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ABSTRACT
A classification of dynamic multi-objective optimization prob-
lems is proposed in this article. As compared to previous
studies, we focus not on the changes or the effects that are
induced in the Pareto optimal front or set but on the com-
ponents that lead to the observed dynamic behaviour. Four
main classes are identified, including parameter and function
time-dependent evolution as well as state-dependent param-
eter and function transforms or environment changes.

Categories and Subject Descriptors
A.1 INTRODUCTORY AND SURVEY [

General Terms
]: Design, Theory
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1. INTRODUCTION
Over the past decade a trend towards modeling optimiza-

tion problems in full detail can be identified where multi-
objective and dynamic aspects are being dealt with. Nonethe-
less, we still need to understand what dynamic means, e.g.
where is the limit between models defined as static snapshots
at discrete time moments and models subject to continuous
evolution. Moreover we need to be able to define sound
formal models and to understand what is the connection
between dynamic changes in the input variables and the re-
sulting effects in the objective space. Answering the question
of what classes can be defined for dynamic multi-objective
functions leads to (1) delimiting the basic time-dependent
components, e.g. in the decision space, environment, or
(2) describing the combination of changes that appear in
the Pareto front and set, as in Farina et al. [4], Mehnen et
al. [5]. As no clear formal models were provided for the for-
mer part, in this paper we focus on providing a classification
of the different dynamic elements that induce dynamism for
multi-objective formulations.
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The main classification criteria found in literature can be
separated in (a) studies dealing with periodicity, continu-
ity or sparsity characteristics, environment time-dependent
terms, behavior of specific algorithms [7], (b) changing mor-
phology aspects, drifting landscapes [3], (c) dynamic com-
ponents with transforms of the coordinates or fitness rescal-
ing [6] or (d) particular aspects of optimization algorithms
and the role of parameters in problem generators [1]. A re-
cent overview of the domain can be found in the work of Bu
and Zheng [2].

2. DYNAMIC MULTI-OBJECTIVE PROB-
LEMS: DEFINITION AND CLASSIFICA-
TION

The behavior of a dynamic multi-objective optimization
problem (system) can be modeled as H(Fσ, D, x, t), with
σ being an environment derived set of parameters; x, the
set of variables/parameters; t, the time moment; Fσ, the
multi-objective support function, Fσ : X → Y, Fσ(x) =
[fσ,1(x), . . . , fσ,k(x)] and D = [d1, . . . , dk], a vector of
time dependent functions, modeling the dynamic behavior
of the time-changing component of the system. We denote
the state of the system at a time t as described by the values
of the state variables, given by the parameters of Fσ and D.

Based on the different types of dynamic transformations
that can occur we propose in the following a classification for
dynamic multi-objective optimization problems. For previ-
ous existing classifications no time dependency was consid-
ered at an environment level (static definition). Moreover,
the state of a dynamic system (function and environment)
at a given moment in time was generally defined as or as-
sumed to be independent of the previous states. Of specific
interest for our work, four different types of multi-objective
dynamic functions were identified in Mehnen et al. [5] us-
ing as classification criteria the link between the behavior
(static or dynamic) of the Pareto Optimal Set and that of
the Pareto Optimal Front. Nonetheless, this classification,
although of undisputed importance, does not capture nor
describes the elements that turn a static problem into a dy-
namic one. In order to answer this concern we propose the
following classification:

• 1st order [parameter evolution]: dynamic transform
of the input parameters;

• 2nd order [function evolution]: dynamic evolution of
the objective functions values;

• 3rd order [state dependency ]: parameter or function
state time-dependency, i.e. the parameters or the func-
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tion is defined by taking into account the previous val-
ues obtained at previous states;

• 4th order [changing environment ]: parts of or the en-
tire environment evolves with time.

All these classes can be further declined in the four types
defined in [4]. For an arbitrary function one may thus con-
sider a more exact description where both the dynamic com-
ponents and the induced effects at the Pareto Optimal Set/
Pareto Optimal Front are specified, e.g. having a first order
type I function. For defining the four main classes we con-
sider the behavior of the optimization problem over the time
interval [t0, tend]. A formal description and a more detailed
discussion is provided in the following.

2.1 Dynamic parameter-time evolution
Characteristics: dynamic transform applied on the input
variables (decision space). The external environment (de-
scribed by σ) does not change with time and the support
function formulation remains unchanged.
Formulation: H(Fσ, D, x, t) = Fσ(D(x, t)).
Optimization problem:

min
x(t)


(∫ tend

t0

fi( di(x(t), t) ) dt

)
1≤i≤k


2.2 Dynamic Function evolution
Characteristics: dynamic transform applied on the sup-
port function (affecting the behavior in the objective space),
e.g. superposed noise evolving with time. The external en-
vironment (described by σ) does not change with time.
Formulation: H(Fσ, D, x, t) = D(Fσ, x, t), withD(Fσ, x, t) =
( di(fσ,i, x, t))1≤i≤k.
Optimization problem:

min
x(t)


(∫ tend

t0

di( Fσ,x(t), t) ) dt

)
1≤i≤k


2.3 State-dependency
Characteristics: the dynamic transform at time t, takes
into account values obtained by the support functions/variables
at j previous time moments, 1 ≤ j ≤ t. The external envi-
ronment (described by σ) does not change with time. Let
us consider that the analytical form of H at a given time
moment t fuly describes the state of the dynamic system.
Formulation: H(Fσ, T

[t−j,t], x, t)
Optimization problem:

min
x(t)

∫ tend

t0

H(Fσ, T
[t−j,t], x(t), t)dt

The values of H at time t depend on the values/formulations
of the parameters or base functions at previous states of
the system, given by a trasformation function T [t−j,t], as
opposed to the previous two formulations involving static
dependency function D at each state (independent states).

2.3.1 State-parameter-dependency
Characteristics: The current state of the optimization sys-
tem is expressed analytically in function of the past states
from t − j to t. In this first case of state-parameter depen-
dency, the values of the set of parameters x at time t depend
of the values of the x parameters at the time t− j to t.

Formulation: H(Fσ, T
[t−j,t], x, t) = Fσ(T [t−j,t](x))

Optimization problem:

min
x(t)

{(∫ tend

t0

fσ,i( T
[t−j,t](x(t)), t) dt

)
1≤i≤k

}
.

2.3.2 State-Function-dependency
Characteristics: The value of the objective function de-
pends on the previous values of the base function Fσ on a
given time interval [t − j, t].The optimal solution is defined
on the previous values of the function F .
Formulation: H(Fσ, T

[t−j,t], x, t) = T [t−j,t](Fσ(x))
Optimization problem:

min
x(t)

∫ tend

t0

T [t−j,t](Fσ(x(t))dt.

2.4 Online dynamic multi-objective optimiza-
tion

Characteristics: the environment σ changes dynamically
with time. Formulation: H(Fσ, D, x, t) = FD(σ,t)(x, t)
Optimization problem:

min
x(t)

{(∫ tend

t0

fD(σ,t),i(x(t), t) dt

)
1≤i≤k

}
All the four previous classes ca be also extended to the case
of dynamic environments, leading to online dynamic multi-
objective formulations.
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