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Principles of Multiple Criteria Decision 
Analysis
Ob ti th i i l ti l l ti b t

water

y
Observations: there is no single optimal solution, but

some solutions (   ) are better than others (   )
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Decision Making: Selecting a Solution
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l i t t th t ( ki )

Decision Making: Selecting a Solution

P ibl • supply more important than cost (ranking)

• cost must not exceed 2400 (constraint)
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Before Optimization:

When to Make the Decision
Before Optimization:

rank objectives,
define constraints,…

search for one 
(blue) solution
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After Optimization:

When to Make the Decision
Before Optimization: After Optimization:Before Optimization:

search for a set of       
(blue) solutions

rank objectives,
define constraints,…

select one solution
consideringsearch for one considering
constraints, etc.(blue) solution
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When to Make the Decision
After Optimization:Before Optimization: After Optimization:Before Optimization:

search for a set of       
(blue) solutions

rank objectives,
define constraints,…

select one solution
consideringsearch for one 

Focus: learning about a problem

considering
constraints, etc.(blue) solution

trade-off surface
interactions among criteria
t t l i f ti
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Multiple Criteria Decision Making (MCDM)
Definition: MCDM

MCDM can be defined as the study of methods and procedures by which 
concerns about multiple conflicting criteria can be formally incorporated into 

Definition: MCDM

p g y p
the management planning process 

model trade off surfacemodel

μ2μ1

trade-off surface

decision making

μ3

(exact) optimization
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Multiple Criteria Decision Making (MCDM)
Definition: MCDM

MCDM can be defined as the study of methods and procedures by which 
concerns about multiple conflicting criteria can be formally incorporated into 

Definition: MCDM

p g y p
the management planning process 

model

non-linear noisy
uncertain huge

many objectives

model

μ2μ1decision making

objectives

non-differentiable
expensive

(integrated simulations)

problem search
spaces

many constraints

μ3

(exact) optimization
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Multiple Criteria Decision Making (MCDM)
Definition: MCDM

MCDM can be defined as the study of methods and procedures by which 
concerns about multiple conflicting criteria can be formally incorporated into 

Definition: MCDM

p g y p
the management planning process 

model

non-linear noisy
uncertain

many objectives
Black box optimization trad

μ2μ1huge search spacesmultiple objectives

model objectives

non-differentiable
expensive

(integrated simulations)

problem

many constraints

μ

(exact) optimizationonly mild assumptions
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Evolutionary Multiobjective Optimization 
(EMO)

Definition: EMO
( )

EMO = evolutionary algorithms / randomized search algorithms
applied to multiple criteria decision making (in general)

Definition: EMO

water

pp p g ( g )
used to approximate the Pareto-optimal set (mainly)

water
supply

Pareto set approximation
survivalmutation

x2f

x1

matingrecombination

16Evolutionary Multiobjective Optimization, GECCO 2011, July 12, 2011© Dimo Brockhoff, LIX, Ecole Polytechnique 16

cost

1114



Some problems are easier to solve in a multiobjective scenario

Multiobjectivization
Some problems are easier to solve in a multiobjective scenario

example: TSP p
[Knowles et al. 2001]

Multiobjectivization
by addition of new “helper objectives” [Jensen 2004]by addition of new helper objectives [Jensen 2004]

job-shop scheduling [Jensen 2004], frame structural design 
[Greiner et al. 2007], theoretical (runtime) analyses [Brockhoff  et al. 
2009]2009]

by decomposition of the single objective
TSP [Knowles et al. 2001], minimum spanning trees [Neumann and 
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Wegener 2006], protein structure prediction [Handl et al. 2008a], 
theoretical (runtime) analyses [Handl et al. 2008b]

Often innovative design principles among solutions are found

Innovization
Often innovative design principles among solutions are found

example:p
clutch brake design
[Deb and Srinivasan 2006]

min. mass +
stopping time
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Often innovative design principles among solutions are found

Innovization
Often innovative design principles among solutions are found

example: 06p
clutch brake design
[Deb and Srinivasan 2006] ©

 A
C

M
, 2

0

Innovization [Deb and Srinivasan 2006]

= using machine learning techniques to find new and= using machine learning techniques to find new and 
innovative design principles among solution sets

= learning about a multiobjective optimization problem

Other examples:
SOM f i i d i O S 2003
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SOM for supersonic wing design [Obayashi and Sasaki 2003]

biclustering for processor design and KP [Ulrich et al. 2007]

The History of EMO At A Glance
1984 first EMO approaches1984

dominance-based population ranking

first EMO approaches

1990 dominance-based EMO algorithms with diversity preservation techniques

dominance based population ranking

1995
attainment functions

2000

elitist EMO algorithms

quantitative performance assessment

preference articulation convergence proofs

test problem design
l i bj i i i

2000 g

MCDM + EMO           quality indicator based EMO algorithms

running time analyses quality measure designuncertainty and robustness
multiobjectivization
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2010

q y g
statistical performance assessmentmany-objective optimization
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The History of EMO At A Glance
198

4
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dominance-based EMO algorithms with diversity preservation techniques

dominance-based population ranking
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199
5

elitist EMO algorithms

attainment functions

preference articulation convergence proofs

200
0

quantitative performance assessment

MCDM + EMO                       EMO algorithms based on set quality measures

running time analyses quality measure designuncertainty and robustness

statistical performance assessment

test problem design

high-dimensional objective spaces

multiobjectivization

2011
200

7

Overall: 5800 references by March 18th, 2011
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http://delta.cs.cinvestav.mx/~ccoello/EMOO/EMOOstatistics.html

The EMO Community
The EMO conference series:The EMO conference series:

EMO2001 EMO2003 EMO2005 EMO2007 EMO2009 EMO2011
Zurich Faro Guanajuato Matsushima Nantes Ouro Peto

Switzerland Portugal Mexico Japan France Brazil

45 / 87 56 / 100 59 / 115 65 / 124 39 / 72 42 / 83

Many further activities:
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special sessions, special journal issues, workshops, tutorials, ...

Overview

The Big Picture

Basic Principles of Multiobjective Optimization
algorithm design principles and conceptsg g
performance assessment

Selected Advanced Concepts
indicator-based EMO
preference articulation

A F E l F P ti
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A Few Examples From Practice

Starting Point

What makes evolutionary multiobjective optimization
different from single objective optimization?different from single-objective optimization?  

??
cost

performance performance
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single objective multiple objectives
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A General (Multiobjective) Optimization
Problem
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decision space objective space objective function

A Single-Objective Optimization Problem
decision space objective space objective function

total order
(X, Z, f: X → Z, rel ⊆ Z × Z)

total preorder where
a prefrel b ⇔ f(a) rel f(b)(X, prefrel) 
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Example: Leading Ones Problem

A Single-Objective Optimization Problem
Example: Leading Ones Problem

(X, Z, f: X → Z, rel ⊆ Z × Z)

(X, prefrel) 

({0,1}n, {0,1, 2, ..., n}, fLO, ≥)      where fLO(a) =

29Evolutionary Multiobjective Optimization, GECCO 2011, July 12, 2011© Dimo Brockhoff, LIX, Ecole Polytechnique 29

Simple Graphical Representation

Example: ≥ (total order)

a, b ∈ X

totally orderedoptimum
a ≥ b

ab

30Evolutionary Multiobjective Optimization, GECCO 2011, July 12, 2011© Dimo Brockhoff, LIX, Ecole Polytechnique 30
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Preference Relations

decision space objective space objective functions

partial orderpartial order

preorder where

(X, Z, f: X → Z, rel ⊆ Z × Z)

preorder where
a prefrel b :⇔ f(a) rel f(b)

(X, prefrel) 

weak
Pareto dominance
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Pareto dominance

A Multiobjective Optimization Problem
Example: Leading Ones Trailing Zeros ProblemExample: Leading Ones Trailing Zeros Problem

trailing 0s

(X, Z, f: X → Z, rel ⊆ Z × Z) f2
0 0 0 0 0 0 0

trailing 0s

(X, prefrel) 
1 1 1 1 0 0 0

f1
leading 1s

1 1 1 1 1 1 1

leading 1s
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A Multiobjective Optimization Problem
Example: Leading Ones Trailing Zeros Problem

trailing 0s

Example: Leading Ones Trailing Zeros Problem

(X, Z, f: X → Z, rel ⊆ Z × Z) f2
0 0 0 0 0 0 0

trailing 0s

(X, prefrel) 
1 1 1 1 0 0 0

f1
leading 1s

1 1 1 1 1 1 1

({0,1}n, {0,1, 2, ..., n} × {0,1, 2, ..., n}, (fLO, fTZ), ? )

leading 1s
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fLO(a) =                          fTZ(a) =

Pareto Dominance

water
lsupply

dominating

15

20
dominating

incomparable

10

5
dominated
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Different Notions of Dominance

water
supply ε

20
ε

ε dominance
15

Pareto dominance

ε-dominance

5

10

d i

500 1000 1500 2000 2500 3000 3500
cost

5
cone dominance
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The Pareto-optimal Set

Min(Y,5) := {a ∈ Y | ∀b ∈ Y : b 5 a⇒ a 5 b}
The minimal set of a preordered set (Y,5) is defined as

Pareto-optimal set                        
ti l d i i t

Pareto-optimal front
ti l bj ti t

f2x2 decision
space 

objective
space 

non-optimal decision vector non-optimal objective vector

f1x1
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f1x1

Visualizing Preference Relations

optima
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Remark: Properties of the Pareto Set
Computational complexity:Computational complexity: 

multiobjective variants can become NP- and #P-complete

Size: Pareto set can be exponential in the input lengthSize: Pareto set can be exponential in the input length
(e.g. shortest path [Serafini 1986], MSP [Camerini et al. 1984])

f2 f2

nadir point

Range

ideal point

Shape
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f1 f1
p
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Approaches To Multiobjective Optimization
A multiobjective problem is as such underspecifiedA multiobjective problem is as such underspecified

…because not any Pareto-optimum is equally suited!

Additional preferences are needed to tackle the problem: 

Solution-Oriented Problem Transformation:
Induce a total order on the decision space, e.g., by
aggregation.gg g

Set-Oriented Problem Transformation:
First transform problem into a set problem and then define
an objective function on sets.

42Evolutionary Multiobjective Optimization, GECCO 2011, July 12, 2011© Dimo Brockhoff, LIX, Ecole Polytechnique 42

Preferences are needed in any case, but the latter are weaker!

Problem Transformations and Set Problems
single solution problem set problem

search space

single solution problem set problem

objective space

(partially) ordered set
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(totally) ordered set

Solution-Oriented Problem Transformations
t

transformation

parameters

f(f1, f2, …, fk)

multiple
objectives

single
objective

transformation f(f1, f2, …, fk)
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Aggregation-Based Approaches
t

transformation

parameters

f(f1, f2, …, fk)

multiple
objectives

single
objective

f2

transformation f(f1, f2, …, fk)

Example: weighting approachExample: weighting approach

(w1, w2, …, wk)

y = w1y1 + … + wkyk

(w1, w2, …, wk)

Other example: Tchebycheff

45Evolutionary Multiobjective Optimization, GECCO 2011, July 12, 2011© Dimo Brockhoff, LIX, Ecole Polytechnique 45

f1
y= max wi(ui – zi)

1120



Set-Oriented Problem Transformations

46Evolutionary Multiobjective Optimization, GECCO 2011, July 12, 2011© Dimo Brockhoff, LIX, Ecole Polytechnique 46

Pareto Set Approximations 
Pareto set approximation (algorithm outcome) =Pareto set approximation (algorithm outcome) =

set of (usually incomparable) solutions

weakly dominates
= not worse in all objectives

performance A B
= not worse in all objectives

and sets not equal

dominatesC Ddominates
= better in at least one objective

strictly dominates

C D

A Cy
= better in all objectives

is incomparable toB C
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= neither set weakly better cheapness

What Is the Optimization Goal (Total Order)?
Find all Pareto-optimal solutions?Find all Pareto-optimal solutions?

Impossible in continuous search spaces
How should the decision maker handle 10000 solutions?

Find a representative subset of the Pareto set?
Many problems are NP-hard
What does representative actually mean?

Find a good approximation of the Pareto set?
What is a good approximation?
How to formalize intuitive
understanding:

y2

understanding:
close to the Pareto front
well distributed
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y1

Quality of Pareto Set Approximations

f2 f2

reference set

ε

f1 f1
ε
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hypervolume indicator epsilon indicator
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General Remarks on Problem 
TransformationsIdea:Idea:

Transform a preorder into a total preorder

Methods:
Define single-objective function based on the multiple criteria
( h th i lid )(shown on the previous slides)
Define any total preorder using a relation
(not discussed before)( )

Question:
Is any total preorder ok resp. are there any requirements
concerning the resulting preference relation?

⇒ Underlying dominance relation rel should be reflected

50Evolutionary Multiobjective Optimization, GECCO 2011, July 12, 2011© Dimo Brockhoff, LIX, Ecole Polytechnique 50

⇒ Underlying dominance relation rel should be reflected

Refinements and Weak Refinements
refines a preference relation iffrefines a preference relation iff

A    B ∧ B A ⇒ A     B ∧ B A            (better ⇒ better)( )

⇒ fulfills requirement

weakly refines a preference relation     iff

A    B ∧ B A ⇒ A     B                 (better ⇒ weakly better)

⇒ does not fulfill requirement, but does not contradict

h l fi
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…sought are total refinements…

Example: Refinements Using Indicators
A B :⇔ I(A) ≥ I(B) A B :⇔ I(A B) ≤ I(B A)

I(A) = volume of the
weakly dominated area I(A,B) = how much needs A to

A     B :⇔ I(A) ≥ I(B) A     B :⇔ I(A,B) ≤ I(B,A)

B

weakly dominated area
in objective space

( )
be moved to weakly dominate B

B

A
A’

I(A)
A

A
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unary hypervolume indicator binary epsilon indicator

Example: Weak Refinement / No Refinement
A B :⇔ I(A R) ≤ I(B R) A B :⇔ I(A) ≤ I(B)

I(A,R) = how much needs A to

A     B :⇔ I(A,R) ≤ I(B,R)

I(A) = variance of pairwise

A     B :⇔ I(A) ≤ I(B)

R

( )
be moved to weakly dominate R

( ) p
distances

R
weak refinement no refinement

A’
A

A
I(A)

A
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unary epsilon indicator unary diversity indicator
1122



Overview

The Big Picture

Basic Principles of Multiobjective Optimization
algorithm design principles and conceptsg g
performance assessment

Selected Advanced Concepts
indicator-based EMO
preference articulation

A F E l F P ti
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A Few Examples From Practice

Algorithm Design: Particular Aspects

representation fitness assignment mating selection

0011 0111

parameters

0100

0011
0000

0011

1011

environmental selection variation operators
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Fitness Assignment: Principal Approaches

aggregation-based criterion-based dominance-based
weighted sum                     VEGA                           SPEA2

y2 y2y2

y1y1 y1

parameter-oriented set-oriented
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parameter-oriented
scaling-dependent

set-oriented
scaling-independent

Criterion-Based Selection: VEGA

select
according to

shuffle [Schaffer 1985]

T

T1

f1

f2

M

T2

T3

M’

2

f3

M

T

M’

fk-1 Tk-1

Tk

k 1

fk
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population         k separate selections           mating pool
1123



Aggregation-Based: Multistart Constraint Method

Underlying concept:Underlying concept:
Convert all objectives except of one into constraints
Adaptively vary constraintsp y y

y2 maximize f1maximize f1

f ibl i
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feasible region
constraint

y1

Underlying concept:

Aggregation-Based: Multistart Constraint Method

Underlying concept:
Convert all objectives except of one into constraints
Adaptively vary constraintsp y y

y2 maximize f1maximize f1

feasible region
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constraint y1

Aggregation-Based: Multistart Constraint 
Method
Underlying concept:

Aggregation-Based: Multistart Constraint Method

Underlying concept:
Convert all objectives except of one into constraints
Adaptively vary constraintsp y y

y2 maximize f1maximize f1

feasible region
constraint
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y1

General Scheme of Dominance-Based EMO

mating selection (stochastic) fitness assignment
partitioning into

dominance classes

(archiv)population offspring

dominance classes

(archiv)population offspring

rank refinement within

+

environmental selection (greedy heuristic) dominance classes

61Evolutionary Multiobjective Optimization, GECCO 2011, July 12, 2011© Dimo Brockhoff, LIX, Ecole Polytechnique 61

Note: good in terms of set quality = good in terms of search?
1124



Ranking of the Population Using Dominance
goes back to a proposal by David Goldberg in 1989... goes back to a proposal by David Goldberg in 1989.

... is based on pairwise comparisons of the individuals only.

f
dominance rank: by how
many individuals is an

f2

individual dominated?
MOGA, NPGA
d i t h

dominance
rankdominance count: how many

individuals does an individual
dominate?

rank

dominate?
SPEA, SPEA2
dominance depth: at which

dominance
count
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front is an individual located?
NSGA, NSGA-II

f1

Illustration of Dominance-based Partitioning

f2 dominance depthf2 dominance rank
8

4

36

23

f1

1

f1

1
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Refinement of Dominance Rankings
Goal: rank incomparable solutions within a dominance classGoal: rank incomparable solutions within a dominance class

Density information (good for search, but usually no refinements)y (g , y )

Kernel method

density =

k-th nearest neighbor

density =

Histogram method

density =density 
function of the 

distances

density 
function of distance

to k-th neighbor

density 
number of elements

within box

f
ff

f
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Quality indicator (good for set quality): soon...

Example: SPEA2 Dominance Ranking
Basic idea: the less dominated the fitterBasic idea: the less dominated, the fitter...
Principle: first assign each solution a weight (strength), 

then add up weights of dominating solutions

f2

0

2
0

0

2

4

S (strength) =
#dominated solutions 

4+3+2
2+1+4+3+2

4

4+3 R (raw fitness) =  
∑ strengths of 
dominators
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f1
4+3+2 dominators
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Density Estimation

Example: SPEA2 Diversity Preservation
Density Estimation

k-th nearest neighbor method: g

Fitness = R + 1 / (2 + Dk)

Dk = distance to the k-th

< 1

Dk = distance to the k-th
nearest individual

Dk
Usually used: k = 2

Dk
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Example: NSGA-II Diversity Preservation
Density Estimation

f2

Density Estimation

crowding distance: g

sort solutions wrt. each

i-1
objective

crowding distance to neighbors:

d(i)−
X
obj. m

|fm(i− 1)− fm(i+ 1)|
i+1

i

crowding distance to neighbors:

j

f1
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Selection in SPEA2 and NSGA II can result in

SPEA2 and NSGA-II: Cycles in Optimization
Selection in SPEA2 and NSGA-II can result in

deteriorative cycles

non-dominatednon-dominated
solutions already
found can be lost
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Hypervolume-Based Selection
Latest Approach (SMS EMOA MO CMA ES HypE )Latest Approach (SMS-EMOA, MO-CMA-ES, HypE, …)

use hypervolume indicator to guide the search: refinement!

M i idMain idea
Delete solutions with
the smallestthe smallest
hypervolume loss
d(s) = IH(P)-IH(P / {s})
iteratively

But: can also result
in cycles [Judt et al. 2011]

Moreover: HypE [Bader and Zitzler 2011]
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yp [ ]
Sampling
Contribution if more than 1 solution deleted1126



Variation in EMO

At first sight not different from single-objective optimization
Most algorithm design effort on selection until nowg g
But: convergence to a set ≠ convergence to a point

Open Question:
how to achieve fast convergence to a set?how to achieve fast convergence to a set?

Related work:
multiobjective CMA-ES [Igel et al. 2007] [Voß et al. 2010]

set-based variation [Bader et al. 2009]

b d fi l d
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set-based fitness landscapes [Verel et al. 2011]

Overview

The Big Picture

Basic Principles of Multiobjective Optimization
algorithm design principles and conceptsg g
performance assessment

Selected Advanced Concepts
indicator-based EMO
preference articulation

A F E l F P ti
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A Few Examples From Practice

Once Upon a Time...
multiobjective EAs were mainly compared visually:

4 25

... multiobjective EAs were mainly compared visually:

4

4.25

3.5

3.75

3.25

0.3 0.4 0.5 0.6 0.7 0.8 0.9

2.75

ZDT6 b h k bl IBEA SPEA2 NSGA II
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ZDT6 benchmark problem: IBEA, SPEA2, NSGA-II

Attainment function approach:

Two Approaches for Empirical Studies
Quality indicator approach:Attainment function approach:

Applies statistical tests directly
h l f i i

Quality indicator approach:

First, reduces each 
approximation set to a singleto the samples of approximation 

sets
Gives detailed information about 
h d h f

approximation set to a single 
value of quality
Applies statistical tests to the 
samples of quality valueshow and where performance 

differences occur
samples of quality values
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see e.g. [Zitzler et al. 2003]
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Empirical Attainment Functions
three runs of two multiobjective optimizersthree runs of two multiobjective optimizers
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frequency of attaining regions

Attainment Plots

50% attainment surface for IBEA, SPEA2, NSGA2 (ZDT6)

1 3

1.35

1.25

1.3

1.15

1.2

1.2 1.4 1.6 1.8 2

latest implementation online at
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latest implementation online at 
http://eden.dei.uc.pt/~cmfonsec/software.html

see [Fonseca et al. 2011]

Quality Indicator Approach
Goal: compare two Pareto set approximations A and BGoal: compare two Pareto set approximations A and B

A B

A

hypervolume 432.34 420.13
distance 0.3308 0.4532
diversity 0.3637 0.3463 “A better”

A

B
spread 0.3622 0.3601
cardinality 6 5          

Comparison method C = quality measure(s) + Boolean function

lit Boolean

Rn
quality
measure

Boolean
function statementA, B
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reduction   interpretation                               

Example: Box Plots

IBEA NSGA-IISPEA2 IBEA NSGA-IISPEA2 IBEA NSGA-IISPEA2

epsilon indicator     hypervolume R indicator

IBEA NSGA IISPEA2

DTLZ2
0 02

0.04

0.06

0.08

0.002

0.004

0.006

0.008

0 00002
0.00004
0.00006
0.00008
0.0001

0.00012
0.00014

0 4
0.5
0.6

0.6

0.8

0.3

0.4

1 2 3

0.02

1 2 3
0 1 2 3

0
0.00002

Knapsack

1 2 3
0.1
0.2
0.3
0.4

1 2 3

0.2

0.4

1 2 3

0.1

0.2
Knapsack

ZDT6

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35

0
0.02
0.04
0.06
0.08
0.1

0.12
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1 2 3
0

1 2 3
0

1 2 3
0
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Statistical Assessment (Kruskal Test)

ZDT6
Epsilon

DTLZ2
Rp

IBEA NSGA2 SPEA2

is better 
than

IBEA NSGA2 SPEA2

is better 
than

IBEA ~0 ~0

NSGA2 1 ~0

IBEA ~0 ~0

NSGA2 1 1

SPEA2 1 1 SPEA2 1 ~0

Overall p-value = 6.22079e-17.
Null hypothesis rejected (alpha 0.05)

Overall p-value = 7.86834e-17.
Null hypothesis rejected (alpha 0.05)
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Knapsack/Hypervolume: H0 = No significance of any differences

Problems With Non-Compliant Indicators
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What Are Good Set Quality Measures?
There are three aspects [Zitzler et al 2000]There are three aspects [Zitzler et al. 2000]

f2

ff1

Wrong! [Zitzler et al. 2003]

An infinite number of unary set measures is needed to detect
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y
in general whether A is better than B

Open Questions:

Set Quality Indicators
Open Questions:

how to design a good benchmark suite?
are there other unary indicators that are (weak) y ( )
refinements?
how to achieve good indicator values?
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A Few Examples From Practice

When the goal is to maximize a unary indicator

Indicator-Based EMO: Optimization Goal
When the goal is to maximize a unary indicator…

we have a single-objective set problem to solve
but what is the optimum?p
important: population size µ plays a role!

Multiobjective
Problem

Single-objective
Problem

Indicator

Optimal µ Distribution:Optimal µ-Distribution:
A set of µ solutions that maximizes a certain unary 
indicator I among all sets of µ solutions is called
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g µ
optimal µ-distribution for I.                             [Auger et al. 2009a]

Hypervolume indicator refines dominance relation

Optimal µ-Distributions for the Hypervolume
Hypervolume indicator refines dominance relation

most results on optimal µ-distributions for hypervolume

Optimal µ-Distributions (example results)

[Auger et al 2009a]:[Auger et al. 2009a]:

contain equally spaced points iff front is linear
density of points                    with     the slope of the front∝

p
−f 0(x) f 0

[Friedrich et al. 2011]:

optimal µ-distributions for thep µ
hypervolume correspond to
ε-approximations of the front
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A Few Examples From Practice
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Articulating User Preferences During Search
What we thought: EMO is preference lessWhat we thought: EMO is preference-less

[Zitzler 1999]

What we learnt: EMO just uses weaker preference 
informationinformation

preferable?environmental
selectionselection

3 out of 6
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Incorporation of Preferences During Search
NeverthelessNevertheless...

the more (known) preferences incorporated the better
in particular if search space is too largep p g

[Branke 2008], [Rachmawati and Srinivasan 2006], [Coello Coello 2000]

Refine/modify dominance relation, e.g.:
f2

y , g
using goals, priorities, constraints
[Fonseca and Fleming 1998a,b]

using different types of conesusing different types of cones
[Branke and Deb 2004]

Use quality indicators e g : fUse quality indicators, e.g.:
based on reference points and directions [Deb and Sundar
2006, Deb and Kumar 2007]

f1
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based on binary quality indicators [Zitzler and Künzli 2004]

based on the hypervolume indicator (now) [Zitzler et al. 2007]

Example: Weighted Hypervolume Indicator
[Zit l t l 2007][Zitzler et al. 2007]
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Weighted Hypervolume in Practice
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[Auger et al. 2009b]
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A Few Examples From Practice

Application: Design Space Exploration

Specification Optimization ImplementationEvaluation

LatencyEnvironmentalMutation Latency PowerSelectionMutation

x2

x1

f

Mating
SelectionRecombination

Cost          
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Application: Design Space Exploration

Specification Optimization ImplementationEvaluation

Truss Bridge Design
[Bader 2010]

LatencyEnvironmentalMutation Latency PowerSelectionMutation

x2

x1

f

Mating
SelectionRecombination

Cost          
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Application: Design Space Exploration

Specification Optimization ImplementationEvaluation

Truss Bridge Design
[Bader 2010]

Network Processor Design
[Thiele et al. 2002]

LatencyEnvironmentalMutation Latency PowerSelectionMutation

x2

x1

f

Mating
SelectionRecombination

Cost          
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Application: Design Space Exploration

Specification Optimization ImplementationEvaluation

Truss Bridge Design
[Bader 2010]

Network Processor Architecture
[Thiele et al. 2002]

LatencyEnvironmentalMutation

Water resource
management Latency PowerSelectionMutation

x2

x1

f

Mating
SelectionRecombination

management
[Siegfried et al. 2009]

Cost          
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Application: Trade-Off Analysis
Module identification from biological data [Calonder et al 2006]Module identification from biological data [Calonder et al. 2006]

Find group of genes wrt
different data types:

similarity of gene
expression profilesexpression profiles

overlap of protein
i t ti tinteraction partners

metabolic pathway
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metabolic pathway
map distances

Conclusions: EMO as Interactive Decision Support
modeling

adjustment

analysis

adjustment

problem

solution
optimizationspecification

visualization

preference
articulation
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decision making

The EMO Community
Links:Links:

EMO mailing list: http://w3.ualg.pt/lists/emo-list/
EMO bibliography: http://www.lania.mx/~ccoello/EMOO/
EMO f i h // f b / 2011/EMO conference series: http://www.mat.ufmg.br/emo2011/

Books:
Multi-Objective Optimization using Evolutionary Algorithms
Kalyanmoy Deb, Wiley, 2001
Evolutionary Algorithms for Solving Multi Evolutionary Algorithms 
for Solving Multi-Objective Problems Objective Problems, Carlos A. 
Coello Coello, David A. Van Veldhuizen & Gary B. Lamont, Kluwer, 2nd

Ed. 2007
Multiobjective Optimization Interactive and EvolutionaryMultiobjective Optimization—Interactive and Evolutionary 
Approaches, J. Branke, K. Deb, K. Miettinen, and R. Slowinski, editors, 
volume 5252 of LNCS. Springer, 2008 [many open questions!]
and more…
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PISA: http://www.tik.ee.ethz.ch/pisa/
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Questions?

Additional Slides
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