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Problem Statement Black Box Optimization and lts Difficulties

Problem Statement

Continuous Domain Search/Optimization
o Task: minimize an objective function (fitness function, loss
function) in continuous domain
f X CR" =R, x = f(x)
o Black Box scenario (direct search scenario)

X

—

f(x)

o gradients are not available or not useful
o problem domain specific knowledge is used only within the black
box, e.g. within an appropriate encoding

o Search costs: number of function evaluations
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Problem Statement Black Box Optimization and lts Difficulties

Problem Statement

Continuous Domain Search/Optimization

o Goal

o fast convergence to the global optimum

. . . ...orto a robust solution x
o solution x with small function value f(x) with least search cost

there are two conflicting objectives

o Typical Examples

o shape optimization (e.g. using CFD) curve fitting, airfoils

o model calibration biological, physical

o parameter calibration controller, plants, images
@ Problems

o exhaustive search is infeasible

o naive random search takes too long

o deterministic search is not successful / takes too long
Approach: stochastic search, Evolutionary Algorithms
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Problem Statement Black Box Optimization and lts Difficulties

Objective Function Properties

We assume f : X C R" — R to be non-linear, non-separable and to
have at least moderate dimensionality, say n « 10.
Additionally, f can be

O non-convex
o multimodal

there are possibly many local optima
@ non-smooth

derivatives do not exist
discontinuous

ill-conditioned
noisy

Goal : cope with any of these function properties
they are related to real-world problems
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Problem Statement Black Box Optimization and lts Difficulties

What Makes a Function Difficult to Solve?

Why stochastic search?

@ non-linear, non-quadratic, non-convex
on linear and quadratic functions much better
search policies are available

o ruggedness
non-smooth, discontinuous, multimodal, and/or
noisy function
o dimensionality (size of search space)
(considerably) larger than three
@ non-separability
dependencies between the objective variables
o ill-conditioning
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Problem Statement Black Box Optimization and lts Difficulties

Ruggedness

non-smooth, discontinuous, multimodal, and/or noisy

Fitness

-2 -1 0

0
24 ,

cut from a 5-D example, (easily) solvable with evolution strategies
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Problem Statement Black Box Optimization and lts Difficulties

Curse of Dimensionality

The term Curse of dimensionality (Richard Bellman) refers to problems
caused by the rapid increase in volume associated with adding extra
dimensions to a (mathematical) space.

Example: Consider placing 100 points onto a real interval, say [0, 1]. To
get similar coverage, in terms of distance between adjacent points, of
the 10-dimensional space [0, 1]'° would require 100'° = 10?° points. A
100 points appear now as isolated points in a vast empty space.

Remark: distance measures break down in higher dimensionalities
(the central limit theorem kicks in)

Consequence: a search policy (e.g. exhaustive search) that is
valuable in small dimensions might be useless in moderate or large
dimensional search spaces.
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Problem Statement Non-Separable Problems

Separable Problems

Definition (Separable Problem)
A function f is separable if
arg( min  f(xq,...,%,) = <argminf(x1, ce)y e argminf(. .. 7xn))

= it follows that f can be optimized in a sequence of n independent
1-D optimization processes

Example: Additively
decomposable functions

S, x) = Zfi(x,-)
i=1

Rastrigin function
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Problem Statement Non-Separable Problems

Non-Separable Problems

Building a non-separable problem from a separable one (1+2)

Rotating the coordinate system
o f:x+— f(x) separable

o f :x — f(Rx) non-separable
R rotation matrix
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1 Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation distributions in
evolution strategies: The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan Kaufmann

2Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark
Functions; A survey of some theoretical and practical aspects of genetic algorithms.” BioSystems, 39(3):263-278
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Problem Statement lll-Conditioned Problems

[lI-Conditioned Problems

Curvature of level sets

Consider the convex-quadratic function
1 T 1 2,1
f(x) = E(x —x*) H(x —x*) =5 Zihi7ixi + 5 Zi¢jhinixj
H is Hessian matrix of f and symmetric positive definite

@ \ gradient direction —f'(x)"

lll-conditioning means squeezed level sets (high curvature).
Condition number equals nine here. Condition numbers up to 10"
are not unusual in real world problems.

If H ~ I (small condition number of H) first order information (e.g. the
gradient) is sufficient. Otherwise second order information
(estimation of H~!) is necessary.
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Problem Statement lll-Conditioned Problems

What Makes a Function Difficult to Solve?

...and what can be done

The Problem

The Approach in ESs and continuous EDAs

Dimensionality,
Non-Separability

lll-conditioning

Ruggedness

Anne Auger & Nikolaus Hansen ()

exploiting the problem structure
locality, neighborhood, encoding

second order approach
changes the neighborhood metric

non-local policy, large sampling width (step-size)
as large as possible while preserving a
reasonable convergence speed

population-based method, stochastic, non-elitistic

recombination operator . .
serves as repair mechanism

restarts
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Problem Statement

Metaphors

Evolutionary Computation

lll-Conditioned Problems

Optimization

individual, offspring, parent

population
fitness function

generation

Anne Auger & Nikolaus Hansen ()
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CMA-ES

candidate solution
decision variables
design variables
object variables
set of candidate solutions
objective function
loss function
cost function
error function
iteration
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Evolution Strategies A Search Template

Stochastic Search

A black box search template to minimize f : R” — R
Initialize distribution parameters 6, set population size A € N
While not terminate

@ Sample distribution P (x|0) — x;,...,x) € R"

@ Evaluatex;,...,x,onf

@ Update parameters 0 < Fy(0,x1,...,x5,f(x1),...,f(x)))

Everything depends on the definition of P and Fy
deterministic algorithms are covered as well

In many Evolutionary Algorithms the distribution P is implicitly defined
via operators on a population, in particular, selection, recombination
and mutation

Natural template for Estimation of Distribution Algorithms
Anne Auger & Nikolaus Hansen () CMA-ES January, 2012 15/82



Evolution Strategies A Search Template

The CMA-ES

Input: m e R*, 0 € Ry, A
Initialize: C=1,andp. =0, p, = 0,
Set: cc ~4/n, c, ~4/n, c; ~2/n, cu R /1, 1+ cu < 1,dy =14 /B2,

and w;—,._ such that y,, = ﬁ ~ 0.3\
While not terminate
xi=m+oy, yi ~ Ni(0,C), fori=1,...,) sampling
m< Yt wixpy =m+oy, wherey, =>" wy. update mean
pe < (1 —=ce)pe + Ny, 1<1.50m) m\/;TWyw cumulation for C
Po < (1= o) po +/T— (1 = ¢o)2/lw C 2y, cumulation for &
C—(l—ci—c,)C+ cipepet + cpu Zf‘zl w,-y,g,\yz/\ update C
04 0 X exp (2—3 (% - 1)) update of o

Not covered on this slide: termination, restarts, useful output, boundaries
and encoding
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Evolution Strategies A Search Template

Evolution Strategies

New search points are sampled normally distributed

x,-Nm—i—aj\f,-(O,C) fori:l,...,)\ :

as perturbations of m, where x;,m € R", 0 € Ry, C € R"™"

where
o the vector m € R”" represents the favorite solution
o the so-called o € Ry controls the step length
o the C € R™" determines the shape of

the distribution ellipsoid

here, all new points are sampled with the same parameters

The question remains how to update m, C, and o.
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Evolution Strategies The Normal Distribution

Why Normal Distributions?

@ widely observed in nature, for example as phenotypic traits

@ only stable distribution with finite variance
stable means that the sum of normal variates is again
normal:

N(x,A)+N(y,B) ~N(x+y, A+B)

helpful in design and analysis of algorithms
related to the central limit theorem
@ most convenient way to generate isotropic search points

the isotropic distribution does not favor any direction, supports
rotational invariance

@ maximum entropy distribution with finite variance
the least possible assumptions on f in the distribution shape
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Evolution Strategies The Normal Distribution

Normal Distribution

Standard Normal Distribution
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probability density of the 1-D standard
normal distribution
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Evolution Strategies The Normal Distribution

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution N (m, C) is uniquely determined by its mean
value m € R" and its symmetric positive definite n x n covariance matrix C.

The mean value m

2-D Normal Distribution

@ determines the displacement (translation)
@ value with the largest density (modal value)

@ the distribution is symmetric about the distribution
mean

The covariance matrix C

@ determines the shape

@ geometrical interpretation: any covariance matrix can be uniquely identified
with the iso-density ellipsoid {x € R"| (x —m)"C™'(x —m) = 1}

Anne Auger & Nikolaus Hansen () CMA-ES January, 2012 20/82



Evolution Strategies The Normal Distribution

...any covariance matrix can be uniquely identified with the iso-density ellipsoid
{xeR"|(x—m)"C'(x —m) =1}

Lines of Equal Density

N (m, o) ~ m + oN(0,1) N (m,D?) ~m+DN(0,1)
one degree of freedom o

components are

independent standard independent, scaled
normally distributed

N(m,C)~m + C%N(O,I)
n degrees of freedom (2 | ;) /2 degrees of freedom
components are components are
correlated

where T is the identity matrix (isotropic case) and D is a diagonal matrix (reasonable
for separable problems) and A x N (0,1) ~ A (0, AA™) holds for all A.

Anne Auger & Nikolaus Hansen () CMA-ES

January, 2012 21/82



Evolution Strategies The Normal Distribution

Effect of Dimensionality

Norm of normally distributed vector
0.8 T T T
2-D Normal Distribution
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Evolution Strategies The Normal Distribution

Evolution Strategies

Terminology
Let u: # of parents, \: # of offspring

Plus (elitist) and comma (non-elitist) selection

(u+ A\)-ES: selection in {parents} U {offspring}
(u, X)-ES: selection in {offspring}

(1+1)-ES
Sample one offspring from parent m
x=m+oN(0,C)
If x better than m select

m<—Xx

Anne Auger & Nikolaus Hansen () CMA-ES January, 2012
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Evolution Strategies The Normal Distribution

The (/41 \)-ES
Non-elitist selection and intermediate (weighted) recombination
Given the i-th solution point x; = m + o N;(0,C) =m + o y;
N—_——
=:Yi

Let x;.\ the i-th ranked solution point, such that f(x1.)) < - - < f(xx.x)
The new mean reads

H H
m < E WX\ = m-+o E WiYiA
i=1 i=1

N———
=:!Yw
where

I

=1y R

I
Wi > >w, >0, YR wi=1, S w2

The best ;. points are selected from the new solutions (non-elitistic)
and weighted intermediate recombination is applied.
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Evolution Strategies Invariance

Invariance Under Monotonically Increasing Functions

Rank-based algorithms
Update of all parameters uses only the ranks

Fxia) < flea) < ..

<f(ean)

g(f(xia)) < g(f(x2n)) < ...

< g(f(xan)) Vg
g is strictly monotonically increasing
g preserves ranks

3
Whitley 1989. The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive

trials is best, ICGA
Anne Auger & Nikolaus Hansen () CMA-ES
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Evolution Strategies Invariance

Basic Invariance in Search Space

o translation invariance
is true for most optimization algorithms

[\

/ N \EE g
N
\ N
(Y ST

f(x) < f(x —a)

Identical behavior on f and f,

f: x—fx), x(=0) = x,
fo: x—=f(x—a), x=0 =x;+a

No difference can be observed w.r.t. the argument of f
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Evolution Strategies Invariance

Rotational Invariance in Search Space

o invariance to orthogonal (rigid) transformations R, where RRT =1
e.g. true for simple evolution strategies
recombination operators might jeopardize rotational invariance

f(x) & f(Rx)

Identical behavior on f and fx

fooxe=fx),  xU70=x
fo: x f(Rx), x(=9 =R (x)

No difference can be observed w.r.t. the argument of f

4Salomon 1996. "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark
Functions; A survey of some theoretical and practical aspects of genetic algorithms.” BioSystems, 39(3):263-278

45

5Hansen 2000. Invariance, Self-Adaptation and Correlated Mutations in Evolution Strategies. Parallel Problem
Solvina from Nature PPSN VI
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Evolution Strategies Invariance

Invariance
Impact

The grand aim of all science is to cover the greatest number of empirical facts by
logical deduction from the smallest number of hypotheses or axioms.
— Albert Einstein

o Empirical performance results, for example

o from benchmark functions
o from solved real world problems

are only useful if they do generalize to other problems

o Invariance is a strong non-empirical statement about

generalization
generalizing (identical) performance from a single function to a whole
class of functions

consequently, invariance is important for the evaluation of search
algorithms
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Step-Size Control

Evolution Strategies

Recalling

New search points are sampled normally distributed

x;i ~m+ o N;(0,C) fori=1,...,\ :

as perturbations of m, where x;,m € R", 0 e Ry, C € R"™"

where
o the vector m € R” represents the favorite solution
and m < >t wix;
o the so-called o € R4 controls the step length
o the C € R™*" determines the shape of
the distribution ellipsoid

The remaining question is how to update o and C.

Anne Auger & Nikolaus Hansen () CMA-ES January, 2012
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Step-Size Control Why Step-Size Control

Why Step-Size Control?

0 |—
10" | random search i
step-size too small —
] constaht step-size
=2 3
g 10 :
2
S flx) = in
= e step-size too large- - - - - - — 4 -
&) i=1
S 6 .
= 10 1 in[-2.2,0.8]"
forn =10
optimal step-size
(scale invariant)
10_9 L L L
0 05 1 15 2
4
function evaluations % 10
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Step-Size Control Why Step-Size Control

Why Step-Size Control?

(5/5,10)-ES, 11 runs

10° — with optimal step-size |
— with step-size control
10-1 L
§ 107 -
3 _ 2
| flx) = E X
H =
— 10*3 L
forn = 10 and
. x €[-0.2,0.8]"
10% ¢
10°5 200 400 600 800 1000 1200

function evaluations

with optimal step-size o

Anne Auger & Nikolaus Hansen () CMA-ES January, 2012 32/82



Step-Size Control Why Step-Size Control

Why Step-Size Control?

(5/5,10)-ES, 2x11 runs

10° \ et — with optimal step-size [

— with step-size control
107 F
| flx) = E Xi
3 ‘ i=1
— 1073 L
for n = 10 and
x €[-0.2,0.8]"
104 |
10° 5 200 400 600 800 1000 1200

function evaluations

with optimal versus adaptive step-size o with too small initial &
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Step-Size Control Why Step-Size Control

Why Step-Size Control?

(5/5,10)-ES

10° k : : — with optimal step-size [
— with step-size control
— respective step-size

§ 10 “
2
| fx) = in
8 i=1
— 103
forn = 10 and
x €[-0.2,0.8]"
10*
1075 | | | | h
0 200 400 600 800 1000 1200

function evaluations
i b f f- [ h _ —5. 1100—100 ~1.5
comparing number of f-evals to reach |m| = 107°: = ~ 1.
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Step-Size Control Why Step-Size Control

Why Step-Size Control?

(5/5,10)-ES
10° k e : — with optimal step-size |4
— with step-size control
. — respective step-size
10°
2
S | | \ \ \ | | | —1
— 100} l
n[—0.2,0.8]"
| forn =10

-5 | | | | | |
10707200 400 600 800 1000 1200 1400 1600
function evaluations

comparing optimal versus default damping parameter d,: 13 ~ 1.5
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Step-Size Control

Why Step-Size Control?

function value

-
10° eTp—
107
107 .
\
1
e N\ 0t
10 A ‘
0 500 1000 1500

constant o]

function evaltations

o O':ipt HPa‘I‘em|

Why Step-Size Control

o
[}

o
5

o
o
o

normalized progress
o
=

-2 —1

10° 1 1¢°
normalized step sj

3
O-opt

evolution window refers to the step-size interval (——) where reasonable performance
is observed

Anne Auger & Nikolaus Hansen ()
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Step-Size Control Why Step-Size Control

Methods for Step-Size Control

O 1/5-th success rule, often applied with “+"-selection

increase step-size if more than 20% of the new solutions are successful,

decrease otherwise

O o-self-adaptation®, applied with “"-selection

mutation is applied to the step-size and the better, according to the
objective function value, is selected

simplified “global” self-adaptation

O path length control? (Cumulative Step-size Adaptation, CSA)®
self-adaptation derandomized and non-localized

aRechenberg 1973, Evolutionsstrategie, Optimierung technischer Systeme nach Prinzipien der biologischen
Evolution, Frommann-Holzboog

bSchumer and Steiglitz 1968. Adaptive step size random search. IEEE TAC
CSchwefel 1981, Numerical Optimization of Computer Models, Wiley
dHansen & Ostermeier 2001, Completely Derandomized Self-Adaptation in Evolution Strategies, Evol. Comput.

A/
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Step-Size Control One-Fifth Success Rule

One-fifth success rule

5

\_//
Probability of success (p;) Probability of success (p;)
1/2 1/5 “too small”
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Step-Size Control One-Fifth Success Rule

One-fifth success rule

ps: # of successful offspring / # offspring (per generation)

oo X exp <1 o s _ptarget> Increase o if p; > puarge:
3 1 — Drarget Decrease o if p; < prarget

(I1+1)-ES
Prarget = 1/5
IF offspring better parent
ps= 1,0+ o xexp(l/3)
ELSE
ps =0, 0 « o/exp(1/3)"/4

Anne Auger & Nikolaus Hansen () CMA-ES January, 2012
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Step-Size Control Path Length Control (CSA)

Path Length Control (CSA)

The Concept of Cumulative Step-Size Adaptation

xXi = m+oy;
m < m-++oyy

Measure the length of the evolution path
the pathway of the mean vector m in the generation sequence

= | A

I I

decrease o increase o

loosely speaking steps are

@ perpendicular under random selection (in expectation)
@ perpendicular in the desired situation (to be most efficient)

Anne Auger & Nikolaus Hansen () CMA-ES January, 2012
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Step-Size Control Path Length Control (CSA)

Path Length Control (CSA)

The Equations

Initialize m € R", 0 € R, evolution path p, = 0,
setc, ~4/n,d, = 1.
m < m+oy, wherey,=>>"" wyi.\ update mean
Ds (1 - CO’)p(T + 1-— (1 - CO')2 vV Hw Yw
~——
accounts for 1—c,, accounts for w;

o (el _.
O 4+ O0X exp (da (E\/\/’(O,I) H 1>> update step-size

>1 <= ||p-|| is greater than its expectation
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Step-Size Control Path Length Control (CSA)

(5/5,10)-CSA-ES, default parameters

— with optimal step-size
10° — with step-size control {4
respective step-size
10-1 J
% &
_ 2
| 1072 E f(x) - X
H =1
10° | )
in [—0.2,0.8]"
for n =30
10" 1
10-5 i i i i i i VAN
0 500 1000 1500 2000 2500 3000 3500 4000

function evaluations
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Covariance Matrix Adaptation

@ Covariance Matrix Adaptation
O Covariance Matrix Rank-One Update
@ Cumulation—the Evolution Path
@ Covariance Matrix Rank-ux Update
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Covariance Matrix Adaptation

Evolution Strategies

Recalling

New search points are sampled normally distributed | - ..~ . .
x,-wm—i—a./\/',-(O,C) fori:l,...,)\ :

as perturbations of m, where x;,m e R", 0 € Ry, C € R"*"
where

o the vector m € R” represents the favorite solution
o the so-called o € R4 controls the step length
o the C € R™*" determines the shape of

the distribution ellipsoid

The remaining question is how to update C.
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Covariance Matrix Adaptation Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m < m-—+oyy, Yy = l ]lel)\a J’iNM(OvC)

(FE

new distribution,

C+08xC+02xy,y"

the ruling principle: the adaptation increases the likelihood of
successful steps, y,,, to appear again

another viewpoint: the adaptation follows a natural gradient

approximation of the expected fitness
Anne Auger & Nikolaus Hansen () CMA-ES January, 2012 46 /82




Covariance Matrix Adaptation Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

Initialize m € R", and C =1, set o = 1, learning rate c.o, ~ 2/n*
While not terminate

xi = m+oy, yi ~ Ni0,C),
w
m < m-+ oy, where y,, = Z WiYix
i=1
1
C <« (1 - CCOV)C + Ccovlbw ywy;rv where Hw = W =1
rank-one

The rank-one update has been found independently in several domains® 7 8 ©

6Kjellstr('jm&Taxén 1981. Stochastic Optimization in System Design, IEEE TCS

7Hansen&Ostermeier 1996. Adapting arbitrary normal mutation distributions in evolution strategies: The
covariance matrix adaptation, ICEC

8Ljung 1999. System Identification: Theory for the User
9Haario et al 2001. An adaptive Metropolis algorithm, JSTOR
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Covariance Matrix Adaptation Covariance Matrix Rank-One Update
C+ (1 - Ccov)C + Ccovl/fwywy}:v
covariance matrix adaptation
o learns all pairwise dependencies between variables
off-diagonal entries in the covariance matrix reflect the dependencies

@ conducts a principle component analysis (PCA) of steps y,,,

sequentially in time and space
eigenvectors of the covariance matrix C are the principle components / the

principle axes of the mutation ellipsoid, rotational invariant
o learns a new, rotated problem represen-
tation and a new metric (Mahalanobis)

components are independent (only) in the new representatlon
rotational invariant

o approximates the inverse Hessian on quadratic functions
overwhelming empirical evidence, proof is in progress
o is entirely independent of the given coordinate system
for u = 1: natural gradient ascent on
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Covariance Matrix Adaptation Covariance Matrix Rank-One Update

@ Covariance Matrix Adaptation
O Covariance Matrix Rank-One Update
@ Cumulation—the Evolution Path
@ Covariance Matrix Rank-ux Update
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Covariance Matrix Adaptation Cumulation—the Evolution Path

Cumulation
The Evolution Path

Evolution Path

Conceptually, the evolution path is the search path the strategy takes over a number of
generation steps. It can be expressed as a sum of consecutive steps of the mean m.

An exponentially weighted sum of
- steps y, is used

8
oY (- 5
i—0 \W—/

exponentially

fading weights

The recursive construction of the evolution path (cumulation):

pe — (I=co)pe+ /1= (1 =ce)ibw Yu
—— N~

decay factor normalization factor input = " 7:7,,°|d

where p,, = ﬁ ce < 1. History information is accumulated in the evolution path.
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Covariance Matrix Adaptation Cumulation—the Evolution Path

“Cumulation” is a widely used technique and also know as

©

low-pass filter

o exponential smoothing in time series, forecasting

o exponentially weighted mooving average

o iterate averaging in stochastic approximation

@ momentum in the back-propagation algorithm for ANNs
Q
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Covariance Matrix Adaptation Cumulation—the Evolution Path

Cumulation
Utilizing the Evolution Path

We used y,y., for updating C. Because y.yr = —y.(—y.)" the sign of y,, is lost.

AN
N,

The sign information is (re-)introduced by using the evolution path.

pe ¢ (L=co)pe+ /1= (1= ce)/hwyw
———

decay factor normalization factor

C < (1 - CCOV)C + Ccov pc pc T
——

rank-one

where p, = <=, ccov < ¢ < 1 such that 1/c. is the “backward time horizon”.
2w

Anne Auger & Nikolaus Hansen () CMA-ES January, 2012

52/82



Covariance Matrix Adaptation Cumulation—the Evolution Path

Using an evolution path for the rank-one update of the covariance
matrix reduces the number of function evaluations to adapt to a
straight ridge from O(n?) to O(n).(®

aHansen, Miuller and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution
Strategy with Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1), pp. 1-18

Number of f-evaluations divided by dimension on the cigar function

4

10
~ /
; ;z ce=1/yn

§ b ce=1/n

10
100 10°
dimension

ce=1

The overall model complexity is n? but important parts of the model
can be learned in time of order n
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Covariance Matrix Adaptation Covariance Matrix Rank-p Update

Rank-u Update

xi = m+oy, yi o~ Ni(0,0),
m <  m-+oyy Yw = Z,H:] WiYi:\

The rank-p update extends the update rule for large population sizes \
using © > 1 vectors to update C at each generation step.
The matrix

m
C/L = Z Wiyi:AyEA
i=1

computes a weighted mean of the outer products of the best 11 steps and has

rank min(u, n) with probability one.

with ;2 = X weights can be negative '°

The rank-p update then reads

C+ (1 - Ccov) C + ceov C,U.

where ceoy & p,,/n? and ceoy < 1.

1O.Jastrebski and Arnold (2006). Improving evolution strategies through active covariance matrix adaptation.
CEC.
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Covariance Matrix Adaptation

ﬁzy,‘:xy:)\
C + (-1 xC+1xCy,

sampling of A = 150 calculating C where

solutions where =50,
— — e =1
C=Iando =1 wy = Wi = 0
and ceoy = 1
Anne Auger & Nikolaus Hansen () CMA-ES

Covariance Matrix Rank-p Update

n L Sy

Mnew <

new distribution
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Covariance Matrix Adaptation Covariance Matrix Rank-p Update

Rank-p CMA versus Estimation of Multivariate Normal Algorithm EMNAgk,baﬂ11

rank-z, CMA
conducts a
PCA of
steps
EMNAgIobaI
conducts a
| . | i i | PCA of
= g i i~ N (0,€) Lo L. points
* oy ? C ﬁ Z(’G:A*"lnem(-"i:)\*’"new)T Mpew = Mold + ﬁ DoViea
mpling of A = 150 lculating C from 1 = 50 e
sampiing o calculating - from z new distribution
solutions (dots) solutions
The CMA-update yields a larger variance in particular in gradient direction, because nnew is the
inimi i ing C

1 Hansen, N. (2006). The CMA Evolution Strategy: A Comparing Review. In J.A. Lozano, P. Larranga, |. Inza
and E. Bengoetxea (Eds.). Towards a new evolutionary computation. Advances in estimation of distribution
algorithms. pp. 75-102
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Covariance Matrix Adaptation Covariance Matrix Rank-p Update

The rank-p update

o increases the possible learning rate in large populations
roughly from 2/n? to 1., /n*

@ can reduce the number of necessary generations roughly from
O(n?) to O(n) (12)

given p, x A < n

Therefore the rank-u update is the primary mechanism whenever a

large population size is used
say A >3n+10

The rank-one update

@ uses the evolution path and reduces the number of necessary
function evaluations to learn straight ridges from O(n?) to O(n) .

Rank-one update and rank-u update can be combined

12Hansen, Midiller, and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution
Strategy with Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1), pp. 1-18
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CMA-ES Summary

Summary of Equations

The Covariance Matrix Adaptation Evolution Strategy

Input: m e R", s e R, A

Initialize: C =1, andp. =0, p, = 0,

Set: cc ~4/n,co =4/n,c; = 2/n cu ™ pw/n?, cr ey <1, dy = 1+ /B2
and w;—._» such that u,, = Z“ 7 ~03A

While not terminate

xi=m+oy, yi ~ N(0,C), fori=1,...,) sampling
m< Y I wixpy =m+ oy, wherey, =31 wiyix update mean
(1= ce)pe + Mg <15ym V1 — (1= ce)®\ /Ty cumulation for C
(1 =co)po + /T (1= o)/l C 2y, cumulation for o
C(1—=c1—cu)C+ crpepe” + Dt wiyioyiy update C
0 4 0 X exp (;—Z (%—1)) update of o

Not covered on this slide: termination, restarts, useful output, boundaries
and encoding
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W CMA-ES - Wikipedia, t...

«

& [{.} hitp://en.wikipedia.org/wiki/CMA-ES

counteval = 0; % the next 40 lines contain the 20 lines of interesting code

while counteval < stopeval

% Generate and evaluate lambda offspring
for k=1:lambda,

arx(z,k) = xmean + sigma * B * (D .* randn(N,1)); % m + sig * Normal(0,C)
arfitness (k) = feval (strfitnessfet, arx(:,k)); % objective function call

counteval = counteval+l;
end

% Sort by fitness and compute weighted mean into xmean
[arfitness, arindex] = sort(arfitmess); % minimization
xo0ld - xmean;

xmean = arx(:,arindex(l:mu))*weights; % recombination, new mean value

% Cumulation: Update evolution paths
ps = (1-cs)*ps

+ sqrt (es* (2-cs) *mueff) * invsqrtC * (xmean-xold) / sigma;
hsig = norm(ps)/sqrt (1-(1-cs) ~ (2*counteval/lambda)) /chiN < 1.4 + 2/ (Nt1);

pe = (l-cc)*pc
+ hsig * sqrt (co* (2-cc) *mueff) * (xmean-xold) / sigma;

% Adapt covariance matrix C

artmp = (1/sigma) * (arx(:,arindex(1:mu))-repmat (xold,1,mu});
= (l-cl-cmu) * C ... % regard old matrix
+cl * (pe*pe’ ... % plus rank one update

+ (1-hsig) * co*(2-cc) * €)
+ cmu * artmp * diag(weights) * artmp';

% Adapt step size sigma
sigma = sigma * exp((cs/damps)* (norm (ps) /chiN - 1));

% Decompositien of C into B*diag{D."2)*B' (diagonalization)

% minor correction if hsig--
% plus rank mu update

if counteval - eigeneval > lambda/(cl+cmu) /N/10 % to achisve O(N%2)

eigeneval = counteval;

C = triu(C) + triu(C,1)'; % enforce symmetry
[B,D] = eig(C); 2 eigen ition, lized eig
D - sqrt(diag(D)); % D is a vector of standard deviations now

invsgrtC = B * diag(D.*-1) * B";




CMA-ES Summary Strategy Internal Parameters
Strategy Internal Parameters

O related to selection and recombination

@ ), offspring number, new solutions sampled, population size
@ u, parent number, solutions involved in updates of m, C, and o
Q@ wi—1,...,., recombination weights
w and w; should be chosen such that the variance effective selection

mass p, ~ 3, where g, :== 1/ 3% wi.
O related to C-update

9 ¢, decay rate for the evolution path
@ ¢y, learning rate for rank-one update of C
9 ¢y, learning rate for rank-p. update of C

O related to o-update

9 c¢,, decay rate of the evolution path
9 d,, damping for o-change

Parameters were identified in carefully chosen experimental set ups. Parameters do not in the
first place depend on the objective function and are not meant to be in the users choice.
Only(?) the population size A might be reasonably varied in a wide range, depending on the
objective function
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CMA-ES Summary The Experimentum Crucis

Experimentum Crucis (0)

What did we want to achieve?

@ reduce any convex-quadratic function
f(x) =x"Hx

eg.f(x) =Y, 1007122
to the sphere model

without use of derivatives

o lines of equal density align with lines of equal fitness

CoxH™!

in a stochastic sense
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CMA-ES Summary The Experimentum Crucis

Experimentum Crucis (1)

f convex quadratic, separable

blye:abs(f), cyan:--min(f), green:sigma, red:axis ratio Object Variables (9-D)
10 15 (1)=3.0931e
k(@2)=2.2083¢
10° | x(6)=5.6127¢
]
|/ x(7)=2.7147e
10° I’/ (8)=4.5138e
/
(9)=2.741e-
10° 5)=-1.0864
(4)=-3.8371
1010 F=2.66178883753772¢-10 b3 3=-6.9100
0 2000 4000 6000 [} 2000 4000 6000
, Principle Axes Lengths Stgndard Deviations in Coordinates divided by sigma
10 10 1
2
3
4
5
6
7
8
10" 10 9
0 2000 4000 6000 0 2000 4000 6000
function evaluations function evaluations
i—1
n a— 2
flx)=>"1,10%"Txr, o =6
= 1
CMA-ES January, 2012 62/82
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CMA-ES Summary The Experimentum Crucis

Experimentum Crucis (2)

f convex quadratic, as before but non-separable (rotated)

blye:abs(f), cyan:f-min(f), green:sigma, red:axis ratio Object Variables (9-D)
10 4 (1)=2.0052¢
(5)=1.2552¢
// ¥(©6)=1.2468¢
)/ ©)=-7.3812
(4)=-2.9981
N\ K(7)=-8.3583
\\ (3)=-2.0364
(2)=-2.1131
10 [=7.91055728188042e-10
10 )=-2.6301
0 2000 4000 6000 0 2000 4000 GOOb
, CxH 'forall g, H
5 Principle Axes Lengths Standard Deviations in Coordinates divided by sigma
13
,’ 1
8
2
7
5
6
9
4
0 2000 4000 6000 0 2000 4000 6000
function evaluations function evaluations

f(x) =g (x"Hx), g : R — R stricly increasing
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Theoretical Foundations

Natural Gradient Descend

o Consider arg meinE(f(x)\O) under the sampling distribution p(.|0)

we could improve E(f(x)|0) by following the gradient VoE(f(x)|0):

0 + 0 — nVE(f(x)]0), n>0

Ve depends on the parameterization of the distribution, therefore

@ Consider the natural gradient of the expected transformed fitness
Vo E(wo Py(f(x))|0) = F; ' VoE(w o Py(f(x))|6)
= E(w o Py(f(x))Fy ' Vo Inp(x|6))
using the Fisher information matrix Fp :((E%g%"’)»/ of the density p.

The natural gradient is invariant under re-parameterization of the
distribution.

@ A Monte-Carlo approximation reads

A
Ve E((F(x)|0) = " wi Fy Vo Inp(xial0),  w; = w(f(x:0)|6)
i=1
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Theoretical Foundations
CMA-ES — Cumulation = Natural Evolution Strategy
Natural gradient descend using the MC approximation and the normal distribution

@ Rewriting the update of the distribution mean

" ©
Mpew E WiXp\ = m+ g wi(x —m)

i=1 i=1

natural gradient for mean %E(W o Pr(f(x))|m, C)

o Rewriting the update of the covariance matrix'3

rank one

Chew + C+ Cl(PcPcT - C)

rank-p
"

% zm’< (xix — m) (xn —m)" — UZC)

o
i=1

natural gradient for covariance matrix gﬁ(w o P(f(x))|m, C)

13Akimoto et.al. (2010): Bidirectional Relation between CMA Evolution Strateaies and Natural Evolution
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Theoretical Foundations

Maximum Likelihood Update

The new distribution mean m maximizes the log-likelihood

m
Hpew = arg max Z w;log par(xia|m)
i=1

m

independently of the given covariance matrix

The rank-; update matrix C,, maximizes the log-likelihood

Mg, C>

log pr(x[m, C) = —1log det(27C) — 1(x — m)TC~ ! (x — m)
p is the density of the multi-variate normal distribution

a Xi:\ — Mg|d
C,, = arg max w;lo oA 0d
i g ¢ Z i gpN< pu

i=1
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Theoretical Foundations

Variable Metric

On the function class

o) = (50— xH T

the covariance matrix approximates the inverse Hessian up to a
constant factor, that is:

CxH™' (approximately)

In effect, ellipsoidal level-sets are transformed into spherical level-sets.

g : R — Riis strictly increasing
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Theoretical Foundations

On Convergence

Evolution Strategies converge with probability one on,
e.g., g (1x"Hx) like

10
10t T

— 0.25
|lmx — x| x e ck c< —

00 400 600800 1000 1200 1400 1600
Tunction evaluations

Monte Carlo pure random search converges like

e—clogk’ =

[y —x*|| c k€ =
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Comparing Experiments

Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, separable with varying condition number «

Ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)

DE (Storn & Price 1996)

PSO (Kennedy & Eberhart 1995)
CMA-ES (Hansen & Ostermeier
2001)

f(x) = g(x"Hx) with

£ H diagonal
~A- NEWUOA g identity (for BFGS and
o = ol NEWUOA)
25 Gwnes g any order-preserving = strictly
10 p i . increasing function (for all other)
10 10 10 10 10 10

Condition number

SP1 = average number of objective function evaluations' to reach the target function
value of g='(107?)
1

4Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA
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Comparing Experiments

Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, non-separable (rotated) with varying condition number «

Rotated Ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)

DE (Storn & Price 1996)

PSO (Kennedy & Eberhart 1995)
CMA-ES (Hansen & Ostermeier
2001)

f(x) = g(x"Hx) with

. ~A- NEWUOA g identity (for BFGS and
10 < bee NEWUOA)
25 Gwnes g any order-preserving = strictly
10 p i . increasing function (for all other)
10 10 10 10 10 10

Condition number

SP1 = average number of objective function evaluations'® to reach the target function
value of g='(107?)
1

5Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA
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Comparing Experiments

Comparison to BFGS, NEWUOA, PSO and DE

f non-convex, non-separable (rotated) with varying condition number «

Sqrt of sqrt of rotated ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)

DE (Storn & Price 1996)

PSO (Kennedy & Eberhart 1995)
CMA-ES (Hansen & Ostermeier
2001)

f(x) = g(x"Hx) with

10’ H full
~/— NEWUOA g X x4 (for BFGS and
10 < bee NEWUOA)
25 Gwnes g any order-preserving = strictly

w increasing function (for all other)

10 4 8 10
10 10 10 10 10 10

Condition number
SP1 = average number of objective function evaluations'® to reach the target function
value of g='(107?)
1

6Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA
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Comparing Experiments

Comparison during BBOB at GECCO 2009

24 functions and 31 algorithms in 20-D

1.V T

Proportion of functions

0.2 i

0.0

Anne Auger & Nikolaus Hansen ()

0.4 reh g

/BFGS

PSO_Boupds

GLOBAL
=full NEWYOA
~_~NELDER {Han)
=NELDER{Doe)

"best 200
BIPOP-CNIA-ES
:AMaLGaNl IDEA

~‘iAMalLGaM IDEA
-

VNS (Garcia)
~MA-LS-Chain

4(1+1)-CMA-ES
/ .Cauchy HDA

-ALPS-GA

\ *EDA-PSO|
NPOEMS
‘PSO
‘MCS
Rosenbrqck
NLSstep. |
‘LSfminbrid
simple GA
:DEPSO
‘DIRECT
:BayEDAQG
<Monte Cgrlo

Running length / dimension
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Comparing Experiments

Comparison during BBOB at GECCO 2010

24 functions and 20+ algorithms in 20-D

1.V T T T T

"best 200p
‘BIPOP-CNIA-ES
.CMA+DE}MOS
-IPOP-aCMA-ES
: : ‘ ‘ ‘ ‘ |~ -ipop-CMAES
ogl i N ... ,AdapDE|(F-AUC)
: iDE (Unifqrm)
/PM-AdapSS-DE
.CMA-EGY (IPOP,r1)
—— CMA-ES
A-ES
A-ES
-CMA-ES
-CMA-ES
A-ES
UOA
MA-ES
A-ES

0.6 e

| v

Proportion of functions

DA
\-ES

0.2 @ A-ES

Colony
GA

rlo

0.0 7 8

Running length / dimension
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Comparing Experiments

Comparison during BBOB at GECCO 2009

30 noisy functions and 20 algorithms in 20-D

Proportion of functions

Anne Auger & Nikolaus Hansen ()
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Comparing Experiments

Comparison during BBOB at GECCO 2010

30 noisy functions and 10+ algorithms in 20-D

1.V T
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Summary and Final Remarks

The Continuous Search Problem

Difficulties of a non-linear optimization problem are

@ dimensionality and non-separabitity
demands to exploit problem structure, e.g. neighborhood
cave: design of benchmark functions

o ill-conditioning
demands to acquire a second order model

0 ruggedness
demands a non-local (stochastic? population based?) approach
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Summary and Final Remarks

Main Characteristics of (CMA) Evolution Strategies

@ Multivariate normal distribution to generate new search points
follows the maximum entropy principle

@ Rank-based selection
implies invariance, same performance on g(f(x)) for any increasing g
more invariance properties are featured

@ Step-size control facilitates fast (log-linear) convergence and

possibly linear scaling with the dimension
in CMA-ES based on an evolution path (a non-local trajectory)

@ Covariance matrix adaptation (CMA) increases the likelihood of
previously successful steps and can improve performance by

orders of magnitude
the update follows the natural gradient
C o« H™' <= adapts a variable metric
<= new (rotated) problem representation
= f :x > g(x"Hx) reduces to x + x"x
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Summary and Final Remarks

Limitations
of CMA Evolution Strategies

o internal CPU-time: 10~%x” seconds per function evaluation on a 2GHz

PC, tweaks are available
1000000 f-evaluations in 100-D take 100 seconds internal CPU-time

O better methods are presumably available in case of

©

partly separable problems

©

specific problems, for example with cheap gradients
specific methods

©

small dimension (n < 10)
for example Nelder-Mead

©

small running times (number of f-evaluations < 100n)
model-based methods
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Summary and Final Remarks

Thank You

Source code for CMA-ES in C, Java, Matlab, Octave, Python, Scilab is
available at http://www.lri.fr/ hansen/cmaes_inmatlab.html
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