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Abstract

This thesis considers variable metrics in the context oftsstic, function-value
free optimization in continuous search spaces. We arguetbahoice of a (vari-
able) metric or equivalently the choice of a coordinate exystan be decoupled
from the underlying optimization procedure. Aadaptive encodingrocedure
is presented, that is in principle applicable to any optatian procedure, and is
proved to recover theovariance matrix adaptation evolution stratefyMA-ES)
when applied to a simple isotrop&volution strategywith step-size adaptation.
The proof suggests that adaptive encoding should be ablepgmve the perfor-
mance of many stochastic optimization algorithms in patéicon ill-conditioned,
non-separable objective functions.



1 Introduction

Evolutionary ComputatioEC) or Evolutionary AlgorithmgEAS) is a collection
of meta-heuristics that borrow concepts from the biologealution and have
become popular in the last decades. In this work we consi@einEhe context of
stochastic searclor optimization. In a search or optimization problem we ¢des
an objective, cost, loss, error, or fithess function

f:S—R. 1)

In general, the objective is to find a candidate solution ppoig S in the search
space with a low objective function value (w.l.0.g. we cdesiminimization only).
In this work we will additionally confine ourselves to the t#abox scenario. The
function f is considered as black box and information pran only be aquired
by its evaluation. A sequence of paifs, f(z)) can be generated and utilized
in order to propose further candidate solutions. Evaluatiof f are regarded as
expensive and therefore the objective becomes two-folfdaghieving a solution
with a low objective function value and (2) evaluating onlsmall number of
candidate solutions. These two objectives are conflicting.

1.1 Historical Ontology

Evolutionary Algorithms (EAs) can be historically dividéato four branches.

e Evolutionary Programming2[f] invented in the 1960’s for evolving Finite
State Machines.

e Evolution Strategies (ESsp}] invented in the 1960’s for experimental op-
timization in engineering.

e Genetic Algorithms (GAs)41] invented in the 1960’s for the studies of
adaptive behavior with cellular automata and particul@dpularized with

[27].

e Genetic Programmingp[l] invented in the 1990’s for evolving computer pro-
grams.

The probably most important difference of the approachkdeas to their rep-
resentation of the search probleBvolution StrategieandEvolutionary Program-
ming use a real-parameter vector and are considered to mimiatewolon a phe-
notype level.Genetic Algorithmaise binary (bit-string) representation and mimic
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Figure 1: Evolutionary view of randomized black-box seargtith kind permis-
sion of Marc Schoenauer

a biological genotype. More recentlygal-codedGenetic Algorithms have been
proposed 18, 23] using an entirely different set of mutation and recomborat

operators than their binary counterparSenetic Programming@perates on tree
representations. In the following we focus our discussmretl-parameter repre-
sentations and investigate EAs as stochastic search pnased

1.2 A Generic Stochastic Search Procedure

In biological evolutionindividualsare a natural entity. Consequently, bio-inspired
optimization methods are often viewed and displayed asatipgron a population
of individuals, that is, in other words, a set of candidatieitians. The population
cycle of an evolutionary algorithm is displayed in FigureThe main components
of the cycle argparental selection—crossover, mutation—evaluation-vgar se-
lect The sets of Genitors and Offspring (yellow ovals) are catgly replaced
when operators “Selection” or “Crossover, Mutation,. . ré applied respectively
(rectangular boxes). The Parents set might or might not placed entirely with
the Survival Selection. For example, in elitist stratedhesbest individual will al-
ways survive in the Parents populatidvewcandidate solutions are only generated



Initialize distribution parameter8

while termination criterion not met
Sample\ independent points from distributioR (x|0) — x1,...,x)
Evaluate the sampled candidate solutioms, ..., x) on f
Update parameter® «— Fy(0, (1, f(x1)),...,(xx, f(x))))

Figure 2: Probabilistic view of randomized black-box séar¢ : R™ — R is the
objective function

for the Offspring population.

One important aspect is that systematic improvements,ds,anly take place
with the green Selection operators whereas the Crossowatatidn,... operator
will usually not lead to an improvement of solutions.

Figure2 takes a different viewpoint of a stochastic search proaddere, the
procedure is centered around sampling a parameterizedbdiin. This view-
point was adopted witkstimation of distribution algorithmi2]. Only the distri-
bution to generate a new Offspring population is paramedri This is sufficient,
as only the Offspring population actually contam@vcandidate solution points in
Figure2. All remaining operators are integrated in the Update patens prode-
cure, where the parameters of the sample distribution atated. In principle, any
stochastic search algorithm can be displayed in both viemt@oEvolution strate-
gies can often easily be cast into the probabilistic vié®] pnd the development
of covariance matrix adaptatiof37] was facilitated by this view point.

1.3 The Objective Revised

Assuming thatS C R" is a subset oR™, then a more concise requirement on a
search algorithm is to convergence to the optimurf.iThis objective is feasible,
given some reasonable assumptions on the propertigsE¥en more concise we
would like to associate kate to the convergence. Evolution strategies indeed have
been proved, in particular cases, to exhlbi-linear convergencgs], where for

the distance to the global optimurRy,, holds
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Here, k denotes the iteration step ands a constant. We can conclude that the
convergence rate is independent of the initial distancééooptimumR,. For a
negative constantthe algorithm converges to the optimum (tor- 0 it diverges),
whereexp(c) reflects the factor by which the distance to the optimum isiced

in n iteration steps.

1.4 Variable Metric

It has been recognized very early during the research orastic search algo-
rithms that the parameters of the sample or mutation digtdh need to be adap-
tive. In particular, an appropriate step-size has to betaddps, 77]. In a next step
the variances in each coordinate have been adapted indilida5, 73], while the
random realizations in each coordinate were still independThe final step was
the introduction otorrelated mutation§74] or a covariance matrixJ6, 37]*. For
multivariate normal distributions this means to contrdlpalirwise covariances be-
tween variables. The resulting covariance matrix define$act, a Mahalanobis
metric in the search space. For the identity as covariandeixttae usual Eu-
clidean metric is recovered. Choosing the covariance médrisampling with a
multivariate normal distribution resembles variable noatnethods like, for exam-
ple, quasi-Newton methods,[16, 28] in gradient based search. The estimate of
the inverse Hessian matrix in quasi-Newton methods seh&sdme purpose as
the estimate of the covariance matrix in stochastic seadgdrithms. In partic-
ular for ill-conditioned problems an appropriate estimas® be decisive for the
performance.

In [75] an iterative estimate of the Hessian matrix has been inted intosimultaneous per-
turbation stochastic approximatio(6PSA). Due to the lack of an adaptive step-size contras, thi
method is still of limited use in practic&volutionary Gradient SearcfEGS) [/(] is a method very
similar to SPSA but includes step-size control and has beemplemented witltovariance matrix
adaptation(CMA) [37] in [5]. In contrast to evolution strategies, SPSA and EGS not asly/an
ordering of solutions but also their objective functionues.
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1.5 No Free Lunch?

The No Free Lunch Theorem®FL) [63, 83, 80, 42, 87] reveal principle limita-
tions of search or optimization in the discrete domain. T Idtates that taken
over all functions no algorithm can perform better than anotheregithat solu-
tions are never revisited. A refinement of the theorem argjuatsthis is true if and
only if a set of functions is closed under permutatiéf, [30]. If only specific algo-
rithms are considered, the NFL can hold on even smaller $étmotions 2. In
continuous domain NFL is not sustained, [out it has been argued that computers
are necessarily confined to a discrete search space. Thefgests that it is im-
possible to find a generally well-performing algorithm, @ese, roughly speaking,
there always exist as many problems, where this alorithrhpgiiform badly as it
will perform well on other ones. Fortunately, NFL is virthairrelevant in prac-
tice, because either the search space under consideratiomeaalistically small
and even enumeration could be a reasonable option, or théeruoh functions
that need to be considered is way too large to be ever visited ence.

1.6 This Thesis

This thesis discusses stochastic variable metric metlww@wvblution strategies and
for continuous domain evolutionary or stochastic optirtic@a algorithms. First,
we present the covariance matrix adaptation evolutiortegfyain depth, which is
considered state-of-the-art in continuous domain evahatiy computation17].
Then we proof that this method can, in principle, be appl®é twide range of
search algorithms in continuous domain.

2 Covariance Matrix Adaptation Evolution Strategy

This section gives a concise introduction into covarianegrixm adaptation and is
partly taken from a manuscript written for lecturing thirdar students.

In the Covariance Matrix Adaptation (CMA) Evolution Strgyenewly gener-
ated solutions obey a multivariate normal distribution.r Biven (co-)variances,
the normal distribution has the largest entropy of all disttions inR"™. Refer-
ring to Fig.2, the view point adopted in this section, the parameter vetuf the
distribution consists of a distribution meam,, and a covariance matrix;'.

2The CMA Evolution Strategy: A Tutorighttp://www.Iri.fr/ ~hansen/cmatutorial.pdf


http://www.lri.fr/~hansen/cmatutorial.pdf
http://www.lri.fr/~hansen/cmatutorial.pdf

2.1 Basic equation

In the CMA Evolution Strategy, a population of new searchnpoi(individuals,
offspring) is generated by sampling a multivariate norniatrdbution. The basic
equation for sampling the search points, for generationberm = 0,1,2,...,
reads

29t @ 4 s@a (0. C® fork=1,...,\ 3
A s ) )

where

~ denotes the same distribution on the left and right side.

N(0,C9) is a multivariate normal distribution with zero mean andariance
matrix C9). It holdsm9) + c@WAN(0,CW) ~ N (m'9), (¢(9)2C9).

m,(fﬂ) € R™, k-th offspring (individual, search point) from generatigr- 1.
m(9) ¢ R", mean value of the search distribution at generagion

o9 e R, “overall” standard deviation, step-size, at generatjon

C¥ ¢ R™", covariance matrix at generatign Up to the scalar factas(®)”,
C'9) is the covariance matrix of the search distribution.

A > 2, population size, sample size, number of offspring.

To define a complete iteration step, the remaining questiiphadw to update the
distribution parameters (last line in Fig). Here, we need to calculate 9+,
CtD andgs@tD) for the next generatiog + 1. The next three sections will
answer these questions in turn.

2.2 Selection and Recombination: Moving the Mean

The new meamn 9t of the search distribution iswaeighted average of selected

; (g+1) (g+1).
pointsfrom the samplecy” "/, ... "

nw
mlt)  — Zwimi&“) (4
i=1




Zwi = 1, wyp > wy = > w, >0 (5)

where

1 < A is the parent population sizee. the number of selected points.

wi=1.., € Ry, positive weight coefficients for recombination. Foj_;., =
1/u, Equation 4) calculates the mean value pfselected points.

29V ith bestindividual out ok ™", ... & {?*Y from (3). The indexi : A de-
notes the index of theth ranked |nd|V|duaI ang (') < (i) <
- < f(acggjl ), wheref is the objective function to be m|n|m|zed.

Equation 4) implementgruncation selectioby choosing: < A out of A offspring
points. Equation4) implementsweighted intermediate recombinatiday taking
w1 > lindividuals into account for a weighted average. Assigwifgrentweights
w; is an additional selection mechanism and can increase tkiemakconvergence
rate on the sphere functiofiphere(x) = 31, 7 by about25% [3]. Intermediate
recombination allows for fast convergence rates in contlmnawith a large step-
size. The latter is favorable in order to circumvent a faldue to ruggedness of
the objective function landscape. The effect of intermiedi@combination was
interpreted agenetic repaitin [10].

The measure
m -1
et = (Z w?> (6)
i=1

will be repeatedly used in the following and can be paramgtassvariance ef-
fective selection massFrom the definition ofw; in (5) we can easily derive
1 < per < p, andpeg = p for equal recombination weightse. w; = 1/u
forall i = 1...u. Usually, ueg ~ A\/4 indicates a reasonable settingwof. A
typical setting could bev; o< p — i+ 1, andu ~ \/2.

2.3 Adapting the Covariance Matrix

In this section, the update of the covariance maifix,is derived. We will start
out estimating the covariance matrix from a single popatatf one generation
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(Sect.2.3.1). For small populations this estimation is unreliable ancdaptation
procedure has to be invented (rapkipdate, SecR.3.]). In the limit case only a
single point can be used to update (adapt) the covariancexmaateach genera-
tion (rank-one-update, Se@.3.2. The adaptation can be enhanced by exploiting
dependencies between successive steps applying cumul&get.2.3.2). Finally

we combine the rank-and rank-one updating methods (S&c8.3.

2.3.1 Rankyu Update

Estimating the Covariance Matrix From Scratch For the moment we assume
that the population contains enough information to reliagdtimate a covariance
matrix from the populatiod. For the sake of convenience we assurffé = 1 (see
(3)) in this section. For (@ = 1 the formulae hold except for a constant factor.
We can (re-)estimate the original covariance ma@%’ using the sampled

population from 8), x&*‘”l) .. x(9+1) via the empirical covariance matrix

A ( 1 ( 1 T
(g+1) g+1) g+1)
Cl) = Z Y Z T T Z
(7)
The empirical covariance matr@é%i;l) is an unbiased estimator 61(9): assum-
ing thex§9+1),z‘ = . A, to be random variables (rather than a realized sample),

we have thaE[C Ci’nng |C9 ] = CW. Consider now a slightly different ap-
proach to get an estimator f@'(9).

cltt) — %ﬁ: (") —m@) (") - m(g))T ®)

Also the matrixC(fH) is an unbiased estimator 61¥). The remarkable differ-
ence between7j and @) is the reference mean value. F@‘ﬁgﬂ) it is the mean
of theactually realizedsample. FoC(AgH) it is thetrue mean valuem'9), of the
sampled distribution (see)). Therefore, the estimato@é%l) and C(f“) can
be interpreted differently: whil€'¢y,, * estimates the distribution varianegthin

(g+1)
the sampled pomtsC(gH) estimates variances of sample@ps a:(gH) m9).

%In order to re-estimate the covariance mat,out of A A/ (0, I) distributed samples such that
cond(C) < 10, a sample size > 4n is needed, as can be easily verified in a numerical experiment



A minor difference betweerrf and @) is the different normalization§£—1
versus%, necessary to get an unbiased estimator in both cases) mé
degree of freedom is already taken by the inner summand.derado get a
maximum likelihood estimator in both casésmust be used.

Equation 8) re-estimateshe original covariance matrix. To “estimate” a “bet-
ter” covariance matrixg) is modified and the sameeighted selectiomechanism
asin @) is used B3.

=Y u, (24 —m@) (257~ m@) ©

i=1

The matrix C,(fﬂ)is an estimator for the distribution afelected stepgust as

C(Ag“) is an estimator of the original distribution of steps befeedection. Sam-

pling from C(9+1) tends to reproduce selectad. successfudteps, giving a justi-
fication for what a “better” covariance matrix means.

Following [30], we compareq) with the Estimation of Multivariate Normal
Algorithm EMNA ;50 [59. The covariance matrix in EMNAoy.; reads,
analogously to?),

1 & T
cuiy, = 22 ( (g+1) _ <g+1>) (ml(;q;l) _m<g+1)) . (10)

wherem (91 = 1 - mz(q;’l) Similarly, applying the so-called Cross-
Entropy method {o continuous domain optimizatiar][yields the covari-
ance matrix CEEJ;I)A Jopar " -€- theunbiasecempirical covariance matrix
of thep best pomts In both cases the subtle, but most importaietrdiice to
(9) is, again, the choice of the reference mean valEguation (0) estimates
the variancavithin the selected population whil8)(estimates selected steps.
Equation (0) reveals always smaller variances th@) because its reference
mean value is the minimizer for the variances. Moreover,@staonceivable
selection situationsl(Q) decreases the variances compare@'t6 .

Figure 3 demonstrates the estimation resultsaolinear objective func-
tion for A = 150, p = 50, andw; = 1/u. Equation @) increases the ex-
pected variance in direction of the gradient (where thectiele takes place,
here the diagonal), given ordinary settings for parent nempband recom-
bination weightsw,, ..., w,. Equation {0) always decreases the variance

“Taking a weighted sumy_*_, w; ..., instead of the mean}; > ..., is an appealing, but
less important, difference.



+1
4 C(EgMN)Aglobal

sampling estimation new distribution

Figure 3: Estimation of the covariance matriX ¢g,car(r) = — E?:l x; to be
minimized. Contour linesdptted indicate that the strategy should move toward
the upper right corner.Above: estimation ofC,(f“) according to 9), where
w; = 1/p. Below: estimation ofC(Egﬁlh)A ey @ccording to 10). Left: sample
of A = 150 (0, 1) distributed points. Migddle: th@ = 50 selected pointsdpty
determining the entries for the estimation equatisalil straight line¥. Right:
search distribution of the next generaticolfd ellipsoid$. Givenw; = 1/pu, es-
timation via Cf?“) increasesthe expected variance in gradient direction for all

p < A/2, while estimation viecgﬁﬁj)%lobal decreaseshis variance for any, < A

in gradient direction! Thereforel() is highly susceptible to premature con-
vergence, in particular with small parent populations, rehthe population
cannot be expected to bracket the optimum at any time. Hawirdarge
values ofy in large populations with large initial variances, the impaf the
different reference mean value can become marginal.

In order to ensure with3), (4), and ), that C,(f“) is areliable estimator,
the variance effective selection mass (cf. (6)) must be large enough: getting

condition numbers smaller than ten fﬁrff) ON fephere(x) = i, o7, requires
et = 10n. The next step is to circumvent this restriction @

10



Rank-u-Update To achievefastsearch (opposite tmore robustor more global
search), e.g. competitive performance .., the population size\ must be
small. Becausgi.s ~ \/4 also u.g must be small and we may assume, e.g.,
et < 1+ Inn. Then, it is not possible to get r@liable estimator for a good
covariance matrix fromg). As a remedy, information from previous generations is
used additionally. For example, after a sufficient numbegeaferations, the mean
of the estimated covariance matrices from all generations,

9

1 1 ;
cl+) — _— C i+ 11

becomes a reliable estimator for the selected steps. To rﬁ’é‘i?efrom different
generations comparable, the differernt’ are incorporated. (We also assume that
the covariance matrices, do not decrease fast, because otherwise old information
would dominate 11). Assumings(® = 1, (11) resembles the covariance matrix
from the Estimation of Multivariate Normal Algorithm EMNAS53].)

In (112), all generation steps have the same weight. To assigntrgerarations
a higher weight, exponential smoothing is introduced. GirapC(®?) = I to be
the unity matrix and a learning rate< c.o, < 1, thenC'9*%) reads

1
1 1
CUt) = (1—cey)CY + CCOVWCELQJF )
w
T
= (1- CCOV)C(Q) T Ceon Zwi yl(_;ty)\+1)yz(_§t]>\+1) (12)

i=1

where
ccov < 1 learning rate for updating the covariance matrix. kEg;, = 1, no
prior information is retained an@(¥t1) = 071])50,89“). FOr ceor = 0, NO

learning takes place ar@\9+?) = C(©), Here,cqoy ~ min(1, peg/n?) is a
reasonably choice.

i‘/z(;g,\ﬂ) = (‘”z('?,\ﬂ) —m) /a9,

This covariance matrix update is called rgmipdate B4], because the sum of
outer products inX2) is of rankmin(u, n) (with probability one). Note that this

sum can even consist of a single termy, i 1.
The numben /¢, is thebackward time horizothat contains roughlg3% of
the overall weight.

11



Becausel?2) expands to the weighted sum

g
CY = (1= Ceon) ' CO ooy Y (1= Ceo)?
1=0

1

U(i)2 CSH) , (13)

the backward time horizom\g, where abou63% of the overall weight is
summed up, is defined by

g
. 1
_ 9=t ~ ~ _ _
Ceov- > (1= ceor) 0.63~1-— . (14)
i=g+1—Ag

Resolving the sum yields

(- o) 2 | (15)
and resolving forAg, using the Taylor approximation fan, yields
1
Ag ~ ) (16)
CCOV

Thatis, approximatel$7% of the information inC(9*1) is older thanl /ccoy
generations, and, according ttg}, the original weight is reduced by a factor
of 0.37 after approximatelyt /c.., generations.

The choice of.., is crucial. Small values lead to slow learning, too largeueal
lead to a failure, because the covariance matrix degererétertunately, a good
setting seems to be largely independent of the function togtienized® A first
order approximation for a good choiceds, = .z/n%. Therefore, the character-
istic time horizon for {2) is roughlyn?/pieg.

Even for the learning rate..,, = 1, adapting the covariance matrix cannot be
accomplished within one generation. The effect of the ndafysample distribution
does not vanish until a sufficient number of generations. ufkssg fixed search
costs (number of function evaluations), a small populasize A allows a larger
number of generations and therefore usually leads to arfasteptation of the
covariance matrix.

This can be shown more easily, becag$e- ccov)? = expln(l — ceov)? = exp(gln(l —
Ceov)) R exp(—gceov) for small ccov, and forg =~ 1/ccov We get immediately(1 — ccov)? =
exp(—1).

®We use the sphere modglynee(z) = 3, 27 to empirically find a good setting for the pa-
rameterc..., dependent om and p.¢, realizing a condition number of about three. The realized
condition number is monotonous ... The found setting was reasonably applicable to any non-
noisy objective function we have tried so far.

12



2.3.2 Rank-One-Update

In Section2.3.1we estimated the complete covariance matrix from scratsimgu
all selected steps from single generation We now take precisely the opposite
viewpoint. We will repeatedlyipdatethe covariance matrix in the generation se-
guence using aingle selected stamly. First, this perspective will give a justifica-
tion of the adaptation rulel@). Second, we will introduce the so-called evolution
path that is finally used for a rank-one update of the covadanatrix.

A Different Viewpoint  We consider a specific method to producéimensional
normal distributions with zero mean. Let the vectgrs...,y, € R", go > n,
spanR™ and let\/(0,1) denote independerid, 1)-normally distributed random
numbers, then

90
N(Ov 1) Y1 + - +N(07 1) ygo ~ N (07 Z yﬁ'l?) (17)

i=1

is a normally distributed random vector with zero mean andadance matrix
% y;yl. The random vectorl(?) is generated by adding “line-distributions”

N(0,1) y;. The singular distributiooV'(0, 1) y; ~ N(0, y;yT) generates the vec-

tor y; with maximum likelihood considering all normal distribotis with zero

mean.

The line distribution that generates a vecgowith the maximum likelihood
must “live” on a line that includeg, and therefore the distribution must obey
NO,1)oy ~ N(0,0%yyT). Any other line distribution with zero mean
cannot generatg at all. Choosings reduces to choosing the maximum
likelihood of ||y|| for the one-dimensional gaussiaf{0, o2||y||?), which is
o=1.

The covariance matriyy™ has rank one, its only eigenvectors &g x
y with eigenvalud|y||?. Using equationX7), any normal distribution can be
realized ify; are chosen appropriately. In general, the vectemseed not to
be eigenvectors of the covariance matrix (and usually ate no

Considering 17) and a slight simplification of1(2), we try to gain insight into

the adaptation rule for the covariance matrix. Let the sunfl®) consist of a
(9+1)

. )
single summand onlye(g.; = 1), and lety,,; = w“Ung Then, the rank-
one update for the covariance matrix reads

C(g+l) — (1 - Ccov)C(g) + Ccov yg+1yg+1T (18)

13



N (0,C0) N(0,Cc) N(0.C?)

Figure 4: Change of the distribution according to the carme matrix update
(18). Left: vectorse; andey, andC® = T = ejel + esel. Middle: vec-
tors0.91 ey, 0.91 e9, and0.41 y; (the coefficients deduce from,, = 0.17), and
CM) = (1 — ceov) I+ coov y1y7T, Wherey; = (75%7)). The distribution ellipsoid
is elongated into the direction af,, and therefore increases the likelihoodwaf

Right: C? = (1 — coov) CY + ceoy Yoy, Wherey, = (%7).

The right summand is of rank one and adds the maximum liketitterm fory,
into the covariance matri€'(9). Therefore the probability to generajg in the
next generation increases.

An example of the first two iteration steps dfg) is shown inFigure 4. The
distribution A0, C(M)) tends to reproducgy, with a larger probability than the
initial distribution (0, T); the distribution\(0, C'®)) tends to reproducg, with
a larger probability thanv(0,C")), and so forth. Whery,, ...y, denote the
formerly selected, favorable steps|0, C(g)) tends to reproduce these steps. The
process leads to an alignment of the search distributida, C(9)) to the distri-
bution of the selected steps. If both distributions becofike,aas under random
selection, in expectation no further change of the covagamatrix takes place

[29].

Cumulation: Utilizing the Evolution Path We have used the selected steps,
Y9 = @) — m(©) /609, to update the covariance matrix i) and (L8).
Becausayy® = —y(—y)7, the sign of the steps is irrelevafar the update of the
covariance matrix—that is, the sign information is not uedalculatingC' 9+,

To exploit sign information, the so-callexolution paths introduced 6, 37].

We call a sequence of successive steps, the strategy takes awumber of
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generations, an evolution path. An evolution path can beesged by a sum of
consecutive steps. This summation is referred towamulation To construct an
evolution path, the step-sizeis disregarded. For example, an evolution path of
three steps of the distribution mea can be constructed by the sum

m(9+1) — m(g) m(g) — m(g_l) m(g_l) — m(g_z)
_|_
0'(9_2)

(19)

) )

In practice, to construct the evolution pagh, € R", we use exponential smoothing
asin (12), and start witp'”) = 0.7

mt) — m9)

0’(9) (20

p£9+1) — (1 — Cc) gg) =+ CC(2 - Cc)ﬂeff

where

pég) € R™, evolution path at generatign

c. < 1. Again, 1/c. is the backward time horizon of the evolution paththat
contains roughl\63% of the overall weight (compare derivation dfg)). A
time horizon betweer/n andn is reasonableZ]].

The factory/c.(2 — c.)uegr IS @ Normalization constant fgs.. Fore, = 1 and
Lo = 1, the factor reduces to one, apff ™ = (mg‘f;rl) —m9) /5@,

The factory/c.(2 — c.) uesr is chosen, such that
pU*t ~ N (0,0) (21)

(g+1) _ 1 (9)

pl@ ~ Tia ~N(,C) foralli=1,....u . (22)

o'(g)
To derive @1) from (22) and @0) remark that

2 " 1
(1—co)*++v/ce(2—¢c.) =1 and w;N;(0,C) ~ ——=N(0,C) .

i=1 Heff
(23)

"In the final algorithm 20) is still slightly modified.
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The (rank-one) update of the covariance magi%) via the evolution patlp(ngl
reads p6]

C(g+1) (1 — CcoV)C(g) + Ccovp(g+1)p(g+l)T . (24)

C

An empirically validated choice for the learning rate B¥is ccov ~ 2/n?. For
c. = 1 andu = 1, Equations 24), (18), and (L2) are identical.

Using the evolution path for the update ©fis a significant improvement of
(12) for small ., because correlations between consecutive steps ardtegplo
The leading signs of steps, and the dependencies betweseottive steps play a
significant role for the resulting evolution psgblﬁg“). Forc. =~ 3/n the number of
function evaluations needed to adapt a nearly optimal t@mvee matrix on cigar-
like objective functions becom&3(n).

As a last step, we combinéZ?) and @4).

2.3.3 Combining Rank-Update and Cumulation

The final CMA update of the covariance matrix combin&g) (and @4), where
leov determines their relative weighting.

CUt) = (1-¢—¢,)C9 4 ¢ ptDplotDT
—_———

rank-one update
—I—CHZ:wagJrl < )>T (25

ranks update

where

0<ep,e, < 1andcl+cM§1

z(;g,\H) = (x Eg,\H )/0'

Equation £5) reduces to12) for ¢; = 0 andc,, = c.,v and to @4) for ¢, = 0 and

€1 = Cecov- The equation combines the advantagesl@ énd @4). On the one
hand, the information within the population of one generatis used efficiently
by the rankg update. On the other hand, information of correlations keetw
generations is exploited by using the evolution path forrrk-one update. The
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former is important in large populations, the latter is intjgallar important in
small populations.

2.4 Step-Size Control

The covariance matrix adaptation, introduced in the ladi@a®, does not explicitly

control the “overall scale” of the distribution, the stepes The covariance matrix
adaptation increases the scale only in one direction fon satected step, and it
decreases the scale only implicitly by fading out old infatimn via the factor

1—c.ov. Less informally, we can state two specific reasons to initeda step-size
control in addition to the adaptation rul2g) for C'(9).

1. The optimal overall step length cannot be well approxedaby @5), in
particular if u.g is chosen larger than one.
For example, ofsphere() = Y5, 22, the optimal step-size equals

=11

approximatelyu \/fsphere(®) /1, givenC9) ~ T andpeg = p < n
[11, 64]. This dependency op cannot be realized byl@), and is also
not well approximated by25).

2. The largest reliable learning rate for the covariancerimmapdate in 25) is
too slow to achieve competitive change rates for the ovetaf) length.

To achieve optimal performance ¢fig,nere With an Evolution Strategy
with equal recombination weights, the overall step lengtistaecrease
by a factor of approximatekyxp(0.202) ~ 1.22 within n function eval-
uations, as can be derived from progress formuldsp. 229]. That is,
the time horizon for the step length change must be proputito »
or shorter. From the learning ratg,, in (25) follows that the adapta-
tion is too slow to perform competitive ofy here WheNeveeg < n.
This can be validated by simulations even for moderate d#oas, say,
n > 10 and smallueg, say,peg < 1+ Inn.

To control the step-size(9) we utilize an evolution path,e. a sum of successive
steps (see pagkd). The method can be applied independently of the covariance
matrix update and is denoted asmulative path length controtumulative step-
size control, ocumulative step length adaptation (CSAhe length of an evolution
path is exploited, based on the following reasoning (compéso Fig5).

e Whenever the evolution path is short, single steps canagi ether out
(Fig. 5, left). Loosely speaking, they are anti-correlated. Ipstannihilate
each other, the step-size should be decreased.
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Figure 5. Three evolution paths of respectively six stepsnfdifferent selection
situations (idealized). The lengths of temgle steps are all comparable. The
length of the evolution paths (sum of steps) is remarkaldfemdint and is exploited
for step-size control

e Whenever the evolution path is long, the single steps anetipgito similar
directions (Fig5, right). Loosely speaking, they are correlated. Because
the steps are similar, the same distance can be covered by feivlonger
steps into the same directions. In the limit case, whereamirizve steps
have identical direction, they can be replaced by an entagjegle step.
Consequently, the step-size should be increased.

¢ In the desired situation the steps are (approximately)qretigular in expec-
tation and therefore uncorrelated (Ftg.middle).

To decide whether the evolution path is “long” or “short”, e@mpare the length of
the path with itexpected length under random selecffodnder random selection
consecutive steps are independent and therefore undeddliae just realized that
“uncorrelated” steps are the desired situation). If s@éedbiases the evolution path
to be longer then expected,is increased, and, vice versa, if selection biases the
evolution path to be shorter than expecteds decreased. In the ideal situation,
selection does not bias the length of the evolution path badength equals its
expected length under random selection.

In practice, to construct the evolution paih,, the same techniques as ROJ
are applied. In contrast t@(), aconjugateevolution path is constructed, because

8Random selection means that the index (compare 4)) is independent of the value mﬁ;";”
foralli=1,...,)\,e.04: \=1.
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the expected length of the evolution path from (20) depends on its direction
(compare 21)). Initialized with pf,o) = 0, the conjugate evolution path reads

_1 mlgt) _ o (9)
p((jg—i—l) = (1 - Co)P((;g) + 60(2 - CU),UOIT C(g) ? u (26

0’(9)

where

p5,9> € R™ is the conjugate evolution path at generation

¢ < 1. Again,1/c, is the backward time horizon of the evolution path (compare
(16)). For smalli.g, a time horizon betweegyn andn is reasonable.

V¢s(2 — ¢, ) et IS @ normalization constant, sezy.

Clo) 2 def B@ DO B@T wherec® = B (D(g))2 B©®" is an eigen-
decomposition o29), where B9 is an orthonormal basis of eigenvectors,
and the diagonal elements of the diagonal mafbi¥’ are square roots of
the corresponding positive eigenvalues.

1
ForC@ =1, we haveC¥ "2 = I and @6) replicates 20). The transformation

1
C9)72 re-scales the step(911) — m(9) within the coordinate system given by
B,

_1 —
The single factors of the transformatigi®) >= B@D® 'B®" can
be explained as follows (from right to left):

B©®" rotates the space such that the columngBé?), i.e. the principle
axes of the distribution\(0, C9)), rotate into the coordinate axes.
Elements of the resulting vector relate to projections ¢ht corre-
sponding eigenvectors.

Dw™! applies a (re-)scaling such that all axes become equakylsiz

B rotates the result back into the original coordinate syst@ims last
transformation ensures that the principal axes of theilligion are
not rotated by the overall transformation and directionsarfsecutive
steps are comparable.
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Consequently, the transformatiag®(¥)” 2> makes the expected length pfﬂ“)
independent of its direction, and for any sequence of redlizovariance matri-
cesCé‘QO’mW we have under random selectip§f ™) ~ N(0,1), givenpl”) ~
N(0,1) [29].

To updater(9),

that is
In oWt = In gl + B 1 (27)
d, \ EJN(0,T) ’

H with its expected lengtk|| A (0,1) ||,

where

d, ~ 1, damping parameter, scales the change magnitudiecdf). The factor
¢, /ds is based on in-depth investigations of the algorithi®] [

EIN(0,T)| = V2T(Z)/T(2) ~ Vr(l — & + 52), expectation of the
Euclidean norm of & (0, I) distributed random vector.

For |[p¥™| = E|N(0,T)| the second summand iR7) is zero, ands9 is
unchanged, while® is increased foilp’ || > E|N(0,1) |, ands@ is de-
creased foilp¥y ™| < E[INV(0,T)].

Alternatively, we might use the squared n0||rpf,"+1) ||?in (27) and compare
with its expected value [4]. In this case 27) would read

1
lneWt) — e 4 =2 (M — 1) (28)
N 2d n '

This update will presumable lead to faster step-size inergmand slower
step-size decrements.
The step-size change is unbiased on the log scale, beBaiise9 1) |o(9) | =
Ino@ for p(9+1) ~ N(0,I). Equations 26) and @7) cause successive steps of
the distribution meam:(¥) to be approximately™(® ~'-conjugate.

In order to show that successive steps are approxmél’éqg/_ -conjugate
first we remark thatZ6) and @7) adapto such that the length gb, (g+1)
equals approximatehE||A(0,1)||. Starting from (E|N(0,1)[)? =~

2 T
Ip¥ V)" = pltD ptY — RUSTRHS of (26) and assuming that the
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_1
expected squarddngthof C(9) % (m(9+1) —m(9)) is unchanged by selec-
tion (unlike its direction) we get after some computations

p((jg)TC(g)*%(m(g-f-l) —m@)~0, (29)
and
1 T -1
(C<g>zp5_g>> c0 ™! (mO+) —m) ~0 . (30)

Assuming that the re-scaled constructing steps fr@6) become roughly
perpendicular, as under random selection, means

T
<C<g1>—% (it m(gn)) Clo) () —mis)) ~ 0

(31)
for g1 # g2. FoOr|gs — ga2| < 1/ccov We can assum€9) ~ C92) and
settingC®) = (C9) 4 C(92)) /2 yields

(m(91+1) _ m(gl))Tc(9)71 (m(gz+1) _ m(.qz)) ~0 . (32)

T _1
Givenl/ceo, > 1and @9 we assume algpy " C@ "2 (mo+) — m @) &
0 and derive

(m<g> _ m(g—n)T co! (m<g+1> - m<9>) ~0 . (33)

Thatis, the steps taken by the population mean become apmtBtyC(g)fl—
conjugate.

Becauser9) > 0, (27) is equivalent to

o0t = 509) exp Co m -1 (34
ds \ E|INV(0,T)

3 Invariance

Invariance, in physics referred to sgmmetryis a fundamental concept in science.
The purpose of invariance is well reflected in the followingote attributed to
Albert Einstein:
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The grand aim of all science is to cover the greatest numbeimgfiri-
cal facts by logical deduction from the smallest number gfdifieses
or axioms.

Invariance is the mathematical concept associated wighdtini. For example, we
desire a physical law or biological model to be invarianttgisonmental parame-
ters, say weekday, temperature, or air humidity. Inclusibthese parameters into
the model or the need for controlling them makes the modekmsomplex and/or
less general. The more invariance properties a model éghini the fewer depen-
dencies on exogenous parameters the model reveals, theisitie applicability
and the greater is its predictive power.

The same idea holds for invariance properties of searchritligts. In search,
invariance properties induce equivalence classes of tilageftinctions, on which
the performance of the search algorithm is identical. Cquently, any result
observed on a real world problem, or on a test function, dagsonly hold for
this single problem instance, but inevitaldgneralizes to the complete class of
problems induced by the invariance propettyereof the tested problem is an ele-
ment. Hence stronger statements on the performance of snehsalgorithm can
be made—a greater number of empirical facts is covéred.

The drawback to invariance properties in search is that e¥eman invariance
property is achieved, some information cannot be explagtegmore. For exam-
ple, rotational invariance means to abandon exploitatiothe orientation of the
coordinate system and therefore exploitation of sepatabive review important
invariance properties of search algorithms.

3.1 Invariance under Function Value Transformations

First we consider invariance under transformatidhs R — R of the objective
function value, specifically for the objective functigifz) = 7 (g(x)), for all
g:R*"—R.

e Invariance to adding a constant to the function value, thagt & 7 (g) =
g+aforack.

e Invariance under scaling of the function value, thaf is 7 (g) = a x g for
a > 0.

®Invariance per se doemtimply good performance, inly provides meanto generaliz€favor-
able (and unfavorable) performance observations.
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e Invariance under order preserving transformations of thieaiive function
value, whereT is a strictly monotonically increasing function. Invarén
under order preserving transformations includes the alisiexl invariance
properties and is much more general.

Because CMA-ES depends only oanking of function values, it achieves the
above listed invariance properties. The sequence of gexesgarch points is in-
dependent of” as given above. We believe that this is a very important feaii
comparison-based search methodd.|

3.2 Invariance under Search Space Transformations

LetU : R™ — R" be a transformation of the search space. We consider iméa$a
for the objective functionf(z) = ¢(U(x)) under certain transformatioris, for
all g : R™ — R. Strictly speaking, invariance undér only holds, if also theni-
tial conditionsare chosen appropriately. In CMA-ES initial mean and cavare
matrix of the search distribution must be chosen accorgling|

Translation invariance means invariance undéf(z) = x + a for a € R".
Translation invariance must be taken for granted in cowtirsldomain search.
Lacking translational invariant must be interpreted asidg\a inherent
problem independent assumption about the location of thienapsolution.
For a search algorithm this seems to be a contradiction mgerFor ex-
ample, if zero is a distinguished solution point for the aidpon, on many
test function sets exceptional performance can be achidtdhe result is
entirely artificial. In contrast, the initial solution shdube interpreted as a
justified problem dependent assumption about the location of thienapt
solution.

Scale invariance means invariance undér(x) = ax, wherea > 0. From
the algorithm descriptions as given below, and given the@pjate initial
conditions, one can easily verified that CMA-ES is scaleriave.

Finally, we have invariance properties whéi¢xr) = Ax and A is a full rank
matrix.

Diagonal invariance is invariance under diagonal linear transformatiares,un-
der a scaling of variables. The matukis diagonal.
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Rotational invariance is invariance under angle preserving. rigid linear trans-
formations of the search space (rotation, reflection). T&at is an or-
thogonal matrix. Rotational invariance is closely relatedecomposability
and separability (see above), because, in most cases,ralslefanction be-
comes non-separable under rotation. Therefore a searotlitalg can only
eitherexploit separabilityor be rotational invariant.

General linear invariance is invariance under any full rankg. invertible matrix
A. This invariance includes rotational and diagonal invar&aand requires
to abandon any inherent model of isotropy and scales. The &8As in-
variant under general linear transformatiofis][

We conjecture that the impact of an invariance propertyleted to the degrees of
freedom related to the transformation. Consequentlyoghal and general linear
invariance must be considered important all together witlaiiance under order
preserving transformations of the objective function ealu

Most likely in practice, initial parameters cannot be choaecording to a de-
sired search space invariance property. Therefore, amiamiasearch algorithm
must also be adaptive: initial settings, in case with poofgpemance, must evolve
within the iteration sequence into “the invariant” paraeretalues, preferably with
good performance, rendering the algorithm as independahganitial conditions
as possible. Adaptivity has the additional advantage thahges of the optimal
parameter values over timee. their dependency on the position in search space,
can be assimilatéfl. While any time-invariable distribution exhibits genelia-
ear invariancegiven the (initial) distribution parameters are chosen eqpiately,
the lack of adaptivity renders it rather useless. Adaptimist be regarded as the
essential practical counterpart of any invariance prophidt depends on the intial
conditions.

4 Adaptive Encoding

In this section we prove rigorously that the Covariance Madaptation Evolu-
tion Strategy (CMA-ES) can be decomposed into two maiimiiependentompo-
nents. A comparatively simple evolution strategy with stgqe adaptation and an
adaptive linear encoding-decodimgechanism. The prove shows that the efficient

1%The most prominent examples are step-sizes which often desease by several order of
magnitudes during the evolution.
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adaptation mechanism of CMA can be applied to any continalmmsain search
algorithm. This is a very powerful result.

4.1 Notations
The following notations are used

S the state spaceof the search algorithm;4 : S — S] an iteration step of the
search algorithny,;

Tp:S — S an invertible transformation, thdecoding of the state space, the
change of representation. Thig is parameterized by a matri® and there-
fore uniquely depends aoB;

B € R™"™ a full rank matrix, representing (i) a neeoordinate systemand a
coordinate system transformation R", and (ii) a problemrepresentation
and lineardecodingof candidate solution® : « — Bx;

U:R™ xS —R"™" (B,s)— U(B,s) the change of representation by up-
dating the matrixB. For convenience, we assume that all necessary infor-
mation to updateB is included in the algorithm stateand we may write
U(B) instead ot/ (B, s);

N(0,I) e R™ indicates g0, 1)-normal distribution in each coordinate

1 : o indicates the index of theth best solution when evaluated gnfor example,
onthe se{x,,...,x,} we havex,y) = argmin,_; _, {f(z:)}

4.2 Introducing Adaptive Encoding

Adaptive Encoding has been introducedin][and is shortly revised in the follow-
ing. Letf : R™ — R be an objective function to be minimized. A search algorithm
proposes new candidate solutions in an iterated procedutezaluates them on
f. We denote one iteration step.ds : S — S, whereS denotes the state space of
the algorithm. The iteration step can be surrounded by aading-decoding step,
wherels : S — S is the decoding transformation. Here we assume Thats
parameterized by am x n-matrix B. The new “encoded” algorithm is defined as

AP:S — 8 (35)
s Tp(Apn(Tz'(5))) (36)
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or
AP =TpoApgoTy' . (37)

The mappindl's is a decoding of the algorithms state.7l§ and B are the iden-

tity we haveAJifB = A. We assume, for convenience and w.l.0.g., that recently
evaluated solutions are part of the algorithms state. ThexnB serves as linear
decoding map.

Remark 1 (Evaluation of solutions) In order to make use of E¢37), we have to
ensure that candidate solutions are used in their origiregresentation. The so-
lutions must be decoded for evaluation. In other womi]a,B in Eq.(37) operates
onfo B.

Remark 2 We shall choos&'s such that solutions which are part of the state space
are decoded by the application &f. With an abuse of notation, or where the state
space consist of a single solution only, we write for somﬁiﬂhatBTgl(a:) =x.

Considering Remark, we can execute the algorithi# in any coordinate sys-
tem of our choice. The new coordinate system, where the tipesaofAfoB are
effectively conducted, is defined . Optimizing f o B instead off renders
A independent of thgivencoordinate system (iB is chosen independent of the
given coordinate system). E37) becomes particularly meaningful whd® is
adapted.

Finally, in order to specify the objective of adaptive enogdwe assume to
have a performance measure when running an algorithm onjective functionf.
The performance measure determines whether one algorthetter than another.
For example, a typical, quantitatively useful measure ésrtbmber of candidate
solutions evaluated ofi until a target function value is achieved.

Equation 87) represents an iteration step of a search algorithm withdai a
tional encoding-decoding procedure. The encoding is patamzed by ar» x n-
matrix; it therefore adds.” degrees of freedom. Obviously, the idea is to find a
good encoding for algorithrl.

Aim 1 (static encoding) The goal of finding a good encoding is to find a transfor-
mation7g, such that

Tpo Ags,poTy" outperformsA,
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Because the transformatidn; is static, it needs to be applied only once before the
first iteration, and when solutions are evaluated or dedigteTherefore, the static
encoding is usually part of the design of the objective fiomcivhile Af is applied.

The static formalism of Aiml is indeed not very interesting. To get a more
interesting situation, we need to considengmlateor adaptationof the encoding
Tg.

Definition 1 (Adaptive Encoding) Given an algorithmi, an encodingl'z, pa-
rameterized withB, and an updatel/, the iteration step of an adaptively encoded
algorithm in states € S is defined as

5 TBO.AfoBOTE;l(s) (38)
B — U(B,s) (39)

where— denotes the assignment operator digb A, goT; ' (s) = Te(A,g(T5' (5))).
We writeTs o AfoB o Tgl ; U(T'p) to denote the iteration step of Equatiof&s)
and (39).

Obviously, any iterative algorithrd can be plugged into the adaptive encoding
mechanism.

Proposition 1 (Adaptive Encoding is universal) The Adaptive Encodingifioef-
inition 1 can be applied to any search algorithm—any search algoritam be
adaptively encoded.

Proof The proposition follows directly from the definition @f; as invertible map-
ping fromSto S. O

Even though Propositiofh is just about trivial, it is of utmost importance for
the implications of our results, because it establishegytreral applicability of
any effective adaptive encoding.

Analogous to Aiml, we consider the merits of an adaptive encoding.

Aim 2 (adaptive encoding) Find a transformatiorii” and an updaté/, such that
for a givenB’ and a given initial B

TpoAspoTy": U(Ts) outperformsly o A, g o Ty

The left iteration step updates the encoding, the rightiien step applies a con-
stant encoding] s, to algorithm A.
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Taking only a single iteration step, Ailhxdoes not depend on the updateand it
reduces to Ainl. Consequently, AiR becomes only interesting, when an iteration
sequencés considered. Indeed, in arealistic automated scenariaglaptation can
only be achieved in the iteration sequence.

Finally, we define three cases/scenarios when considetiimg2A

Scenario 1 (Standard scenario) The initiaB equalsB’. Aim 2 shall be satisfied
for most givenB'.

The standard scenario applies in particular if there exastoptimal B, that
does not depend on the position in search space. In thisfcasB, = B, we

cannot outperform’s o A g o Tp'.

Scenario 2 (Ambitious scenario) The initiaB equalsB’. Aim2 shall be satisfied
for all givenB'.

Satisfying the ambitious scenario implies that no fixedraptiencoding exists and
a changing encoding can be advantageous compared to anfigeding. Both,
the standard and the ambitious scenario are reasonabletiobge depending on
the given objective function.

Scenario 3 (Unrealistic scenario) For all initialB # B’, Aim2 shall be satisfied.

As we might be able to choosB arbitrarily bad, it seems unrealistic that Aitn
can be satisfied for any initidB # B’ in general.

In the following we propose and investigate an effective i@aymplement
adaptive encoding as given in Definitidn

4.3 An Adaptive Encoding Procedure: Akva

For a thorough definition of an adaptively encoded searcheguhore we need to
defineTs and{/. The choice of the transformatidfiz; depends on the state space
of the algorithm to which adaptive encoding is applied andissally not very
involved. Here, at first, we present a generic updatel' he procedure is given in
Procedurel AEcuwa-Updaté! (p. 29). The procedure takes as input a number of
solution points, sorted according to their objective fimtivalue, and a matriB.
The matrixB is updated and considered as “output” of the procedure. eTimain
equations of the update procedure are derived from the CNBA4S referenced in
the procedure.

Matlab code of AEwa-Update is provided ihttp://www.lri.fr/ ~hansen/AEupdate.m
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Procedure 1: AE cwaUpdate( (x1,...,z,), B)

updates the encoding matrR using theu recent best-ranked candidate so-
lutions

1 given parameters);, cp, c1, ¢,

2 givenm € R™ andp € R" from last iteration, op = 0, m = x;

3 let matricesB° orthogonal, andD diagonal, with diagonal elements sorted

“won

in ascending order «~" assigns accordingly

4m =m
6 set scalarsy; > 0, fori =0, ..., u, see text
Tp—(1—cp)p+ /cp(2—cp) ag(m—m™) Il Eq. (20)
8 Cp = 2ty w; of (T —m™ ) (i —m7)T
9 set scalary, > 0, see text
10 C — (1—¢; —¢,) BB" + ciappp™ + ¢,C,, /Il Eq. (25
11 B°DDB° +— C /I eigendecomposition
12 optionally normalizeD
13 B« B°D /I encoding matrix
Proposition 2 Let o denote a step-size and; = >, w?. Letay = YL,

a; =0 Y fori=1,...,pu, ap = 1. Then, AkEma-Update implements the update
equations for the evolution patp’’, and the covariance matrix('¥) = BBT,
in the (u/pw, A)-CMA-ES.

Proof Assuming thatz,,...,x, are theu best solutions in the recent iteration
step, line5 computegn according to Eq.4). Lines7 and10 replicate the covari-
ance matrix update equationadf and @5) with added or renamed normalization
coefficients, denoted asanda. Substituting the coefficients results in the original
equations. O

A slow change ofB might be desirable. Whil€" will only change slowly,
as long as:; andc, are small, the decomposition 6! does not ensure a similar
behavior forB° and D. For this reason, the diagonal elements are sorteD.in
We conjecture, that lines1to 13 can be replace by a cholesky decomposition, or,
more promising, by an incremental cholesky update, sinkddi’ 7], that ensures
small changes, as long as andc, are small. In this case, it might be sufficient
to only encode the solutions for the function evaluation, &sdan approximation,
completely abandon the encoding-decoding of the algosthtate.
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4.3.1 Choice of Parameters

In Procedurel AEcwa-Update, the scalars, anda; for i = 0,.. ., u, need to be
chosen. They normalize the input entries for the covariana&rix update (most
of them are the difference between a new solution and thedorrean). In the
original CMA, we can derive the expected lengths of the ingnttries from the
sampling procedure. Under random selection the normaénéikes are distributed
according to

N(0,C) = BAN(0,I) . (40)

In general, we cannot assume to know the expected lengthwedhput entries,
therefore we need to normalize them. In E4Q)( the expected squared length of
the decoded input entnZ|| BB N (0, 1) | i
malization to length/n. Keeping this in mind, we discuss the choice of the scalar
coefficients in turn?

A0 = TETam—m)| normalizes the differenc®~!(m — m™) to length/n.
onsequentJy, only the direction is relevant and the alsdize of the dif-
ference is disregarded.
o = m , fori = 1,...,u, is the conservative choice, where the

length of the differencéB~!(x; — m ™) is disregarded. In general, we rec-
ommend to choose

vn

max( medlan (l])>
B =1,
wherel; = ||[B~'(x; — m™)|. In this way, the median is set to “length”
v/n and the maximal length is set {9/n with 3 > 1. We recommend
6 = 2. Unusual large entries may, for example, occur if solutiaresorigi-
nally sampled from a distribution with heavy tails. By chanan outranging
solution could enter the procedure despite a bad objeativetion value and
an unjustified very large change 8f would result.

a; = fori=1,...,u , (41)

ap = 1 will be the usual choice, while, = % is a conservative alternative and
will not allow to utilize the evolution path effectivelyi, = 0 would be even
more conservative.

2We ignore the case of denominators being zero, where thectigp coefficienty can be set to
any positive number.
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Finally, we give the default settings for the constants use€eMA-ES-Update
and discuss the choices in turn.

cp = % is the learning constant for the evolution path, which stidué usually

between—= and —2- [37]. For largerc,, the effect of the evolution path
vn n+1 p

will attenuate. The backward time horizon for the evolutjmath is roughly

cp~t. We choose as default the “conservative” limit of the usedinge,i.e.

a comparatively large,.

In(p+1)—Ini

w; = M -, fori = 1,..., u are the recombination weights. They
pin(p+1)=324_ Inj
(must) sum to one and obey; > --- > w, > 0. Generally, we choosg
being half of the overall generated number of solutions feeation (before
selection).

c1 = # is the learning rate for the rank-one update in lifteof CMA-

2
ES-'apJa‘éetfé (middle summand), with,, = 0.2 as default. The denominator
being quadratic im reflects the degrees of freedom in the encoding matrix
B. The formula is derived as a simplification from the origif@mulation
in [30].
Meff_z"‘MlH . . .
Cu = QNI T a1 the learning rate for the rank-update (right summand
in line 10), with acov = 0.2 anday, = 0.2 as default. With increasing.g,
the learning rate increases and gets close to one.

acov = 0.2 must be chosen positive and such that ¢, < 1. The default value of
0.2 is about ten times smallerge. considerably more conservative, than for
CMA-ES. Too large values fafico, potentially lead to a failure. Too small
values slow down the adaptation. At least a minimalisti@paater study for
Qoy IS recommended.

The final parameter setting needs to be decided specifiaallg §iven algo-
rithm. We believe that the given guidelines will be usuallffigient to find good
settings with reasonable effort. To our experience, a gaiting works across
many objective functions and the identification needs todmlacted only once
on a few simple test functions.

4.3.2 Application of AEcma-Update to CSA-ES

We apply the introduced update procedure to an evoluti@egly withcumulative
step-size adaptatiofb8, CSA-ES].
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CSA-ES Algorithm 2 implements the CSA-ES. The main iteration step of the
algorithm is outlined in Procedur&

Algorithm 2: (u/puw, A)-CSA-ES

1 given fitnessf

2 initialize population{x,,...,x,} € R"
3 initialize step-sizer > 0

4 initialize evolution pathp, = 0

5 repeat

6 CSA-ES-Stepf, (x1,...,x,),0,Ps)
7 until stopping criterion is met

Procedure 3: CSA-ES-Step( f,(x1,...,%,),0,Ps)

1 given parameters);, cp

2m” =Y ww

3x;—m~ +oN(O,I), fori=1,...,\

4 evaluater; on f — x;,, fori=1,... A

5x; «— Xy, fori=1,...,A /I sorted
em=>"" wwx

7

po’<—(1—co)p0+ 60(2_60)/’1’eﬂ‘%(m_
- llpo ||
g<—anp<cch (W_1)>

[e¢]

AEcua-CSA-ES Forapplying adaptive encoding to CSA-ES, we choose the fol-
lowing invertible encoding for the state variables in CSA;E

Tg: ((x1,...,24),Ps,0) — ((Bx1,...,Bx,), B°ps,0) . (42)

BesidesB for encoding the solutiong;, the orthogonal matrixB° (i.e. B with
normalized columns) is used for encoding the evolution pathsee also Sec-
tion 2.4

Finally, in Algorithm4, adaptive encoding is applied to CSA-ES, where-fk-Update
is used to update the encoding.
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Algorithm 4: AEcma-CSA-ES
Shaded areas add to CSA-ES and implement the adaptive agcddicma

given fitnessf
initialize population{x,...,z,} € R"
initialize step-sizer > 0
initialize evolution pathp, = 0
initialize encoding matrixB = I
repeat
Tgl((mly e am,u)vpcr)
CSA-ES-Stepf oB , (z1,...,%,),0,Ps)
9 TB((mly---amu)vpo)
10 AECMA—Update{(wl, e ,:IZM), B)
11 until stopping criterion is met

o g~ W N P

o

4.4 AEcywa-CSA-ES Recovers CMA-ES

We show now that the adaptive encoding & recovers the original CMA-ES
when it is applied to CSA-ES as in Algorithsh For practical purpose we rewrite
the CMA-ES from Sectior2 in Algorithm 5 and Proceduré.

Algorithm 5: CMA-ES

1 given fitnessf

2 initialize population{x,,...,x,} € R"
3 initialize ¢ > 0 (step-size)

4 initialize evolution pathp = p, =0

5 initialize C = I
6
7
8

repeat
CMA-ES-Stepf, (x1,...,x,),C,0,p,Ps)
until stopping criterion is met

We now proof that Algorithnat and Algorithm5 are identical, that is, if AEwa
is applied to CSA-ES the CMA-ES is recovered.

Theorem 1 (Recovery of CMA-ES) GivenTg as in Eq.(42) and the scalars for
AEcma-Update in each iteration as given in Propositi@n then the CMA-ES-
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Procedure 6: CMA-ES-Step( f,(x1,...,z,),C,0,p,Ps)

1 given parametersy;, c,, cp, €1,y

2 let matricesB° orthogonal, andD diagonal, with diagonal elements sorted
in ascending order

3m- =) wa, /I previous population mean

4 B°-DDB° =C /I eigendecomposition

5 C—1/2 — B°D-1B°T

6 x; —m~ +0B°DN(0,I), fori=1,...,\

7 evaluater; on f, fori=1,... A

8 x; «— x;y,, fori=1,... A /I sorted

9 M = Zé—;l W; T;

10 Py (1 _Ca)p0+ Co (2_00),“01{ C~

1 p—(1—cp)p+/cp(2— cp)ptest h(po) 2 (m —

12 C, =" w Cr%(acZ —m7)(x; —m™)T

13C «— (1—c¢;—c,)C+appt +c,C,

- ||PUH
14 O 0 exp (27 (EII ©.0] ~ 1))

1p%(m —m7)
m”)

(/ pw, A)-CSA-ES (Algorithml) implements theu(/ puw, A)-CMA-ES (Algorithnb).

Proof We assume the same (initial) state ff, ..., x,), o, C, p,, pin AEcma-
(/ ppw, A)-CSA-ES and £/ pw, \)-CMA-ES after line 6 in both algorithms and
refer to this state a®wop entry We investigate one iteration step.

First we consider the sampled evaluated solutiengori = 1,..., A, in CSA-
ES-Step. Because the solutions are evaluatefiloB we considetBx;. We have

Bx; — B(m™ +oN(0,1))
nw
=B w;z;+0BN(0,1)
=1

m
= Z’LUZ BZBZ' —I-O'BODN(O,I) (43)
=1

With the definition of 7z we find thatx; in CSA-ES-Step equal®'x; at the
loop entry. Therefore the new solutions evaluatedfoaccording to 43) are the
same as those in line 6 of CMA-ES-Step. The new solutBns in CSA-ES-Step
correspond to the new solutions in CMA-ES-Step. Becauséz(x) = Bx we
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find that (x1,...,x,) at the loop end is identical in both cases. Consequently,
with the linearity of B, we recoverm andm™ from lines 3 and 9 in Procedu@
CMA-ES-Step byBm andBm ™ from lines 2 and 6 in ProceduBsCSA-ES-Step.

It remains to be shown that Adma-CSA-ES recovers the update pf, o, p
andC in CMA-ES. We treat each variable in turn.

We investigate the evolution pagh), for the step-size in CSA-ES-Step which
is transformed withB° before the loop end.

TB (pa) = Bopa (44)

« B° ((1 — Co)Po +VCo (2 — Co) e %(m - m_)>

= (1 _CO') B°p, + V Co (2_00)/%1{ %Bo(m—m_) (45)

The B°p, equalsp, at the loop entry. Usingn andm ™ from the original coor-
dinate system, we compute the rightmost termdd to

B°(B'm - B 'm™)=B°B '{(m -m")
= B°(B°D)"'(m —m")
=B°D'B°T(m —-m"™) , (46)

where B = B°D. Therefore, Equation4f) recovers the update rule for the
evolution pathp, in CMA-ES (line 10 in CMA-ES-Step).

BecauseB° is orthogonal we havd B°p, || = ||p,| and consequently, the
step-size update is identical in both cases.

Finally, completing the proofp andC are updated in line 10 of Agya-CSA-
ES according to the CMA-ES as shown in Propositkn O

Theoreml supports the hypothesis that Afza-Update is an efficient way to
update the representation matiix, as CMA-ES is known to efficiently adapt the
principle axes of the coordinate system, where the indegr@ngampling takes
place most efficiently. First empirical evidence has beepmyin [31].

5 Perspectives

In this section a few directions of future research perspestfor stochastic vari-
able metrics methods are presented.
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5.1 Variable Metrics Methods

In the present thesis PCA-based learning and adaptatidnéhastic search algo-
rithms has been discussed. Here, we outline two lines ofillesiture research
directions for variable metrics methods.

5.1.1 Large scale optimization

The methods discussed in this thesis estimate or adapt internal parameters.
The application of such methods becomes of limited benefiaige-scaleop-
timization with typically more than a hundred or even thowds of continuous
parameters. General limitations stem from the fact thathi@)general adaptation
time of these methods amount 4o n? function evaluations and (b) the internal
computational costs are at least:? for each function evaluation. Both facts limit
the application of such methods to large scale optimization

In order to address large problem sizes, the degrees ofdmeeaa the sampled
search distribution should be reduced. A first, very praliany step in this direc-
tion was taken inq6], where no parameter dependencies are modeled. However,
essential dependencies between parameters need to beedaiptwrder to solve
non-trivial problems. For example, in the spirit dimensionality reductiononly
a few large components might be learned. Respective workpnegously pro-
posed for asinglelarge componentyg][59], or for several components (], while
the latter only aimed to reduce the internal time and spaogptaxity of the algo-
rithm. Overall, there is a clear lack of methods, that perf@momparably well as
those presented in this thesis, but show this performaneamna subset of less
complex functions. Compared to a PCA, these mechanismawiless general,
but achieve a better scalability with the search space diinen

Building blocks for steps in this research direction aracipal component
learning [57] and minor component learningc4][55], well-know machine learn-
ing techniques that must be customized for their incorpomanto stochastic search
algorithms. Based on PCA and minor component analysis, eseme compo-
nent analysis{9] could be explored. We expect that it should be possibledace
the learning time fostill complex landscapdsy approximately one order of mag-
nitude fromoc n? to  n.

5.1.2 Non-linear models

The second line of future research aims at learming-linear models This is, in
a sense, the opposite direction compared to the previoeanesline. Non-linear
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models generally contain more parameters than linear driesefore, the degrees
of freedom for non-linear models must be carefully restdct

First attempts along this line were taken Y], [14], [61] usingindependent
component analysidCA). In evolutionary computation, PCA can efficiently ren
der amutationoperator independent of the coordinate syst&af. [Similarly, ICA
can be used to renderracombinationor cross-over operator independent of the
coordinate system. This can, for example, be useful to éble Cauchy distri-
bution, or other non-isotropic heavy-tail distributiomms non-separabldéunctions.
The idea is appealing, but massive parallelization, formgda in a computer grid,
might be necessary to apply ICA successfully in a realistietscale on non-toy
problems. Nevertheless, this approach has the potentf@igb the feasibility of
multi-modal optimization beyond its current limits.

A second approach to non-linear extensions of variableiosatmethods builds
on kernel-PCA T1, 60] and the construction gprinciple curves[39] using the
polygonal line algorithm 48] for stochastic optimization. In this perspective two
important steps can be identified: i) the use or developmignceementalearning
methods; ii) the identification of a realistic testbed reimg the use of non-linear
kernel-PCA.

5.2 Evaluation of Black-Box Optimization Algorithms

Evaluation of optimization algorithms on benchmark fuantisets is inevitable,
before their application to real world problems. Severalgpems arise in this
context. First, a benchmark function set needs to be defilthy function sets
are available 19, [40], [5€], [74], [17], [74], [76]. While many of them suffer
from obvious deficiencies, useful guidelines for consingttest functions were
given, for example, in{1]. Our remaining main concern is whether benchmark
functions reflect “the reality” and many common functions ardeed too easy to
solve. Second, the experimental and evaluation procedatgraparticular, a well-
founded collection, elaboration, presentation, and pr&ation of the generated
data is a non-trivial, and tedious task. The common pradsiagten insufficient
and was criticized, for example, i2¥], [9].

In this line of research we have recently initiated a firsti@aabment (joined
work with Anne Auger, Raymond Ros, Marc Schoenauer) in bolfation with
the Vorarlberg University of Applied Science (Prof. Hansda®y Beyer and Stef-
fen Finck), we develop the platfor@Omparing Continuous OptimizetSOCC",

Bsee [http://coco.gforge.inria.fr/doku.php 1
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The main objective is to largely automatize the collectimporting, presentation,
and analysis of data resulting from running stochastic amdstochastic optimiz-
ers on test or real world problems. Compared to other platso(COCONUT,
COIN-OR, CUTEr, LIBOPT, OAT, OpenDP, PISA), our focus is thetomated
data post-processing amihta analysis and comparisdor single objective opti-
mization. Experimental design and descriptive statistiesessential parts thereof.
We foresee a great impact from this work which comprises

e Design of a testbed and tlobaracterization of problems and their diffi-
culties. Test functions must l@mple enoughin order to draw conclusions
from the test results, but alsshallengingfor the algorithms. We want to
achieve both objectives providing a testbed with well cbiazedproblem
classesand difficulties.

e A unified, carefully conductedxperimental designgreatly strengthens ex-
perimental results and also eases performing new expetémé&tie aim at
incrementally collecting comparable performance datanfeny optimiza-
tion procedures over years. As data will be produced understtme ex-
perimental design and collected in a comparable way—nadsszeily with
COCO—they will support rigorous and significant performarmmmpar-
isons.

¢ Finding good and generally applicalgerformance indicatorsin optimiza-
tion is a non-trivial task. Comparing the mean final objetiunction val-
ues and success probabilities is the standard approachbh vghunsatisfac-
tory and by no means sufficient. Useful performance indisatan also be
graphical P0]. We will identify important criteria for good indicatorgpply
the most meaningful indicators and develop new indicatgragcording to
the given criteria.

e Graphical data presentation will be designed in a prindiglad ergonomic
way. An appropriate presentation of data is an essentiabparmeaningful
interpretation of results. The platform will include exsdre facilities for
statistical analysis and hypothesis testing as well as-Siwapping P1] to
attain dispersion measures for aggregated performandatods [7][ 24].

The organization of a workshogBOB 2009* at the ACM-GECCO confer-
ence 2009 is a first milestone in this long-term project. Fegishows an example
of data presentations in the workshop.

see [http://coco.gforge.inria.fr/doku.php?id=bbob-2009 ]
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Figure 6: Empirical cumulative distribution functions (BEs), plotting the frac-
tion of trials versus running time (left subplots) or verghg (right subplots). The
thick red line represents the best achieved results. Lddplsts: ECDF of the
running time (number of function evaluations), divided mach space dimen-
sion D, to fall below fopc + Af with Af = 10%, wherek is the first value in
the legend. Right subplots: ECDF of the best achiexgtdivided by 10* (up-
per left lines in continuation of the left subplot), and bashievedA f divided by
10~8 for running times ofD, 10 D, 100 D . .. function evaluations (from right to
left cycling black-cyan-magenta). Top row: all resultsrfrall functions; second
row: separable functions; third row: ?nisc. moderate funtdi fourth row: ill-
conditioned functions; fifth row: multi-modal functions tiadequate structure;
last row: multi-modal functions with weak structure. Thgdads indicate the
number of functions that were solved in at least one trialvét&Edenotes number
of function evaluationspD andDIM denote search space dimension, dnfiand
Df denote the difference to the optimal function value.



5.3 Optimization under Uncertainties and Dynamic Environments

Real world data, as for example measurements from physiparienents or (stochas-
tic) simulations of physical models, are typically subjechoise and uncertainties.
Not only is the outcome of the simulation a distribution stkthan a single value,
also this distribution can change in time resulting idymamicenvironment. A
typical example is a calibration task, where the true optimfor the parameters
might (slowly) change over time. In uncertain and dynamigirmmments special
care must be taken to prevent undesired convergence omdivee of a search
algorithm. Population-based stochastic search algosithra robust against uncer-
tainties P, 47]. They do not rely, for example, on measurements of smallefini
differences which are very sensitive to rugged search zapss. However, typical
noise handling techniques are usually expensive, in ttet thcrease the num-
ber of function evaluations, or increase the populatioe,sénd are therefore less
attractive in dynamic environments.

Based on a noise handling method introduced3f,[that can prevent any
rank-based search algorithm from converging prematudifigrent approaches to
improve the efficiency of noise-resistant search algorgtare conceivable. Inte-
grating surrogate model approaché§g][into noise resistant algorithms is a promis-
ing approach. In particular, when surrogate methods arecbas regression, they
can be insensitive to noise. Usually, appropriate assamton the noise distri-
bution must be taken. As a second step, rank-based surnogditeds $9] should
be less sensitive to the underlying noise distribution. yTwél also preserve in-
variance under order-preserving transformation of thectije function value of
an underlying rank-based search algorithm.

5.4 Theory of Stochastic Search

The analysis of stochastic search algorithms in continamusain is still in its in-
fancies. In particular, quantitative convergence resangbounds are raré{][ 7]

or rely on a deterministic model of the underlying algoritfing]. We believe, an
important future direction will emphasize on stochastabdity of algorithms and
proofs that deliver convergencates for examplelog-linear convergencevhich

is the general lower bound in a black-box search scen&rjy {S]. Convergence
proofs without associated convergence rates are muclhr éasietain [L5][ 6], but
they are of much less practical relevance. Such work wilspneably be based on
Markov Chain and drift analysisS[[ 13]. The previous results could be extended
in several respects.
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e investigating more general classes of objective functievizere also noisy
objective function might be considered, s&é][for a first attempt:®

e investigating different types of algorithms, includingraedomized variants
of evolution strategiessee BZ] for a first attemptestimation of distribution
algorithms[53] and thecross entropy methojb 7).

Such kind of results will have a stronger practical meanhmant for example,
those obtained ostochastic approximatiomethods 5], because the latter rely
on predefined gain sequences, which seem unrealistic ifsprBixe methods with
adaptivegain sequence are more interesting and more difficult toyaaeal This
kind of work would have a clear potential for becoming a nidee in stochastic
search as well as optimization in general.

6 Conclusion

Variable metrics methods have a long and successful histalgrivative-based nu-
merical optimization. The probably most famous of thesesgiwton methods
is BFGS. More recently, derivative-free optimization ha&sdme popular, where
derivatives are neither acquired nor estimated nor usedo 8bme of the most
successful derivative-free optimization methods, likeWWHEOA [67], are based
on second order models and therefore acquire a variabléanetr

Many evolutionary algorithms go one step beyond the deviedtee optimiza-
tion paradigm. Not only do they disregard derivatives, bettdo not even depend
on specific function values. They are only based on the ardenf solutions and
might be termedunction-value free This thesis has argued that variable met-
rics can be successfully assimilated in function-val@efoptimization. The most
prominent examples for such algorithms are EDAS] [and the CMA-ES, while
the latter often shows better scalability with the searccspdimension.

More general, the thesis has provided a methahptive encodingwhich
allows to run generic, function-value free algorithms witla variable metric. It
was proved that adaptive encoding recovers the CMA-ES, \applied to a simple
evolution strategy. This result suggests that an efficeantling of a favorable vari-
able metric has become available for many continuous sesdgdrithms. While

Balso: M. Jebalia, A. Auger and N. Hansen. Log-linear corereeg and divergence of the
scale-invariant (1+1)-ES in noisy environments. Acceptader minor revisions foAlgorithmicg
Springer.
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an example application of adaptive encoding was givei i fhis concept needs
yet to be widely explored with different algorithms.

Many difficult optimization problems exhibit strong dependies between vari-
ables. Therefore, variable metrics methods are becomitiggensable in stochas-
tic function-value free optimization at least in moderataehsional search spaces.
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