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General thoughts on parameters

● Any algorithm has an arbitrary number of 
parameters 

for example: think of all the hidden “1”s
parameters can be used to toggle any algorithms

● First task: agree on the relevant parameters
this is a non-trivial task

on-the-fly definition for relevant: a non-trivial tuning improves 
the performance (sometimes) by more than a factor of two
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● Off-line parameter identification during the algorithm design

e.g. based on benchmarks or the designers guts

● Trial-and-error parameter setting by the user

not well-defined (this is not an algorithm)

● Setting prior to application, based on known or measured 
problem properties (features)

e.g. using the problem dimension

● On-line adaptation

● Restarts with different parameters (can replace a users trial-
and-error procedure)

● Self-adaptation, CMA, reinforcement, ...

The latter two are an integral part of the algorithm itself

Tuning methods depend essentially on the “class”

Classification of parameters 

.

.
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Example for off-line identification
● Learning rate ccov for covariance matrix 

adaptation (CMA)
● Using the most simple function that seems to make 

sense: sphere function         with initially anisotropic 
covariance matrix

● Invariance properties and further empirical evidence 
(in the sense of hypothesis testing) suggest 
generality of the results
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Performance on the sphere

● Trade off: robustness (small learning rate ccov to the 
left) versus speed (large ccov). Lines (would) smoothly 
continue to the left. 

● Remark: x-axis presentation 
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Choosing the parameter

● Robustness (required):
● increasing ccov three times (faster learning) never leads 

to a failure
● increasing ccov two times is better than decreasing ccov 

two times
● Performance (desirable): the performance loss is less 

than a factor of three

for ccov=0 the loss factor is roughly 1000

● Adaptation quality (learning accuracy, related to 
robustness): final condition number of the covariance 
matrix is smaller than ten. 

This (a similar) list works in many cases cf. [Brockhoff et al 2010. 
Mirrored sampling and sequential selection for evolution strategies, PPSN XI]
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CMA-ES on the sphere function
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CMA-ES on the sphere function
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Adaptation quality

Axis ratio of mutation ellipsoid = sqrt(condition 
number of covariance matrix)
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Final result for ccov
● Identification needs to be done depending on 

the population size

more precisely: the amount of input information

● A trial-and-error process leads to

● Inverse proportional to the degrees of freedom
● Proportional to the amount of input information
● Correction for small values
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Off-line identification = algorithm design

● Major pitfall: we must seek for good 
generalization performance, i.e. prevent 
overtuning to test problems (= design for a too 
narrow problem class)

an optimal parameter setting on a single
 problem is rarely of practical interest

● Using a single function works(!) and leaves 
many functions for hypothesis testing



Nikolaus Hansen

Example: Evolution Path

evolution (search) paths with cumulation of six time steps in 2-D

● An evolution path (search path) is extensively 
used for on-line parameter adaptation in CMA-
ES

conceptually, the path is the difference vector
 of the evolving population mean m

short                    expected                   long
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Example: Evolution Path
● An evolution path (search path) is extensively 

used for on-line parameter adaptation in CMA-
ES

conceptually, the path is the difference vector
 of the evolving population mean m

● Question: How many time steps should an 
evolution path comprise? 

1/c is roughly the effective number of time steps
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Cumulation time horizon

#Fevals divided by dimension in 3,10,30,100-D

= 1/c 

The cigar function shows 
the most pronounced
effect on cumulation
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Cumulation time horizon

#Fevals divided by dimension in 3,10,30,100-D
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Cumulation time horizon

#Fevals divided by dimension in 3,10,30,100-D

now the graphs are virtually 
invariant under the choice of 
the dimension

final choice: 

. .
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On-line adaptation
Another name for control

● Controlled variable(s), caveat: parametrization / 
representation
– Step-size
– Population size
– Covariance matrix with many degrees of freedom
– Mutation/recombination rate...

● Update rule, “depends” on representation
● Input variable(s) (used information)

– survival probability for different settings
– success, success rate, or progress measurement
– evolution path, length of evolution path...
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● What is the difference between a state variable 
and an adaptive parameter? 
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Example: CMA-ES
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Population size adaptation
● Can it work reliably?

multimodality as counterexample

Rastrigin function in 10-D

Population size 10 and 200

The advantage of the large 
population becomes visible 
only way after the run with
small population size finished

Is a widely suitable input 
variable conceivable? 
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Population size adaptation
● Can it work reliably?

multimodality as counterexample

Schaffer function in 10-D

Population size 10 and 200

The advantage of the large 
population becomes visible 
only way after the run with
small population size finished

Is a widely suitable input 
variable conceivable? 

It would need to be able to 
“predict” the late outcome 
of a run very early
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Population size adaptation

A solution
● Conduct several runs with different population 

sizes
● Serially with increasing population size  

[Harik&Lobo 1999], [Auger&Hansen 2005]
● Parallel (race) with different population sizes 

[Harik&Lobo 1999], [Hornby 2006]
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Summary

1) Remove users trial-and-error procedure from 
the possibilities (in a scientific context)

the algorithm designer should instead suggest a 
sequence of settings

2) Parameter identification in the context of 
algorithm design is difficult and tedious

but it is worth the time

3) Parameter identification can be done 
successfully on a single function

4) The population size is hard to adapt
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Thank you
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