
Genetic Algorithm Theory

Jonathan E. Rowe

University of Birmingham, UK

GECCO 2011

Copyright is held by the author/owner(s).
GECCO’11, July 12–16, 2011, Dublin, Ireland.
ACM 978-1-4503-0690-4/11/07.

Jonathan E. Rowe (University of Birmingham, UK) Genetic Algorithm Theory GECCO 2011 1 / 91

Introduction

The theory of genetic algorithms is beginning to come together into a coherent
framework. However, there are still many gaps, and much that we do not know.

This tutorial will provide an introduction to the framework, and describe some of
the areas of development. I will include pointers to other research directions, some
of which are covered in other tutorials.
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Overview of tutorial

The main topics covered in this tutorial are:

Genetic algorithms as Markov chains.

Finite and infinite populations.

Selection, mutation and crossover.

Schemata, projections and coarse-grainings.

Generalisation to other search spaces.

Jonathan E. Rowe (University of Birmingham, UK) Genetic Algorithm Theory GECCO 2011 3 / 91

The Simple Genetic Algorithm

A basic object of study is the Simple Genetic Algorithm. At any time-step (or
generation) there is a population (of size N) of binary strings (of length �). We use
genetic operators (selection, crossover, mutation) to produce the next population.

We will consider generalisations to other search spaces later.
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Producing the next population

To produce the next population we follow these steps N times:

1 Select two items from the population.

2 Cross them over to form an offspring.

3 Mutate the offspring.

4 Insert the result into the new population.
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Markov chains

There are a finite number of possible populations of size N . The probability of
producing a particular population in one generation, depends only on the
population at the previous generation.

This kind of random process is called a Markov chain. It can be characterised by a
transition matrix Q.

Qq,p is the probability of going from population p to population q.
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Populations as distributions

We can think of a population p as a distribution over the search space Ω.

pk is the proportion of copies of item k in the population. That is, it is the
number of copies of k divided by N .

p ∈ Λ =

{
x ∈ R

n|
∑
k

xk = 1 and xk ≥ 0 for all k

}
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The heuristic function

If the current population is p, then there is a certain probability of producing item
k in the next generation. Call this probability G(p)k .
That is, G(p) ∈ Λ and G can be thought of as a map

G : Λ −→ Λ

which we call the heuristic function.
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Random Heuristic Search

An equivalent way of characterising a single generation of the Simple Genetic
Algorithm is as follows:

1 p is the current population

2 Calculate G(p).
3 Take N random samples from G(p).
4 The sample is the next population.
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The transition matrix

If we know the heuristic function G, we can write down the transition matrix.

Qq,p = N!
∏
k∈Ω

(G(p)k)Nqk

(Nqk)!

This is called a multinomial distribution.
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The expected next population

The next population is a random variable. If p is the current population, then we
can calculate what the expected next population is.

This turns out to be simply G(p).
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The variance

We can also ask for the variance of the distribution. It is:

1− G(p)TG(p)
N

You can see that the variance decreases as N increases. That means that for large
population sizes, the next generation is likely to be close to G(p).
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The infinite population model

As N → ∞, we can see that the variance decreases to zero. So the behaviour of
the random heuristic search becomes closer and closer to simply iterating G.
More formally, given a number of time steps τ , and distance ε > 0 and a
probability δ > 0, there exists a population size N so that the random heuristic
search algorithm stays within ε of the iterates of G for τ time steps, with
probability greater than 1− δ.
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Finite population behaviour

We know that, if N is big enough, a finite population will stay close to the
trajectory of G in the short-term. We are also interested in:

In what states does it spend most of its time (in the medium and long term)?

How long does it take to reach a particular state (e.g. one containing the
optimal solution to a problem)?

We will take a look at the first problem. The second problem can only be
addressed for specific cases.
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Metastable states

A genetic algorithm often seems to “stall” in certain states. This is particular
obvious with some fitness functions (e.g. Royal Road functions).

These states are called metastable and correspond to sets of populations which
have the property that ‖G(p)− p‖ (called the force of G at p) is small.
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Fixed-points and metastability

One place we find populations with small force is close to fixed-points of G (at
which the force is, of course, zero). These fixed-points may themselves be outside,
but close to Λ, since G remains well-defined and continuous.

It is also sometimes possible to find much larger sets of populations, which the GA
appears to wander around at random. These are called neutral networks as they
have (almost) constant fitness.
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Genetic operators and G

We will now look at the different genetic operators: selection, mutation, crossover.
We will look at them singly, and in various combinations.

For each combination, we will write down the corresponding heuristic function G.
We will then consider what is known about the fixed-points of G and the
behaviour of (finite population) algorithms.
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Selection and fitness

A selection operator chooses items from the current population. It makes use of a
fitness function, which is a function

f : Ω −→ R
+

We can also think of the fitness function as a vector f ∈ R
n, with fk = f (k).

We usually require a selection operator to assign a higher probability to elements
that have higher fitness.
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Proportional selection

One common method of selection is to select elements with probability
proportional to their fitness. This corresponds to a heuristic function

F(p) =
diag(f)p

fTp

where diag(f) is a diagonal matrix with the elements of f along the diagonal.
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Trajectory of proportional selection

Given an initial population p(0), let p(t) = F t(p) be the corresponding trajectory
of the infinite population model.

It can be shown that:

p(t)k =
(fk)

tp(0)k∑
j(fj)

tp(0)j
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Example trajectory — proportional selection

5 10 15 20

0.2

0.4

0.6

0.8

1

The proportion of each solution in the population for the trajectory, starting with
p(0) = (0.01, 0.24, 0.75). The fitness function if f = (3, 2, 1).
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Fixed-points and absorbing states

The fixed-points of F are the homogeneous populations. That is, populations that
have copies of just one item. They are represented by vectors with a 1 in one
position and zeros elsewhere.

The trajectory will converge to the homogeneous population containing copies of
the fittest individual in the original population.

Homogeneous populations are also absorbing states of the Markov chain for finite
populations.
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Binary tournament selection

An alternative selection method is to choose two items from the population
uniformly at random, and then keep the best one (as measured by the fitness
function). The corresponding heuristic function is1

F(p)i = (pi )
2 + 2pi

∑
j

pj [f (j) < f (i)]

1[expr ] equals 1 if expr is true, and 0 otherwise.
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Behaviour of tournament selection

This function is harder to analyse, as it is quadratic. However, its fixed-points are
again the homogeneous populations (as are the absorbing states of the Markov
chain).

It is sometimes said that tournament selection is stronger than proportional
selection, as it moves more quickly towards a homogeneous population.
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Example trajectory — tournament selection

5 10 15 20

0.2

0.4

0.6

0.8

1

The proportion of each solution in the population for the trajectory, starting with
p(0) = (0.01, 0.24, 0.75). The fitness function if f = (3, 2, 1).
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Mutation

In general, mutating a particular item can produce any other item (with some
probability). Write Ui ,j to be the probability that item j mutates to item i . Then
the heuristic function for mutation is

U(p) = Up
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Example — mutation by a rate

For example, if we mutate binary strings of length � bitwise, with mutation rate u,
then

Ui ,j = ud(i ,j)(1− u)�−d(i ,j)

where d(i , j) is the Hamming distance between i and j .
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Mutation commutes with exclusive-or

Standard mutation on binary strings satisfies the following curious property:

Ui ,j = Uk⊕i ,k⊕j

for all i , j , k ∈ Ω, where ⊕ represents bitwise exclusive-or. We say that it
commutes with this operator.

This means that if you mutate k ⊕ i , you get the same result as if you mutated i
by itself (to form j) and then formed k ⊕ j .
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Long-term behaviour of mutation

Any mutation operator that commutes with ⊕ has a unique fixed-point in Λ,
which is the uniform distribution over Ω. We denote this distribution by (1/n)1
(where 1 is the vector of all ones).

(U(1/n)1)i = (1/n)
∑
j

Ui ,j = (1/n)
∑
j

Uj⊕i ,0 = (1/n)
∑
k

Uk,0 = 1/n

The corresponding Markov chain is irreducible, and the stationary distribution is
uniform over all populations. That is, all populations are visited equally often.
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Characterising mutation

We can characterise all mutations which commute with ⊕ as follows. For any
probability distribution α ∈ Λ, set

Ui ,j = αj⊕i

Then
Uk⊕i ,k⊕j = αk⊕j⊕k⊕i = αj⊕i = Ui ,j

Such a mutation can be implemented as follows: to mutate j , pick an element
k ∈ Ω according to distribution α and form j ⊕ k .
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Proportional selection and mutation

If we first perform proportional selection, and then mutation, we get a combined
heuristic function

G(p) = (U ◦ F)(p) =
Udiag(f)p

fTp

The fixed-points of this function are easily found. They must satisfy

Udiag(f)p = (fTp)p
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Perron-Frobenius theorem

The fixed-points are therefore eigenvectors of the matrix Udiag(f). The
corresponding eigenvalues are the average fitness at the fixed-point.

The Perron-Frobenius theorem tells us that exactly one of these fixed-points is in
Λ, corresponding to the largest eigenvalue. The others are outside Λ but may still
influence the dynamics inside.
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Example — OneMax

10 20 30 40 50

0.02

0.04

0.06

0.08

0.1

The fixed-point population, shown as a distribution over unitation classes, for the
OneMax function with � = 50, u = 0.05 and no crossover. The corresponding
average fitness is 28.65.
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Transitory behaviour

The Markov chain corresponding to a selection+mutation genetic algorithm is
irreducible, and therefore has a stationary distribution. It visits all populations
infinitely often, but some more frequently than others.

For particular fitness functions, it is possible to analyse some aspects of the
transient behaviour, such as the expected time to reach the optimum solution (see
Wegener et al.).
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Metastable states

The states in which the algorithm spends a lot of its time can sometimes be found
by analysing the fixed-points of G.
One needs to take into account fixed-points inside and outside Λ as they can all
have an effect. This can enable us to establish metastable states and neutral
networks.
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Example — fixed-points

For example, consider the function of unitation

f = (9, 8, 1, 2, 3, 4, 5, 6, 7)

(a trap function), with mutation rate 0.05.

We find there is one fixed-point in Λ, around the optimum, and another just
outside, but near the false optimum.
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Example — metastable states

2 4 6 8

0.1

0.2

0.3

0.4

0.5

The fixed-point population in Λ (solid line) and one just outside (dashed line).
The fitness function is f = (9, 8, 1, 2, 3, 4, 5, 6, 7) (as a function of unitation).
Mutation rate is 0.05.
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Crossover

Crossover takes two individuals and produces an offspring. For each i , j , k ∈ Ω we
need to specify the probability that crossing i and j will produce k . We denote this
probability r(i , j , k).

The corresponding heuristic function is

C(p)k =
∑
i ,j

pipj r(i , j , k)
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Crossover by masks

Crossing two binary strings is usually done by selecting a binary mask according to
some probability distribution. The mask indicates which bits come from the first
parent and which come from the second.

In this case we get

C(p)k =
∑
i ,j

pipj
∑
b

χb[(b ⊗ i)⊕ (b̄ ⊗ j) = k ]

where χb is the probability of picking mask b.
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Crossover commutes with exclusive-or

Crossover by masks satisfies the following curious property:

r(a ⊕ i , a⊕ j , a⊕ k) = r(i , j , k)

for all i , j , k , a ∈ Ω. We say that it commutes with this operator.

This means that if you cross a ⊕ i , with a⊕ j , you get the same result as if you
crossed i with j (to form k) and then formed a⊕ k .
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The mixing matrix

This means that crossover is determined by the matrix

Mi ,j = r(i , j , 0)

called the mixing matrix. We can find all the other probabilities from this:

r(i , j , k) = r(k ⊕ i , k ⊕ j , 0) = Mk⊕i ,k⊕j
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Group representation

The set of binary strings Ω forms a group under the operator ⊕.

For each element k ∈ Ω, we can define a corresponding matrix σk

(σk )i ,j = [i = k ⊕ j ]

This set of matrices forms a group (under normal matrix multiplication) which is
isomorphic to (Ω,⊕).
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The crossover heuristic

We can now re-write the crossover heuristic function, in terms of the mixing
matrix, and the group of permutation matrices:

C(p)k = pTσkMσT
k p
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Characterising crossover

All crossovers which commute with ⊕ can be characterised as follows.

1 Start with any row stochastic matrix, A.

2 Define a new matrix Mi ,j = Ai⊕j,i .

3 Let M be the mixing matrix defining C.

Jonathan E. Rowe (University of Birmingham, UK) Genetic Algorithm Theory GECCO 2011 44 / 91

1039



The twist

The mixing matrix M is called the twist of the matrix A. Twists play an important
role in the study of crossover. For example, the derivative dCx of the heuristic
function at a point x is the matrix

dCx = 2
∑
k

σkM
∗σT

k xk

where M∗ is the twist of the mixing matrix.
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Linkage equilibrium

Geiringer’s theorem is a classic result from population genetics. It describes the
fixed-points of C defined by masks.

The set of fixed-points are populations that are in linkage equilibrium. This means
that if you take a string at random from such a population, the probability of
finding a 1 at any position is independent of the contents of the rest of the string.
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Geiringer’s theorem

The theorem also says that if you start with some population vector p and
repeatedly apply C, then the limit will be one of these fixed-points.

The probability of finding a 1 in a given bit position at this fixed-point will be
simply equal to the proportion of 1s in that position in the initial population.
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Finite population behaviour

Geiringer’s theorem was originally proved in the infinite population model. A
version of the theorem has recently been proved for finite populations.

In this version, we look at the stationary distribution of the Markov chain. Select a
population at random from this distribution, and pick a string at random. The
probability of finding a 1 in any given position depends only on the proportion of
1s in that position in the initial population.
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Selection and crossover

Suppose we have a genetic algorithm with proportional selection and crossover.
Then G = C ◦ F .

Homogeneous populations are fixed-points. They are also absorbing states of the
Markov chain. However, there can be other fixed-points.

It is conjectured that the only asymptotically stable fixed-points are homogeneous
populations. Proving this is an open problem.
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Fixed-points and local optima

Some of the homogeneous populations are asymptotically stable, and some are
unstable.

Suppose we have an asymptotically stable population that contains only copies of
a bitstring k . Then if we consider the fitness of k , and the fitness of all its
Hamming neighbours we find that:

Asymptotically stable homogenous populations contain (Hamming) local optima.
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Genepool crossover

There is another form of crossover sometimes used call genepool or population
crossover. It is used, for example, in UMDA.

In each bit position, this operator shuffles the bits in the entire population. It
brings the population immediately to linkage equilibrium.

It is like performing lots of normal crossovers between each selection.
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Fixed-points of genepool crossover

When we use genepool crossover and proportional selection, then it can be proved
that:

1 The only asymptotically stable fixed-points are homogeneous populations.

2 Moreover, they correspond exactly with the Hamming local optima.

3 This follows from the fact that average fitness increases monotonically.
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Mutation and crossover

Suppose we have mutation and crossover, but no selection. The heuristic function
is again a quadratic operator M = C ◦ U which commutes with ⊕.

The mixing matrix is UTMU , where U is the mutation matrix and M is the
mixing matrix of crossover alone.

If mutation is by a rate, then it doesn’t matter which order we do mutation and
crossover — the effect is the same.
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Long-term behaviour

As long as there is a positive mutation rate, M has a unique fixed-point (1/n)1.

The corresponding Markov chain is irreducible. Its stationary distribution is
uniform over all possible (ordered) populations of size N . This means that all
strings are equally likely to appear.

We see that in both the finite and infinite population case, a vanishingly small
(but non-zero) mutation rate is sufficient to destroy the fixed-points described by
Geiringer’s theorem.
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Schemata

A schema is a pattern of bit-values at certain defining positions. For example:

1 ∗ ∗ 0 ∗ ∗ 0 ∗

is the set of all strings which have a 1 in the first position, and 0s in the fourth
and seventh positions. The ∗ symbol acts as a “don’t care”.

Schemata are important for understanding crossover and mutation.
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Schema families

A schema family is a collection of schemata, which all have the same defining
positions (and the same “don’t care” positions). For example:

∗ ∗ ∗ 0 ∗ ∗ 0 ∗
∗ ∗ ∗ 0 ∗ ∗ 1 ∗
∗ ∗ ∗ 1 ∗ ∗ 0 ∗
∗ ∗ ∗ 1 ∗ ∗ 1 ∗
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The Schema Projection Theorem

Mutation and crossover done by masks can be projected onto a schema family.
That is, one can define a corresponding crossover and mutation that act only on
the defining bit positions of the family.

The effects of crossover and mutation on those bits is independent of what
happens on the other bits.
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Coarse-graining

This kind of effect is called a coarse-graining, for it enables us to study the effects
of operators on aggregated chunks of the search space.

The Schema Projection theorem tells us that crossover and mutation can be
exactly coarse-grained using schemata.
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Selection and schemata

It would have been convenient if selection could also be projected onto schema
families. Then we could have tracked the entire GA on aggregated “building
blocks”. Unfortunately this can’t be done in a time-independent manner.

That is, the building blocks at one generation are different from those at another.
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Coarse-graining at a fixed-point

If we start at a fixed-point p = G(p), then nothing changes from one time-step to
another. At such a point it is possible to coarse-grain selection (as well as
crossover and mutation) using schemata.

This is because the “fitness” of a schema can no longer change from one
time-step to another, and so we can aggregate in a time-independent manner.
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Order-1 schemata fitness

Let G include proportional selection, crossover and mutation (with rate u). Specify
some bit position, and some population p.

Let q0(p) be the proportion of the population with a 0 at that position.

Let q1(p) be the proportion with a 1. Clearly q0 + q1 = 1.

Let f0(p) be the average fitness of strings with a 0 at that position.

Let f1(p) be the average fitness of strings with a 1.
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Schemata fitness at a fixed-point

If p is a fixed-point of G, then
f0(p)

f1(p)
=

q1
q0

(
q0 − u

q1 − u

)
Notice that this result holds for any fitness function and for any kind of crossover
(by masks).
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Example

Let Ω = {00, 01, 10, 11} and f = (4.0, 4.1, 0.1, 4.11). Choose say, uniform
crossover and a mutation rate of u = 0.006. We choose to focus on the second bit
position.

The stable fixed-point is p = (0.032, 0.737, 0.005, 0.226).
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Example (cont’d)

At this fixed-point we have:
f0(p)

f1(p)
= 0.843

Notice that this means the schema ∗1 has higher fitness than ∗ 0, even though the
system is in stable equilibrium.
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Other coarse-grainings

We can determine exactly what coarse-grainings are possible:

Crossover by masks can only be projected onto schema families.

Mutation by a rate can be projected onto schema families and unitation
classes.

Proportional Selection can only be projected onto classes of equal fitness.

Binary tournament selection can only be projected onto classes of contiguous
fitness.
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The Walsh Transform

The Walsh Transform is given by the matrix

Wi ,j =
(−1)i ·j√

n

where i · j is the number of 1s that i and j have in common. Applying the
transform gives us a change of basis.
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Effects of the Walsh Transform

In the Walsh basis, crossover and mutation become considerably easier to deal
with:

The mutation matrix becomes diagonal.

All the matrices σk become diagonal.

The mixing matrix is untouched (but is generally sparse).
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Applications of the Walsh Transform

Because of these simplifications, a number of results can be proved using the
Walsh basis. For example:

The operator C can be inverted.

The twist is lower triangular in the Walsh basis.

Genepool crossover (with and without mutation) also becomes easier to analyse in
the Walsh basis.
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Selection and the Walsh basis

Proportional selection is not so nice in the Walsh basis. However, the following
result is curious:

Let S = diag(f), and let Ŝ = WSW . Then Ŝ commutes with ⊕.

Selection appears to be a dual of mutation.
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Generalising to other search spaces

Most of the existing theory of genetic algorithms has been worked out for the
search space of fixed-length binary strings.

But what if we have a different search space (for example, the Travelling
Salesman Problem)? How much of the theory can be generalised?
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Search space groups

It turns out that quite a lot can be done in the case where the search space Ω,
together with some operator ⊕ forms an arbitrary finite group.

For example, Ω could be the set of permutations of cities (in TSP) and ⊕ could
be function composition.
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Operators that commute with ⊕

Again we say that mutation commutes with ⊕ if

Uk⊕i ,k⊕j = Ui ,j

We also say that crossover commutes with ⊕ if

r(a ⊕ i , a⊕ j , a⊕ k) = r(i , j , k)

Such operators can be completely characterised as before.
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Mixing matrices

In this case, we can again define the crossover heuristic in terms of a mixing matrix

C(p)k = pTσkMσT
k p

where the matrices (σk )i ,j = [i = k ⊕ j ] form a group isomorphic to (Ω,⊕).

Jonathan E. Rowe (University of Birmingham, UK) Genetic Algorithm Theory GECCO 2011 73 / 91

Generalised schemata

Given a collection N of subgroups of Ω, then an N -schema is a set of the form

a⊕ G = {a⊕ g |g ∈ G}

where G ∈ N . That is, schemata are cosets of subgroups of Ω.

Jonathan E. Rowe (University of Birmingham, UK) Genetic Algorithm Theory GECCO 2011 74 / 91

Example — TSP

A route in TSP is an ordering π : {1, 2, . . . ,m} → {1, 2, . . . ,m} of the m cities,
where π(i) = the ith city in the tour.

Choose some subset C ⊆ {1, 2, . . . ,m} and consider permutations that have the
property that π(i) = i for all i ∈ C . These permutations form a subgroup.
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Schemata in TSP

The schemata corresponding to such a subgroup are those tours which specify
that certain cities must be visited at positions specified by C . For example, ∗2 ∗ 5∗
is the schema

(1, 2, 3, 5, 4), (1, 2, 4, 5, 3), (3, 2, 1, 5, 4), (3, 2, 4, 5, 1), (4, 2, 1, 5, 3), (4, 2, 3, 5, 1)
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Respectfulness

Crossover is said to respect a subset of Ω if whenever we cross two elements of
that subset, the offspring is guaranteed to also be in the subset.

It can be shown that if crossover respects all the subgroups of N then it also
respects all N -schemata.
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Pure crossover

Crossover is said to be pure if crossing an element with itself always gives you the
same element back again (that is, it is cloning).

It can be shown that crossover is pure if and only if it respects the subgroup {0},
where 0 is the identity element of the group.
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Separative matrices

Given any n × n matrix A, we call it separative with respect to N if whenever Ai ,j

¿ 0, and i and j are both elements of some N -schema, then the identity element 0
is also an element of that N -schema.

Crossover respects all N -schemata if and only if the mixing matrix is seperative.
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Example — binary strings

For binary strings, this theorem means that for any crossover (that commutes with
⊕) to respect schemata, then if it is possible for i and j to produce the string of
all zeros, the only bit-values at which they agree must also be zeros.

1 0 0 1 0 0 1 1
0 1 1 0 0 0 0 0

⇓
0 0 0 0 0 0 0 0
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Example — TSP

The theorem can be used to show that a number of standard crossovers defined
for TSP do not repsect the schemata that we have defined.

It is also possible to use the theorem to help design crossovers which do respect
those schemata.
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The Fourier Transform

Since the Walsh Transform is so helpful in unravelling the effects of crossover and
mutation on binary strings, we would like to know if a generalised (Fourier)
Transform exists for other groups. We have the following result:

A change of basis in which all the matrices σk are diagonal exists if and only if the
search space group is commutative.
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Commutative groups

In this case, elements of the group can be represented as strings over alphabets of
possibly varying cardinality. This is because any finite commutative group can be
written as a direct sum of cyclic groups.

For this type of search space, we can make use of crossover by masks and
mutation by a rate in the standard way. Schemata correspond to the usual
definition, and the Schema Projection Theorem still holds.
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Group actions

It may not always be possible to define a natural group structure on a search
space. In this case, it might be possible to define a group action.

This is a set of bijections on Ω, which form a group under function composition.
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Transitivity

Much of the theory of genetic algorithms can be generalised to this situation.

The main requirement is that the group action is transitive, that is, given any two
elements i , j ∈ Ω, there is always a group element a such that a(i) = j .
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Landscape graphs

It is interesting to ask how such group actions might naturally arise in the study of
search problems. One possibility is to consider the properties of an associated
landscape graph.

This would correspond, for example, to the Hamming cube in tha case of binary
strings.
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Neighbourhoods

Start by defining a neighbourhood structure on Ω. Every point in Ω has a subset
of neighbours, such as one might use to define a local search algorithm.

The neighbourhood structure is symmetric if y is a neighbour of x implies x is a
neighbour of y .

We make Ω into a graph by putting an edge between neighbouring elements.

Jonathan E. Rowe (University of Birmingham, UK) Genetic Algorithm Theory GECCO 2011 87 / 91

Automorphisms

We now consider all permutations of Ω which preserve the graph structure. That
is, π : Ω → Ω is such a permutation if whenever i and j are neighbours, so are
π(i) and π(j).

This set of permutations forms a group action on Ω called the automorphism
group.
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Search space symmetries

The automorphism group characterises the different symmetries that exist in the
landscape graph. The idea is that the labels we give to elements of the search
space do not matter so much as the relationships between elements.

The study of landscapes and their relationship to genetic algorithms is a subject of
current research.
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Important research areas

The development of systematic approximations (e.g. using statistical
mechanics).

Relating aspects of the infinite population model to time-complexity analysis
for finite populations.

Investigating the relationship of fitness landscapes to genetic operators.

Generalisation to infinite search spaces.
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Further reading

The Simple Genetic Algorithm by Michael Vose.

Genetic Algorithms: Principles and Perspectives by Colin Reeves and
Jonathan Rowe.

Theoretical Aspects of Evolutionary Computing by Leila Kallel, Bart Naudts
and Alex Rogers.

Foundations of Genetic Algorithms.
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