
Evolving Neural Networks

Risto Miikkulainen

Department of Computer Science

The University of Texas at Austin

http://www.cs.utexas.edu/∼risto

Copyright is held by the author/owner(s).
GECCO’11, July 12–16, 2011, Dublin, Ireland.
ACM 978-1-4503-0690-4/11/07. 1/64

Why Neuroevolution?

• Neural nets powerful in many statistical domains
– E.g. control, pattern recognition, prediction, decision making
– Where no good theory of the domain exists

• Good supervised training algorithms exist
– Learn a nonlinear function that matches the examples

• What if correct outputs are not known? 2/64

Sequential Decision Tasks

32

• POMDP: Sequence of decisions creates a sequence of states

• No targets: Performance evaluated after several decisions

• Many important real-world domains:
– Robot/vehicle/traffic control
– Computer/manufacturing/process optimization
– Game playing

3/64

Forming Decision Strategies

Win!

• Traditionally designed by hand

– Too complex: Hard to anticipate all scenarios

– Too inflexible: Cannot adapt on-line

• Need to discover through exploration

– Based on sparse reinforcement

– Associate actions with outcomes 4/64
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Standard Reinforcement Learning

Win!
Function

Approximator

Sensors

Value

Decision

• AHC, Q-learning, Temporal Differences
– Generate targets through prediction errors
– Learn when successive predictions differ

• Predictions represented as a value function
– Values of alternatives at each state

• Difficult with large/continuous state and action spaces

• Difficult with hidden states
5/64

Neuroevolution (NE) Reinforcement Learning

Neural NetSensors Decision

• NE = constructing neural networks with evolutionary algorithms

• Direct nonlinear mapping from sensors to actions

• Large/continuous states and actions easy

– Generalization in neural networks

• Hidden states disambiguated through memory

– Recurrency in neural networks 76

6/64

How well does it work?

Poles Method Evals Succ.
One VAPS (500,000) 0%

SARSA 13,562 59%
Q-MLP 11,331

NE 127
Two NE 3,416

• Difficult RL benchmark: Non-Markov Pole Balancing

• NE 3 orders of magnitude faster than standard RL 27

• NE can solve harder problems

7/64

Role of Neuroevolution

32

• Powerful method for sequential decision tasks 17;27;51;89

– Optimizing existing tasks
– Discovering novel solutions
– Making new applications possible

• Also may be useful in supervised tasks 47;56

– Especially when network topology important

• Unique model of biological adaptation and development 52;61;84
8/64
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Outline

• Basic neuroevolution techniques

• Advanced techniques

– E.g. combining learning and evolution

• Extensions to applications

• Application examples

– Control, Robotics, Artificial Life, Games

9/64

Neuroevolution Decision Strategies

• Input variables describe the state

• Output variables describe actions

• Network between input and output:
– Nonlinear hidden nodes
– Weighted connections

• Execution:
– Numerical activation of input
– Performs a nonlinear mapping
– Memory in recurrent connections

Evolved Topology

Left/Right Forward/Back Fire

Enemy Radars On 
Target

Object Rangefiners Enemy
LOF

Sensors

Bias
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Conventional Neuroevolution (CNE)

• Evolving connection weights in a population of networks 47;62;89;90

• Chromosomes are strings of connection weights (bits or real)
– E.g. 10010110101100101111001
– Usually fully connected, fixed topology
– Initially random

11/64

Conventional Neuroevolution (2)

• Parallel search for a solution network
– Each NN evaluated in the task
– Good NN reproduce through crossover, mutation
– Bad thrown away

• Natural mapping between genotype and phenotype
– GA and NN are a good match!

12/64
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Problems with CNE

• Evolution converges the population (as usual with EAs)
– Diversity is lost; progress stagnates

• Competing conventions
– Different, incompatible encodings for the same solution

• Too many parameters to be optimized simultaneously
– Thousands of weight values at once 13/64

Advanced NE 1: Evolving Partial Networks

• Evolving individual neurons to cooperate in networks 1;50;56

• E.g. Enforced Sub-Populations (ESP 23)
– Each (hidden) neuron in a separate subpopulation
– Fully connected; weights of each neuron evolved
– Populations learn compatible subtasks

14/64

Evolving Neurons with ESP
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• Evolution encourages diversity automatically
– Good networks require different kinds of neurons

• Evolution discourages competing conventions
– Neurons optimized for compatible roles

• Large search space divided into subtasks
– Optimize compatible neurons 15/64

Evolving Partial Networks (2)
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• Extend the idea to evolving connection weights

• E.g. Cooperative Synapse NeuroEvolution (CoSyNE 27)
– Connection weights in separate subpopulations
– Networks formed by combining neurons with the same index
– Networks mutated and recombined; indices permutated

• Sustains diversity, results in efficient search 16/64
1014



Advanced NE 2: Evolutionary Strategies

• Evolving complete networks with ES (CMA-ES 34)

• Small populations, no crossover

• Instead, intelligent mutations
– Adapt covariance matrix of mutation distribution
– Take into account correlations between weights

• Smaller space, less convergence, fewer conventions
17/64

Advanced NE 3: Evolving Topologies

• Optimizing connection weights and network topology 3;17;21;91

• E.g. Neuroevolution of Augmenting Topologies (NEAT 69;71)

• Based on Complexification

• Of networks:
– Mutations to add nodes and connections

• Of behavior:
– Elaborates on earlier behaviors

18/64

Why Complexification?
Minimal Starting Networks

Population of Diverse Topologies

Generations pass...

• Problem with NE: Search space is too large

• Complexification keeps the search tractable
– Start simple, add more sophistication

• Incremental construction of intelligent agents

19/64

Advanced NE 4: Indirect Encodings

• Instructions for constructing the network evolved
– Instead of specifying each unit and connection 3;17;46;67;91

• E.g. Cellular Encoding (CE 29)

• Grammar tree describes construction
– Sequential and parallel cell division
– Changing thresholds, weights
– A “developmental” process that results in a network

20/64
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Indirect Encodings (2)

• Encode the networks as spatial patterns

• E.g. Hypercube-based NEAT (HyperNEAT 12)
• Evolve a neural network (CPPN)

to generate spatial patterns
– 2D CPPN: (x, y) input→ grayscale output
– 4D CPPN: (x1, y1, x2, y2) input→ w output
– Connectivity and weights can be evolved indirectly
– Works with very large networks (millions of connections)21/64

Properties of Indirect Encodings

• Smaller search space

• Avoids competing conventions

• Describes classes of networks efficiently

• Modularity, reuse of structures
– Recurrency symbol in CE: XOR→ parity
– Repetition with variation in CPPNs
– Useful for evolving morphology

22/64

Properties of Indirect Encodings

• Not fully explored (yet)
– See e.g. GDS track at GECCO

• Promising current work
– More general L-systems;

developmental codings; embryogeny 72

– Scaling up spatial coding 13;22

– Genetic Regulatory Networks 57

– Evolution of symmetries 79

23/64

How Do the NE Methods Compare?
Poles Method Evals
Two CE (840,000)

CNE 87,623
ESP 26,342

NEAT 6,929
CMA-ES 6,061
CoSyNE 3,416

Two poles, no velocities, damping fitness 27

• Advanced methods better than CNE

• Advanced methods still under development

• Indirect encodings future work

24/64
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Further NE Techniques

• Incremental, multiobjective, novelty

evolution 40;64 25;38;39;64;78;90

• Utilizing population culture 5;44

• Evolving NN ensembles and modules 41;55;58;86

• Evolving transfer functions and learning rules 8;60;75

• Evolving value functions 87

• Combining learning and evolution

25/64

Combining Learning and Evolution

• Good learning algorithms exist for NN
– Why not use them as well?

• Evolution provides structure and initial weights

• Fine tune the weights by learning

• Lamarckian evolution is possible
– Coding weight changes back to chromosome

• Difficult to make it work
– Diversity reduced; progress stagnates

26/64

Baldwin Effect

Fi
tn

es
s With learning

Without learning

Genotype

• Learning can guide Darwinian evolution 4;31

– Makes fitness evaluations more accurate

• With learning, more likely to find the optimum if close

• Can select between good and bad individuals better
– Lamarckian not necessary

• How can we implement it?
– How to obtain training targets?

27/64

Targets from a Related Task

sensory input

predicted

proprioceptive
input

motor output sensory input

F

F

F

F

F

• Learning in a related task is sufficient

• E.g. foraging for food in a microworld 52

– Network sees the state, outputs motor commands

– Trained with backprop to predict the next input

– Training emphasizes useful hidden-layer representations

– Allows more accurate evaluations 28/64
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Evolving the Targets
angle target angle distance target distance

angle distance
Sensory Input

Motor Output

• Evolve extra outputs to provide targets

• E.g. in the foraging task 54

– Motor outputs and targets with separate hidden layers

– Motor weights trained with backprop, targets evolved

– Targets do not correspond to optimal performance:
Direct system towards useful learning experiences 29/64

Targets from Humans

...And Uses Them to Train
Game−Playing Agents

...While Machine Learning System
Captures Example Decisions...

Foolish Human,
Prepare to Die!
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Human Plays Games...

• Humans can demonstrate desired behavior

• E.g. fine tuning game agents 7

– Human observer identifies suboptimal behavior
– Drives the NPC with a joystick
– Agent placed in the same input situation
– Backpropagate from human actions

30/64

Extending NE to Applications

• Control

• Robotics

• Artificial life

• Gaming

Issues:

• Combining evolution with human knowledge 7;16;93

(Karpov GECCO’11)

• Making evolution run in real-time 70

• Utilizing coevolution 59;73

• Utilizing problem symmetry and hierarchy 36;79;81

• Evolving multimodal behavior 63;64;86

• Evolving teams of agents 6;70;92
31/64

Applications to Control

• Pole-balancing benchmark

– Originates from the 1960s

– Original 1-pole version too easy

– Several extensions: acrobat, jointed, 2-pole,

particle chasing 55

• Good surrogate for other control tasks

– Vehicles and other physical devices

– Process control 82
32/64
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Controlling a Finless Rocket

Task: Stabilize a finless version of

the Interorbital Systems RSX-2 sounding

rocket 26

• Scientific measurements in the upper

atmosphere

• 4 liquid-fueled engines with variable

thrust

• Without fins will fly much higher for

same amount of fuel

33/64

Rocket Stability

roll

(a) Fins: stable

CG

CP

CG

CP

Thrust

Drag

(b) Finless: unstable

αα

β β

pitch
yaw

Side force

Lift

34/64

Active Rocket Guidance

• Used on large scale launch vehicles
(Saturn, Titan)

• Typically based on classical linear
feedback control

• High level of domain knowledge required

• Expensive, heavy

35/64

Simulation Environment: JSBSim

• General rocket simulator

• Models complex interaction between air-

frame, propulsion, aerodynamics, and at-

mosphere

• Used by IOS in testing their rocket designs

• Accurate geometric model of the RSX-2

36/64
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Rocket Guidance Network
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Results: Control Policy

38/64

Results: Apogee
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• DEMO 39/64

Applications to Robotics

• Controlling a robot arm 49

– Compensates for an inop motor

• Robot walking 33;66;81

– Various physical platforms

• Mobile robots 11;18;53;68

– Transfers from simulation to physical robots

– Evolution possible on physical robots

3

1

2

40/64
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Multilegged Walking

• Navigate rugged terrain better than wheeled robots

• Controller design is more challenging
– Leg coordination, robustness, stability,

fault-tolerance, ...

• Hand-design is generally difficult and brittle

• Large design space often makes evolution ineffective
41/64

ENSO: Symmetry Evolution Approach

x2

y2

y4

x4

Module 3

Module 1

Module 2

Module 4
x1

y1

y3

x3

1 2

3 4

• Symmetry evolution approach 79;80;81

– A neural network controls each leg

– Connections between controllers evolved
through symmetry breaking

– Connections withing individual controllers evolved
through neuroevolution

42/64

Robust, Effective Solutions

• Different gaits on flat ground
– Pronk, pace, bound, trot
– Changes gait to get over obstacles

• Asymmetric gait on inclines
– One leg pushes up, others forward
– Hard to design by hand

• DEMO
43/64

Transfer to a Physical Robot

• Built at Hod Lipson’s lab (Cornell U.)
– Standard motors, battery, controller board
– Custom 3D-printed legs, attachments
– Simulation modified to match

• General, robust transfer
– Noise to actuators during simulation
– Generalizes to different surfaces, motor speeds
– Evolved a solution for 3-legged walking!

• DEMO 44/64
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Driving and Collision Warning

• Goal: evolve a collision warning system
– Looking over the driver’s shoulder
– Adapting to drivers and conditions
– Collaboration with Toyota 37

45/64

The RARS Domain

• RARS: Robot Auto Racing Simulator
– Internet racing community
– Hand-designed cars and drivers
– First step towards real traffic 46/64

Evolving Good Drivers

• Evolving to drive fast without crashing

(off road, obstacles)

• An interesting challenge of its own 77

• Discovers optimal driving strategies

(e.g. how to take curves)

• Works from range-finder & radar inputs

• Works from raw visual inputs

(20× 14 grayscale)

47/64

Evolving Warnings

• Evolving to estimate probability of crash

• Predicts based on subtle cues (e.g. skidding off the road)

• Compensates for disabled drivers

• Human drivers learn to drive with it!

• DEMO 48/64
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Transferring to the Physical World?

• Applied AI Gaia moving in an office environment
– Sick laserfinder; Bumblebee digital camera
– Driven by hand to collect data

• Learns collision warning in both cases

• Transfer to real cars?

• DEMO 49/64

Applications to Artificial Life

• Gaining insight into neural structure
– E.g. evolving a command neuron 2;35;61

• Emergence of behaviors
– Signaling, herding, hunting... 84;85;92

• Future challenges
– Emergence of language
– Emergence of community behavior 50/64

Emergence of Cooperation and Competition

Predator cooperation Predator, prey cooperation

• Predator-prey simulations
– Predator species, prey species
– Prior work single pred/prey, team of pred/prey

• Simultaneous competitive and cooperative coevolution

• Understanding e.g. hyenas and zebras
– Collaboration with biologists (Kay Holekamp, MSU)

• DEMO
51/64

Open Questions

• Role of communication

– Stigmergy vs. direct communication in hunting

– Quorum sensing in e.g. confronting lions

• Role of rankings

– Efficient selection when evaluation is costly?

• Role of individual vs. team rewards

• Can lead to general computational insights

52/64
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Applications to Games
a b

1

2

3

4

5

6

7

8

c d e f g h

• Good research platform 45

– Controlled domains, clear performance, safe
– Economically important; training games possible

• Board games: beyond limits of search
– Evaluation functions in checkers, chess 9;19;20

– Filtering information in go, othello 48;74

– Opponent modeling in poker 42

)

53/64

Video Games

• Economically and socially important

• GOFAI does not work well
– Embedded, real-time, noisy, multiagent, changing
– Adaptation a major component

• Possibly research catalyst for CI
– Like board games were for GOFAI in the 1980s

54/64

Video Games (2)

• Can be used to build “mods” to existing games
– Adapting characters, assistants, tools

• Can also be used to build new games
– New genre: Machine Learning game

55/64

BotPrize Competition

• Turing Test for game bots: $10,000 prize

• Three players in Unreal Tournament:
– Human confederate: tries to win
– Software bot: pretends to be human
– Human judge: tries to tell them apart!

• DEMO 56/64
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Killer App: Evolving an Unreal Bot

• Evolve basic strategies
– Battle, chase, get-unstuck...
– Can be extended to many other low-level behaviors

• Best bots judged 25-30% human
– Vs. humans at 35-80%

• Fascinating challenges remain:
– Judges can still differentiate in seconds
– Judges lay cognitive, high-level traps 57/64

A New Genre: Machine Learning Games

• E.g. NERO

– Goal: to show that machine learning games are viable

– Professionally produced by Digital Media Collaboratory, UT Austin

– Developed mostly by volunteer undergraduates 58/64

NERO Gameplay
Scenario 1: 1 enemy turret Scenario 2: 2 enemy turrets Scenario 17: mobile turrets &

obstacles

... ...

Battle

• Teams of agents trained to battle each other
– Player trains agents through excercises
– Agents evolve in real time
– Agents and player collaborate in battle

• New genre: Learning is the game 30;70

– Challenging platform for reinforcement learning
– Real time, open ended, requires discovery

• Try it out:
– Available for download at http://nerogame.org
– Open source research platform version at
opennero.googlecode.com 59/64

Real-time NEAT

Reproduction

X

mutation

crossover

high−fitness units

low−fitness

new unit

unit

.

• A parallel, continuous version of NEAT 70

• Individuals created and replaced every n ticks

• Parents selected probabilistically, weighted by fitness

• Long-term evolution equivalent to generational NEAT
60/64
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NERO Player Actions

• Player can place items on the field

e.g. static enemies, turrets, walls, rovers, flags

• Sliders specify relative importance of goals

e.g. approach/avoid enemy, cluster/disperse, hit target, avoid fire...

• Networks evolved to control the agents

• DEMO

61/64

Numerous Other Applications

• Creating art, music, dance... 10;15;32;65

• Theorem proving 14

• Time-series prediction 43

• Computer system optimization 24

• Manufacturing optimization 28

• Process control optimization 82;83

• Measuring top quark mass 88

• Etc.

62/64

Evaluation of Applications

• Neuroevolution strengths
– Can work very fast, even in real-time
– Potential for arms race, discovery
– Effective in continuous, non-Markov domains

• Requires many evaluations
– Requires an interactive domain for feedback
– Best when parallel evaluations possible
– Works with a simulator & transfer to domain 63/64

Conclusion

• NE is a powerful technology for sequential decision tasks
– Evolutionary computation and neural nets are a good match
– Lends itself to many extensions
– Powerful in applications

• Easy to adapt to applications
– Control, robotics, optimization
– Artificial life, biology
– Gaming: entertainment, training

• Lots of future work opportunities
– Theory not well developed
– Indirect encodings
– Learning and evolution
– Knowledge and interaction

64/64
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