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* Any algorithm has an arbitrary number of
parameters

for example: think of all the hidden “17s
parameters can be used to toggle any algorithms

* First task: agree on the relevant parameters

this is a non-trivial task
on-the-fly definition for relevant. a non-trivial tuning improves
the performance (sometimes) by more than a factor of two
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arameters

o Off-line parameter identification during the algorithm desi
e.g. based on benchmarks or the designers gut
o Trial-ano=erresparameter setting by the lise
not well-defined Tires=e=Ratan algorithry)

e Setting prior to application, based on known or measured
problem properties (features)

e.g. using the problem dimensio

* On-line adaptation

» Restarts with different parameters (can replace a users trial-
and-error procedure)

« Self-adaptation, CMA, reinforcement, ...
The latter two are an integral part of the algorithm itself

Tunini methods dei end essentialli on the “class”
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wmation

* Learning rate ccov for covariance matrix
adaptation (CMA)

* Using the most simple function that seems to make
sense: sphere function >« with initially anisotropic
covariance matrix Z’

* Invariance properties and further empirical evidence

(in the sense of hypothesis testing) suggest
generality of the results

7
C' «— (1 — ccov) C' + ccov Z zizi

p
= (' + ccov X (Z 2z — C)

1

Nikolaus Hansen



e sphere

|||||||
—————————————————————————————————————————————————————————————————

__________________________________________________________________________________________________

_____________________________________

3 3 3 33
L= T o ]
o o

I "

—_
o
—_
o
—
o

ccov/ccovdefault

* Trade off: robustness (small learning rate ccov to the

left) versus speed (large ccov). Lines (would) smoothly
continue to the left.

 Remark: x-axis presentation



parameter

* Robustness (required):

* Increasing ccov three times (faster learning) never leads
to a failure

 increasing ccov two times is better than decreasing ccov
two times

* Performance (desirable): the performance loss is less
than a factor of three

for ccov=0 the loss factor is roughly 1000

« Adaptation quality (learning accuracy, related to
robustness): final condition number of the covariance
matrix is smaller than ten.

This (a similar) list works in many cases cf. [Brockhoff et al 2010.
Mirrored sampling and sequential selection for evolution strategies, PPSN XiI]
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e function
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ere function

Principle Axes Len_gths

0 2000 4000 6000 8000
function evaluations
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Axis ratio of mutation ellipsoid = sqrt(condition
number of covariance matrix)
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* |dentification needs to be done depending on
the population size

more precisely: the amount of input information

* A trial-and-error process leads to

Lot — 1 + 1/HeﬂE
(n+2)% + flefr

CCovV = 2

* |nverse proportional to the degrees of freedom
* Proportional to the amount of input information
e Correction for small values
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» Major pitfall: we must seek for good
generalization performance, i.e. prevent
overtuning to test problems (= design for a too

narrow problem class)

an optimal parameter setting on a single
problem is rarely of practical interest

* Using a single function works(!) and leaves
many functions for hypothesis testing
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* An evolution path (search path) is extensively
used for on-line parameter adaptation in CMA-
ES

conceptually, the path is the difference vector
of the evolving population mean m

short expected long

e VS

evolution (search) paths with cumulation of six time steps in 2-D
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* An evolution path (search path) is extensively
used for on-line parameter adaptation in CMA-
ES

conceptually, the path is the difference vector
of the evolving population mean m

e Question: How many time steps should an
evolution path comprise?

p—1—c)p++/ec(2—c)Am'

1
~ \/E(mt - mt—[l/cj) —. (mt . mt—tc)

NG

1/c is roughly the effective number of time steps




4 n
f(x) =z, +10° Zx?
i=2

10 |

The cigar function shows
the most pronounced
effect on cumulation

10 10 10 10
time horizon = 1/c

#Fevals divided by dimension in 3,10,30,100-D
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time horizon / sgrt(dimension)

#Fevals divided by dimension in 3,10,30,100-D



1 horizon

now the graphs are virtually
invariant under the choice of
the dimension

final choice:
111 n 44+ 2peg /N
; c 4+ peg/n

10° 10 10° 10
time horizon / dimension

#Fevals divided by dimension in 3,10,30,100-D



Another name for control

e Controlled variable(s), caveat: parametrization /
representation

- Step-size

- Population size

— Covariance matrix with many degrees of freedom
- Mutation/recombination rate...

 Update rule, “depends” on representation
* |nput variable(s) (used information)

— survival probability for different settings
— success, success rate, or progress measurement
— evolution path, length of evolution path...
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 What is the difference between a state variable
and an adaptive parameter?
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Inputt m e R", 0 e Ry, A € {2,3,4,...}

Set c. ~ 4/n Co = 4/n, c1 = 2/'n,2, Cp R uw/nQ, c1 +cy <1,

de =1+ /5%, setw;— . suchthat p, = ,Jl s ~ 0.3\

7= 1

Initialize C = I, andp. =0,ps =0

While not terminate

xX; =m+oy;, yi~ N;j(0,C), fori=1,...,) sampling
m«— > " L wix; N =m+oyw update mean

— (1—cg)pg—|—\/1—(1—ca)2,/,uw C_%yw path for o
O <« O X exp ( i (E||J”\;ZC6”I)|| 1)) update of o

— (1 — CC) Pc —+ ][[0,1.5](%) \/1 — (1 — CC)Q'\/uw Yw path for C
C—(1—-c—¢,)C + ci1p.pr + cu S w; y@-:)\yiT:)\ update C
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daptation

» Can it work reliably?

multimodality as counterexample

Rastrigin function in 10-D
Population size 10 and 200

The advantage of the large
population becomes visible
only way after the run with
small population size finished

function value

Is a widely suitable input
variable conceivable?

| | | |
0 05 1 15 2 25

function evaluations x10°
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daptation

» Can it work reliably?
multimodality as counterexample

Schaffer function in 10-D
Population size 10 and 200

The advantage of the large
population becomes visible
only way after the run with
small population size finished

function value

Is a widely suitable input
variable conceivable?

It would need to be able to
| 5 “predict” the late outcome
‘ | | | | of a run very early

0 05 1 1.5 2 25 3

function evaluations x10
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A solution

» Conduct several runs with different population

sizes

« Serially with increasing population size

[Hari

e Para
[Hari

K&Lobo 1999], [Auger&Hansen 20095]
lel (race) with different population sizes

K&Lobo 1999], [Hornby 2000]
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1) Remove users trial-and-error procedure from
the possibilities (in a scientific context)

the algorithm designer should instead suggest a
sequence of settings

2) Parameter identification in the context of
algorithm design is difficult and tedious

but it iIs worth the time

3) Parameter identification can be done
successfully on a single function

4) The population size is hard to adapt




Thank you




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

