
Integrating Niching into the Predator-Prey Model using
Epsilon-Constraints

Christian Grimme
Robotics Research Institute

TU Dortmund University
Dortmund, Germany

christian.grimme@udo.edu

Joachim Lepping
Robotics Research Institute

TU Dortmund University
Dortmund, Germany

joachim.lepping@udo.edu

ABSTRACT
The Predator Prey Model (PPM) for multi-objective evo-
lutionary optimization features a simple abstraction from
natural species interplay: predators represent different ob-
jectives and collectively hunt for prey solutions which have
to adapt to all predators in order to survive. In this work, we
start from previous insights to motivate significant changes
in predators by enabling adaptation of selection behavior.
For this, we integrate aspects of the ε-Constraint method
into the PPM mechanisms. Our results show that this model
extension results in good Pareto-fronts for bi-objective test
problems.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic Methods

General Terms
Algorithms, Experimentation

Keywords
Predator-Prey-Model, Evolutionary Multi-Objective Opti-
mization, ε-Constraint Method

1. INTRODUCTION
Multi-objective optimization (MOO) has become a central

topic within the broad field of evolutionary computation.
There, in contrast to single objective optimization, contra-
dicting objectives usually lead to a natural limit for improve-
ment which is represented by a set of incomparable optimal
solutions. At this limit, a solution can only be improved
regarding one objective, if one or more other objectives are
deteriorated. These solutions are called Pareto-optimal and
can be regarded as set of optimal compromises. The set of
corresponding function vectors is called Pareto-front.

Although evolutionary algorithms [1] are long established
solution strategies for single-objective problems, a transfer
of these concepts to multi-objective problems started only
in the late 1980th. While the single-objective case allows
a straightforward application of the standard evolutionary
loop, the evolutionary selection process is more difficult to
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realize for multi-objective problems as solutions can be in-
comparable. Nevertheless, most modern approaches follow
the evolutionary loop principle and incorporate rather com-
plex selection mechanisms to solve artificial and real world
test problems. Most successful approaches (e.g. NSGA-II,
SPEA2, PEAS) use the Pareto-dominance relation comple-
mented by niching or diversity preservation techniques and
archiving to select efficient solutions during evolution [2].
In contrast, indicator-based methods (like SMS-EMOA or
IBEA) aggregate solutions’ qualities into a single value which
is then used for comparison.

For most approaches, the main research lies in the selec-
tion procedure which shifts the focus of algorithm research
from considering new algorithmic principles to the design of
better selection mechanisms. In fact, currently more effort is
put into fine-tuning the selection mechanisms of such estab-
lished algorithms than to investigate alternative algorithmic
principles. Therefore, we return to the PPM [5] for MOO
which consists of spatially distributed solutions represented
as prey. Further, it involves chasing predators—actually re-
alized as independently acting agents—which represent the
different objectives. While roaming throughout the spatial
population predators collectively influence the preys’ evolu-
tion. Specifically, only local selection is performed regarding
a single objective in a restricted neighborhood. This simpli-
fies the selection process and brings inherent parallelization
potential. On the long run, it is expected that prey adapt
to all predator influences such that they eventually cover all
optimal trade-offs.

However, the expected, almost magical emergence of preda-
tor influence towards a good solution set is often too opti-
mistic: due to the single-objective selection, prey primarily
tend to reach particularly extremal solutions. Thus, non-
convex problems are rather hard to handle with this concept.
Previous work, however, has demonstrated the benefits of
the PPM’s modular design [3] and provided a foundation [4]
for the extension with ε-Constraints proposed in this paper.

2. THE EPSILON-PPM ALGORITHM
In order to tackle the problem of strong extremal ten-

dency, we represent predators as different species and allow
them to adapt their single-objective search mechanism by
integrating ε-Constraints as niching strategy and predator
cooperation for exploration of the whole search space in or-
der to determine adequate ε-bounds. As much as a predator
in the PPM, the ε-Constraint method focuses mainly on a
single objective. One of the objectives is considered to be op-
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timized while all remaining objectives are transformed into
constraints by defining an upper bound for each of them.

2.1 Algorithmic Concept and Implementation
The predator moves throughout the spatial population

and selects the worst prey from its very local neighborhood
regarding one objective fc of problem F . Further, it con-
siders the bounds β = {βi|βi ∈ R, i = 1, . . . ,m}, m number
of objectives, with βc = ∞ and finally applies selection as
well as reproduction applying a genetic operator to prey
in the predator’s direct neighborhood. After breeding and
evaluating the offspring, the worst prey is removed, if it is
dominated by the offspring. Each predator applies this pro-
cedure independently—respecting its specific objective and
bounds—to the prey population. The right hand side of Fig-
ure 1 shows the expected effect of predators’ actions when
we consider two predators which select regarding objective
f1. Due to the single objective selection, f1 is minimized
until the upper ε-bound for objective f2 is reached. Locality
of selection and penalization of bound violations lead to the
known extremal behavior. Multiple bounds result in a cer-
tain niching behavior which generates different intermediate
trade-offs along the Pareto-front.

Figure 1: Schematic depiction of ε-PPM extension.

2.2 Niching and Detection of the Feasible Area
Using the ε-Constraint method implicitly assumes a range

for possible bound values which depends on the considered
objective and thus on the whole problem. The utopia and
the nadir vector can be used in function space to define the
feasible area. In our approach, the predators cooperate to
determine the utopia point: If two predators with the same
objective meet on the spatial structure they exchange in-
formation of their currently best discovered objective value
and adopt it for further propagation to other predators. The
nadir information is generated downstream when the current
utopian value remains almost unchanged and is also propa-
gated between predators. Note, nadir information is always
discarded when utopian values improve significantly. Ex-
emplary, the feasible area is shown on the left hand side of
Figure 1 together with utopia and nadir point. Using the in-
formation about the detected feasible area, each predator’s
individual search bound is randomly changed in order to
induce a niching behavior. Specifically, a small normal dis-
tributed perturbation is added to the current bound leading
to a moderate change of the predators’ selection pressure
but still allowing the prey population to react rapidly to the
new situation.

3. EVALUATION
In order to evaluate the ε-PPM approach, we apply it to

three standard bi-objective test problems of various diffi-
culty, namely Kursawe (KUR), and ZDT 2,3. All problems

pose different degrees of complexity as well as convex and
non-convex Pareto-fronts [2]. We use a 10 × 10 toroidal
grid populated with 100 randomly initialized prey and con-
struct two predator species with objectives f1, f2, and stan-
dard mutation (σ = 0.05) respectively. Finally, we bring
two predators of each species to the population. An exper-
iment terminates after overall 50.000 function evaluations
and is executed 30 times each to compute Inverted Gener-
ational Distance (IGD) as well as the Hypervolume Ratio
(HR) [2]. As reference vectors we use ~rKUR = (10, 30), and
~rZDT = (12, 12). To judge on ε-PPM’s performance, we ap-
ply NSGA-II and the standard PPM to the same problems.

4. RESULTS AND CONCLUSION
The evaluation of the ε-PPM shows that the introduced

extensions contribute to both finding the feasible area and
converging to the Pareto-front. Table 1 summarizes the re-
sults. We show that the integrated ε-Constraint approach

Table 1: Numerical results for ε-PPM on the con-
sidered test problems.
Problem Method HR IGD

PPM 0.9873 ± 7.4e-4 1.4e-4 ± 6.6e-6
KUR ε-PPM 0.9979 ± 3.8e-4 1.7e-4 ± 3.9e-5

NSGA-II 0.9916 ± 3.4e-4 1.1e-4 ± 6.4e-6
PPM 0.1082 ± 0.0078 0.0288 ± 0.003

ZDT2 ε-PPM 0.9978 ± 6.1e-4 0.0013 ± 4.8e-4
NSGA-II 1.0000 ± 2.3e-6 1.9e-4 ± 8.6e-6
PPM 0.8145 ± 0.018 0.0254 ± 0.003

ZDT3 ε-PPM 0.9922 ± 0.002 0.0013 ± 2.8e-4
NSGA-II 0.9983 ± 0.006 2.9e-4 ± 6.1e-4

successfully supports the algorithm in determining non-convex
parts of the Pareto-front. While the original PPM covers
only 81 % of the true hypervolume, ε-PPM almost com-
pletely covers the true front. This implicitly proofs that
the active predator cooperation principle works. Obviously,
the already the very simple update procedure for predator
bounds produces a reliable niching behavior. Compared to
the original PPM without diversity preservation mechanism,
ε-PPM provides an important step to increase the model’s
performance.
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