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ABSTRACT
Interpreting individuals described by a set of criteria can be a dif-
ficult task when the number of criteria is large. Such individuals
can be ranked, for instance in terms of their average rank across
criteria as well as by each distinct criterion. We therefore investi-
gate criteria selection methods which aim to preserve the average
rank of individuals but with fewer criteria. Our experiments show
that these methods perform effectively, identifying and removing
redundancies within the data, and that they are best incorporated
into a multi-objective algorithm.

Categories and Subject Descriptors
I.5.2 [Computing Methodologies]: Design Methodology—Fea-
ture evaluation and selection

General Terms
Algorithms

Keywords
Feature selection, multi-criteria decision making, visualisation

1. INTRODUCTION
In many populations the individuals attempt to optimise their

performance on a set of K criteria, for example the solutions of a
many-objective evolutionary optimisation, or the example consid-
ered here, universities which strive to optimise their performance
on K = 8 key performance indicators such as student satisfac-
tion and research quality. In order to facilitate understanding of the
structure of the population in a smaller space we investigate meth-
ods of selecting the most informative criteria.

The inspiration for our dimension reduction methods is drawn
from the comparison of different rankings, and we quantify the
structure of the population by the average rank [1] of individuals,
computed by averaging for each individual the result of ranking
the population by each criterion in turn. This enables comparison
between the original full-criteria set and criterion subsets by aver-
age rank, which we wish to preserve. We demonstrate the use of
a multi-objective evolutionary algorithm (MOEA) for selecting the
low-dimensional subset.
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D 15 14 13 12 11 10 9 8

Duplicated Criteria ρ 13 10 11 14 12 9 16 15
τ 15 10 11 14 16 9 12 13

Averaged Criteria ρ - - - - - - 9 10
τ - - - - - - 9 10

D 7 6 5 4 3 2

Duplicated Criteria ρ 5 2 3 6 4 1
τ 5 2 4 1 8 6

Averaged Criteria ρ 3 5 4 1 7 8
τ 3 4 1 5 8 6

Table 1: The order in which criteria are removed by a greedy backward al-
gorithm for each ρ and τ on both augmented GUG09 datasets. Both metrics
remove the synthetic criteria, 9-16 in the duplicated data, 9 and 10 in the
averaged data, before any of the original criteria.

We illustrate these methods with the Times Good University
Guide 2009 (GUG09) dataset which reports on the performance
of 113 UK universities in 2008 [4, 5]. In order to evaluate how well
rank-based dimension reduction can remove redundancy, the GUG
data is modified to produce two synthetic datasets: one in which
each criterion is duplicated; and the other in which two new crite-
ria have been created by averaging two pairs of highly correlated
criteria from the original data.

2. RANK-BASED DIMENSION REDUCTION
A ranking is a permutation of individuals, and we describe two

well known metrics for the comparison of different permutations,
Spearman’s footrule [2] and Kendall’s τ metric [3].

Spearman’s footrule [2] is the city block distance between two
rankings r and r′ of N individuals, ρ(r, r′) =

∑N
i=1 |ri − r′i|

where ri is the rank of the ith individual. Kendall’s τ metric [3]
compares permutations by counting the number of times that the
order of pairwise individuals in the two permutations is reversed,
τ(r, r′) =

∑
ij τij(r, r

′) where τij(r, r′) = 1 if the ordering of
the individuals i and j is different in r and r′, and τij(r, r′) =
0 otherwise. Although this formulation of the τ metric does not
account for ties, it may straightforwardly be modified to do so.

We rank the original population by average rank [1], producing
a permutation r of the population with respect to all K criteria.
Then, as new subsets are considered we re-rank the population ac-
cordingly, producing the permutation r′, and compute the distance
between r and r′ to identify the criterion subset that minimises the
distance between permutations, and thus most closely preserves the
structure of the population.

Initial work incorporated the permutation comparisons into a
greedy criteria selection algorithm to reduce the dimensionality of
the of the modified GUG datasets. Figure 1 shows the distance
δ(r̄, r̄′) between the original (all criteria) population average rank
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Figure 1: Information loss for criterion subsets of increasing size. Note
that the two metrics are plotted on different ordinates, but for both datasets
follow a similar trend. When D = 16 in the duplicated criterion set, and
D = 10 in the averaged criterion set, all criteria are selected. In the dupli-
cated set, when D = 8, information loss is 0 as all redundant copies have
been removed leaving a single copy of each original criterion.

r̄ and the average rank of the selected subset as criteria are removed.
The two plots show the number of remaining criteria D along with
the corresponding information loss δ(r̄, r̄′) by both Kendall’s τ
metric and Spearman’s footrule. Figure 1 shows results for the
synthetic criterion sets. These figures, in conjunction with Table
1, show that the algorithms identify the redundant criteria before
removing any of the original criteria.

2.1 Multi-objective Criterion Selection
Empirically we have found that a stochastic hill climber can ap-

proximate the information loss of the deterministic greedy algo-
rithm in fewer steps than exhaustive search would require for a
given D. An alternative is to relax the constraint governing D to
an objective, and employ a MOEA to simultaneously trade-off in-
formation loss and the number of remaining criteria.

The problem is therefore defined as follows. The solution θ is
represented as a K-bit string coding which criteria are selected,
which maps to a pair of objectives:

f1(r̄, r̄′,θ) = δ(r̄, r̄′), f2(r̄, r̄′,θ) =
∑K

k=1 θk.

The first objective is the distance between permutations as before,
and the second objective counts the number of remaining criteria.

Figure 2 shows attainment surfaces for the optimisation. Results
for 20 independant runs of each metric have been merged to pro-
duce a single archive containing all of the non-dominated solutions
found during the 20 runs.

By comparing the Pareto optimal criterion subsets, we can com-
pare the solutions identified by the algorithm. In the duplicated
dataset (Figure 2, top), both Spearman’s footrule and Kendall’s τ
identify the same criterion subset in most cases. In the caseD = 8,
where the information loss is minimised, the subset contains ex-
actly one instance of each criterion, either the original criterion or
the copy.

For the averaged dataset (Figure 2, bottom), the smaller subsets
prefer to include the additional criteria formed by averaging orig-
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Figure 2: Attainment surfaces produced by optimising the number of crite-
ria against the information loss measured by ρ and τ . Note, that since the
metrics are plotted on different scales, they cannot be compared in terms of
dominance.

inal criteria. We infer that this is because they were constructed
from two of the original criteria, so that retaining a composite cri-
terion preserves more more information about the rank structure of
the data than either individual criterion. As the size of the criterion
subsets increases, there is sufficient structural influence from the
original criteria, and the averaged criteria are no longer included.
When D = 8, the subset comprises all 8 original GUG09 criteria.

3. CONCLUSION
Applying the criterion selection process to the GUG09 data with-

out synthetically redundant criteria finds that the two most signifi-
cant criteria, contributing the most to the overall structure, are re-
search quality and entry standards.

We are currently extending this work by investigating the effi-
cacy of incorporating criterion selection into a MOEA, so that it
can optimise problems consisting of a larger number of objectives
by dynamically selecting the most relevant subset for optimisation.
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