
Internal Report 2005–04

The Multi-objective Variable Metric Evolution Strategy

Part I

by

Christian Igel, Nikolaus Hansen, and Stefan Roth

Ruhr-Universität Bochum
Institut für Neuroinformatik
44780 Bochum

IR-INI 2005–04
October 2005

ISSN 0943-2752

c© 2005 Institut für Neuroinformatik, Ruhr-Universität Bochum, FRG

IR-INI 2005–04, c© 2005 Institut für Neuroinformatik, Ruhr-Universität Bochum 1

The Multi-objective

Variable Metric Evolution Strategy

Part I

Christian Igel christian.igel@neuroinformatik.rub.de
Institut für Neuroinformatik, Ruhr-Universität Bochum, 44780 Bochum, Germany

Nikolaus Hansen nikolaus.hansen@inf.ethz.ch
Computational Science and Engineering Laboratory (CSE Lab), Swiss Federal Institute
of Technology (ETH) Zurich, Switzerland

Stefan Roth stefan.roth@neuroinformatik.rub.de
Institut für Neuroinformatik, Ruhr-Universität Bochum, 44780 Bochum, Germany

The covariance matrix adaptation evolution strategy (CMA-ES) is one of the most pow-
erful evolutionary algorithms for real-valued single-objective optimization. Here a variant
of the CMA-ES for multi-objective optimization (MOO) is developed.

First a single-objective, elitist CMA-ES using plus-selection and step size control based
on a success rule is introduced. This algorithm is compared to the standard CMA-ES.
The elitist CMA-ES turns out to be slightly faster on unimodal functions, but is more
prone to getting stuck in sub-optimal local minima.

In the new multi-objective CMA-ES (MO-CMA-ES) a population of individuals that
adapt their search strategy as in the elitist CMA-ES is maintained. These are subject to
multi-objective selection. The selection is based on non-dominated sorting using either
the crowding-distance or the contributing hypervolume as second sorting criterion. Both
the elitist single-objective CMA-ES and the MO-CMA-ES inherit important invariance
properties, in particular invariance against rotation of the search space, from the original
CMA-ES.

The benefits of the new MO-CMA-ES in comparison to the well-known NSGA-II and
NSDE, a multi-objective differential evolution algorithm, are experimentally shown.

Keywords: Multi-objective optimization, evolution strategy, covariance matrix adaptation

1 Introduction

The covariance matrix adaptation evolution strategy (CMA-ES) is one of the most pow-
erful evolutionary algorithms for real-valued optimization (Hansen and Ostermeier, 2001;
Hansen, Müller, and Koumoutsakos, 2003; Hansen and Kern, 2004; Hansen, 2005a) with
many successful applications (for an overview see Hansen, 2005b). The CMA-ES learns
and employs a variable metric by means of a covariance matrix for the search distribution.
The main advantages of the CMA-ES lie in its invariance properties, which are achieved
by carefully designed search and selection operators, and in its efficient (self-) adaptation

mailto:christian.igel@neuroinformatik.rub.de
mailto:nikolaus.hansen@inf.ethz.ch
mailto:stefan.roth@neuroinformatik.rub.de

2 IR-INI 2005–04, c© 2005 Institut für Neuroinformatik, Ruhr-Universität Bochum

of the search distribution. The CMA-ES is invariant against order-preserving transfor-
mations of the fitness function and in particular against rotation and translation of the
search space—apart from the initialization. If either the strategy parameters are initial-
ized accordingly or the time needed to adapt the strategy parameters is neglected, any
affine transformation of the search space does not affect the performance of the CMA-ES.
Rotation of the search space to test invariance and to generate non-separable functions
was proposed by Hansen et al. (1995), and the importance of such invariance properties for
evolutionary algorithms is discussed in depth by Salomon (1996) and Hansen (2000). Note
that an algorithm not being invariant against a certain group of transformations means
that it is biased towards a certain class of problems defined w.r.t. those transformations,
for example to tasks with separable fitness functions. Such a bias is only desirable if
the applications the algorithm is designed for lie in that special class. We think, for the
transformations mentioned above this assumption is not attractive in general.

The interest in multi-objective optimization (MOO) is increasing rapidly. Several suc-
cessful evolutionary MOO algorithms have been developed (Coello Coello, Van Veldhuizen,
and Lamont, 2002; Deb, 2001), where the main focus of research has been put on the selec-
tion and archiving strategies. Multi-objective evolution strategies with (self-) adaptation
of the search distribution have been proposed (Laumanns, Rudolph, and Schwefel, 2001;
Büche, Müller, and Koumoutsakos, 2003; Igel, 2005), but none of them achieves the in-
variance properties of the single-objective CMA-ES. In this study, we therefore develop a
variant of the CMA-ES for real-valued MOO.

In the CMA-ES a small population size is usually sufficient and only one set of strategy
parameters is maintained. For MOO a large population is needed to evolve a diverse set
of solutions, each ideally representing a (Pareto-) optimal trade-off between the objectives.
The optimal strategy parameters for the members of this population may differ consider-
ably and should therefore be adapted individually. This suggests to apply a MOO selection
mechanism to a population of individuals each of which uses the strategy adaptation of
the CMA-ES (for details about the covariance matrix adaptation we refer to Hansen and
Ostermeier, 2001, and Hansen, 2005a). The standard single-objective CMA-ES relies on
non-elitist (µ, λ)-selection, that is, the best µ of λ offspring form the next parent pop-
ulation and all former parents are discarded. For each set of strategy parameters to be
adapted, several offspring have to be generated in each generation. If we want to maximize
the number of different strategy parameter sets, given a fixed total number of offspring
per iteration, the number of offspring per parent has to be as small as possible. Therefore,
we first develop a single-objective, elitist CMA-ES with (1+λ)-selection, where λ can be
chosen as small as one. In this elitist (1+λ)-CMA-ES the parent population consists of a
single individual generating λ offspring and the best individual out of parent and offspring
becomes the parent of the next generation. This (1+λ)-CMA-ES inherits all invariance
properties from the original CMA-ES and is integrated into the MOO framework by con-
sidering, roughly speaking, a population of (1+λ) evolution strategies, which are subject
to multi-objective selection. Thus, the new MO-CMA-ES inherits important invariance
properties from the original CMA-ES.

To summarize, the goal of this study is to augment evolutionary real-valued MOO with
efficient adaptation of the search distribution and invariance against transformations of the
search space. To achieve this, we develop an elitist variant of the single-objective CMA-ES.
Its strategy adaptation mechanism can be combined with multi-objective selection using
non-dominated sorting. To improve selection, we propose the contributing hypervolume
as second sorting criterion. For better empirical evaluation, new biobjective benchmark

IR-INI 2005–04, c© 2005 Institut für Neuroinformatik, Ruhr-Universität Bochum 3

functions are presented. The article is organized as follows. In the next section, the new
single-objective elitist (1+λ)-CMA-ES is presented and empirically compared to the stan-
dard (µ, λ)-CMA-ES. Then, in Section 3, we introduce the MO-CMA-ES using either the
original selection of the non-dominated sorting genetic algorithm II (NSGA-II; Deb et al.,
2002) or a new modification thereof based on the contributing hypervolume of individu-
als. In Section 4, the two variants of the MO-CMA-ES are empirically compared with the
NSGA-II and non-dominated sorting differential evolution (NSDE; Iorio and Li, 2005). As
far as we know, the latter is the only other evolutionary MOO algorithm invariant against
rotation of the search space. The results substantiate our final conclusions.

2 A Single-objective Elitist CMA Evolution Strategy

In this section we combine the well know (1+λ)-selection scheme of evolution strategies
(Rechenberg, 1973; Schwefel, 1995; Beyer and Schwefel, 2002) with the covariance matrix
adaptation. The original update rule for the covariance matrix can be reasonably applied
in the (1+λ)-selection. The cumulative step size adaptation (path length control) of the
(µ/µ, λ)-CMA-ES is replaced by a success rule based step size control. The path length
control cannot be easily applied, because the update of the evolution path stalls whenever
no successful offspring is produced. If in this case the evolution path is long, the step size
diverges.

Nomenclature In the (1+λ)-CMA-ES, each individual, a, is a 5-tuple a = [x, psucc, σ,pc,C]
comprising its candidate solution vector x ∈ Rn, an averaged success rate psucc ∈ [0, 1], the
global step size σ ∈ R+, an evolution path pc ∈ Rn, and the covariance matrix C ∈ Rn×n.
Additionally, the following nomenclature is used:

f : Rn → R,x 7→ f(x) is the objective (fitness) function to be minimized.

λ
(g+1)
succ =

∣

∣

∣

{

i = 1, . . . , λ
∣

∣

∣
f(x

(g+1)
i) ≤ f(x

(g)
parent)

}
∣

∣

∣
is the number of successful new candi-

date solutions (successful offspring).

N (m,C) is a multi-variate normal distribution with mean vector m and covariance
matrix C. The notation x ∼ N (m,C) denotes the distribution of a random variable
x.

x
(g)
1:λ ∈ Rn is the best point from x

(g)
k for k = 1, . . . , λ, that is, f(x

(g)
1:λ) ≤ f(x

(g)
i) for all

i = 1, . . . , λ.

2.1 The (1+λ)-CMA-ES

The algorithm is described within three routines. In the main routine, (1+λ)-CMA-ES,
the λ new candidate solutions are sampled and the parent solution aparent is updated
depending on whether any of the new solutions is better than aparent.

4 IR-INI 2005–04, c© 2005 Institut für Neuroinformatik, Ruhr-Universität Bochum

Algorithm 1: (1+λ)-CMA-ES

g = 0, initialize a
(g)
parent1

repeat2

a
(g+1)
parent ← a

(g)
parent3

for k = 1, . . . , λ do4

x
(g+1)
k ∼ N

(

x
(g)
parent, σ

(g)2C(g)
)

5

updateStepSize

(

a
(g+1)
parent,

λ
(g+1)
succ

λ

)

6

if f
(

x
(g+1)
1:λ

)

< f
(

x
(g)
parent

)

then
7

x
(g+1)
parent ← x

(g+1)
1:λ8

updateCovariance

(

a
(g+1)
parent,

x
(g+1)
parent − x

(g)
parent

σ
(g)
parent

)

9

g ← g + 110

until stopping criterion is met11

After sampling the new candidate solutions, the step size is updated based on the

success rate psucc = λ
(g+1)
succ /λ with a learning rate cp (0 < cp ≤ 1).

Procedure updateStepSize(a = [x, psucc, σ,pc,C], psucc)

psucc ← (1− cp) psucc + cppsucc1

σ ← σ · exp

(

1

d

(

psucc −
ptarget
succ

1− ptarget
succ

(1− psucc)

))

2

This update rule is rooted in the 1/5-success-rule proposed by Rechenberg (1973) and
is an extension from the rule proposed by Kern et al. (2004). It implements the well-
known heuristic that the step size should be increased if the success rate (i.e., the fraction
of offspring better than the parent) is high, and the step size should be decreased if the
success rate is low. The rule is reflected in the argument to the exponential function. For
psucc > ptarget

succ the argument is greater than zero and the step size increases; for psucc <
ptarget
succ the argument is smaller than zero and the step size decreases; for psucc = ptarget

succ the
argument becomes zero and no change of σ takes place.

The argument to the exponential function is always smaller than 1/d. It is also larger
than −1/d if ptarget

succ < 0.5 (a necessary assumption). Therefore, the damping parameter
d controls the rate of the step size adaptation. Using psucc instead of the input argument

psucc = λ
(g+1)
succ /λ primarily smoothes the single step size changes and has only a minor

influence on the maximal possible step size changing rate.

If the best new candidate solution was successful (see main routine), the covariance
matrix is updated as in the (1,λ)-CMA-ES (see Hansen and Ostermeier, 2001).

IR-INI 2005–04, c© 2005 Institut für Neuroinformatik, Ruhr-Universität Bochum 5

Table 1. Default parameters for the (1+λ)-CMA Evolution Strategy.

Selection:
λ = 1

Step size control:

d = 1 +
n

2λ
, ptarget

succ =
1

5 +
√

λ/2
, cp =

ptarget
succ λ

2 + ptarget
succ λ

Covariance matrix adaptation:

cc =
2

n + 2
, ccov =

2

n2 + 6
, pthresh = 0.44

Procedure updateCovariance(a = [x, psucc, σ,pc,C],xstep ∈ Rn)

if psucc < pthresh then1

pc ← (1− cc)pc +
√

cc(2− cc) xstep2

C ← (1− ccov)C + ccov · pcpc
T

3

else4

pc ← (1− cc)pc5

C ← (1− ccov)C + ccov ·
(

pcpc
T + cc(2− cc)C

)

6

The update of the evolution path pc depends on the value of psucc (here the smoothing
of λsucc/λ is of considerable relevance). If the smoothed success rate psucc is high, that
is, above pthresh < 0.5, the update of the evolution path pc is stalled. This prevents a
too fast increase of axes of C when the step size is far too small, for example, in a linear
surrounding. If the smoothed success rate psucc is low, the update of pc is accomplished
obeying an exponential smoothing. The constants cc and ccov (0 ≤ ccov < cc ≤ 1) are
learning rates for the evolution path and the covariance matrix, respectively. The factor
√

cc(2− cc) normalizes the variance of pc viewed as a random variable (see Hansen and
Ostermeier, 2001). The evolution path pc is used to update the covariance matrix. The
new covariance matrix is a weighted mean of the old covariance matrix and the outer
product of pc. In the second case (line 5), the second summand in the update of pc is
missing and the length of pc shrinks. Although of minor relevance, the term cc(2 − cc)C
(line 6) compensates for this shrinking in C.

Strategy Parameters The (external) strategy parameters are offspring number λ, target
success probability ptarget

succ , step size damping d, success rate averaging parameter cp, cu-
mulation time horizon parameter cc, and covariance matrix learning rate ccov. Default
values are given in Table 1. Most default values are derived from the precursor algorithms
and validated by sketchy simulations on simple test functions: the target success rate is
close to the well-known 1/5 and depends on λ, because the optimal success rate in the
(1+λ)-ES certainly decreases with increasing λ. The parameters for the covariance matrix
adaptation are similar to those for the (1,λ)-CMA-ES.

Initialization The elements of the initial individual, a
(0)
parent are set to psucc = ptarget

succ , pc = 0,

and C = I, where ptarget
succ is given in Table 1. The initial candidate solution x ∈ Rn and

6 IR-INI 2005–04, c© 2005 Institut für Neuroinformatik, Ruhr-Universität Bochum

Table 2. Single-objective test functions to be minimized, where y = Ox and O is an orthogonal
matrix, implementing an angle-preserving linear transformation

Name Function Initial region

Linear flinear(x) = y1 O−1[6000, 6006]n

Sphere fsphere(x) =
∑n

i=1 x2
i O−1[−1, 5]n

Ellipsoid felli(x) =
∑n

i=1

(

1000
i−1
n−1 yi

)2
O−1[−1, 5]n

Rastrigin frastrigin(x) = 10n +
∑n

i=1

(

y2
i − 10 cos(2πyi)

)

O−1[−1, 5]n

the initial σ ∈ R+ must be chosen problem dependent. The optimum should presumably
be within the cube [x− σ(1, . . . , 1)T,x + σ(1, . . . , 1)T].

2.2 Simulation of the (1+λ)-CMA-ES

Test functions To validate essential properties of the search algorithm we use the single-
objective test problems summarized in Table 2. The linear function flinear tests the ability
and the speed to increase the step size σ. On fsphere basic convergence properties and the
speed of step size decrease are tested. On felli the performance of the CMA procedure,
that is, the ability to adapt the distribution shape to the function topography is examined.
On frastrigin, the ability to circumvent local optima is examined. Apart from flinear, the
optimum function value is zero for all functions. The experimental results are independent
of angle-preserving transformations, like translation and rotation of the search space, that
is, they are in particular independent of the chosen orthogonal transformation matrix O.

Methods We conducted 51 runs for each function and each dimension. The initial candidate
solution x is chosen uniformly randomly in the initial region from Table 2, and the initial
σ = 3 is half of the width of the initial interval. Excepting flinear, the simulation is
stopped when function value differences do not exceed 10−12 or when the function value
becomes smaller than the target function value 10−9. To conduct statistical testing the
runs were ranked. Runs that reached the target function value were regarded as better
and ranked according to their number of function evaluations. The remaining runs were
ranked according to their final function value. To evaluate statistical significance the non-
parametric Mann-Whitney U-test (Wilcoxon rank sum test) was conducted. If not stated
otherwise discussed differences are significant with p < 10−3.

Results and Discussion The (1+λ)-CMA-ES is compared to the (µ/µW,λ)-CMA-ES, the
standard CMA-ES with weighted global intermediate (µ/µW) recombination as described
by Hansen and Kern (2004). The former is elitist and has a success rule based step size
adaptation. The latter is non-elitist, uses the cumulative step size adaptation (path length
control), and conducts weighted recombination of all µ = bλ/2c parents.

On flinear the step size increases linearly on the log-scale in all strategy variants, a
minimal necessary demand on step size control (Hansen, 2006). The mean number of
function evaluations to increase the step size by one order of magnitude is shown in
Table 3 for two plus- and two comma-strategies. The success rule in the plus-strategy
is up to five times faster than the path length control in the comma-strategies, but this
difference should be usually irrelevant.

IR-INI 2005–04, c© 2005 Institut für Neuroinformatik, Ruhr-Universität Bochum 7

Table 3. Mean number of function evaluations needed to increase the step size by a factor of ten
on flinear

n λ (1+1) (1+λ) (1,λ) (µ/µW,λ)

5 8 25 60 98 72
20 12 71 128 383 222

Runs on fsphere, felli, and frastrigin are shown in Figure 1. First, we discuss the com-
parison between (1+λ)- and (1,λ)-CMA-ES for the same λ (� and 3 in the figure). On
fsphere and felli the two strategies perform quite similar. The slight differences on fsphere

are primarily the result of different step size change rates. The reason for the slight dif-
ferences on felli is presumably the smaller target step size of the success based adaptation
rule. A smaller step size can lead to a more pronounced evolution path that assists a
faster adaptation of the covariance matrix. Both strategies perform identical on frastrigin

in 5D, but in 20D non-elitist (1,λ) finds significantly better solutions. The reasons are
probably the advantage of the comma-selection scheme in escaping local optima and the
larger adapted step sizes.

More pronounced differences can be observed between the default variants (1+1) and
(µ/µW,λ). On fsphere and felli elitist (1+1) is roughly 1.5 times faster than (µ/µW,λ). On
frastrigin the standard (µ/µW,λ) finds the considerably (and significantly) better solutions.
Here, the performance of the plus-strategy can be considerably improved if the step size
change rate is slowed down by increasing the damping d, but the performance of the
(µ/µW,λ) cannot be achieved.

The empirical results give evidence that the plus-selection is effectively combined with
the covariance matrix adaptation. On the one hand, the plus-selection together with the
success rule based adaptation for the step size makes the evolution strategy faster by
a factor of about 1.5 on unimodal functions. On the other hand, the comma-strategy
is less susceptible to get trapped into sub-optimal local minima for two reasons. First,
even a particularly well evaluated individual is abandoned in the next generation; second,
the path length control adapts larger step lengths, in particular within the recombinant
strategy variant (the default one).

3 Covariance Matrix Adaptation for Multi-objective Optimization

Based on the (1+λ)-CMA-ES we propose a multi-objective evolution strategy. After a
brief introduction to evolutionary multi-objective optimization, we present the considered
selection mechanisms, which are based on non-dominated sorting. We propose an alterna-
tive ranking of individuals that have the same level of non-dominance. The ranking relies
on the contributing hypervolume and can be computed efficiently for two objectives. Then
the (1+λ)-MO-CMA-ES is described.

3.1 Multi-objective Optimization

Consider an optimization problem with M objectives f1, . . . , fM : X → R to be minimized.
The vector f(x) = (f1(x), . . . , fM (x)) is the objective vector of x ∈ X living in the
objective space RM . The elements of X can be partially ordered using the concept of

8 IR-INI 2005–04, c© 2005 Institut für Neuroinformatik, Ruhr-Universität Bochum

0 500 1000 1500
10

−10

10
−5

10
0

10
5

function evaluations

fu
nc

tio
n

va
lu

e

(1+1)−ES
(1+8)−ES
(1, 8)−ES
(4/4

W
, 8)−ES

0 1000 2000 3000 4000 5000
10

−10

10
−5

10
0

10
5

function evaluations

fu
nc

tio
n

va
lu

e

(1+1)−ES
(1+12)−ES
(1,12)−ES
(6/6

W
,12)−ES

0 500 1000 1500 2000 2500 3000 3500
10

−10

10
−5

10
0

10
5

10
10

function evaluations

fu
nc

tio
n

va
lu

e

(1+1)−ES
(1+8)−ES
(1, 8)−ES
(4/4

W
, 8)−ES

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

10
−10

10
−5

10
0

10
5

10
10

function evaluations

fu
nc

tio
n

va
lu

e

(1+1)−ES
(1+12)−ES
(1,12)−ES
(6/6

W
,12)−ES

0 500 1000 1500 2000 2500
10

0

10
1

10
2

10
3

function evaluations

fu
nc

tio
n

va
lu

e

(1+1)−ES
(1+8)−ES
(1, 8)−ES
(4/4

W
, 8)−ES

0 2000 4000 6000 8000
10

1

10
2

10
3

function evaluations

fu
nc

tio
n

va
lu

e

(1+1)−ES
(1+12)−ES
(1,12)−ES
(6/6

W
,12)−ES

Figure 1. Simulations on Sphere (above), Ellipsoid (middle), and Rastrigin function (below), in 5D
(n = 5, left) and 20D (n = 20, right). Shown is the median out of 51 runs for the (1+1)-, (1+λ)-,
(1,λ)-, and (µ/µW,λ)-CMA-ES. The error bars denote final values for the 3rd and the 49th run
(5%- and 95%-percentile).

Pareto dominance. A solution x ∈ X dominates a solution x′ and we write x ≺ x′ iff
∀m ∈ {1, . . . ,M} : fm(x) ≤ fm(x′) and ∃m ∈ {1, . . . ,M} : fm(x) < fm(x′). The elements
of the (Pareto) set {x |@x′ ∈ X : x′ ≺ x} are called Pareto optimal. The corresponding
Pareto front is given by {f(x) |@x′ ∈ X : x′ ≺ x} ⊂ RM .

Without any further information no Pareto-optimal solution can be said to be superior

IR-INI 2005–04, c© 2005 Institut für Neuroinformatik, Ruhr-Universität Bochum 9

to another. The goal of multi-objective optimization (MOO) is to find a diverse set of
Pareto-optimal solutions, which provide insights into the trade-offs between the objectives.
When approaching an MOO problem by linearly aggregating all objectives into a scalar
function, each weighting of the objectives yields only a subset of Pareto-optimal solutions
(usually only a single solution). That is, various trials with different aggregations become
necessary. Even worse, no linear aggregate exists such that concave parts of the Pareto
front become optimal. Therefore, various trials cannot help in case of partially concave
Pareto fronts (cf. Das and Dennis, 1997). Consequently, evolutionary multi-objective
algorithms have become the method of choice for MOO (Coello Coello et al., 2002; Deb,
2001).

In the following, we consider evolutionary real-valued MOO, where each individual

a
(g)
i at generation g represents a real-valued candidate solution x

(g)
i ∈ X ⊆ Rn of an

n-dimensional problem with M objectives. For simplicity, we do not distinguish between

fm(a
(g)
i) and fm(x

(g)
i).

3.2 Multi-objective Selection

Our multi-objective algorithm is based on the non-dominated sorting approach used in
NSGA-II (Deb, 2001; Deb et al., 2002). The individuals are sorted according to their
level of non-dominance. To rank individuals on the same level an additional sorting cri-
terion is needed. We consider two criteria, the crowding-distance and the contributing
hypervolume.

3.2.1 Non-dominated Sorting First of all, the elements in a population A of can-
didate solutions are ranked according to their level of non-dominance. Let the non-
dominated solutions in A be denoted by ndom(A) = {a ∈ A |@a′ ∈ A : a′ ≺ a}. The
Pareto front of A is then given by {(f1(a), . . . , fM (a)) | a ∈ ndom(A)}. The elements in
ndom(A) get rank 1. The other ranks are defined recursively by considering the set with-
out the solutions with lower ranks. Formally, let doml(A) = doml−1(A) \ ndoml(A) and
ndoml(A) = ndom(doml−1(A)) for l ∈ {1, . . . } with dom0 = A. For a ∈ A we define
the level of non-dominance r(a,A) to be i iff a ∈ ndomi(A). The time complexity of
non-dominated sorting of N elements is O(MN 2) (Deb et al., 2002).

A second sorting criterion is needed to rank the solutions having the same level of non-
dominance. This criterion is very important, as usually in real-valued optimization after
some generations there are more non-dominated solutions in the population than solutions
to be selected. We consider two alternative additional sorting criteria, the crowding-
distance (Deb et al., 2002) and the contributing hypervolume (Emmerich, Beume, and
Naujoks, 2005).

3.2.2 Crowding-distance In the NSGA-II, non-dominated solutions A′ with the same
level of non-dominance are ranked according to how much they contribute to the spread
(or diversity) of objective function values in A′. This can be measured by the crowding-
distance. For M objectives, the crowding-distance of a ∈ A′ is given by

c(a,A′) =

M
∑

m=1

cm(a,A′)/(fmax
m − fmin

m) ,

10 IR-INI 2005–04, c© 2005 Institut für Neuroinformatik, Ruhr-Universität Bochum

where fmax
m and fmin

m are (estimates of) the minimum and maximum value of the mth
objective and

cm(a,A′) :=
{

∞ , if fm(a) = min{fm(a′) | a′ ∈ A′} or fm(a) = max{fm(a′) | a′ ∈ A′}
min{fm(a′′)− fm(a′) | a′, a′′ ∈ A′ : fm(a′) < fm(a) < fm(a′′)} , otherwise.

Based on the level of non-dominance and the crowding-distance we define the relation

a ≺c,A′ a′ ⇔ r(a,A′) < r(a′, A′) or
[

(r(a,A′) = r(a′, A′)) ∧ (c(a,ndomr(a′,A′)(A
′)) > c(a′,ndomr(a′ ,A′)(A

′)))
]

,

for a, a′ ∈ A′. That is, a is better than a′ when compared using ≺c,A′ if either a has a
better (lower) level of non-dominance or a and a′ are on the same level but a is in a “lesser
crowded region of the objective space” and therefore induces more diversity.

The crowding-distance of N non-dominated solutions can be computed efficiently in
O(MN log N) (Deb et al., 2002). However, the crowding-distance is related to the spread
of solutions, which may be a desirable quantity and foster evolvability, but it is not directly
related to progress in terms of selecting better solutions as we will discuss in section 4.1.

3.2.3 Contributing Hypervolume The hypervolume measure or S-metric was intro-
duced by Zitzler and Thiele (1998) in the domain of evolutionary MOO. It can be defined
as the Lebesgue measure Λ of the union of hypercubes in the objective space (Coello
Coello, Van Veldhuizen, and Lamont, 2002):

Saref
(A′) = Λ

(

⋃

a∈ndom(A′)

{(f1(a
′), . . . , fM(a′)) | a ≺ a′ ≺ aref}

)

,

where aref is an appropriately chosen reference point. The contributing hypervolume of a
point a ∈ ndom(A′) is given by

∆S(a,A′) := Saref
(A′)− Saref

(A′ \ {a}) .

The contributing hypervolume was used for selection in the steady-state evolutionary
algorithm proposed by Emmerich, Beume, and Naujoks (2005). We adopt it, to our
knowledge for the first time, for the ranking of a whole population.

Now the rank s(a,A′) of an individual a can be defined recursively based on its con-
tribution to the hypervolume. The individual contributing least to the hypervolume of
A′ is assigned the worst rank (ties are broken at random). The individual contribut-
ing least to the hypervolume of A′ without the individual with the worst rank is as-
signed the second worst rank and so on. Let a lower rank be worse. Formally, for
a ∈ ndom(A′) we have s(a,A′) = 1 if a = argmina′∈A′{∆S(a′, A′)} and s(a,A′) = n if
a = argmina′∈A′{∆S(a′, A′ \ {a′′ | s(a′′, A′) < n})}. The reference point aref is (implic-
itly) chosen in a way such that individuals a with fm(a) = min{fm(a′) | a′ ∈ A′} for any
m ∈ {1, . . . ,M} get the best ranks. That is, the individuals at the “edges” of the Pareto
front of A′ are preferably selected.

For two objectives, this ranking can be calculated efficiently in superlinear time in the
number of individuals using appropriate data structures and the equation for ∆S(a,A′)
given by Emmerich et al. (2005). Unfortunately, the scaling behavior in the number of
objectives is likely to be bad (While, 2005).

IR-INI 2005–04, c© 2005 Institut für Neuroinformatik, Ruhr-Universität Bochum 11

Lemma 1. For two objectives, the ranks s(a,A′) of all individuals a ∈ A′, |A′| = N , can
be computed in O(N log N) time.

Proof. In the following, we describe an algorithm that computes the ranking in superlinear
time by storing the relevant information in appropriate data structures. We consider
sorted indexed lists F and S containing individuals sorted by first fitness value and by
contributing hypervolume, respectively. Consider the list S containing an individual a.
Then S[l] returns the lth element of S, index(S, a) gives the number of a in the list (i.e.,
S[index(S, a)] = a), and insert(S, a) adds and delete(S, a) removes a from S. We presume
an appropriate data structure (say, an AVL-tree, e.g., Knuth, 1973) that allows these
look-up, insertion, and deletion operations in O(log N) time, where N is the number of
elements in the list.

First, S and F are filled with the elements in A′. This can be done in O(N log N),
because the contributing hypervolume of an individual a to the hypervolume of a set B
can be computed by

∆S(a,B) =










(f1(aref)− f1(a)) · (f2(F [index(F, a) − 1]− f2(a)) if index(B, a) = |B|
(f1(F [index(F, a) + 1])− f1(a)) · (f2(aref)− f2(a)) if index(B, a) = 1

(f1(F [index(F, a) + 1])− f1(a)) · (f2(F [index(F, a)− 1]− f1(a)) otherwise

in case of two objectives after the elements of B have been inserted into the list F sorted
by their first fitness value (Emmerich, Beume, and Naujoks, 2005).

The elements S[|A′ − 1|] and S[|A′|], those with the extreme f1 values, get the ranks
|A′ − 1| and |A′|. Then, l← 1 and the following procedure is repeated |A′| − 2 times.

We determine a ← S[1], the element contributing least to the hypervolume, and its
neighbors in F by looking up i← index(F, a), and a−1 ← F [i−1] and a+1 ← F [i+1]. Note
that a−1 and a+1 exist, because the elements with the extreme f1 values have maximum
contributing hypervolume. The individual a is assigned the rank l, s(a,A′) ← l, and is
deleted from both lists, delete(S, a) and delete(F, a). We set l← l + 1. The elements a+1

and a−1 are deleted from S, delete(S, a−1) and delete(S, a+1). The contributing hypervol-
umes are recomputed for a+1 and a−1 using the equation given above and the elements
are reinserted into S according to the new contributing hypervolumes, insert(S, a−1) and
insert(S, a+1).

All operations in this loop can be done in constant or logarithmic time, which proves
the lemma.

Based on this ranking and the level of non-dominance we define the relation

a ≺s,A a′ ⇔ r(a,A) < r(a′, A) or
[

(r(a,A) = r(a′, A)) ∧ (s(a,ndomr(a′,A)(A)) > s(a′,ndomr(a′,A)(A)))
]

,

for a, a′ ∈ A. That is, a is better than a′ when compared using ≺s,A if either a has a
better level of non-dominance or a and a′ are on the same level but a contributes more to
the hypervolume when considering the points at that level of non-dominance.

12 IR-INI 2005–04, c© 2005 Institut für Neuroinformatik, Ruhr-Universität Bochum

3.3 MO-CMA-ES

Now we have all ingredients for a multi-objective CMA-ES. In the λMO×(1+λ)-MO-CMA-
ES, we maintain a population of λMO elitist (1+λ)-CMA-ES. The kth individual in gener-

ation g is denoted by a
(g)
k = [x

(g)
k , p

(g)
succ,k, σ

(g)
k ,p

(g)
c,k,C

(g)
k]. For simplicity, we consider only

the standard case λ = 1. The extension to λ > 1 is straightforward.

In every generation g each of the λMO parents generates λ = 1 offspring. Parents
and offspring form the set Q(g). The step sizes of a parent and its offspring are updated
depending on whether the mutations were successful, that is, whether the offspring is better
than the parent according to the relation ≺Q(g). The covariance matrix of the offspring
is updated taking into account the mutation that has led to its genotype. Both step size
and covariance matrix update are the same as in the single-objective (1+λ)-CMA-ES. The
best λMO individuals in Q(g) sorted by ≺Q(g) form the next parent generation.

Putting all together, the λMO×(1+1)-MO-CMA reads:

Algorithm 4: λMO×(1+1)-MO-CMA

g = 0, initialize a
(g)
k for k = 1, . . . , λMO1

repeat2

for k = 1, . . . , λMO do3

a′(g+1)
k ← a

(g)
k4

x′(g+1)
k ∼ N

(

x
(g)
k , σ

(g)
k

2
C

(g)
k

)

5

Q(g) =
{

a′(g+1)
k , a

(g)
k

∣

∣ 1 ≤ k ≤ λMO

}

6

for k = 1, . . . , λMO do7

updateStepSize
(

a
(g)
k , λ

(g+1)

succ,Q(g),k

)

8

updateStepSize
(

a′(g+1)
k , λ

(g+1)

succ,Q(g),k

)

9

updateCovariance

(

a′(g+1)
k ,

x′(g+1)
k − x

(g)
k

σ
(g)
k

)

10

for i = 1, . . . , λMO do11

a
(g+1)
i ← Q

(g)
≺:i12

g ← g + 113

until stopping criterion is met14

Here

λ
(g+1)

succ,Q(g),k
=

{

1 , if a′(g+1)
k ≺Q(g) a

(g)
k

0 , otherwise
is the number of successful offspring from parent

a
(g)
k for λ = 1 and

Q
(g)
≺:i is the ith best offspring in Q(g) w.r.t. ≺Q(g).

We consider two variants of the MO-CMA-ES, the c-MO-CMA and the s-MO-CMA,
which use the crowding-distance and the contributing hypervolume as second level sorting
criterion, respectively. That is, ≺Q(g):=≺c,Q(g) in the c-MO-CMA and ≺Q(g):=≺s,Q(g) in
the s-MO-CMA, see Section 3.2.

IR-INI 2005–04, c© 2005 Institut für Neuroinformatik, Ruhr-Universität Bochum 13

Handling Box Constraints Consider an optimization problem with M objectives f1, . . . , fM :
X → R with X = [xl

1, x
u
1]× · · · × [xl

n, xu
n] ⊂ Rn. For x ∈ Rn let

feasible(x) = (min(max(x1, x
l
1), x

u
1), . . . ,min(max(xn, xl

n), xu
n))T .

We define the penalized fitness

fpenalty
m (x) = fm(feasible(x)) + α‖x− feasible(x))‖22

where α > 0 is a penalty parameter.
When in this study the MO-CMA-ES is applied to problems with box constraints the

penalized fitness functions f penalty
m with α = 10−6 are used in the evolutionary process.

4 Empirical Evaluation of the MO-CMA-ES

In this section, we demonstrate how the MO-CMA behaves on test functions. First, we
discuss performance assessment of stochastic multi-objective algorithms in general and
introduce the performance indicators. Then we empirically compare the c-MO-CMA, the
s-MO-CMA, the NSGA-II, and the differential evolution method NSDE on common and
new benchmark problems.

4.1 Evaluating the Performance of MOO Algorithms

The performance assessment of stochastic multi-objective algorithms is more difficult than
evaluating single-objective algorithms: In empirical investigations, sets of sets, the non-
dominated solutions evolved in multiple trials of different algorithms, have to be compared.
Many ways of measuring the performance of MOO algorithms have been proposed. In
this study, we follow recommendations by Fonseca et al. (2005, see also Knowles, Thiele,
and Zitzler, 2005). We concisely define the performance measures used, for a detailed
description of the methods we refer to the literature (Knowles and Corne, 2002; Zitzler
et al., 2003; Knowles et al., 2005).

Given two sets of solutions A,B ⊆ X there is a common sense definition of one set
being better than the other. Set A is better than B and we write A . B if for every
element a ∈ B there exists an element a′ ∈ A that is not worse than a in each objective,
∀m ∈ {1, . . . ,M},∀a ∈ B,∃a′ ∈ A : fm(a′) ≤ f(a), and ndom(A) 6= ndom(B). Otherwise
we have A 7 B. Regularly for two sets, A and B, neither A.B nor B.A holds. Therefore,
quality indicators are introduced.

An unary quality indicator assigns a real valued quality to a set of solutions. Here, the
hypervolume indicator (Zitzler and Thiele, 1998) and the ε-indicator (Zitzler et al., 2003)
are measured. We use the performance assessment tools contributed to the PISA (Bleuler,
Laumanns, Thiele, and Zitzler, 2003) software package with standard parameters.

The hypervolume indicator w.r.t. reference set Aref is defined as

IS,Aref
(A) = Sanadir

(Aref)− Sanadir
(A) ,

where anadir denotes a reference point with the worst possible objective function values
in each component. A smaller IS is preferable. The additive unary ε-indicator w.r.t.
reference set Aref is defined as

Iε,Aref
(A) = inf

{

ε ∈ R | ∀a ∈ Aref ∃a′ ∈ A∀m ∈ {1, . . . ,M} : fm(a) + ε ≥ fm(a′)
}

.

14 IR-INI 2005–04, c© 2005 Institut für Neuroinformatik, Ruhr-Universität Bochum

The ε-indicator determines the smallest offset by which the fitness values of the elements
in A have to be shifted such that the resulting Pareto front covers the Pareto front of Aref

in the objective space. A smaller Iε,Aref
is preferable.

Before the performance indicators are computed, the data are normalized. We consider
two slightly different ways of defining the reference sets. Assume we want to compare k
algorithms on a particular optimization problem after a predefined number g of generations
(this is the standard scenario when using the PISA software package). For each algorithm
we have conducted t trials. We consider the non-dominated individuals of the union of all
kt populations after g generations. Their objective vectors are normalized such that for
every objective the smallest and largest objective function value are mapped to 1 and 2,
respectively, by an affine transformation. These individuals make up the reference set Aref.
The mapping to [1, 2]M is fixed and applied to all objective vectors under consideration.
The reference point aref is chosen to have an objective value of 2.1 in each objective.
Otherwise, if we want to compare the evolution of an indicator value over all generations,
we consider the union of all populations over all algorithms, all trials, and all generations
(i.e., (G + 1)kt populations if G is the number of the final generation) for normalization
and computation of Aref and proceed analogously.

Knowles and Corne (2002) and Zitzler et al. (2003) studied various properties of quality
indicators. Of particular interest is the relation to the “being better” definition given
above. An unary quality indicator is 7-compatible, if a better indicator value for A than
for B implies B 7 A. An indicator is .-complete, if A . B implies a better indicator
value for A than for B. Both the ε-indicator as well as the hypervolume indicator are
7-compatible and .-complete. The crowding-distance measure described in section 3.2.2,
which is related to the spread of solutions and not directly to the being better relation
defined above, is neither 7-compatible nor .-complete.

4.2 Experiments

Standard Benchmark Functions We consider three groups of test functions. The first
group comprises six common benchmark problems taken from the literature, namely the
function FON proposed by Fonseca and Fleming (1998) and the test functions ZDT1,
ZDT2, ZDT3, ZDT4, and ZDT6 proposed by Zitzler, Deb, and Thiele (2000), see Table 4.
All functions have box constraints also given in the table. In the five ZDT problems,
most components of the optimal solution lie on the boundary of box constraints (which
presumably favors NSGA-II). In general, we question the relevance of these test functions,
because they are highly biased. Here, these problems are considered only because they are
frequently used and we want to discover how the MO-CMA-ES compares to algorithms
biased towards such kind of problems.

Unconstrained Test Functions with Quadratic Objectives The second group of benchmarks
are functions where for each objective the objective function is quadratic (a quadratic
approximation close to a local optimum is reasonable for any smooth enough fitness func-
tion), see Table 5. They are of the general form fm(x) = xT Qx = xT OT

mAOmx, where
x ∈ Rn,Q,Om,A ∈ Rn×n with Om orthogonal and A diagonal and positive definite.
There are two types of functions, ELLI and CIGTAB, which differ in the eigenvectors of
Q. In each optimization run the coordinate system of the objective functions is changed
by a random choice of Om. The Gram-Schmidt orthogonalization procedure can be used
to construct random orthonormal basis vectors, the columns of Om, from randomly drawn

IR-INI 2005–04, c© 2005 Institut für Neuroinformatik, Ruhr-Universität Bochum 15

Table 4. Standard box constrained benchmark problems to be minimized.

Problem n Variable Objective Optimal
bounds functions solution

FON 3 [−4, 4] f1(x) = 1 − exp

„

−P3
i=1

“

xi − 1√
3

”2
«

x1 = x2 = x3

f2(x) = 1 − exp

„

−P3
i=1

“

xi + 1√
3

”2
«

xi ∈ [−1/
√

3, 1/
√

3]

ZDT1 30 [0, 1] f1(x) = x1 x1 ∈ [0, 1]

f2(x) = g(x)
h

1 −
p

x1/g(x)
i

xi = 0

g(x) = 1 + 9
`
Pn

i=2 xi

´

/ (n − 1) i = 2, . . . n

ZDT2 30 [0, 1] f1(x) = x1 x1 ∈ [0, 1]

f2(x) = g(x)
ˆ

1 − (x1/g(x))2
˜

xi = 0
g(x) = 1 + 9

`
Pn

i=2 xi

´

/ (n − 1) i = 2, . . . n

ZDT3 30 [0, 1] f1(x) = x1 x1 ∈ [0, 1]

f2(x) = g(x)
h

1 −
p

x1/g(x) − x1

g(x)
sin (10πx1)

i

xi = 0

g(x) = 1 + 9
`
Pn

i=2 xi

´

/ (n − 1) i = 2, . . . n

ZDT4 10 x1 ∈ [0, 1] f1(x) = x1 x1 ∈ [0, 1]

xi ∈ [−5, 5] f2(x) = g(x)
h

1 −
p

x1/g(x)
i

xi = 0

i = 2, . . . n g(x) = 1 + 10(n − 1) +
Pn

i=2

ˆ

x2
i − 10 cos (4πxi)

˜

i = 2, . . . n

ZDT6 10 [0, 1] f1(x) = 1 − exp (−4x1) sin6 (6πx1) x1 ∈ [0, 1]

f2(x) = g(x)
ˆ

1 − (f1(x)/g(x))2
˜

xi = 0

g(x) = 1 + 9
ˆ`

Pn

i=2 xi

´

/ (n − 1)
˜0.25

i = 2, . . . n

Table 5. Unconstrained benchmark problems to be minimized, with a = 1000, b = 100, y = O1x,
and z = O2x, where O1 and O2 are orthogonal matrices.

Problem n Initial Objective Optimal
region functions solution

ELLI1 10 [−10, 10] f1(y) = 1
a2n

Pn

i=1 a2 i−1

n−1 y2
i y1 = · · · = yn

f2(y) = 1
a2n

Pn

i=1 a2 i−1

n−1 (yi − 2)2 y1 ∈ [0, 2]

ELLI2 10 [−10, 10] f1(y) = 1
a2n

Pn

i=1 a2 i−1

n−1 y2
i

f2(z) = 1
a2n

Pn

i=1 a2 i−1

n−1 (zi − 2)2

CIGTAB1 10 [−10, 10] f1(y) = 1
a2n

ˆ

y2
1 +

Pn−1
i=2 ay2

i + a2y2
n

˜

y1 = · · · = yn

f2(y) = 1
a2n

ˆ

(y1 − 2)2 +
Pn−1

i=2 a (yi − 2)2 + a2(yn − 2)2
˜

y1 ∈ [0, 2]

CIGTAB2 10 [−10, 10] f1(y) = 1
a2n

ˆ

y2
1 +

Pn−1
i=2 ay2

i + a2y2
n

˜

f2(z) = 1
a2n

ˆ

(z1 − 2)2 +
Pn−1

i=2 a (zi − 2)2 + a2(zn − 2)2
˜

vectors. In the case of the test functions ELLI1 and CIGTAB1 the same rotation O is
used for both objective functions (i.e., O1 = O2). In the more general case of ELLI2 and
CIGTAB2 two independent rotation matrices O1 and O2 are generated, which are applied
to the first and second objective function, respectively.

16 IR-INI 2005–04, c© 2005 Institut für Neuroinformatik, Ruhr-Universität Bochum

Table 6. New benchmark problems to be minimized, y = Ox, where O ∈ Rn×n is an orthogonal
matrix, and ymax = 1/ maxj(|o1j |). In the case of ZDT4’, o1j = oj1 = 0 for 1 < j ≤ n and o11 = 1.
For the definition of h, hf , and hg see Table 7.

Problem n Variable Objective Optimal
bounds function solution

ZDT4’ 10 x1 ∈ [0, 1] f1(x) = x1 x1 ∈ [0, 1]

xi ∈ [−5, 5] f2(x) = g(y)
h

1 −
p

x1/g(y)
i

yi = 0

i = 2, . . . n g(y) = 1 + 10(n − 1) +
Pn

i=2

ˆ

y2
i − 10 cos (4πyi)

˜

i = 2, . . . n

IHR1 10 [−1, 1] f1(x) = |y1| y1 ∈ [0, ymax]

f2(x) = g(y) hf

“

1 −
p

h(y1)/g(y)
”

yi = 0

g(y) = 1 + 9
`
Pn

i=2 hg(yi)
´

/ (n − 1) i = 2, . . . n

IHR2 10 [−1, 1] f1(x) = |y1| y1 ∈ [−ymax, ymax]

f2(x) = g(y) hf

`

1 − (y1/g(y))2
´

yi = 0
g(y) = 1 + 9

`
Pn

i=2 hg(yi)
´

/ (n − 1) i = 2, . . . n

IHR3 10 [−1, 1] f1(x) = |y1| y1 ∈ [0, ymax]

f2(x) = g(y) hf

“

1 −
p

h(y1)/g(y) − h(y1)
g(y)

sin (10πy1)
”

yi = 0

g(y) = 1 + 9
`
Pn

i=2 hg(yi)
´

/ (n − 1) i = 2, . . . n

IHR4 10 [−5, 5] f1(x) = |y1| y1 ∈ [0, ymax]

f2(x) = g(y) hf

“

1 −
p

h(y1)/g(y)
”

yi = 0

g(y) = 1 + 10(n − 1) +
Pn

i=2

ˆ

y2
i − 10 cos (4πyi)

˜

i = 2, . . . n

IHR6 10 [−1, 1] f1(x) = 1 − exp (−4 |y1|)) sin6 (6πy1) y1 ∈ [−ymax, ymax]

f2(x) = g(y) hf

`

1 − (f1(x)/g(y))2
´

yi = 0

g(y) = 1 + 9
ˆ`

Pn

i=2 hg(yi)
´

/ (n − 1)
˜0.25

i = 2, . . . n

Table 7. Auxiliary functions for Table 6

h : R→ [0, 1], x 7→
(

1 + exp
(

−x√
n

))−1

hf : R→ R, x 7→
{

x if |y1| ≤ ymax

|y1|+ 1 otherwise

hg : R→ R≥0, x 7→ x2

|x|+0.1

Generalized ZDT Problems The third group of problems shown in Table 6 are new bench-
marks that generalize the ZDT problems to allow a rotation of the search space as in
the second group. In the first function ZDT4’ the rotation is applied to all but the first
coordinates. That is, we consider y = Ox, where O ∈ Rn×n is an orthogonal matrix with
o1j = oj1 = 0 for 1 < j ≤ n and o11 = 1.

In the other functions the rotation matrices are not restricted. Compared to the ZDT
functions, the search space is expanded and the Pareto front is not completely located
on the boundaries anymore. The lower end y1 = 0 of the Pareto front is induced by
the absolute value in the definition of f1. The ends y1 = ±ymax of the Pareto front are

IR-INI 2005–04, c© 2005 Institut für Neuroinformatik, Ruhr-Universität Bochum 17

determined by hf , see Table 7. The value ymax can be chosen between 1 and 1/maxj(|o1j |),
and in the latter case the Pareto optimal solution y1 = ymax lies on the search space
boundary. If ymax is chosen larger, up to

∑

j |o1j | or 5
∑

j |o1j |, respectively, the Pareto
front would not be linear in search space anymore. The function h : R→ [0, 1], see Table 7,
is monotonic and emulates the original variable boundary x1 ∈ [0, 1]. Similar, the function
hg : R→ R≥0 emulates the original lower variable boundary of xi≥0 for i = 2, . . . , n.

NSGA-II We compare the c-MO-CMA and the s-MO-CMA with the real-coded non-
dominated sorting genetic algorithm II (NSGA-II). The real-coded NSGA-II (Deb, 2001;
Deb et al., 2002) uses non-dominated sorting and the crowding-distance for selection, and
real-valued genetic algorithm (GA) operators, namely polynomial mutation and simulated
binary crossover (SBX). A detailed description of how these operators work is given in
Appendix A based on Deb and Agrawal (1999) and Deb et al. (2003). These operators have
their roots in GAs and are tailored for box constraints. Note that they are particularly
well-suited when the optimal solutions lie on the boundary of a box constraint. They
operate component-wise and therefore implicitly favor separability. Thus, the NSGA-II is
perfectly customized for the benchmark problems in Table 4.

NSDE To our knowledge, the only other evolutionary MOO approach that is invariant
against rotation and rescaling of the search space is non-dominated sorting differential
evolution (NSDE). Hence, we compare our methods to NSDE as described by Iorio and
Li (2005).

In every generation g of NSDE, each parent x
(g)
i generates one offspring x′(g)

i according
to

x′(g)
i = x

(g)
i + K

(

x
(g)

r
(g)
i,3

− x
(g)
i

)

+ F

(

x
(g)

r
(g)
i,1

− x
(g)

r
(g)
i,2

)

,

where r
(g)
i,1 , r

(g)
i,2 , r

(g)
i,3 ∈ {1, . . . , µ} are randomly chosen indices obeying

∣

∣

{

r
(g)
i,1 , r

(g)
i,2 , r

(g)
i,3 , i

}
∣

∣ =
4 and K and F are real-valued parameters. The new parents are selected from the former
parents and their offspring by non-dominated sorting using the crowding-distance.

The described variation rule is known as DE/current-to-rand/1 in single-objective
differential evolution (Price, 1999). The individuals in the population span the subspace
of the search space reachable by the algorithm. All offspring are linearly dependent from
the parents. This bears the risk that selection may lead to a degenerated population that
is restricted to some subspace not containing the desired solutions. The risk depends on
the relation between the dimension n of the search space and the population size. The
higher the dimension and the smaller the population size the higher is this risk.

Parameter Setting and Initialization For the real-coded NSGA-II we used the same pa-
rameter setting as Deb et al. (2002). We set the mutation probability to the inverse of the
genotype space dimension, pm = n−1, and the crossover probability to pc = 0.9. The dis-
tribution indices of the crossover and mutation operator were set to ηc = ηm = 20. In the
case of the unconstrained benchmark functions in Table 5 the boundaries of the mutation
and crossover operator were set to the boundaries of the initial regions. See Appendix A
for a description of the real-coded NSGA-II variation operators and their parameters.

The parameters of the NSDE were set to K = 0.4 and F = 0.8 as done by Iorio and
Li (2005). Constraints are handled as in the evolution strategies.

We used the standard parameters of the (1+1)-CMA-ES in the MO-CMA-ES. For
the functions FON, ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 we set σ(0) equal to 60 %

18 IR-INI 2005–04, c© 2005 Institut für Neuroinformatik, Ruhr-Universität Bochum

Table 8. Results on common benchmark problems. The upper two and lower two tables show
the median of 100 trials after 50000 evaluations of the hypervolume-indicator and the ε-indicator,
respectively. The smallest value in each column is underlined, the largest is printed in italics. The
superscripts I, II, III, and IV indicate whether an algorithm is statistically significantly better than
the c-MO-CMA, s-MO-CMA, NSGA-II, and NSDE, respectively (two-sided Wilcoxon rank sum
test, p < 0.001).

hypervolume indicator
algorithm FON ZDT1 ZDT2

s-MO-CMA 0.00467II,III,IV 0.00217II,III,IV 0.00247II,III,IV

c-MO-CMA 0.00643III,IV 0.00375IV 0.00416IV

NSGA-II 0.00855 0.00264II,IV 0.00316IV

NSDE 0.00719III 0.10872 0.09133

hypervolume indicator
algorithm ZDT3 ZDT4 ZDT6

s-MO-CMA 0.00105II,III,IV 0.22792IV 0.00051II,III,IV

c-MO-CMA 0.00186IV 0.22286IV 0.00064IV

NSGA-II 0.00140II,IV 0.00016I,II,IV 0.00062II,IV

NSDE 0.09326 0.80156 0.00121

ε-indicator
algorithm FON ZDT1 ZDT2

s-MO-CMA 0.00684II,III,IV 0.00459II,III,IV 0.00502II,III,IV

c-MO-CMA 0.01414 0.01124IV 0.01280IV

NSGA-II 0.01388 0.00818II,IV 0.01033
NSDE 0.01436 0.08017 0.08533

ε-indicator
algorithm ZDT3 ZDT4 ZDT6

s-MO-CMA 0.00317II,III,IV 0.21138IV 0.00148II,III,IV

c-MO-CMA 0.00870IV 0.20985IV 0.00305
NSGA-II 0.00711II,IV 0.00186I,II,IV 0.00256II,IV

NSDE 0.09936 0.73511 0.00328

of xu
2 − xl

2 (we rescaled the first component of ZDT4 to [−5, 5]). In the unconstrained
problems, Table 5, we set σ(0) equal to 60 % of the initialization range of one component.

In all algorithms the population size (λMO) was set to 100 as in the study by Deb et al.
(2002) to allow for a better comparison.

Methods For each pair of test function and optimization algorithm 100 trials with different
initial populations were conducted. For each test problem, the 100 initial populations and
the randomly generated rotation matrices for the rotated problems were the same for each
algorithm.

Results The characteristics of the Pareto fronts after 500 generations (50000 fitness eval-
uations) are shown in Table 8, Table 9, and Table 10 for the three groups of benchmark
problems. The superscripts I, II, III, and IV indicate whether a value is statistically sig-
nificantly compared to the c-MO-CMA, s-MO-CMA, NSGA-II, and NSDE, respectively
(paired Wilcoxon rank sum test, p < 0.001, superscripts in italics refer to a significance

IR-INI 2005–04, c© 2005 Institut für Neuroinformatik, Ruhr-Universität Bochum 19

Table 9. Results on new unconstrained, rotated benchmark problems. The upper two and lower
two tables show the median of 100 trials after 50000 evaluations of the hypervolume-indicator and
the ε-indicator, respectively.

hypervolume indicator
algorithm ELLI1 ELLI2 CIGTAB1 CIGTAB2

s-MO-CMA 0.00345II,III,IV 0.00003III 0.00314II,III,IV 0.00001III,IV

c-MO-CMA 0.00624III,IV 0.00003III 0.00545III,IV 0.00000I,III,IV

NSGA-II 0.00750 0.00023 0.00584IV 0.00005
NSDE 0.00687III 0.00002I,II,III 0.00694 0.00001III

ε-indicator
algorithm ELLI1 ELLI2 CIGTAB1 CIGTAB2

s-MO-CMA 0.00577II,III,IV 0.00011II ,III 0.00561II,III,IV 0.00019II ,III

c-MO-CMA 0.01378 0.00013III 0.01357 0.00022III

NSGA-II 0.01305IV 0.00049 0.01418 0.00033
NSDE 0.01405 0.00009I,II,III 0.01405 0.00018I ,II ,III

Table 10. Results on new, rotated, constrained benchmark problems. The upper and lower table
show the median of 100 trials after 50000 evaluations of the hypervolume-indicator and the ε-
indicator, respectively.

hypervolume indicator
algorithm ZDT4’ IHR1 IHR2
s-MO-CMA 0.16774IV 0.00323III,IV 0.04140II,III,IV

c-MO-CMA 0.18962IV 0.00284III,IV 0.04323III

NSGA-II 0.18282IV 0.01939IV 0.06383
NSDE 0.75090 0.02012 0.04289II,III

hypervolume indicator
algorithm IHR3 IHR4 IHR6

s-MO-CMA 0.02401II ,III,IV 0.00683III,IV 0.01093III,IV

c-MO-CMA 0.02402III,IV 0.00759III,IV 0.01076III,IV

NSGA-II 0.02409IV 0.01725IV 0.04053
NSDE 0.02415 0.03600 0.02391III

ε-indicator
algorithm ZDT4’ IHR1 IHR2

s-MO-CMA 0.16626IV 0.01053III,IV 0.16396III,IV

c-MO-CMA 0.18465IV 0.00937III,IV 0.16428III,IV

NSGA-II 0.16531IV 0.03147IV 0.21648
NSDE 0.69407 0.03214 0.16497III

ε-indicator
algorithm IHR3 IHR4 IHR6

s-MO-CMA 0.03996III,IV 0.00669III,IV 0.02123III

c-MO-CMA 0.03996III,IV 0.00746III,IV 0.02170III

NSGA-II 0.04003IV 0.01777IV 0.05727
NSDE 0.04008 0.03321 0.02899III

20 IR-INI 2005–04, c© 2005 Institut für Neuroinformatik, Ruhr-Universität Bochum

ELLI2 CIGTAB2

10
−4

10
−2

10
−4

10
−3

10
−2

10
−1

first objective

se
co

nd
 o

bj
ec

tiv
e

c−MOO−CMA
NSGA−II

10
−4

10
−2

10
−4

10
−2

first objective

se
co

nd
 o

bj
ec

tiv
e

c−MOO−CMA
NSGA−II

Figure 2. Population plots in objective space for c-MO-CMA and NSGA-II on the test functions
ELLI2 and CIGTAB2 on logarithmic scale. The populations after 500 generations of the first 5
trials are shown. Note the different shapes of the Pareto fronts due to the different coordinate
transformations and that s-MO-CMA, which is not shown in this figure, has a significantly better
performance on these functions even compared to c-MO-CMA.

Table 11. Results on the new benchmark problems ELLI2, CIGTAB2, and ZDT4’ after 100000 eval-
uations. The upper and lower table show the median of 100 trials of the hypervolume-indicator and
the ε-indicator, respectively. In the corresponding figure, the populations after 1000 generations
of the first 5 trials on ZDT4’ are plotted.

hypervolume indicator
algorithm ELLI2 CIGTAB2 ZDT4’

s-MO-CMA 0.00001III,IV 0.00000II,III,IV 0.15583III,IV

c-MO-CMA 0.00001I,III,IV 0.00000III,IV 0.18808III,IV

NSGA-II 0.00018 0.00005 0.22316IV

NSDE 0.00002III 0.00001III 0.80157

ε-indicator
algorithm ELLI2 CIGTAB2 ZDT4’

s-MO-CMA 0.00009II ,III,IV 0.00033II,III,IV 0.14434III,IV

c-MO-CMA 0.00014III 0.00042III 0.17247III,IV

NSGA-II 0.00044 0.00073 0.20273IV

NSDE 0.00010II ,III 0.00034II ,III 0.73926

level of p < 0.01). Figure 2 shows population plots of the first five trials after 500 gener-
ations of the c-MO-CMA and NSGA-II for ELLI2 and CIGTAB2 in the objective space.
Performance indicators for ELLI2, CIGTAB2, and ZDT4’ after 1000 generations are given
in Table 11. A corresponding population plot for c-MO-CMA and NSGA-II on ZDT4’
after 1000 is shown in Figure 3. In Figure 4, the evolution of the median of the ε-Indicator
is shown for the four test problems with quadratic objective functions. As described in
Section 4.1, the reference sets and therefore the absolute values in Figure 4 are different
from those in Table 9, although they are computed from the same trials.

IR-INI 2005–04, c© 2005 Institut für Neuroinformatik, Ruhr-Universität Bochum 21

ZDT4’

0 0.2 0.4 0.6 0.8 1

4

6

8

10

12

14

16

18

first objective

se
co

nd
 o

bj
ec

tiv
e

c−MOO−CMA
NSGA−II

Figure 3. Populations generated by c-MO-CMA and NSGA-II after 1000 generations on ZDT4’.
The first 5 of the 100 trials described in Table 11 are plotted.

Discussion The three methods NSGA-II, NSDE, and c-MO-CMA rely on the same multi-
objective selection pressure. Comparing their performance in terms of the ε-indicator and
the hypervolume indicator allows for a fair comparison of the different variation strategies.
Because the selection in s-MO-CMA almost directly aims at optimizing hypervolume,
using the latter for comparisons of s-MO-CMA with the other algorithms is biased.

When looking at both the ε-indicator and the hypervolume indicator in the tables,
s-MO-CMA is statistically significantly better than NSGA-II in all benchmark problems
except ZDT4, where NSGA-II is significantly better, and ZDT4’, where after 500 gen-
erations the lower figures of the evolution strategies are not statistically significant (see
below).

The multi-modal ZDT4 is separable, in the sense that the optima form a regular axis-
parallel grid. The recombination operator in NSGA-II exploits this kind of separability by
combining (locally) optimal settings of different variables: the crossover of local optima
always delivers another optimum being better in almost half of the cases and eventually
the global optimum. MO-CMA-ES does not exploit this kind of separability and cannot
find close to optimal solutions. When the search space is rotated such that the optima
do not necessarily lie on a regular axis-parallel grid, NSGA-II is not superior anymore as
can be seen from the ZDT4’ results. On the contrary, the evolution strategies become
better. After 500 generations the differences are not significant at p < 0.01, because the
median absolute deviation (and the variance) for the single algorithms is quite high due to
the huge number of local optima of the ZDT4’ function. However, after 1000 generations
the evolution strategies are significantly better than NSGA-II w.r.t. both performance
indicators, see Table 11. Figure 3 shows that on ZDT4’ NSGA-II suffers more under
premature convergence than the evolution strategies.

The s-MO-CMA differs in two main aspects from the NSGA-II. First, the adaptation
of the individual Gaussian mutation distributions by the CMA instead of using real-valued
GA operators. Second, the sorting is based on the contributing hypervolume instead of
the crowding-distance. To investigate the impact of these two differences, we compare
c-MO-CMA and s-MO-CMA, which differ only in the selection scheme, and c-MO-CMA
and NSGA-II. The latter two algorithms differ in the variation operators, but have the

22 IR-INI 2005–04, c© 2005 Institut für Neuroinformatik, Ruhr-Universität Bochum

ELLI1 ELLI2

0 100 200 300 400 500
10

−3

10
−2

10
−1

10
0

number of generations

m
ed

ia
n

of
 ε

−
in

di
ca

to
r

va
lu

e

c−MOO−CMA
s−MOO−CMA
NSGA−II
NSDE

0 100 200 300 400 500
10

−5

10
−4

10
−3

10
−2

10
−1

number of generations

m
ed

ia
n

of
 ε

−
in

di
ca

to
r

va
lu

e

c−MOO−CMA
s−MOO−CMA
NSGA−II
NSDE

CIGTAB1 CIGTAB2

0 100 200 300 400 500
10

−3

10
−2

10
−1

10
0

number of generations

m
ed

ia
n

of
 ε

−
in

di
ca

to
r

va
lu

e

c−MOO−CMA
s−MOO−CMA
NSGA−II
NSDE

0 100 200 300 400 500
10

−5

10
−4

10
−3

10
−2

number of generations

m
ed

ia
n

of
 ε

−
in

di
ca

to
r

va
lu

e

c−MOO−CMA
s−MOO−CMA
NSGA−II
NSDE

Figure 4. Simulations of the multi-objective algorithms on four rotated test functions. Shown is
the median of the ε-indicator of the first 20 trials. The reference sets and therefore the absolute
values are different compared to Table 9, see Section 4.1. In the first approximately 100 and 120
generations, the plots for c-MO-CMA and s-MO-CMA overlap in case of ELLI1 and CIGTAB1,
respectively. After that, the plots for c-MO-CMA, NSGA-II, and NSDE can hardly be distin-
guished. On CIGTAB2 and in particular on ELLI2, the plots for c-MO-CMA and s-MO-CMA are
very close. Note that ELLI2 and CIGTAB2 are the only benchmark problems considered in this
study where the NSDE outperforms the other methods.

same selection mechanism.

The ZDT experiments clearly show that the selection based on the hypervolume leads
to better results in terms of the measured indicators, because here s-MO-CMA significantly
outperforms c-MO-CMA.

On the common benchmark problems, Table 4, the NSGA-II is superior to the c-
MO-CMA. The ε-indicator values are significantly better on ZDT1, ZDT4, and ZDT6,
the hypervolume indicator values additionally on ZDT3. On these functions, NSGA-II
can take advantage of the separability as described above. On FON, the c-MO-CMA is
significantly better than the NSGA-II in terms of the hypervolume indicator.

On the rotated benchmark problems with one global coordinate system, ELLI1 and
CIGTAB1, the c-MO-CMA and the NSGA-II do not differ significantly w.r.t ε-indicator
but only w.r.t. the hypervolume indicator. The reason why the c-MO-CMA does not reach

IR-INI 2005–04, c© 2005 Institut für Neuroinformatik, Ruhr-Universität Bochum 23

better ε-indicator values than the NSGA-II—despite the fact that the evolution strategy
can adapt its mutation distribution to the rotated coordinate systems—lies in the selection
mechanism. After an initial phase, NSGA-II and c-MO-CMA as well as NSDE suffer from
the fact that the crowding-distance is not related to the being better relation defined in
Section 4.1. Depending on the population size, this limits the progress of the algorithms
in terms of the ε-indicator (and, although not obvious from all presented results, also
in terms of the hypervolume indicator). This can be observed in Figure 4, left. After
approximately 120 and 100 generations on ELLI1 and CIGTAB1, respectively, the three
methods relying on the crowding-distance fluctuate around a sub-optimal level without
any progress w.r.t. the ε-indicator. Their final performance is determined by the second
sorting criterion, the corresponding plots can not be distinguished.

When looking at the problems ELLI2 and CIGTAB2, where, roughly speaking, the
appropriate coordinate system varies along the Pareto front, both MO-CMA-ES variants
clearly outperform NSGA-II. In this general case, the adaptation of arbitrary normal mu-
tation distributions, individually along the Pareto front, seems to be of great importance.
The resulting Pareto fronts are visualized in Figure 2 (note that the s-MO-CMA leads to
even better results on these functions). On the IHR problems, c-MO-CMA is significantly
better than NSGA-II w.r.t. both indicators. These results confirm that the invariance
properties of the MO-CMA really matter, see also Figure 4, right.

Figure 4 reveals that the evolution strategies are slower in the early generations on
the four test problems with quadratic objective functions compared to the other methods.
It takes some time for the CMA to adapt the strategy parameters during which NSDE
and NSGA-II make significantly more progress (at least for the initial CMA strategy
parameters and learning rates used in this study).

Overall the NSDE performed worst of all methods. However, on ELLI2 and CIGTAB2,
until 500 generations most indicator values are better than the corresponding values of
the evolution strategies. This changes after more evaluations, see Table 11. This result
does not carry over to the other benchmarks with rotated search spaces. On some of the
IHR tasks, IHR1, IHR3, and IHR4, NSDE is even significantly worse than the NSGA-II.
The differential evolution algorithm in the considered form seems to have problems with
higher dimensionality, as can be seen from the results on ZDT1, ZDT2, and ZDT3, as well
as multi-modality, as reflected by the performance on ZDT4 and ZDT4’.

The question arises whether tuning of the external parameters of the MO-CMA-ES,
NSDE, or NSGA-II would qualitatively affect their performance. We conducted a pa-
rameter study for the NSGA-II with different values for pm, pc, ηm, and ηc on the new
benchmark problems with quadratic objective functions without observing remarkably
improved behavior. We think that the experiments in this section well reflect principal
theoretical advantages and limitations of the algorithms.

5 Summary and Conclusions

We presented the single-objective (1+λ)-CMA-ES, an elitist evolution strategy (ES) with
covariance matrix adaptation (CMA). It combines plus-selection and success rule based
step size control with the powerful covariance matrix adaptation. The empirical evaluation
reveals that the (1+1)-CMA-ES works reliably and that it is faster by a factor of about
1.5 on unimodal functions compared to the standard CMA-ES with comma-selection. The
result proves that non-elitist (comma-) selection is not a necessary prerequisite for complex
strategy parameter adaptation in evolution strategies.

24 IR-INI 2005–04, c© 2005 Institut für Neuroinformatik, Ruhr-Universität Bochum

While the new (1+1)-CMA-ES is slightly faster than the default (µ/µ, λ)-CMA-ES,
it is more susceptible to get trapped into sub-optimal local minima. In particular for
this reason we stick to the comma-variant as default recommendation for single-objective
optimization.

Based on the (1+λ)-CMA-ES we developed the λMO×(1+λ)-MO-CMA-ES, a multi-
objective CMA-ES, which combines the strategy parameter adaptation of λMO elitist
(1+λ) strategies with multi-objective selection based on non-dominated sorting. Two
variants were considered, c-MO-CMA and s-MO-CMA, using the crowding-distance and
the contributing hypervolume as second sorting criterion, respectively.

The MO-CMA strategies are independent of the chosen coordinate system. Apart
from the respective initializations, their behavior does not change if the search space is
translated, rotated, and/or rescaled. The single-objective CMA-ES with plus-selection
is additionally invariant against order-preserving transformations of the fitness function
value, the MO-CMA-ES is not, because of the second level sorting criterion for selection.
However, in comparison to other multi-objective evolutionary algorithms, the invariance
properties of the MO-CMA-ES are an important feature.

In experiments we compared c-MO-CMA, s-MO-CMA, NSGA-II, and the differen-
tial evolution approach NSDE. The s-MO-CMA algorithm appears to be the superior
method. It significantly outperforms the NSGA-II on all but one of the considered test
problems. The NSGA-II is faster than the s-MO-CMA on problems where the optima
form a regular axis-parallel grid, because NSGA-II heavily exploits this kind of separa-
bility. However, otherwise s-MO-CMA is superior. This clearly shows that both the new
selection mechanism and in particular the invariance properties due to covariance matrix
adaptation improve the search behavior in case of the s-MO-CMA. The rotation-invariant
NSDE showed the overall worst performance of all methods, especially in higher dimen-
sional problems, but gave good results on the two test problems where the appropriate
coordinate system varies along the Pareto front.

The ranking in the s-MO-CMA, based on the contributing hypervolume, can be com-
puted in superlinear time in the number of individuals for two objectives, but the algorithm
scales badly for an increasing number of goals. We do not regard the bad scaling behavior
as a severe drawback, in particular because in multi-objective optimization applications
usually less than five objectives are considered. This is not only because the applications
do not give raise to more objectives, but also because otherwise the results would be too
hard to interpret (e.g., to visualize). Further, in real-world applications the costs for gen-
erating offspring and selection can often be neglected compared to the time needed for the
fitness evaluation. If the contributing hypervolume cannot be used for selection because
of a high number of objectives, the c-MO-CMA provides an alternative.

In conclusion, with the caveat of the so far limited empirical data basis, the s-MO-CMA
is a promising candidate to become the method of choice for real-valued non-separable
optimization problems with multiple criteria given that the maximum number of fitness
evaluations is not too small to allow for an adaptation of the strategy parameters.

Acknowledgments

We thank K. Deb and co-workers and C. M. Fonseca, J. D. Knowles, L. Thiele, and
E. Zitzler for making their software available. The first author gratefully acknowledges
support from the Honda Research Institute Europe GmbH.

IR-INI 2005–04, c© 2005 Institut für Neuroinformatik, Ruhr-Universität Bochum 25

A NSGA-II Operators

The NSGA-II uses the polynomial mutation operator for optimization problems with box
constrains (Deb and Agrawal, 1999; Deb et al., 2003). Let c = (c1, . . . , cn) with ci ∈
[xl

i, x
u
i], 1 ≤ i ≤ n. The parameter ηm > 0 is called the distribution index of the mutation.

Procedure mutatePolynomial(c ∈ [xl
1, x

u
1]× · · · × [xl

n, xu
n])

foreach 1 ≤ i ≤ n do1

u v U [0, 1]2

if u ≤ pm then3

α← min{ci − xl
i, x

u
i − ci}

(xu
i − xl

i)4

z v U [0, 1]5

δ ←
{

[(2z) + (1− 2z)(1 − α)ηm+1]
1

ηm+1 − 1 , if z ≤ 0.5

1− [2 · (1− z) + 2 · (z − 0.5)(1 − α)ηm+1]
1

ηm+1 , otherwise6

ci ← ci + δ · (xu
i − xl

i)7

The simulated binary crossover operator (SBX) for constrained problems (Deb and
Agrawal, 1999; Deb et al., 2003) with distribution index ηc > 0 is defined as follows.

Procedure SBX(c1,c2 ∈ [xl
1, x

u
1]× · · · × [xl

n, xu
n])

foreach 1 ≤ i ≤ n do1

u v U [0, 1[2

if u ≥ 0.5 then3

y1 ← min(c1i, c2i)4

y2 ← max(c1i, c2i)5

if (y2 − y1) > ε then6

β ← 1 +
2

y2 − y1
·min{(y1 − xl

i), (x
u
i − y2)}

7

α← 2− β−(ηc+1)
8

z v U [0, 1]9

γ ←







(zγ)
1

ηc+1 , if z ≤ 1
α

(

1
2−zγ

)
1

ηc+1
, otherwise

10

else11

γ ← 112

[c1]i ← 0.5 · [(y1 + y2)− γ · (y2 − y1)]13

[c2]i ← 0.5 · [(y1 + y2) + γ · (y2 − y1)]14

The parameter ε, which determines when two values are regarded as too close, is set
to ε = 10−12. Due to numerical problems, these operators rather frequently hit the upper
and lower bounds. In these cases, the mutation operator sets the corresponding variable
xi to some value chosen from [xl

i, x
u
i] uniformly at random.

26 IR-INI 2005–04, c© 2005 Institut für Neuroinformatik, Ruhr-Universität Bochum

References

Beyer, H.-G. and H.-P. Schwefel (2002). Evolution strategies: A comprehensive introduction. Nat-
ural Computing 1 (1), 3–52.

Bleuler, S., M. Laumanns, L. Thiele, and E. Zitzler (2003). PISA – A platform and programming
language independent interface for search algorithms. In C. M. Fonseca, P. J. Fleming, E. Zit-
zler, K. Deb, and L. Thiele (Eds.), Evolutionary Multi-Criterion Optimization (EMO 2003),
Volume 2632 of LNCS, pp. 494 – 508. Springer-Verlag.

Büche, D., S. D. Müller, and P. Koumoutsakos (2003). Self-adaptation for multi-objective evolu-
tionary algorithms. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and L. Thiele (Eds.),
Proceedings of the Second International Conference on Evolutionary Multi-Criterion Optimiza-
tion (EMO 2003), Volume 2632 of LNCS, pp. 267 – 281. Springer-Verlag.

Coello Coello, C. A., D. A. Van Veldhuizen, and G. B. Lamont (2002). Evolutionary Algorithms
for Solving Multi-Objective Problems. Kluwer Academic Publishers.

Das, I. and J. E. Dennis (1997). A closer look at drawbacks of minimizing weighted sums of
objectives for pareto set generation in multicriteria optimization problems. Structural Opti-
mization 14 (1), 63–69.

Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. Wiley.

Deb, K. et al. (2003).
http://www.iitk.ac.in/kangal/code/new_nsga/nsga2code.tar.

Deb, K. and S. Agrawal (1999). A niched-penalty approach for constraint handling in genetic algo-
rithms. In R. Albrecht, A. Dobnikar, D. Pearson, and N. Steele (Eds.), International Conference
on Artifical Neural Networks and Genetic Algorithms, pp. 235–243. Springer-Verlag.

Deb, K., S. Agrawal, A. Pratap, and T. Meyarivan (2002). A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6 (2), 182–197.

Emmerich, M., N. Beume, and B. Naujoks (2005). An EMO algorithm using the hypervolume
measure as selection criterion. In C. A. C. Coello, E. Zitzler, and A. H. Aguirre (Eds.), Third
International Conference on Evolutionary Multi-Criterion Optimization (EMO 2005), Volume
3410 of LNCS, pp. 62–76. Springer-Verlag.

Fonseca, C. M. and P. J. Fleming (1998). Multiobjective optimization and multiple constraint
handling with evolutionary algorithms—Part II: Application example. IEEE Transactions on
Systems, Man, and Cybernetics, Part A: Systems and Humans 28 (1), 38–47.

Fonseca, C. M., J. D. Knowles, L. Thiele, and E. Zitzler (2005). A tutorial on the performance
assessment of stochastic multiobjective optimizers. Presented at the Third International Con-
ference on Evolutionary Multi-Criterion Optimization (EMO 2005).

Hansen, N. (2000). Invariance, self-adaptation and correlated mutations in evolution strategies.
In Proceedings of the 6th International Conference on Parallel Problem Solving from Nature
(PPSN VI), Volume 1917 of LNCS, pp. 355–364. Springer-Verlag.

Hansen, N. (2005a). The CMA evolution strategy: A comparing review. In I. I. J.A. Lozano,
P. Larraãga and E. Bengoetxea (Eds.), Towards a new evolutionary computation. Advances on
estimation of distribution algorithms. Springer-Verlag. In press.

Hansen, N. (2005b). References to CMA-ES applications.
www.bionik.tu-berlin.de/user/niko/cmaapplications.pdf.

Hansen, N. (2006). An analysis of mutative σ-self-adaptation on linear fitness functions. Evolu-
tionary Computation, accepted.

Hansen, N. and S. Kern (2004). Evaluating the CMA evolution strategy on multimodal test func-
tions. In X. Yao et al. (Eds.), Parallel Problem Solving from Nature - PPSN VIII, LNCS 3242,
pp. 282–291. Springer-Verlag.

Hansen, N., S. D. Müller, and P. Koumoutsakos (2003). Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adapt ation (CMA-ES). Evolutionary
Computation 11 (1), 1–18.

http://www.iitk.ac.in/kangal/code/new_nsga/nsga2code.tar
www.bionik.tu-berlin.de/user/niko/cmaapplications.pdf

IR-INI 2005–04, c© 2005 Institut für Neuroinformatik, Ruhr-Universität Bochum 27

Hansen, N. and A. Ostermeier (2001). Completely derandomized self-adaptation in evolution strate-
gies. Evolutionary Computation 9 (2), 159–195.

Hansen, N., A. Ostermeier, and A. Gawelczyk (1995). On the adaptation of arbitrary normal
mutation distributions in evolution strategies: The generating set adaptation. In L. Eshelman
(Ed.), Proceedings of the Sixth International Conference on Genetic Algorithms, Pittsburgh,
pp. 57–64. Morgan Kaufmann, San Fransisco.

Igel, C. (2005). Multi-objective model selection for support vector machines. In C. A. C. Coello,
E. Zitzler, and A. H. Aguirre (Eds.), Third International Conference on Evolutionary Multi-
Criterion Op timization (EMO 2005), Volume 3410 of LNAI, pp. 534–546. Springer-Verlag.

Iorio, A. and X. Li (2005). Solving rotated multi-objective optimization problems using differential
evolution. In Proceeding of the 17th Joint Australian Conference on Artificial Intelligence,
LNCS. Spriner-Verlag. In press.

Kern, S., S. D. Müller, N. Hansen, D. Büche, J. Ocenasek, and P. Koumoutsakos (2004). Learning
probability distributions in continuous evolutionary algorithms – a comparative review. Natural
Computing 3, 77–112.

Knowles, J., L. Thiele, and E. Zitzler (2005, July). A tutorial on the performance assessment
of stochastic multiobjective optimizers. 214, Computer Engineering and Networks Laboratory
(TIK), Swiss Federal Institute of Technology (ETH) Zurich.

Knowles, J. D. and D. W. Corne (2002). On metrics for comparing non-dominated sets. In Congress
on Evolutionary Computation Conference (CEC 2002), pp. 711–716. IEEE Press.

Knuth, D. E. (1973). The art of computer programming (1 ed.), Volume 3: Sorting and searching,
Chapter 6, pp. 451–471. Addison-Wesley.

Laumanns, M., G. Rudolph, and H.-P. Schwefel (2001). Mutation control and convergence in
evolutionary multi-objective optimization. In R. Matousek and P. Osmera (Eds.), Proceedings
of the 7th International Mendel Conference on Soft Computing (MENDEL 2001), pp. 24–29.
Brno, Czech Republic: University of Technology.

Price, K. V. (1999). An introduction to differential evolution. In D. Corne, M. Dorigo, and F. Glover
(Eds.), New Ideas in Optimization, London, pp. 79–108. McGraw-Hill.

Rechenberg, I. (1973). Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der
Biologischen Evolution. Frommann-Holzboog.

Salomon, R. (1996). Reevaluating genetic algorithm performance under coordinate rotation of
benchmark functions. BioSystems 39 (3), 263–278.

Schwefel, H.-P. (1995). Evolution and Optimum Seeking. Sixth-Generation Computer Technology
Series. John Wiley & Sons.

While, L. (2005). A new analysis of the LebMeasure algorithm for calculating hypervolume. In
C. A. C. Coello, E. Zitzler, and A. H. Aguirre (Eds.), Third International Conference on
Evolutionary Multi-Criterion Optimization (EMO 2005), Volume 3410 of LNCS, pp. 326–340.
Springer-Verlag.

Zitzler, E., K. Deb, and L. Thiele (2000). Comparison of multiobjective evolutionary algorithms:
Empirical results. Evolutionary Computation 8 (2), 173–195.

Zitzler, E. and L. Thiele (1998). Multiobjective optimization using evolutionary algorithms — a
comparative case study. In A. E. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel (Eds.),
Fifth International Conference on Parallel Problem Solving from Nature (PPSN-V), pp. 292–
301. Springer-Verlag.

Zitzler, E., L. Thiele, M. Laumanns, C. M. Fonseca, and V. Grunert da Fonseca (2003). Perfor-
mance assesment of multiobjective optimizers: An analysis and review. IEEE Transactions on
Evolutionary Computation 7 (2), 117–132.

	Introduction
	A Single-objective Elitist CMA Evolution Strategy
	The (1+bold0mu mumu Raw)-CMA-ES
	Simulation of the (1+bold0mu mumu Raw)-CMA-ES

	Covariance Matrix Adaptation for Multi-objective Optimization
	Multi-objective Optimization
	Multi-objective Selection
	Non-dominated Sorting
	Crowding-distance
	Contributing Hypervolume

	MO-CMA-ES

	Empirical Evaluation of the MO-CMA-ES
	Evaluating the Performance of MOO Algorithms
	Experiments

	Summary and Conclusions
	NSGA-II Operators
	References

