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ABSTRACT
Multicast routing algorithms have recently been intensively
investigated due to the increment over the last years in the
use of new point-to-multipoint applications. In this work,
three formulations for the routing problem are investigated,
considering 3, 4 and 5 objectives related to Quality of Service
and Traffic Engineering requirements. A multiobjective evo-
lutionary model is proposed to tackle this problem, using the
well-known SPEA2 scheme as the underlying search. The
key investigation performed here is about the incorporation
of two strategies to help SPEA2 convergence to Pareto solu-
tions, namely, filtering to reduce repeated individuals, and a
mating selection based on neighborhood crossover. Results
indicate that the adequacy of the strategies depends on the
dynamics of currently non-dominated set over the genera-
tions. A new adaptive environment is proposed in which
this information is considered periodically to decide what
kind of strategy will be used in each situation.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—heuristic methods, graph and tree
search strategies; G.2.2 [Discrete Mathematics]: Graph
Theory—network problems, graph algorithms

General Terms
Algorithms

Keywords
multicast routing, genetic algorithm, evolutionary multiob-
jective optimization, neighborhood

1. INTRODUCTION
In computer networks, a routing algorithm is responsible

for calculating paths in which data flows will transit be-
tween network links. A multicast transmission corresponds
to send data to several destinations, often involving require-
ments of Quality of Service (QoS) [8] and Traffic Engineering
(TE) [1]. Point-to-multipoint applications can have differ-
ent QoS requirements as maximum delay, minimum total
cost and minimum bandwidth. On the other hand, Traffic
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Engineering (TE) is concerned with optimizing the network
utilization aiming to reduce congestion bottlenecks, improve
resource use and also to provide adequate QoS for final users.

An instance of Multicast Flow Routing Problem (MFRP)
is given by a connected directed graph, with vertices repre-
senting hosts, edges representing network links. Also, a tuple
of weights defines the features of the network links (as cost
and current traffic), and a new traffic demand φ is set. In
MFRP, we want to calculate a set of Pareto-optimal rooted
trees T of G to carry φ into G, starting from a source vertex
and passing by a subset of vertices called destinations. QoS
and TE requirements establish objectives to be minimized
or maximized and constraints to be attended, affecting the
kind of multicast route we want to produce. Three different
formulations of MFRP were considered in this work, simul-
taneously minimizing 3, 4 and 5 objective functions subject
to a link capacity constraint. The following objective func-
tions were considered: maximum link utilization, mean link
utilization, total cost, maximum end-to-end delay and hops
count.

2. EVOLUTIONARY MODEL
In this work, we tackle MFRP using a multiobjective evo-

lutionary model based on the well-known SPEA2 algorithm
[11] to find a set of non-dominated multicast routes. The
major steps of this multiobjective model are resultant from
several recent works [5], [4], [3] and two strategies are inves-
tigated here aiming to improve environment’s convergence
to Pareto routes, briefly described in the following.

In the proposed genetic algorithm, each individual is rep-
resented by a generic rooted tree; the initial population is
generated by a random search algorithm for graphs (a ran-
domized breadth-first or depth-first search, e.g.). Each in-
dividual is evaluated using the methodology of SPEA2. Re-
garding the mating selection, it can be done as in SPEA2,
or by the means of neighborhood crossover (NC), to be ex-
plained later. The crossover operator builds a new tree in-
heriting common subtrees of its parents, as proposed in [7],
[10]; subsequently, these subtrees are connected using heuris-
tics we proposed in [5], [6], to form a valid solution to MFRP.
Mutation step, in turn, randomly removes links of an indi-
vidual, generating a forest of subtrees to be later connected
through the same heuristics of crossover. Elitism is used for
reinsertion.

Regarding the strategies to improve our model’s conver-
gence, the first one is a mechanism to reduce repeated indi-
viduals along the population - a kind of forced mutation -
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based on Takahashi-Matsuyama heuristic (ftm) [3]. The sec-
ond one is the usage of a different mating selection in SPEA2
based on Neighborhood Crossover [4]. These strategies are
applied individually and joint to six instances of MFRP ex-
tracted from the literature in each formulation (3, 4 and 5
objectives). A detailed exposition of these techniques can
be found on references [3] and [4].

3. EXPERIMENTAL RESULTS
To evaluate the adequacy of each auxiliary strategy, six

instances of MFRP taken from literatures of Routing and
Steiner problems were considered [2], [5]. The methodology
of comparison consists on three metrics to assess conver-
gence (Error Rate (er) [9], Generational Distance (gd) [9]
and Pareto Subset (ps) [3], [4]), and one metric to assess
diversity (Maximum Spread (m3)). The remaining param-
eters were set as: mutation probability equal to 10%, node
disconnection rate used on mutation equal to 20%, Np = 90
and Ng = 100, where Np and Ng denote population size
and number of generations, respectively.

The first of two series of experiments consisted on evaluat-
ing each configuration (SPEA2 basic, SPEA2+ftm, SPEA2+
NC, and SPEA2+ftm+NC) over the three formulations (P3,
P4 and P5, for short). Observing these results, it was clear
that SPEA2+ftm provided the best results on P3 and P4,
while the usage of NC deteriorated the performance of the
SPEA2 basic, in most instances. Conversely, the applica-
tion of NC in P5 is an adequate strategy, while ftm had a
questionable applicability.

It is better to visualize the behavior described above through
the chart on Fig. 1. In this chart, if, for instance, er has de-
creased from 20.8% (basic SPEA2) to 16.4% (SPEA2+fTM ),
we compute a gain (reduction) of 21,15% for this scenario
(P3, net A). Such chart highlights the observations made
previously: considering P3 and P4 instances, the strategy
SPEA2+ftm returns the higher gains in convergence while
strategy SPEA2+NC returns the higher gains in P5 instances.
The composed strategy (SPEA2 + ftm + NC) exhibits the
most stable performance over different formulations (P3, P4
and P5); however, the gains using such strategy obtained
are not so expressive.

Figure 1: Positive and negative gains obtained due
to the application of auxiliary strategies.

Subsequently, we verified that it seems to exist some rela-
tion between the size of current P (non-dominated solutions
maintained by the GA in a given generation) and Np (size
of population). We are looking to use this information of
population dynamics to decide when to shift between tech-
nique, as long as the generations passes by. Thus, to run a

second series of experiments, we defined a rule to alternate
between the proposed strategies: from 5 to 5 generations,
we compare |P | with Np to decide which strategy to use.
After running several combinations of intervals, we set the
following rule:

a) if 0 ≤ |P | < 50%Np: apply SPEA2+ftm;

b) else if 50 ≤ |P | < 90%Np: apply SPEA2+ftm+NC;

c) else apply SPEA2+NC.

This rule intends to work well for most cases of P3, P4
and P5. It will select the configuration SPEA2+ftm on most
cases of P3 and P4. It also will work for P5, since in this
case |P | quickly achieve Np, so it is necessary that NC comes
into action in earlier generations to refine the large number
of non-dominated solutions.

The results for the adaptive environment indicated that it
overcomes the basic SPEA2 on all three formulations consid-
ered in this work. It also reach closer values to best configu-
ration obtained on each formulation, which we can consider
as a successfully implementation of our designed rule to peri-
odically check out the current |P | and decide which strategy
to use.

4. FINAL REMARKS
This work tackled three formulations of MFRP with 3,

4 and 5 objectives related to Quality of Service and Traf-
fic Engineering requirements. Our main focus here was to
verify experimentally if two auxiliary strategies to increase
intelligence to MFRP, namely, a filter to reduce repeated
individuals and a mating selection based on neighborhood
crossover, were able to improve GA’s convergence and di-
versity. Since the filter reached the best results on formula-
tions with 3 and 4 objectives, while neighborhood crossover
reached best results on formulation with 5 objectives, our
general conclusion is that it was not possible to specify a
unique strategy to be used in all formulations, considering
the application of the techniques here investigated, because
a strong instability was observed when we migrate from 3
to 5 objectives.

A new adaptive environment was proposed as an attempt
to handle these questions, in which the population dynam-
ics was considered as an indicative of when to shift between
techniques. Thus, we designed a rule to decide when to
change the GA configuration based on the growth of the size
of the currently non-dominated set. Although we specified
the inferior and superior bounds for changing techniques,
this task could be done using, for instance, a neural net-
work or a utility function, requiring less or no intervention
to parameterize this part of the process.
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