distance to the optimum is reduced
in n iteration steps.

1.4 Variable Metric

It has been recognized very early during the research on stochastic search algo-
rithms that the parameters of the sample or mutation distribution need to be adap-
tive. In particular, an appropriate step-size has to be adapted [65, 72]. In a next step
the variances in each coordinate have been adapted individually [65, 73], while the
random realizations in each coordinate were still independent. The final step was
the introduction ofcorrelated mutations[74] or a covariance matrix [36, 37]1. For
multivariate normal distributions this means to control all pairwise covariances be-
tween variables. The resulting covariance matrix defines, in fact, a Mahalanobis
metric in the search space. For the identity as covariance matrix the usual Eu-
clidean metric is recovered. Choosing the covariance matrix for sampling with a
multivariate normal distribution resembles variable metric methods like, for exam-
ple, quasi-Newton methods [1, 16, 28] in gradient based search. The estimate of
the inverse Hessian matrix in quasi-Newton methods serves the same purpose as
the estimate of the covariance matrix in stochastic search algorithms. In partic-
ular for ill-conditioned problems an appropriate estimatecan be decisive for the
performance.

1In [75] an iterative estimate of the Hessian matrix has been introduced intosimultaneous per-
turbation stochastic approximation(SPSA). Due to the lack of an adaptive step-size control, this
method is still of limited use in practice.Evolutionary Gradient Search(EGS) [70] is a method very
similar to SPSA but includes step-size control and has been complemented withcovariance matrix
adaptation(CMA) [37] in [5]. In contrast to evolution strategies, SPSA and EGS not onlyuse an
ordering of solutions but also their objective function values.

4



1.5 No Free Lunch?

The No Free Lunch Theorems(NFL) [63, 83, 80, 42, 82] reveal principle limita-
tions of search or optimization in the discrete domain. The NFL states that taken
over all functions no algorithm can perform better than another, given that solu-
tions are never revisited. A refinement of the theorem arguesthat this is true if and
only if a set of functions is closed under permutation [43, 80]. If only specific algo-
rithms are considered, the NFL can hold on even smaller sets of functions [82]. In
continuous domain NFL is not sustained [8], but it has been argued that computers
are necessarily confined to a discrete search space. The NFL suggests that it is im-
possible to find a generally well-performing algorithm, because, roughly speaking,
there always exist as many problems, where this alorithm will perform badly as it
will perform well on other ones. Fortunately, NFL is virtually irrelevant in prac-
tice, because either the search space under consideration is unrealistically small
and even enumeration could be a reasonable option, or the number of functions
that need to be considered is way too large to be ever visited even once.

1.6 This Thesis

This thesis discusses stochastic variable metric methods for evolution strategies and
for continuous domain evolutionary or stochastic optimization algorithms. First,
we present the covariance matrix adaptation evolution strategy in depth, which is
considered state-of-the-art in continuous domain evolutionary computation [12].
Then we proof that this method can, in principle, be applied to a wide range of
search algorithms in continuous domain.

2 Covariance Matrix Adaptation Evolution Strategy

This section gives a concise introduction into covariance matrix adaptation and is
partly taken from a manuscript written for lecturing third year students.2

In the Covariance Matrix Adaptation (CMA) Evolution Strategy newly gener-
ated solutions obey a multivariate normal distribution. For given (co-)variances,
the normal distribution has the largest entropy of all distributions inR

n. Refer-
ring to Fig.2, the view point adopted in this section, the parameter vector θ of the
distribution consists of a distribution mean,m, and a covariance matrix,C.

2The CMA Evolution Strategy: A Tutorial[http://www.lri.fr/ ˜ hansen/cmatutorial.pdf ]
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2.1 Basic equation

In the CMA Evolution Strategy, a population of new search points (individuals,
offspring) is generated by sampling a multivariate normal distribution. The basic
equation for sampling the search points, for generation number g = 0, 1, 2, . . . ,
reads

x
(g+1)
k ∼ m(g) + σ(g)N

(

0,C(g)
)

for k = 1, . . . , λ (3)

where

∼ denotes the same distribution on the left and right side.

N(0,C(g)) is a multivariate normal distribution with zero mean and covariance
matrix C(g). It holdsm(g) + σ(g)N(0,C(g)) ∼ N

(
m(g), (σ(g))2C(g)

)
.

x
(g+1)
k ∈ R

n, k-th offspring (individual, search point) from generationg + 1.

m(g) ∈ R
n, mean value of the search distribution at generationg.

σ(g) ∈ R+, “overall” standard deviation, step-size, at generationg.

C(g) ∈ R
n×n, covariance matrix at generationg. Up to the scalar factorσ(g)2,

C(g) is the covariance matrix of the search distribution.

λ ≥ 2, population size, sample size, number of offspring.

To define a complete iteration step, the remaining question is, how to update the
distribution parameters (last line in Fig.2). Here, we need to calculatem(g+1),
C(g+1), andσ(g+1) for the next generationg + 1. The next three sections will
answer these questions in turn.

2.2 Selection and Recombination: Moving the Mean

The new meanm(g+1) of the search distribution is aweighted average ofµ selected
pointsfrom the samplex(g+1)

1 , . . . ,x
(g+1)
λ :

m(g+1) =

µ
∑

i=1

wi x
(g+1)
i:λ (4)

6



µ
∑

i=1

wi = 1, w1 ≥ w2 ≥ · · · ≥ wµ > 0 (5)

where

µ ≤ λ is the parent population size,i.e. the number of selected points.

wi=1...µ ∈ R+, positive weight coefficients for recombination. Forwi=1...µ =
1/µ, Equation (4) calculates the mean value ofµ selected points.

x
(g+1)
i:λ , i-th best individual out ofx(g+1)

1 , . . . ,x
(g+1)
λ from (3). The indexi : λ de-

notes the index of thei-th ranked individual andf(x
(g+1)
1:λ ) ≤ f(x

(g+1)
2:λ ) ≤

· · · ≤ f(x
(g+1)
λ:λ ), wheref is the objective function to be minimized.

Equation (4) implementstruncation selectionby choosingµ < λ out ofλ offspring
points. Equation (4) implementsweighted intermediate recombinationby taking
µ > 1 individuals into account for a weighted average. Assigningdifferentweights
wi is an additional selection mechanism and can increase the maximal convergence
rate on the sphere functionfsphere(x) =

∑n
i=1 x2

i by about25% [3]. Intermediate
recombination allows for fast convergence rates in combination with a large step-
size. The latter is favorable in order to circumvent a failure due to ruggedness of
the objective function landscape. The effect of intermediate recombination was
interpreted asgenetic repairin [10].

The measure

µeff =

(
µ
∑

i=1

w2
i

)−1

(6)

will be repeatedly used in the following and can be paraphrased asvariance ef-
fective selection mass. From the definition ofwi in (5) we can easily derive
1 ≤ µeff ≤ µ, andµeff = µ for equal recombination weights,i.e. wi = 1/µ
for all i = 1 . . . µ. Usually, µeff ≈ λ/4 indicates a reasonable setting ofwi. A
typical setting could bewi ∝ µ− i + 1, andµ ≈ λ/2.

2.3 Adapting the Covariance Matrix

In this section, the update of the covariance matrix,C, is derived. We will start
out estimating the covariance matrix from a single population of one generation

7



(Sect.2.3.1). For small populations this estimation is unreliable and an adaptation
procedure has to be invented (rank-µ-update, Sect.2.3.1). In the limit case only a
single point can be used to update (adapt) the covariance matrix at each genera-
tion (rank-one-update, Sect.2.3.2). The adaptation can be enhanced by exploiting
dependencies between successive steps applying cumulation (Sect.2.3.2). Finally
we combine the rank-µ and rank-one updating methods (Sect.2.3.3).

2.3.1 Rank-µ Update

Estimating the Covariance Matrix From Scratch For the moment we assume
that the population contains enough information to reliably estimate a covariance
matrix from the population.3 For the sake of convenience we assumeσ(g) = 1 (see
(3)) in this section. Forσ(g) 6= 1 the formulae hold except for a constant factor.

We can (re-)estimate the original covariance matrixC(g) using the sampled
population from (3), x

(g+1)
1 . . . x

(g+1)
λ , via the empirical covariance matrix

C(g+1)
emp =

1

λ− 1

λ∑

i=1



x
(g+1)
i − 1

λ

λ∑

j=1

x
(g+1)
j







x
(g+1)
i − 1

λ

λ∑

j=1

x
(g+1)
j





T

.

(7)
The empirical covariance matrixC(g+1)

emp is an unbiased estimator ofC(g): assum-

ing thex
(g+1)
i , i = 1 . . . λ, to be random variables (rather than a realized sample),

we have thatE
[
C

(g+1)
emp

∣
∣C(g)

]
= C(g). Consider now a slightly different ap-

proach to get an estimator forC(g).

C
(g+1)
λ =

1

λ

λ∑

i=1

(

x
(g+1)
i −m(g)

)(

x
(g+1)
i −m(g)

)T
(8)

Also the matrixC(g+1)
λ is an unbiased estimator ofC(g). The remarkable differ-

ence between (7) and (8) is the reference mean value. ForC
(g+1)
emp it is the mean

of theactually realizedsample. ForC(g+1)
λ it is the true mean value,m(g), of the

sampled distribution (see (3)). Therefore, the estimatorsC(g+1)
emp andC

(g+1)
λ can

be interpreted differently: whileC(g+1)
emp estimates the distribution variancewithin

the sampled points, C
(g+1)
λ estimates variances of sampledsteps, x

(g+1)
i −m(g).

3In order to re-estimate the covariance matrix,C , out ofλ N (0, I) distributed samples such that
cond(C) < 10, a sample sizeλ ≥ 4n is needed, as can be easily verified in a numerical experiment.
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A minor difference between (7) and (8) is the different normalizations1
λ−1

versus1
λ

, necessary to get an unbiased estimator in both cases. In (7) one
degree of freedom is already taken by the inner summand. In order to get a
maximum likelihood estimator in both cases1

λ
must be used.

Equation (8) re-estimatesthe originalcovariance matrix. To “estimate” a “bet-
ter” covariance matrix (8) is modified and the same,weighted selectionmechanism
as in (4) is used [33].

C(g+1)
µ =

µ
∑

i=1

wi

(

x
(g+1)
i:λ −m(g)

)(

x
(g+1)
i:λ −m(g)

)T
(9)

The matrix C
(g+1)
µ is an estimator for the distribution ofselected steps, just as

C
(g+1)
λ is an estimator of the original distribution of steps beforeselection. Sam-

pling from C
(g+1)
µ tends to reproduce selected,i.e. successfulsteps, giving a justi-

fication for what a “better” covariance matrix means.

Following [30], we compare (9) with the Estimation of Multivariate Normal
Algorithm EMNAglobal [53]. The covariance matrix in EMNAglobal reads,
analogously to (7),

C
(g+1)
EMNAglobal

=
1

µ

µ
∑

i=1

(

x
(g+1)
i:λ −m(g+1)

)(

x
(g+1)
i:λ −m(g+1)

)T

, (10)

wherem(g+1) = 1
µ

∑µ

i=1 x
(g+1)
i:λ . Similarly, applying the so-called Cross-

Entropy method to continuous domain optimization [67] yields the covari-
ance matrix µ

µ−1 C
(g+1)
EMNAglobal

, i.e. theunbiasedempirical covariance matrix
of theµ best points. In both cases the subtle, but most important difference to
(9) is, again, the choice of the reference mean value.4 Equation (10) estimates
the variancewithin the selected population while (9) estimates selected steps.
Equation (10) reveals always smaller variances than (9), because its reference
mean value is the minimizer for the variances. Moreover, in most conceivable
selection situations (10) decreases the variances compared toC(g).

Figure3 demonstrates the estimation results ona linear objective func-
tion for λ = 150, µ = 50, andwi = 1/µ. Equation (9) increases the ex-
pected variance in direction of the gradient (where the selection takes place,
here the diagonal), given ordinary settings for parent number µ and recom-
bination weightsw1, . . . , wµ. Equation (10) always decreases the variance

4Taking a weighted sum,
Pµ

i=1 wi . . . , instead of the mean,1
µ

Pµ

i=1 . . . , is an appealing, but
less important, difference.

9



C
(g+1)
µ

C
(g+1)
EMNAglobal

sampling estimation new distribution

Figure 3: Estimation of the covariance matrix onflinear(x) = −∑2
i=1 xi to be

minimized. Contour lines (dotted) indicate that the strategy should move toward
the upper right corner.Above: estimation ofC(g+1)

µ according to (9), where

wi = 1/µ. Below: estimation ofC(g+1)
EMNAglobal

according to (10). Left: sample
of λ = 150 N (0, I) distributed points. Middle: theµ = 50 selected points (dots)
determining the entries for the estimation equation (solid straight lines). Right:
search distribution of the next generation (solid ellipsoids). Givenwi = 1/µ, es-

timation viaC
(g+1)
µ increasesthe expected variance in gradient direction for all

µ < λ/2, while estimation viaC(g+1)
EMNAglobal

decreasesthis variance for anyµ < λ

in gradient direction! Therefore, (10) is highly susceptible to premature con-
vergence, in particular with small parent populations, where the population
cannot be expected to bracket the optimum at any time. However, for large
values ofµ in large populations with large initial variances, the impact of the
different reference mean value can become marginal.

In order to ensure with (3), (4), and (9), that C(g+1)
µ is a reliable estimator,

the variance effective selection massµeff (cf. (6)) must be large enough: getting
condition numbers smaller than ten forC

(g)
µ on fsphere(x) =

∑n
i=1 x2

i , requires
µeff ≈ 10n. The next step is to circumvent this restriction onµeff .

10



Rank-µ-Update To achievefastsearch (opposite tomore robustor more global
search), e.g. competitive performance onfsphere, the population sizeλ must be
small. Becauseµeff ≈ λ/4 also µeff must be small and we may assume, e.g.,
µeff ≤ 1 + ln n. Then, it is not possible to get areliable estimator for a good
covariance matrix from (9). As a remedy, information from previous generations is
used additionally. For example, after a sufficient number ofgenerations, the mean
of the estimated covariance matrices from all generations,

C(g+1) =
1

g + 1

g
∑

i=0

1

σ(i)2
C(i+1)

µ (11)

becomes a reliable estimator for the selected steps. To makeC
(g)
µ from different

generations comparable, the differentσ(i) are incorporated. (We also assume that
the covariance matricescµ do not decrease fast, because otherwise old information
would dominate (11). Assumingσ(i) = 1, (11) resembles the covariance matrix
from the Estimation of Multivariate Normal Algorithm EMNAi [53].)

In (11), all generation steps have the same weight. To assign recent generations
a higher weight, exponential smoothing is introduced. Choosing C(0) = I to be
the unity matrix and a learning rate0 < ccov ≤ 1, thenC(g+1) reads

C(g+1) = (1− ccov)C
(g) + ccov

1

σ(g)2
C(g+1)

µ

= (1− ccov)C
(g) + ccov

µ
∑

i=1

wi y
(g+1)
i:λ y

(g+1)
i:λ

T
(12)

where

ccov ≤ 1 learning rate for updating the covariance matrix. Forccov = 1, no
prior information is retained andC(g+1) = 1

σ(g)2
C

(g+1)
µ . For ccov = 0, no

learning takes place andC(g+1) = C(0). Here,ccov ≈ min(1, µeff/n2) is a
reasonably choice.

y
(g+1)
i:λ = (x

(g+1)
i:λ −m(g))/σ(g).

This covariance matrix update is called rank-µ-update [34], because the sum of
outer products in (12) is of rankmin(µ, n) (with probability one). Note that this
sum can even consist of a single term, ifµ = 1.

The number1/ccov is thebackward time horizonthat contains roughly63% of
the overall weight.

11



Because (12) expands to the weighted sum

C(g+1) = (1− ccov)
g+1C(0) + ccov

g
∑

i=0

(1− ccov)
g−i 1

σ(i)2
C(i+1)

µ , (13)

the backward time horizon,∆g, where about63% of the overall weight is
summed up, is defined by

ccov

g
∑

i=g+1−∆g

(1− ccov)
g−i ≈ 0.63 ≈ 1− 1

e
. (14)

Resolving the sum yields

(1− ccov)
∆g ≈ 1

e
, (15)

and resolving for∆g, using the Taylor approximation forln, yields

∆g ≈ 1

ccov
. (16)

That is, approximately37% of the information inC(g+1) is older than1/ccov

generations, and, according to (15), the original weight is reduced by a factor
of 0.37 after approximately1/ccov generations.5

The choice ofccov is crucial. Small values lead to slow learning, too large values
lead to a failure, because the covariance matrix degenerates. Fortunately, a good
setting seems to be largely independent of the function to beoptimized.6 A first
order approximation for a good choice isccov ≈ µeff/n2. Therefore, the character-
istic time horizon for (12) is roughlyn2/µeff .

Even for the learning rateccov = 1, adapting the covariance matrix cannot be
accomplished within one generation. The effect of the original sample distribution
does not vanish until a sufficient number of generations. Assuming fixed search
costs (number of function evaluations), a small populationsizeλ allows a larger
number of generations and therefore usually leads to a faster adaptation of the
covariance matrix.

5This can be shown more easily, because(1 − ccov)g = exp ln(1 − ccov)g = exp(g ln(1 −

ccov)) ≈ exp(−gccov) for small ccov, and forg ≈ 1/ccov we get immediately(1 − ccov)g ≈

exp(−1).
6We use the sphere modelfsphere(x) =

P

i
x2

i to empirically find a good setting for the pa-
rameterccov, dependent onn andµeff , realizing a condition number of about three. The realized
condition number is monotonous inccov. The found setting was reasonably applicable to any non-
noisy objective function we have tried so far.
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2.3.2 Rank-One-Update

In Section2.3.1we estimated the complete covariance matrix from scratch, using
all selected steps from asingle generation. We now take precisely the opposite
viewpoint. We will repeatedlyupdatethe covariance matrix in the generation se-
quence using asingle selected steponly. First, this perspective will give a justifica-
tion of the adaptation rule (12). Second, we will introduce the so-called evolution
path that is finally used for a rank-one update of the covariance matrix.

A Different Viewpoint We consider a specific method to producen-dimensional
normal distributions with zero mean. Let the vectorsy1, . . . ,yg0 ∈ R

n, g0 ≥ n,
spanR

n and letN (0, 1) denote independent(0, 1)-normally distributed random
numbers, then

N (0, 1) y1 + · · · +N (0, 1) yg0 ∼ N
(

0,

g0∑

i=1

yiy
T
i

)

(17)

is a normally distributed random vector with zero mean and covariance matrix
∑g0

i=1 yiy
T
i . The random vector (17) is generated by adding “line-distributions”

N (0, 1) yi. The singular distributionN (0, 1) yi ∼ N(0,yiy
T
i ) generates the vec-

tor yi with maximum likelihood considering all normal distributions with zero
mean.

The line distribution that generates a vectory with the maximum likelihood
must “live” on a line that includesy, and therefore the distribution must obey
N(0, 1)σy ∼ N(0, σ2yyT). Any other line distribution with zero mean
cannot generatey at all. Choosingσ reduces to choosing the maximum
likelihood of ‖y‖ for the one-dimensional gaussianN(0, σ2‖y‖2), which is
σ = 1.

The covariance matrixyyT has rank one, its only eigenvectors areR\0×
y with eigenvalue‖y‖2. Using equation (17), any normal distribution can be
realized ifyi are chosen appropriately. In general, the vectorsyi need not to
be eigenvectors of the covariance matrix (and usually are not).

Considering (17) and a slight simplification of (12), we try to gain insight into
the adaptation rule for the covariance matrix. Let the sum in(12) consist of a

single summand only (e.g.µ = 1), and letyg+1 =
x

(g+1)
1:λ −m(g)

σ(g) . Then, the rank-
one update for the covariance matrix reads

C(g+1) = (1− ccov)C
(g) + ccov yg+1yg+1

T (18)

13



N
(
0,C(0)

)
N
(
0,C(1)

)
N
(
0,C(2)

)

Figure 4: Change of the distribution according to the covariance matrix update
(18). Left: vectorse1 and e2, andC(0) = I = e1e

T
1 + e2e

T
2 . Middle: vec-

tors0.91e1, 0.91e2, and0.41y1 (the coefficients deduce fromccov = 0.17), and
C(1) = (1 − ccov) I + ccov y1y

T
1 , wherey1 =

(−0.59
−2.2

)
. The distribution ellipsoid

is elongated into the direction ofy1, and therefore increases the likelihood ofy1.
Right: C(2) = (1− ccov)C(1) + ccov y2y

T
2 , wherey2 =

(0.97
1.5

)
.

The right summand is of rank one and adds the maximum likelihood term foryg+1

into the covariance matrixC(g). Therefore the probability to generateyg+1 in the
next generation increases.

An example of the first two iteration steps of (18) is shown inFigure 4. The
distributionN(0,C(1)) tends to reproducey1 with a larger probability than the
initial distributionN(0, I); the distributionN(0,C(2)) tends to reproducey2 with
a larger probability thanN(0,C(1)), and so forth. Wheny1, . . . ,yg denote the
formerly selected, favorable steps,N(0,C(g)) tends to reproduce these steps. The
process leads to an alignment of the search distributionN(0,C(g)) to the distri-
bution of the selected steps. If both distributions become alike, as under random
selection, in expectation no further change of the covariance matrix takes place
[29].

Cumulation: Utilizing the Evolution Path We have used the selected steps,
y

(g+1)
i:λ = (x

(g+1)
i:λ −m(g))/σ(g), to update the covariance matrix in (12) and (18).

BecauseyyT = −y(−y)T, the sign of the steps is irrelevantfor the update of the
covariance matrix—that is, the sign information is not usedfor calculatingC(g+1).
To exploit sign information, the so-calledevolution pathis introduced [36, 37].

We call a sequence of successive steps, the strategy takes over a number of
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generations, an evolution path. An evolution path can be expressed by a sum of
consecutive steps. This summation is referred to ascumulation. To construct an
evolution path, the step-sizeσ is disregarded. For example, an evolution path of
three steps of the distribution meanm can be constructed by the sum

m(g+1) −m(g)

σ(g)
+

m(g) −m(g−1)

σ(g−1)
+

m(g−1) −m(g−2)

σ(g−2)
. (19)

In practice, to construct the evolution path,pc ∈ R
n, we use exponential smoothing

as in (12), and start withp(0)
c = 0.7

p(g+1)
c = (1− cc)p

(g)
c +

√

cc(2− cc)µeff
m(g+1) −m(g)

σ(g)
(20)

where

p
(g)
c ∈ R

n, evolution path at generationg.

cc ≤ 1. Again, 1/cc is the backward time horizon of the evolution pathpc that
contains roughly63% of the overall weight (compare derivation of (16)). A
time horizon between

√
n andn is reasonable [29].

The factor
√

cc(2− cc)µeff is a normalization constant forpc. For cc = 1 and

µeff = 1, the factor reduces to one, andp
(g+1)
c = (x

(g+1)
1:λ −m(g))/σ(g).

The factor
√

cc(2− cc)µeff is chosen, such that

p(g+1)
c ∼ N (0, C) (21)

if

p(g)
c ∼ x

(g+1)
i:λ −m(g)

σ(g)
∼ N (0, C) for all i = 1, . . . , µ . (22)

To derive (21) from (22) and (20) remark that

(1−cc)
2+
√

cc(2− cc)
2

= 1 and
µ
∑

i=1

wiNi(0, C) ∼ 1√
µeff
N(0, C) .

(23)

7In the final algorithm (20) is still slightly modified.
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The (rank-one) update of the covariance matrixC(g) via the evolution pathp(g+1)
c

reads [36]

C(g+1) = (1− ccov)C
(g) + ccovp(g+1)

c p(g+1)
c

T
. (24)

An empirically validated choice for the learning rate in (24) is ccov ≈ 2/n2. For
cc = 1 andµ = 1, Equations (24), (18), and (12) are identical.

Using the evolution path for the update ofC is a significant improvement of
(12) for small µeff , because correlations between consecutive steps are exploited.
The leading signs of steps, and the dependencies between consecutive steps play a
significant role for the resulting evolution pathp(g+1)

c . Forcc ≈ 3/n the number of
function evaluations needed to adapt a nearly optimal covariance matrix on cigar-
like objective functions becomesO(n).

As a last step, we combine (12) and (24).

2.3.3 Combining Rank-µ-Update and Cumulation

The final CMA update of the covariance matrix combines (12) and (24), where
µcov determines their relative weighting.

C(g+1) = (1− c1 − cµ)C(g) + c1 p(g+1)
c p(g+1)

c
T

︸ ︷︷ ︸

rank-one update

+ cµ

µ
∑

i=1

wi y
(g+1)
i:λ

(

y
(g+1)
i:λ

)T

︸ ︷︷ ︸

rank-µ update

(25)

where

0 ≤ c1, cµ ≤ 1 andc1 + cµ ≤ 1

y
(g+1)
i:λ = (x

(g+1)
i:λ −m(g))/σ(g).

Equation (25) reduces to (12) for c1 = 0 andcµ = ccov and to (24) for cµ = 0 and
c1 = ccov. The equation combines the advantages of (12) and (24). On the one
hand, the information within the population of one generation is used efficiently
by the rank-µ update. On the other hand, information of correlations between
generations is exploited by using the evolution path for therank-one update. The
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former is important in large populations, the latter is in particular important in
small populations.

2.4 Step-Size Control

The covariance matrix adaptation, introduced in the last section, does not explicitly
control the “overall scale” of the distribution, the step-size. The covariance matrix
adaptation increases the scale only in one direction for each selected step, and it
decreases the scale only implicitly by fading out old information via the factor
1− ccov . Less informally, we can state two specific reasons to introduce a step-size
control in addition to the adaptation rule (25) for C(g).

1. The optimal overall step length cannot be well approximated by (25), in
particular ifµeff is chosen larger than one.

For example, onfsphere(x) =
∑n

i=1 x2
i , the optimal step-sizeσ equals

approximatelyµ
√

fsphere(x)/n, givenC(g) ≈ I andµeff = µ ≪ n
[11, 64]. This dependency onµ cannot be realized by (12), and is also
not well approximated by (25).

2. The largest reliable learning rate for the covariance matrix update in (25) is
too slow to achieve competitive change rates for the overallstep length.

To achieve optimal performance onfsphere with an Evolution Strategy
with equal recombination weights, the overall step length must decrease
by a factor of approximatelyexp(0.202) ≈ 1.22 within n function eval-
uations, as can be derived from progress formulas [11, p. 229]. That is,
the time horizon for the step length change must be proportional ton
or shorter. From the learning rateccov in (25) follows that the adapta-
tion is too slow to perform competitive onfsphere wheneverµeff ≪ n.
This can be validated by simulations even for moderate dimensions, say,
n ≥ 10 and smallµeff , say,µeff ≤ 1 + lnn.

To control the step-sizeσ(g) we utilize an evolution path,i.e. a sum of successive
steps (see page14). The method can be applied independently of the covariance
matrix update and is denoted ascumulative path length control, cumulative step-
size control, orcumulative step length adaptation (CSA). The length of an evolution
path is exploited, based on the following reasoning (compare also Fig.5).

• Whenever the evolution path is short, single steps cancel each other out
(Fig. 5, left). Loosely speaking, they are anti-correlated. If steps annihilate
each other, the step-size should be decreased.
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Figure 5: Three evolution paths of respectively six steps from different selection
situations (idealized). The lengths of thesingle steps are all comparable. The
length of the evolution paths (sum of steps) is remarkably different and is exploited
for step-size control

• Whenever the evolution path is long, the single steps are pointing to similar
directions (Fig.5, right). Loosely speaking, they are correlated. Because
the steps are similar, the same distance can be covered by fewer but longer
steps into the same directions. In the limit case, where consecutive steps
have identical direction, they can be replaced by an enlarged single step.
Consequently, the step-size should be increased.

• In the desired situation the steps are (approximately) perpendicular in expec-
tation and therefore uncorrelated (Fig.5, middle).

To decide whether the evolution path is “long” or “short”, wecompare the length of
the path with itsexpected length under random selection.8 Under random selection
consecutive steps are independent and therefore uncorrelated (we just realized that
“uncorrelated” steps are the desired situation). If selection biases the evolution path
to be longer then expected,σ is increased, and, vice versa, if selection biases the
evolution path to be shorter than expected,σ is decreased. In the ideal situation,
selection does not bias the length of the evolution path and the length equals its
expected length under random selection.

In practice, to construct the evolution path,pσ, the same techniques as in (20)
are applied. In contrast to (20), aconjugateevolution path is constructed, because

8Random selection means that the indexi : λ (compare (4)) is independent of the value ofx
(g+1)
i:λ

for all i = 1, . . . , λ, e.g.i : λ = i.
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the expected length of the evolution pathpc from (20) depends on its direction
(compare (21)). Initialized withp

(0)
σ = 0, the conjugate evolution path reads

p(g+1)
σ = (1− cσ)p(g)

σ +
√

cσ(2− cσ)µeff C(g)− 1
2

m(g+1) −m(g)

σ(g)
(26)

where

p
(g)
σ ∈ R

n is the conjugate evolution path at generationg.

cσ < 1. Again,1/cσ is the backward time horizon of the evolution path (compare
(16)). For smallµeff , a time horizon between

√
n andn is reasonable.

√

cσ(2− cσ)µeff is a normalization constant, see (20).

C(g)− 1
2 def

= B(g)D(g)−1
B(g)T, whereC(g) = B(g)

(
D(g)

)2
B(g)T is an eigen-

decomposition ofC(g), whereB(g) is an orthonormal basis of eigenvectors,
and the diagonal elements of the diagonal matrixD(g) are square roots of
the corresponding positive eigenvalues.

For C(g) = I, we haveC(g)− 1
2 = I and (26) replicates (20). The transformation

C(g)− 1
2 re-scales the stepm(g+1) −m(g) within the coordinate system given by

B(g).

The single factors of the transformationC(g)−
1

2 = B(g)D(g)−1
B(g)T can

be explained as follows (from right to left):

B(g)T rotates the space such that the columns ofB(g), i.e. the principle
axes of the distributionN(0, C(g)), rotate into the coordinate axes.
Elements of the resulting vector relate to projections ontothe corre-
sponding eigenvectors.

D(g)−1
applies a (re-)scaling such that all axes become equally sized.

B(g) rotates the result back into the original coordinate system. This last
transformation ensures that the principal axes of the distribution are
not rotated by the overall transformation and directions ofconsecutive
steps are comparable.
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Consequently, the transformationC(g)− 1
2 makes the expected length ofp

(g+1)
σ

independent of its direction, and for any sequence of realized covariance matri-
cesC

(g)
g=0,1,2,... we have under random selectionp

(g+1)
σ ∼ N (0, I), givenp

(0)
σ ∼

N (0, I) [29].

To updateσ(g), we “compare”‖p(g+1)
σ ‖ with its expected lengthE‖N (0, I) ‖,

that is

ln σ(g+1) = ln σ(g) +
cσ

dσ

(

‖p(g+1)
σ ‖

E‖N (0, I) ‖ − 1

)

, (27)

where

dσ ≈ 1, damping parameter, scales the change magnitude ofln σ(g). The factor
cσ/dσ is based on in-depth investigations of the algorithm [29].

E‖N (0, I) ‖ =
√

2Γ(n+1
2 )/Γ(n

2 ) ≈ √n (1 − 1
4n + 1

21n2 ), expectation of the
Euclidean norm of aN (0, I) distributed random vector.

For ‖p(g+1)
σ ‖ = E‖N (0, I) ‖ the second summand in (27) is zero, andσ(g) is

unchanged, whileσ(g) is increased for‖p(g+1)
σ ‖ > E‖N (0, I) ‖, andσ(g) is de-

creased for‖p(g+1)
σ ‖ < E‖N (0, I) ‖.

Alternatively, we might use the squared norm‖p(g+1)
σ ‖2 in (27) and compare

with its expected valuen [4]. In this case (27) would read

lnσ(g+1) = lnσ(g) +
cσ

2dσ

(

‖p(g+1)
σ ‖2

n
− 1

)

. (28)

This update will presumable lead to faster step-size increments and slower
step-size decrements.

The step-size change is unbiased on the log scale, becauseE
[
ln σ(g+1)

∣
∣σ(g)

]
=

ln σ(g) for p
(g+1)
σ ∼ N (0, I). Equations (26) and (27) cause successive steps of

the distribution meanm(g) to be approximatelyC(g)−1
-conjugate.

In order to show that successive steps are approximatelyC(g)−1
-conjugate

first we remark that (26) and (27) adaptσ such that the length ofp(g+1)
σ

equals approximatelyE‖N (0, I) ‖. Starting from (E‖N (0, I) ‖)2 ≈
‖p(g+1)

σ ‖
2

= p
(g+1)
σ

T
p

(g+1)
σ = RHSTRHS of (26) and assuming that the
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expected squaredlengthof C(g)−
1

2 (m(g+1)−m(g)) is unchanged by selec-
tion (unlike its direction) we get after some computations

p(g)
σ

T
C(g)−

1

2 (m(g+1) −m(g)) ≈ 0 , (29)

and
(

C(g)
1

2 p(g)
σ

)T

C(g)−1
(

m(g+1) −m(g)
)

≈ 0 . (30)

Assuming that the re-scaled constructing steps from (26) become roughly
perpendicular, as under random selection, means

(

C(g1)−
1

2

(

m(g1+1) −m(g1)
))T

C(g2)−
1

2

(

m(g2+1) −m(g2)
)

≈ 0

(31)
for g1 6= g2. For |g1 − g2| ≪ 1/ccov we can assumeC(g1) ≈ C(g2), and
settingC(g) = (C(g1) + C(g2))/2 yields

(

m(g1+1) −m(g1)
)T

C(g)−1
(

m(g2+1) −m(g2)
)

≈ 0 . (32)

Given1/ccov ≫ 1 and (29) we assume alsop(g−1)
σ

T
C(g)−

1

2 (m(g+1) −m(g)) ≈
0 and derive

(

m(g) −m(g−1)
)T

C(g)−1
(

m(g+1) −m(g)
)

≈ 0 . (33)

That is, the steps taken by the population mean become approximatelyC(g)−1
-

conjugate.

Becauseσ(g) > 0, (27) is equivalent to

σ(g+1) = σ(g) exp

(

cσ

dσ

(

‖p(g+1)
σ ‖

E‖N (0, I) ‖ − 1

))

(34)

3 Invariance

Invariance, in physics referred to assymmetry, is a fundamental concept in science.
The purpose of invariance is well reflected in the following quote attributed to
Albert Einstein:
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The grand aim of all science is to cover the greatest number ofempiri-
cal facts by logical deduction from the smallest number of hypotheses
or axioms.

Invariance is the mathematical concept associated with this aim. For example, we
desire a physical law or biological model to be invariant to environmental parame-
ters, say weekday, temperature, or air humidity. Inclusionof these parameters into
the model or the need for controlling them makes the model more complex and/or
less general. The more invariance properties a model exhibits, or the fewer depen-
dencies on exogenous parameters the model reveals, the wider is its applicability
and the greater is its predictive power.

The same idea holds for invariance properties of search algorithms. In search,
invariance properties induce equivalence classes of objective functions, on which
the performance of the search algorithm is identical. Consequently, any result
observed on a real world problem, or on a test function, does not only hold for
this single problem instance, but inevitablygeneralizes to the complete class of
problems induced by the invariance property, thereof the tested problem is an ele-
ment. Hence stronger statements on the performance of the search algorithm can
be made—a greater number of empirical facts is covered.9

The drawback to invariance properties in search is that whenever an invariance
property is achieved, some information cannot be exploitedanymore. For exam-
ple, rotational invariance means to abandon exploitation of the orientation of the
coordinate system and therefore exploitation of separability. We review important
invariance properties of search algorithms.

3.1 Invariance under Function Value Transformations

First we consider invariance under transformationsT : R → R of the objective
function value, specifically for the objective functionf(x) = T (g(x)), for all
g : R

n → R.

• Invariance to adding a constant to the function value, that is f = T (g) =
g + a for a ∈ R.

• Invariance under scaling of the function value, that isf = T (g) = a× g for
a > 0.

9Invariance per se doesnot imply good performance, itonly provides meansto generalizefavor-
able (and unfavorable) performance observations.
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• Invariance under order preserving transformations of the objective function
value, whereT is a strictly monotonically increasing function. Invariance
under order preserving transformations includes the abovelisted invariance
properties and is much more general.

Because CMA-ES depends only onranking of function values, it achieves the
above listed invariance properties. The sequence of generated search points is in-
dependent ofT as given above. We believe that this is a very important feature of
comparison-based search methods [26].

3.2 Invariance under Search Space Transformations

LetU : R
n → R

n be a transformation of the search space. We consider invariances
for the objective functionf(x) = g(U(x)) under certain transformationsU , for
all g : R

n → R. Strictly speaking, invariance underU only holds, if also theini-
tial conditionsare chosen appropriately. In CMA-ES initial mean and covariance
matrix of the search distribution must be chosen accordingly.

Translation invariance means invariance underU(x) = x + a for a ∈ R
n.

Translation invariance must be taken for granted in continuous domain search.
Lacking translational invariant must be interpreted as having a inherent,
problem independent assumption about the location of the optimal solution.
For a search algorithm this seems to be a contradiction in terms. For ex-
ample, if zero is a distinguished solution point for the algorithm, on many
test function sets exceptional performance can be achieved, but the result is
entirely artificial. In contrast, the initial solution should be interpreted as a
justified, problem dependent assumption about the location of the optimal
solution.

Scale invariance means invariance underU(x) = α x, whereα > 0. From
the algorithm descriptions as given below, and given the appropriate initial
conditions, one can easily verified that CMA-ES is scale invariant.

Finally, we have invariance properties whereU(x) = Ax andA is a full rank
matrix.

Diagonal invariance is invariance under diagonal linear transformations,i.e. un-
der a scaling of variables. The matrixA is diagonal.

23



Rotational invariance is invariance under angle preserving,i.e. rigid linear trans-
formations of the search space (rotation, reflection). Thatis, A is an or-
thogonal matrix. Rotational invariance is closely relatedto decomposability
and separability (see above), because, in most cases, a separable function be-
comes non-separable under rotation. Therefore a search algorithm can only
eitherexploit separabilityor be rotational invariant.

General linear invariance is invariance under any full rank,i.e. invertible matrix
A. This invariance includes rotational and diagonal invariance and requires
to abandon any inherent model of isotropy and scales. The CMA-ES is in-
variant under general linear transformations [37].

We conjecture that the impact of an invariance property is related to the degrees of
freedom related to the transformation. Consequently, orthogonal and general linear
invariance must be considered important all together with invariance under order
preserving transformations of the objective function value.

Most likely in practice, initial parameters cannot be chosen according to a de-
sired search space invariance property. Therefore, an invariant search algorithm
must also be adaptive: initial settings, in case with poor performance, must evolve
within the iteration sequence into “the invariant” parameter values, preferably with
good performance, rendering the algorithm as independent of the initial conditions
as possible. Adaptivity has the additional advantage that changes of the optimal
parameter values over time,i.e. their dependency on the position in search space,
can be assimilated10. While any time-invariable distribution exhibits generallin-
ear invariance,given the (initial) distribution parameters are chosen appropriately,
the lack of adaptivity renders it rather useless. Adaptivity must be regarded as the
essential practical counterpart of any invariance property that depends on the intial
conditions.

4 Adaptive Encoding

In this section we prove rigorously that the Covariance Matrix Adaptation Evolu-
tion Strategy (CMA-ES) can be decomposed into two mainlyindependentcompo-
nents. A comparatively simple evolution strategy with step-size adaptation and an
adaptive linear encoding-decodingmechanism. The prove shows that the efficient

10The most prominent examples are step-sizes which often mustdecrease by several order of
magnitudes during the evolution.
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adaptation mechanism of CMA can be applied to any continuousdomain search
algorithm. This is a very powerful result.

4.1 Notations

The following notations are used

S the state spaceof the search algorithm; [A : S → S] an iteration step of the
search algorithmA;

TB : S → S an invertible transformation, thedecoding of the state space, the
change of representation. TheTB is parameterized by a matrixB and there-
fore uniquely depends onB;

B ∈ R
n×n a full rank matrix, representing (i) a newcoordinate systemand a

coordinate system transformation inRn, and (ii) a problemrepresentation
and lineardecodingof candidate solutionsB : x 7→ Bx;

U : R
n×n × S → R

n×n, (B, s) 7→ U(B, s) the change of representation by up-
dating the matrixB. For convenience, we assume that all necessary infor-
mation to updateB is included in the algorithm states and we may write
U(B) instead ofU(B, s);

N (0, I) ∈ R
n indicates a(0, 1)-normal distribution in each coordinate

i : µ indicates the index of thei-th best solution when evaluated onf , for example,
on the set{x1, . . . ,xµ} we havex1(f) = arg mini=1,...,µ {f(xi)}

4.2 Introducing Adaptive Encoding

Adaptive Encoding has been introduced in [31] and is shortly revised in the follow-
ing. Letf : R

n → R be an objective function to be minimized. A search algorithm
proposes new candidate solutions in an iterated procedure and evaluates them on
f . We denote one iteration step asAf : S → S, whereS denotes the state space of
the algorithm. The iteration step can be surrounded by an encoding-decoding step,
whereTB : S → S is the decoding transformation. Here we assume thatTB is
parameterized by ann× n-matrix B. The new “encoded” algorithm is defined as

ATB

f : S → S (35)

s 7→ TB(Af◦B(T−1
B (s))) (36)
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or
ATB

f ≡ TB ◦ Af◦B ◦ T−1
B . (37)

The mappingTB is a decoding of the algorithms state. IfTB andB are the iden-
tity we haveATB

f ≡ A. We assume, for convenience and w.l.o.g., that recently
evaluated solutions are part of the algorithms state. The matrix B serves as linear
decoding map.

Remark 1 (Evaluation of solutions) In order to make use of Eq.(37), we have to
ensure that candidate solutions are used in their original representation. The so-
lutions must be decoded for evaluation. In other words,Af◦B in Eq.(37) operates
onf ◦B.

Remark 2 We shall chooseTB such that solutions which are part of the state space
are decoded by the application ofB. With an abuse of notation, or where the state
space consist of a single solution only, we write for solution x thatBT−1

B (x) = x.

Considering Remark1, we can execute the algorithmA in any coordinate sys-
tem of our choice. The new coordinate system, where the operations ofAf◦B are
effectively conducted, is defined byB. Optimizing f ◦ B instead off renders
A independent of thegivencoordinate system (ifB is chosen independent of the
given coordinate system). Eq. (37) becomes particularly meaningful whenB is
adapted.

Finally, in order to specify the objective of adaptive encoding we assume to
have a performance measure when running an algorithm on an objective functionf .
The performance measure determines whether one algorithm is better than another.
For example, a typical, quantitatively useful measure is the number of candidate
solutions evaluated onf until a target function value is achieved.

Equation (37) represents an iteration step of a search algorithm with an addi-
tional encoding-decoding procedure. The encoding is parameterized by an × n-
matrix; it therefore addsn2 degrees of freedom. Obviously, the idea is to find a
good encoding for algorithmA.

Aim 1 (static encoding) The goal of finding a good encoding is to find a transfor-
mationTB, such that

TB ◦ Af◦B ◦ T−1
B outperformsAf

26



Because the transformationTB is static, it needs to be applied only once before the
first iteration, and when solutions are evaluated or delivered. Therefore, the static
encoding is usually part of the design of the objective function whileAf is applied.

The static formalism of Aim1 is indeed not very interesting. To get a more
interesting situation, we need to consider anupdateor adaptationof the encoding
TB .

Definition 1 (Adaptive Encoding) Given an algorithm,A, an encoding,TB , pa-
rameterized withB, and an update,U , the iteration step of an adaptively encoded
algorithm in states ∈ S is defined as

s ← TB ◦ Af◦B ◦ T−1
B (s) (38)

B ← U(B, s) (39)

where← denotes the assignment operator andTB◦Af◦B◦T−1
B (s) = TB(Af◦B(T−1

B (s))).

We writeTB ◦ Af◦B ◦ T−1
B ; U(TB) to denote the iteration step of Equations(38)

and (39).

Obviously, any iterative algorithmA can be plugged into the adaptive encoding
mechanism.

Proposition 1 (Adaptive Encoding is universal) The Adaptive Encoding from Def-
inition 1 can be applied to any search algorithm—any search algorithmcan be
adaptively encoded.

Proof The proposition follows directly from the definition ofTB as invertible map-
ping fromS to S. �

Even though Proposition1 is just about trivial, it is of utmost importance for
the implications of our results, because it establishes thegeneral applicability of
any effective adaptive encoding.

Analogous to Aim1, we consider the merits of an adaptive encoding.

Aim 2 (adaptive encoding) Find a transformationT and an updateU , such that
for a givenB′ and a given initialB

TB ◦ Af◦B ◦ T−1
B ; U(TB) outperformsTB′ ◦ A

f◦B′ ◦ T−1
B′ .

The left iteration step updates the encoding, the right iteration step applies a con-
stant encoding,TB′ , to algorithmA.
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Taking only a single iteration step, Aim2 does not depend on the updateU and it
reduces to Aim1. Consequently, Aim2becomes only interesting, when an iteration
sequenceis considered. Indeed, in a realistic automated scenario, an adaptation can
only be achieved in the iteration sequence.

Finally, we define three cases/scenarios when considering Aim 2.

Scenario 1 (Standard scenario) The initialB equalsB′. Aim 2 shall be satisfied
for most givenB′.

The standard scenario applies in particular if there existsan optimalBopt, that
does not depend on the position in search space. In this case,for B′ = Bopt, we
cannot outperformTB′ ◦ A

f◦B′ ◦ T−1
B′ .

Scenario 2 (Ambitious scenario) The initialB equalsB′. Aim2 shall be satisfied
for all givenB′.

Satisfying the ambitious scenario implies that no fixed optimal encoding exists and
a changing encoding can be advantageous compared to any fixedencoding. Both,
the standard and the ambitious scenario are reasonable objectives, depending on
the given objective function.

Scenario 3 (Unrealistic scenario) For all initialB 6= B′, Aim2 shall be satisfied.

As we might be able to chooseB arbitrarily bad, it seems unrealistic that Aim2
can be satisfied for any initialB 6= B′ in general.

In the following we propose and investigate an effective wayto implement
adaptive encoding as given in Definition1.

4.3 An Adaptive Encoding Procedure: AECMA

For a thorough definition of an adaptively encoded search procedure we need to
defineTB andU . The choice of the transformationTB depends on the state space
of the algorithm to which adaptive encoding is applied and isusually not very
involved. Here, at first, we present a generic updateU . The procedure is given in
Procedure1 AECMA-Update11 (p. 29). The procedure takes as input a number of
solution points, sorted according to their objective function value, and a matrixB.
The matrixB is updated and considered as “output” of the procedure. Three main
equations of the update procedure are derived from the CMA-ES, as referenced in
the procedure.

11Matlab code of AECMA -Update is provided inhttp://www.lri.fr/ ˜ hansen/AEupdate.m
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Procedure 1: AE CMA-Update( (x1, . . . ,xµ), B)
updates the encoding matrixB using theµ recent best-ranked candidate so-
lutions

given parameterswi, cp, c1, cµ1

givenm ∈ R
n andp ∈ R

n from last iteration, orp = 0, m = x12

let matricesB◦ orthogonal, andD diagonal, with diagonal elements sorted3

in ascending order , “←” assigns accordingly
m− = m4

m←∑µ
i=1 wixi // Eq. (4)5

set scalarsαi ≥ 0, for i = 0, . . . , µ, see text6

p← (1 − cp)p +
√

cp (2− cp)α0(m−m−) // Eq. (20)7

Cµ =
∑µ

i=1 wi α2
i (xi:µ −m−)(xi:µ −m−)T8

set scalarαp ≥ 0, see text9

C ← (1− c1 − cµ)BBT + c1αp ppT + cµCµ // Eq. (25)10

B◦DDB◦ ← C // eigendecomposition11

optionally normalizeD12

B ← B◦D // encoding matrix13

Proposition 2 Let σ denote a step-size andµ−1
eff =

∑µ
i=1 w2

i . Let α0 =
√

µeff

σ ,
αi = σ−1, for i = 1, . . . , µ, αp = 1. Then, AECMA-Update implements the update

equations for the evolution path,p
(g)
c , and the covariance matrix,C(g) = BBT,

in the (µ/µW, λ)-CMA-ES.

Proof Assuming thatx1, . . . ,xµ are theµ best solutions in the recent iteration
step, line5 computesm according to Eq. (4). Lines7 and10 replicate the covari-
ance matrix update equations (20) and (25) with added or renamed normalization
coefficients, denoted asc andα. Substituting the coefficients results in the original
equations. �

A slow change ofB might be desirable. WhileC will only change slowly,
as long asc1 andcµ are small, the decomposition ofC does not ensure a similar
behavior forB◦ andD. For this reason, the diagonal elements are sorted inD.
We conjecture, that lines11 to 13 can be replace by a cholesky decomposition, or,
more promising, by an incremental cholesky update, similarto [77], that ensures
small changes, as long asc1 andcµ are small. In this case, it might be sufficient
to only encode the solutions for the function evaluation and, as an approximation,
completely abandon the encoding-decoding of the algorithms state.
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4.3.1 Choice of Parameters

In Procedure1 AECMA-Update, the scalarsαp andαi for i = 0, . . . , µ, need to be
chosen. They normalize the input entries for the covariancematrix update (most
of them are the difference between a new solution and the former mean). In the
original CMA, we can derive the expected lengths of the inputentries from the
sampling procedure. Under random selection the normalizedentries are distributed
according to

N (0,C) = BN (0, I) . (40)

In general, we cannot assume to know the expected lengths of the input entries,
therefore we need to normalize them. In Eq. (40), the expected squared length of
the decoded input entry,E‖B−1BN (0, I) ‖2, computes ton suggesting a nor-
malization to length

√
n. Keeping this in mind, we discuss the choice of the scalar

coefficients in turn.12

α0 =
√

n
‖B−1(m−m−)‖ , normalizes the differenceB−1(m −m−) to length

√
n.

Consequently, only the direction is relevant and the absolute size of the dif-
ference is disregarded.

αi =
√

n
‖B−1(xi−m−)‖ , for i = 1, . . . , µ, is the conservative choice, where the

length of the differenceB−1(xi −m−) is disregarded. In general, we rec-
ommend to choose

αi =

√
n

max

(
li
β

,median
j=1,...,µ

(lj)

) for i = 1, . . . , µ , (41)

whereli = ‖B−1(xi −m−)‖. In this way, the median is set to “length”√
n and the maximal length is set toβ

√
n with β ≥ 1. We recommend

β = 2. Unusual large entries may, for example, occur if solutionsare origi-
nally sampled from a distribution with heavy tails. By chance, an outranging
solution could enter the procedure despite a bad objective function value and
an unjustified very large change ofB would result.

αp = 1 will be the usual choice, whileαp =
√

n
‖p‖ is a conservative alternative and

will not allow to utilize the evolution path effectively;αp = 0 would be even
more conservative.

12We ignore the case of denominators being zero, where the respective coefficientα can be set to
any positive number.
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Finally, we give the default settings for the constants usedin CMA-ES-Update
and discuss the choices in turn.

cp = 1√
n

is the learning constant for the evolution path, which should be usually

between 1√
n

and 2
n+1 [37]. For largercp, the effect of the evolution path

will attenuate. The backward time horizon for the evolutionpath is roughly
cp

−1. We choose as default the “conservative” limit of the usefulrange,i.e.
a comparatively largecp.

wi = ln(µ+1)−ln i
µ ln(µ+1)−Pµ

j=1 ln j
, for i = 1, . . . , µ are the recombination weights. They

(must) sum to one and obeyw1 ≥ · · · ≥ wµ ≥ 0. Generally, we chooseµ
being half of the overall generated number of solutions per iteration (before
selection).

c1 = αcov
(n+1.3)2+µeff

is the learning rate for the rank-one update in line10 of CMA-
ES-Update (middle summand), withαcov = 0.2 as default. The denominator
being quadratic inn reflects the degrees of freedom in the encoding matrix
B. The formula is derived as a simplification from the originalformulation
in [30].

cµ = αcov
µeff− 2+ 1

µeff
(n+2)2+αµµeff

is the learning rate for the rank-µ update (right summand
in line 10), with αcov = 0.2 andαµ = 0.2 as default. With increasingµeff ,
the learning rate increases and gets close to one.

αcov = 0.2 must be chosen positive and such thatc1+cµ ≤ 1. The default value of
0.2 is about ten times smaller,i.e. considerably more conservative, than for
CMA-ES. Too large values forαcov potentially lead to a failure. Too small
values slow down the adaptation. At least a minimalistic parameter study for
αcov is recommended.

The final parameter setting needs to be decided specifically for a given algo-
rithm. We believe that the given guidelines will be usually sufficient to find good
settings with reasonable effort. To our experience, a good setting works across
many objective functions and the identification needs to be conducted only once
on a few simple test functions.

4.3.2 Application of AECMA -Update to CSA-ES

We apply the introduced update procedure to an evolution strategy withcumulative
step-size adaptation[58, CSA-ES].
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CSA-ES Algorithm 2 implements the CSA-ES. The main iteration step of the
algorithm is outlined in Procedure3.

Algorithm 2 : (µ/µW, λ)-CSA-ES

given fitnessf1

initialize population{x1, . . . ,xµ} ∈ R
n2

initialize step-sizeσ > 03

initialize evolution pathpσ = 04

repeat5

CSA-ES-Step(f, (x1, . . . ,xµ), σ,pσ)6

until stopping criterion is met7

Procedure 3: CSA-ES-Step( f, (x1, . . . ,xµ), σ,pσ)

given parameterswi, cp1

m− =
∑µ

i=1 wi xi2

xi ←m− + σN(0, I) , for i = 1, . . . , λ3

evaluatexi onf → xi:µ , for i = 1, . . . , λ4

xi ← xi:µ , for i = 1, . . . , λ // sorted5

m =
∑µ

i=1 wi xi6

pσ ← (1− cσ)pσ +
√

cσ (2− cσ)µeff
1
σ (m−m−)7

σ ← σ exp
(

cσ

dσ

(
‖pσ‖

E‖N(0,I)‖ − 1
))

8

AECMA -CSA-ES For applying adaptive encoding to CSA-ES, we choose the fol-
lowing invertible encoding for the state variables in CSA-ES,

TB : ((x1, . . . ,xµ),pσ, σ) 7→ ((Bx1, . . . ,Bxµ),B◦pσ, σ) . (42)

BesidesB for encoding the solutionsxi, the orthogonal matrixB◦ (i.e. B with
normalized columns) is used for encoding the evolution pathpσ, see also Sec-
tion 2.4.

Finally, in Algorithm4, adaptive encoding is applied to CSA-ES, where AECMA-Update
is used to update the encoding.
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Algorithm 4 : AECMA-CSA-ES
Shaded areas add to CSA-ES and implement the adaptive encoding, AECMA

given fitnessf1

initialize population{x1, . . . ,xµ} ∈ R
n2

initialize step-sizeσ > 03

initialize evolution pathpσ = 04

initialize encoding matrixB = I5

repeat6

T−1
B ((x1, . . . ,xµ),pσ)7

CSA-ES-Step(f ◦B , (x1, . . . ,xµ), σ,pσ)8

TB((x1, . . . ,xµ),pσ)9

AECMA-Update((x1, . . . ,xµ),B)10

until stopping criterion is met11

4.4 AECMA -CSA-ES Recovers CMA-ES

We show now that the adaptive encoding AECMA recovers the original CMA-ES
when it is applied to CSA-ES as in Algorithm4. For practical purpose we rewrite
the CMA-ES from Section2 in Algorithm 5 and Procedure6.

Algorithm 5 : CMA-ES

given fitnessf1

initialize population{x1, . . . ,xµ} ∈ R
n2

initialize σ > 0 (step-size)3

initialize evolution pathsp = pσ = 04

initialize C = I5

repeat6

CMA-ES-Step(f, (x1, . . . ,xµ),C , σ,p,pσ)7

until stopping criterion is met8

We now proof that Algorithm4 and Algorithm5 are identical, that is, if AECMA

is applied to CSA-ES the CMA-ES is recovered.

Theorem 1 (Recovery of CMA-ES)GivenTB as in Eq.(42) and the scalars for
AECMA-Update in each iteration as given in Proposition2, then the CMA-ES-
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Procedure 6: CMA-ES-Step( f, (x1, . . . ,xµ),C, σ,p,pσ)

given parameterswi, cσ , cp, c1, cµ1

let matricesB◦ orthogonal, andD diagonal, with diagonal elements sorted2

in ascending order
m− =

∑µ
i=1 wi xi // previous population mean3

B◦DDB◦ = C // eigendecomposition4

C−1/2 = B◦D−1B◦T5

xi ←m− + σB◦DN(0, I) , for i = 1, . . . , λ6

evaluatexi onf , for i = 1, . . . , λ7

xi ← xi:µ , for i = 1, . . . , λ // sorted8

m =
∑µ

i=1 wi xi9

pσ ← (1− cσ)pσ +
√

cσ (2− cσ)µeff C−1/2 1
σ (m−m−)10

p← (1 − cp)p +
√

cp (2− cp)µeff h(pσ) 1
σ (m−m−)11

Cµ =
∑µ

i=1 wi
1
σ2 (xi −m−)(xi −m−)T12

C ← (1− c1 − cµ)C + c1ppT + cµCµ13

σ ← σ exp
(

cσ

dσ

(
‖pσ‖

E‖N(0,I)‖ − 1
))

14

(µ/µW, λ)-CSA-ES (Algorithm4) implements the (µ/µW, λ)-CMA-ES (Algorithm5).

Proof We assume the same (initial) state for(x1, . . . ,xµ), σ,C ,pσ,p in AECMA-
(µ/µW, λ)-CSA-ES and (µ/µW, λ)-CMA-ES after line 6 in both algorithms and
refer to this state asloop entry. We investigate one iteration step.

First we consider the sampled evaluated solutionsxi, for i = 1, . . . , λ, in CSA-
ES-Step. Because the solutions are evaluated onf ◦B we considerBxi. We have

Bxi ← B(m− + σN(0, I))

= B

µ
∑

i=1

wi xi + σBN(0, I)

=

µ
∑

i=1

wi Bxi + σB◦DN(0, I) (43)

With the definition ofTB we find thatxi in CSA-ES-Step equalsB−1xi at the
loop entry. Therefore the new solutions evaluated onf according to (43) are the
same as those in line 6 of CMA-ES-Step. The new solutionsBxi in CSA-ES-Step
correspond to the new solutionsxi in CMA-ES-Step. BecauseTB(x) = Bx we
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find that (x1, . . . ,xµ) at the loop end is identical in both cases. Consequently,
with the linearity ofB, we recoverm andm− from lines 3 and 9 in Procedure6
CMA-ES-Step byBm andBm− from lines 2 and 6 in Procedure3 CSA-ES-Step.

It remains to be shown that AECMA-CSA-ES recovers the update ofpσ, σ, p

andC in CMA-ES. We treat each variable in turn.
We investigate the evolution pathpσ for the step-size in CSA-ES-Step which

is transformed withB◦ before the loop end.

TB(pσ) = B◦pσ (44)

← B◦
(

(1− cσ)pσ +
√

cσ (2− cσ)µeff
1

σ
(m−m−)

)

= (1− cσ)B◦pσ +
√

cσ (2− cσ)µeff
1

σ
B◦(m−m−) (45)

TheB◦pσ equalspσ at the loop entry. Usingm andm− from the original coor-
dinate system, we compute the rightmost term of (45) to

B◦(B−1m−B−1m−) = B◦B−1(m−m−)

= B◦(B◦D)−1(m−m−)

= B◦D−1B◦T(m−m−) , (46)

whereB = B◦D. Therefore, Equation (45) recovers the update rule for the
evolution pathpσ in CMA-ES (line 10 in CMA-ES-Step).

BecauseB◦ is orthogonal we have‖B◦pσ‖ = ‖pσ‖ and consequently, the
step-size update is identical in both cases.

Finally, completing the proof,p andC are updated in line 10 of AECMA-CSA-
ES according to the CMA-ES as shown in Proposition2. �

Theorem1 supports the hypothesis that AECMA-Update is an efficient way to
update the representation matrixB, as CMA-ES is known to efficiently adapt the
principle axes of the coordinate system, where the independent sampling takes
place most efficiently. First empirical evidence has been given in [31].

5 Perspectives

In this section a few directions of future research perspectives for stochastic vari-
able metrics methods are presented.
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5.1 Variable Metrics Methods

In the present thesis PCA-based learning and adaptation in stochastic search algo-
rithms has been discussed. Here, we outline two lines of possible future research
directions for variable metrics methods.

5.1.1 Large scale optimization

The methods discussed in this thesis estimate or adapt∝ n2 internal parameters.
The application of such methods becomes of limited benefit inlarge-scaleop-
timization with typically more than a hundred or even thousands of continuous
parameters. General limitations stem from the fact that (a)the general adaptation
time of these methods amount to∝ n2 function evaluations and (b) the internal
computational costs are at least∝ n2 for each function evaluation. Both facts limit
the application of such methods to large scale optimization.

In order to address large problem sizes, the degrees of freedom in the sampled
search distribution should be reduced. A first, very preliminary step in this direc-
tion was taken in [66], where no parameter dependencies are modeled. However,
essential dependencies between parameters need to be captured in order to solve
non-trivial problems. For example, in the spirit ofdimensionality reduction, only
a few large components might be learned. Respective work waspreviously pro-
posed for asinglelarge component [38][59], or for several components [50], while
the latter only aimed to reduce the internal time and space complexity of the algo-
rithm. Overall, there is a clear lack of methods, that perform comparably well as
those presented in this thesis, but show this performance only on a subset of less
complex functions. Compared to a PCA, these mechanisms willbe less general,
but achieve a better scalability with the search space dimension.

Building blocks for steps in this research direction areprincipal component
learning [57] andminor component learning[54][55], well-know machine learn-
ing techniques that must be customized for their incorporation into stochastic search
algorithms. Based on PCA and minor component analysis, alsoextreme compo-
nent analysis [79] could be explored. We expect that it should be possible to reduce
the learning time forstill complex landscapesby approximately one order of mag-
nitude from∝ n2 to∝ n.

5.1.2 Non-linear models

The second line of future research aims at learningnon-linear models. This is, in
a sense, the opposite direction compared to the previous research line. Non-linear
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models generally contain more parameters than linear ones.Therefore, the degrees
of freedom for non-linear models must be carefully restricted.

First attempts along this line were taken in [84], [14], [61] using independent
component analysis(ICA). In evolutionary computation, PCA can efficiently ren-
der amutationoperator independent of the coordinate system [31]. Similarly, ICA
can be used to render arecombinationor cross-over operator independent of the
coordinate system. This can, for example, be useful to exploit the Cauchy distri-
bution, or other non-isotropic heavy-tail distributions,onnon-separablefunctions.
The idea is appealing, but massive parallelization, for example in a computer grid,
might be necessary to apply ICA successfully in a realistic time-scale on non-toy
problems. Nevertheless, this approach has the potential topush the feasibility of
multi-modal optimization beyond its current limits.

A second approach to non-linear extensions of variable metrics methods builds
on kernel-PCA [71, 60] and the construction ofprinciple curves[39] using the
polygonal line algorithm [48] for stochastic optimization. In this perspective two
important steps can be identified: i) the use or development of incrementallearning
methods; ii) the identification of a realistic testbed requiring the use of non-linear
kernel-PCA.

5.2 Evaluation of Black-Box Optimization Algorithms

Evaluation of optimization algorithms on benchmark function sets is inevitable,
before their application to real world problems. Several problems arise in this
context. First, a benchmark function set needs to be defined.Many function sets
are available [19], [40], [56], [74], [17], [74], [76]. While many of them suffer
from obvious deficiencies, useful guidelines for constructing test functions were
given, for example, in [81]. Our remaining main concern is whether benchmark
functions reflect “the reality” and many common functions are indeed too easy to
solve. Second, the experimental and evaluation procedure and, in particular, a well-
founded collection, elaboration, presentation, and interpretation of the generated
data is a non-trivial, and tedious task. The common practiceis often insufficient
and was criticized, for example, in [22], [9].

In this line of research we have recently initiated a first achievement (joined
work with Anne Auger, Raymond Ros, Marc Schoenauer) in collaboration with
the Vorarlberg University of Applied Science (Prof. Hans-Georg Beyer and Stef-
fen Finck), we develop the platformCOmparing Continuous Optimizers, COCO13.

13see [http://coco.gforge.inria.fr/doku.php ]
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The main objective is to largely automatize the collection,reporting, presentation,
and analysis of data resulting from running stochastic and non-stochastic optimiz-
ers on test or real world problems. Compared to other platforms (COCONUT,
COIN-OR, CUTEr, LIBOPT, OAT, OpenDP, PISA), our focus is theautomated
data post-processing anddata analysis and comparisonfor single objective opti-
mization. Experimental design and descriptive statisticsare essential parts thereof.
We foresee a great impact from this work which comprises

• Design of a testbed and thecharacterization of problems and their diffi-
culties. Test functions must besimple enough, in order to draw conclusions
from the test results, but alsochallengingfor the algorithms. We want to
achieve both objectives providing a testbed with well characterizedproblem
classesand difficulties.

• A unified, carefully conductedexperimental designgreatly strengthens ex-
perimental results and also eases performing new experiments. We aim at
incrementally collecting comparable performance data formany optimiza-
tion procedures over years. As data will be produced under the same ex-
perimental design and collected in a comparable way—not necessarily with
COCO—they will support rigorous and significant performance compar-
isons.

• Finding good and generally applicableperformance indicators in optimiza-
tion is a non-trivial task. Comparing the mean final objective function val-
ues and success probabilities is the standard approach, which is unsatisfac-
tory and by no means sufficient. Useful performance indicators can also be
graphical [20]. We will identify important criteria for good indicators,apply
the most meaningful indicators and develop new indicators [7] according to
the given criteria.

• Graphical data presentation will be designed in a principled and ergonomic
way. An appropriate presentation of data is an essential part of a meaningful
interpretation of results. The platform will include extensive facilities for
statistical analysis and hypothesis testing as well as boot-strapping [21] to
attain dispersion measures for aggregated performance indicators [7][24].

The organization of a workshop,BBOB 200914 at the ACM-GECCO confer-
ence 2009 is a first milestone in this long-term project. Figure6 shows an example
of data presentations in the workshop.

14see [http://coco.gforge.inria.fr/doku.php?id=bbob-2009 ]
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Figure 6: Empirical cumulative distribution functions (ECDFs), plotting the frac-
tion of trials versus running time (left subplots) or versus∆f (right subplots). The
thick red line represents the best achieved results. Left subplots: ECDF of the
running time (number of function evaluations), divided by search space dimen-
sion D, to fall below fopt + ∆f with ∆f = 10k, wherek is the first value in
the legend. Right subplots: ECDF of the best achieved∆f divided by10k (up-
per left lines in continuation of the left subplot), and bestachieved∆f divided by
10−8 for running times ofD, 10D, 100D . . . function evaluations (from right to
left cycling black-cyan-magenta). Top row: all results from all functions; second
row: separable functions; third row: misc. moderate functions; fourth row: ill-
conditioned functions; fifth row: multi-modal functions with adequate structure;
last row: multi-modal functions with weak structure. The legends indicate the
number of functions that were solved in at least one trial. FEvals denotes number
of function evaluations,D andDIM denote search space dimension, and∆f and
Df denote the difference to the optimal function value.
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5.3 Optimization under Uncertainties and Dynamic Environments

Real world data, as for example measurements from physical experiments or (stochas-
tic) simulations of physical models, are typically subjectto noise and uncertainties.
Not only is the outcome of the simulation a distribution rather than a single value,
also this distribution can change in time resulting in adynamicenvironment. A
typical example is a calibration task, where the true optimum for the parameters
might (slowly) change over time. In uncertain and dynamic environments special
care must be taken to prevent undesired convergence or divergence of a search
algorithm. Population-based stochastic search algorithms are robust against uncer-
tainties [2, 47]. They do not rely, for example, on measurements of small finite
differences which are very sensitive to rugged search landscapes. However, typical
noise handling techniques are usually expensive, in that they increase the num-
ber of function evaluations, or increase the population size, and are therefore less
attractive in dynamic environments.

Based on a noise handling method introduced in [35], that can prevent any
rank-based search algorithm from converging prematurely,different approaches to
improve the efficiency of noise-resistant search algorithms are conceivable. Inte-
grating surrogate model approaches [46] into noise resistant algorithms is a promis-
ing approach. In particular, when surrogate methods are based on regression, they
can be insensitive to noise. Usually, appropriate assumptions on the noise distri-
bution must be taken. As a second step, rank-based surrogatemethods [69] should
be less sensitive to the underlying noise distribution. They will also preserve in-
variance under order-preserving transformation of the objective function value of
an underlying rank-based search algorithm.

5.4 Theory of Stochastic Search

The analysis of stochastic search algorithms in continuousdomain is still in its in-
fancies. In particular, quantitative convergence resultsand bounds are rare [44][78]
or rely on a deterministic model of the underlying algorithm[75]. We believe, an
important future direction will emphasize on stochastic stability of algorithms and
proofs that deliver convergencerates, for examplelog-linear convergencewhich
is the general lower bound in a black-box search scenario [44][78]. Convergence
proofs without associated convergence rates are much easier to obtain [15][68], but
they are of much less practical relevance. Such work will presumably be based on
Markov Chain and drift analysis [6][13]. The previous results could be extended
in several respects.
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• investigating more general classes of objective functions, where also noisy
objective function might be considered, see [45] for a first attempt.15

• investigating different types of algorithms, including derandomized variants
of evolution strategies, see [32] for a first attempt,estimation of distribution
algorithms[53] and thecross entropy method[67].

Such kind of results will have a stronger practical meaning than, for example,
those obtained onstochastic approximationmethods [75], because the latter rely
on predefined gain sequences, which seem unrealistic in praxis. The methods with
adaptivegain sequence are more interesting and more difficult to analyze. This
kind of work would have a clear potential for becoming a milestone in stochastic
search as well as optimization in general.

6 Conclusion

Variable metrics methods have a long and successful historyin derivative-based nu-
merical optimization. The probably most famous of these quasi-Newton methods
is BFGS. More recently, derivative-free optimization has become popular, where
derivatives are neither acquired nor estimated nor used. Also some of the most
successful derivative-free optimization methods, like NEWUOA [62], are based
on second order models and therefore acquire a variable metric.

Many evolutionary algorithms go one step beyond the derivative-free optimiza-
tion paradigm. Not only do they disregard derivatives, but they do not even depend
on specific function values. They are only based on the ordering of solutions and
might be termedfunction-value free. This thesis has argued that variable met-
rics can be successfully assimilated in function-value-free optimization. The most
prominent examples for such algorithms are EDAs [52] and the CMA-ES, while
the latter often shows better scalability with the search space dimension.

More general, the thesis has provided a method,adaptive encoding, which
allows to run generic, function-value free algorithms within a variable metric. It
was proved that adaptive encoding recovers the CMA-ES, whenapplied to a simple
evolution strategy. This result suggests that an efficient learning of a favorable vari-
able metric has become available for many continuous searchalgorithms. While

15also: M. Jebalia, A. Auger and N. Hansen. Log-linear convergence and divergence of the
scale-invariant (1+1)-ES in noisy environments. Acceptedunder minor revisions forAlgorithmica,
Springer.
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an example application of adaptive encoding was given in [31], this concept needs
yet to be widely explored with different algorithms.

Many difficult optimization problems exhibit strong dependencies between vari-
ables. Therefore, variable metrics methods are becoming indispensable in stochas-
tic function-value free optimization at least in moderate dimensional search spaces.
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[20] E.D. Dolan and J.J. Moré. Benchmarking optimization software with perfor-
mance profiles.Mathematical Programming, 91(2):201–213, 2002.

[21] B. Efron and R. Tibshirani.An Introduction to the Bootstrap. Chapman &
Hall/CRC, 1993.

43



[22] A.E. Eiben and M. Jelasity. A critical note on experimental research method-
ology in EC. InEvolutionary Computation, 2002. CEC’02. Proceedings of
the 2002 Congress on, volume 1, 2002.

[23] L.J. Eshelman and J.D. Schaffer. Real-coded genetic algorithms and interval
schemata.Foundations of Genetic Algorithms. 2, pages 187–202, 1993.

[24] V. Feoktistov. Differential Evolution: In Search of Solutions. Optimization
and Its Applications. Springer-Verlag New York, Inc. Secaucus, NJ, USA,
2006.

[25] L.J. Fogel, A.J. Owens, and M.J. Walsh.Artificial Intelligence Through Sim-
ulated Evolution. John Wiley & Sons Inc, 1966.

[26] Sylvain Gelly, Sylvie Ruette, and Olivier Teytaud. Comparison-based Algo-
rithms are Robust and Randomized Algorithms are Anytime.Evolutionary
Computation Journal, 15(4):411–434, 2007.

[27] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA,
1989.

[28] D. Goldfarb. A Family of Variable-Metric Methods Derived by Variational
Means.Mathematics of Computation, 24(109):23–26, 1970.

[29] N. Hansen. Verallgemeinerte individuelle Schrittweitenregelung in
der Evolutionsstrategie. Eine Untersuchung zur entstochastisierten,
koordinatensystemunabhängigen Adaptation der Mutationsverteilung.
Mensch und Buch Verlag, Berlin, 1998. ISBN 3-933346-29-0.

[30] N. Hansen. The CMA evolution strategy: a comparing review. In J.A.
Lozano, P. Larranaga, I. Inza, and E. Bengoetxea, editors,Towards a new
evolutionary computation. Advances on estimation of distribution algorithms,
pages 75–102. Springer, 2006.

[31] N. Hansen. Adaptive Encoding: How to Render Search Coordinate System
Invariant. In G. Rudolph et al., editor,Parallel Problem Solving from Nature
(PPSN’08), LNCS, pages 205–214, 2008.

[32] N. Hansen. Toward a convergence proof for CMA-ES—and beyond. In D.V.
Arnold, A.Auger, C.Witt, and J.E. Rowe, editors,Theory of Evolutionary

44



Algorithms, Abstracts Collection, number 08051 in Dagstuhl Seminar Ab-
stracts Collection, Dagstuhl, Germany, 2008. Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.

[33] N. Hansen and S. Kern. Evaluating the CMA evolution strategy on mul-
timodal test functions. Parallel Problem Solving from Nature-PPSN VIII,
LNCS, 3242:282–291, 2004.

[34] N. Hansen, S. D. Müller, and P. Koumoutsakos. Reducingthe time complex-
ity of the derandomized evolution strategy with covariancematrix adaptation.
Evolutionary Computation, 11(1):1–18, 2003.

[35] N. Hansen, A.S.P. Niederberger, L. Guzzella, and P. Koumoutsakos. Evolu-
tionary optimization of feedback controllers for thermoacoustic instabilities.
In J.F. Morrison, D. M. Birch, and P. Lavoie, editors,IUTAM Symposium
on Flow Control and MEMS, Proceedings of the IUTAM Symposiumheld at
the Royal Geographical Society, 19-22 September 2006, hosted by Imperial
College, London, England, volume 7 ofIUTAM Bookseries. Springer Verlag,
2008.

[36] N. Hansen and A. Ostermeier. Adapting arbitrary normalmutation distribu-
tions in evolution strategies: the covariance matrix adaptation. InEvolution-
ary Computation, 1996., Proceedings of IEEE InternationalConference on,
pages 312–317, 1996.

[37] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in
evolution strategies.Evolutionary Computation, 9(2):159–195, 2001.

[38] N. Hansen, A. Ostermeier, and A. Gawelczyk. On the adaptation of arbi-
trary normal mutation distributions in evolution strategies: The generating
set adaptation. In L. J. Eshelman, editor,Proceedings of the Sixth Interna-
tional Conference on Genetic Algorithms, pages 57–64. Morgan Kaufmann,
1995.

[39] T. Hastie and W. Stuetzle. Principle curves.Journal of the American Statis-
tical Association, 84(406):502–516, 1989.

[40] W. Hock and K. Schittkowski. Test examples for nonlinear programming
codes. Journal of Optimization Theory and Applications, 30(1):127–129,
1980.

45



[41] J.H. Holland. Adaption in Natural and Artificial Systems. PhD thesis, Uni-
versity of Michigan Press, 1975.

[42] C. Igel and M. Toussaint. A no-free-lunch theorem for non-uniform distribu-
tions of target functions.Journal of Mathematical Modelling and Algorithms,
3(4):313–322, 2004.

[43] C. Igel and M. Toussaint. A No-Free-Lunch Theorem for Non-Uniform Dis-
tributions of Target Functions.Journal of Mathematical Modelling and Algo-
rithms, 3(4):313–322, 2004.
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[60] P. Pošı́k. Kernel principal components analysis as anefficient crossover oper-
ator in real-valued evolutionary algorithms. InIEEE 4th International Con-
ference on Intelligent Systems Design and Applications 2004, pages 25–30,
Piscataway, 2004. IEEE. ISBN 963-7154-29-9.
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