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Principles of Multiple Criteria Decision

Observations: @ there is no single optimal solution, but

® some solutions (@) are better than others (9)
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Principles of Multiple Criteria Decision

Observations: @ there is no single optimal solution, but
® some solutions (@) are better than others (9)
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Decision Making: Selecting a Solution

Possible
Approach:
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* supply more important than cost (ranking)
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Decision Making: Selecting a Solution

Possible
Approach:

* supply more important than cost (ranking)

» cost must not exceed 2400 (constraint)
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When to Make the Decision

Before Optimization:
-

'_ rank objectives,

define constraints, ...
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When to Make the Decision

Before Optimization:
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' rank objectives,
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After Optimization:
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\ search for a set of

(blue) solutions
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' select one solution

considering
l constraints, etc.

Focus: learning about a problem

trade-off surface
interactions among criteria
structural information




Multiple Criteria Decision Making (MCDM)

Multiple Criteria Decision Making (MCDM)

Definition: MCDM

MCDM can be defined as the study of methods and procedures by which
concerns about multiple conflicting criteria can be formally incorporated into
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MCDM can be defined as the study of methods and procedures by which
concerns about multiple conflicting criteria can be formally incorporated into
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Evolutionary Multiobjective Optimization

Definition: EMO

EMO = evolutionary algorithms / randomized search algorithms
= applied to multiple criteria decision making (in general)
= used to approximate the Pareto-optimal set (mainly)

water
supply
A Pareto set approximation
mutation survival




Multiobjectivization

Some problems are easier to solve in a multiobjective scenario

example: TSP
[Knowles et al. 2001]

7€ 8, — f(w)

7 € 5, 2 (fi(m,a,8), fo(or, 2. b))

Multiobjectivization
by addition of new “helper objectives” [Jensen 2004]

job-shop scheduling [Jensen 2004], frame structural design
[Greiner et al. 2007], theoretical (runtime) analyses [Brockhoff et al.
2009]

by decomposition of the single objective

TSP [Knowles et al. 2001], minimum spanning trees [Neumann and
Wegener 2006], protein structure prediction [Handl et al. 2008a],
theoretical (runtime) analyses [Handl et al. 2008b]

Innovization

Often innovative design principles among solutions are found

example:

clutch brake design
[Deb and Srinivasan 2006]

min. mass + f
stopping time

Innovization

Often innovative design principles among solutions are found

1 \_m — e \./ Te8a308, 106 B="2.8
example: ; I = : \“\ g
clutch brake design ' = N el
- P N 5 s

[Deb and Srinivasan 2006]  # « \:Q 8 \\

14 16 18 2 2
Brake Mass (kg)

Innovization [Deb and Srinivasan 2006]

= using machine learning techniques to find new and
innovative design principles among solution sets
= learning about a multiobjective optimization problem

Other examples:
= SOM for supersonic wing design [Obayashi and Sasaki 2003]
= biclustering for processor design and KP [Urrich et al. 2007]
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The History of EMO At A Glance

first EMO approaches
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domi_nance-based population ranking
1990 dominance-based EMO algorithms with diversity preservation techniques
1995

attainment functions

elitist EMO algorithms  preference articulation convergence proofs

2000 test problem design quantitative performance assessment
multiobjectivization
uncertainty and robustness running time analyses  qyality measure design
MCDM + EMO quality indicator based EMO algorithms
2010

many-objective optimization statistical performance assessment
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The EMO Community

The EMO conference series:

EMO2001 EMO2003 EMO2005 EMO2007 EMO2009 EMO2011

Zurich Faro Guanajuato  Matsushima Nantes Ouro Peto
Switzerland Portugal Mexico Japan France Brazil

45/ 87 56 /100 59/115 65/124 39/72 42 /83

Many further activities:
special sessions, special journal issues, workshops, tutorials, ...

Overview

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
» performance assessment

Selected Advanced Concepts
» indicator-based EMO
= preference articulation

A Few Examples From Practice

Starting Point

What makes evolutionary multiobjective optimization
different from single-objective optimization?

_I_D '_!]l‘. “I performance | performance

single objective

multiple objectives




A General (Multiobjective) Optimization

A multiobjective optimization problem is defined by a 5-tuple (X,Z.f.g <)
where

e X is the decision space,
e Z =IR" is the objective space,

e f={(f1,....[y) is a vector-valued function consisting of n objective func-
tions fi: X — R,
e g=(gy,...,gm) is a vector-valued function consisting of m constraint func-

tions g; : X — R, and
e < C ZxZisabinary relation on the objective space.

The goal is to identify a decision vector a € X such that (i) forall 1 <i<m
holds g;(a) < 0 and (ii) for all b £ X holds f(b) < f(a) = f(a) < f(b).

A Single-Objective Optimization Problem

decision space

\

X, Z X >Z relcZx2)

objective space objective function

total order

total preorder where
(X, prefrel) a prefrel b < f(a) rel f(b)

A Single-Objective Optimization Problem

Example: Leading Ones Problem

X, Z X >ZrelcZx2)

2\
\Q(, ;;gfrel)

N\

(0,1}, {0,1,2, ..., n}, f.o, 2)  where f,o(a) = ¥:(I1,< )

Simple Graphical Representation

Example: > (total order)

\

I A

b ba

a>
O—0O—0—0—O+— ) optimum  totally ordered




Preference Relations A Multiobjective Optimization Problem

decision space objective space objective functions Example: Leading Ones Trailing Zeros Problem

/ partial order trailing Os
X, Z :X—>ZrelcZx2) X, Z . X—>Z relcZx2) ¢ GoEEEED

preorder where :-.Q' N
a prefrel b := f(a) rel f(b) Lo,
(X, prefrel) (X, prefrel) e
0.8,
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(XJ %pﬁ‘»‘r) leading 1s
| weak

@ Spar b f(a) <par f(b) Pareto dominance

A Multiobjective Optimization Problem

Example: Leading Ones Trailing Zeros Problem (w1, .., un) weakly Pareto dominates (vi, ..., vn):
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Different Notions of Dominance
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The Pareto-optimal Set

The minimal set of a preordered set (Y, <) is defined as
Min(Y,S):={acY|VWeY:b<Za=a<b}

Pareto-optimal set  Min(X, <par) Pareto-optimal front
non-optimal decision vector QO  non-optimal objective vector

x2 decision f2 objective
space space

X1 : : f1

Visualizing Preference Relations

(Fwater ﬁupply)
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Remark: Properties of the Pareto Set

Computational complexity:
multiobjective variants can become NP- and #P-complete

Size: Pareto set can be exponential in the input length
(e.g. shortest path [Serafini 1986], MSP [Camerini et al. 1984])

f, f
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éD ? 0030 O
A o Range
Shape *
K D KE—— Q0
ideal point
f; f;




Approaches To Multiobjective Optimization

A multiobjective problem is as such underspecified
...because not any Pareto-optimum is equally suited!

Additional preferences are needed to tackle the problem:

Solution-Oriented Problem Transformation:
Induce a total order on the decision space, e.g., by
aggregation.

Set-Oriented Problem Transformation:

First transform problem into a set problem and then define
an objective function on sets.

Preferences are needed in any case, but the latter are weaker!

Problem Transformations and Set Problems

single solution problem set problem

search space (;_;_> Cz;_>
S ET_,

T(x) = ([ (), falx)y - ooy () THA)={[(x) |z e A}

L
=

.,

D C= D

objective space §

rr Yy Vifi(r) 2 fily) A" B Vepliear =y

(partially) ordered set (f(n—t*,@ @‘;D

(totally) ordered set

Solution-Oriented Problem Transformations

parameters
multiple single
objectives | objective

(f1, f2, ..., fk) — transformation — f

A scalarizing function s is a function s : Z — IR that maps each objective vector
(u1,..., up) € Z (o areal value s(uy,...,u,) € R.

Aggregation-Based Approaches

parameters
multiple single
objectives | objective

(f1, f2, ..., fk) — transformation — f

Example: weighting approach

/ (W1, w2, ..., WK)
Y 1
[// —y = Wiyt + ...+ Wkyk ——

/s
? ° // Other example: Tchebycheff

Q y= max wi(u; - z)




Set-Oriented Problem Transformations

For a multiobjective optimization problem (X, 7. f, g, <),
the associated set problem is given by (¥, (2, F, G, €) where

e U = 2% is the spacc of decision vector sets,
i.e., the powerset of X,

) D A NPT gy L Sy
L= 2 s LIle hpd..(,(—ﬂ 0Ol UL)JH(,[.l\r(—! VeCLor hHl.h?

i.e., the powerset of 7,

e F'is the extension of f to scts, i.c.,
F(A):={f(a) : ae A} [or A €7,

o G=(Gy,...,G,,) is the extension of g to sets,

i.c., Gi(A) :=max{gi(a) rac A} forT<i<mand A e U,

e Z cxtends < to scts where
A B:eVYbeBdaeA:a<hb.

Pareto Set Approximations

Pareto set approximation (algorithm outcome) =
set of (usually incomparable) solutions

performance

A weakly dominates il
= not worse in all objectives
and sets not equal

@8 dominates D
= better in at least one objective

A strictly dominates 88
= better in all objectives

@8 is incomparable to 88
= neither set weakly better

What Is the Optimization Goal (Total Order)?

= Find all Pareto-optimal solutions?

» Impossible in continuous search spaces

» How should the decision maker handle 10000 solutions?
= Find a representative subset of the Pareto set?

» Many problems are NP-hard

» What does representative actually mean?

* Find a good approximation of the Pareto set?

» Whatis a good approximation? y2
» How to formalize intuitive ’
understanding:
O close to the Pareto front
® well distributed

Quality of Pareto Set Approximations

A (unary) quality indicaror I is a function I : ¥ — R that assigns a Pareto set
approximation a real value.

X

reference setf

fi

hypervolume indicator



General Remarks on Problem

Idea:
Transform a preorder into a total preorder

Methods:
= Define single-objective function based on the multiple criteria

= Define any total preorder using a relation

Question:

Is any total preorder ok resp. are there any requirements
concerning the resulting preference relation?

= Underlying dominance relation rel should be reflected

Refinements and Weak Refinements

ref

0 < refines a preference relation < iff

ref ref

ASBABAA=A<SBABRAA (better = better)

= fulfills requirement
ref

® < weakly refines a preference relation = iff

ref
A<XBAr B£LA=A<B (better = weakly better)

ref

= does not fulfill requirement, but < does not contradict <

...sought are total refinements...

ref ref

ASB:=I(A) >1(B) A< B:=I(AB) <I(BA)

I(A) = volume of the
weakly dominated area
in objective space

I(A,B) = how much needs A to
be moved to weakly dominate B

\
(O
: LR A
LS S o
F . | O
1 : -1 O
3 : L
ol iy g4
O P | A
» —* @ T _____ |
> A Q
A P | |
’ LA |
Q . |

unary hypervolume indicator
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Example: Weak Refinement / No Refinement
ref ref

A< B:=I(AR) <I(BR) A< B:eI(A) <I(B)

I(A,R) = how much needs A to I(A) = variance of pairwise

be moved to weakly dominate R distances
.. R )
@y — — = weak refinement no refinement
Y
N
. -1
O ". | —
0., 7 |
.......... |
- o ) . . 1'._ _____
i Q '.'.
LA
Q .

unary epsilon indicator
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Overview

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
» performance assessment

Selected Advanced Concepts
» indicator-based EMO
» preference articulation

A Few Examples From Practice

Algorithm Design: Particular Aspects

representation 1 fitness assignment mating selection

2 environmental selection 3 variation operators

aggregation-based criterion-based dominance-based

Q /Z / ///& e o
o Q > /'// 5 Q °
° . y1 ° " y1

set-oriented
scaling-independent

parameter-oriented
scaling-dependent

Criterion-Based Selection: VEGA

select shuffle [Schaffer 1985]

according to

f, =
1

f, T,

fs T,

M
fc Tiet
fe T,
population k separate selections mating pool




Aggregation-Based: Multistart Constraint Method

Underlying concept:
= Convert all objectives except of one into constraints
= Adaptively vary constraints

yz maximize f,
——(

..
o,
0, @, 0,

o -O.' .O.' .O.' ..o-' ..o.'
o ..o.' -o.' '.O_. .O_.

feasible region
. y1
constraint

imization, GECCO 2011, July 12, 2011 8

Aggregation-Based: Multistart Constraint Method

Underlying concept:
= Convert all objectives except of one into constraints
= Adaptively vary constraints

yz maximize f,
—(

feasible region T
constraint

o '-o.' .O.' .o.' ..0-' ..o.'
©

Multistart Constraint Method

Aggregation-Based:

Underlying concept:
= Convert all objectives except of one into constraints
= Adaptively vary constraints

yz maximize f,
—

feasible region T
constraint

VA

© Di ECCO 2011, July 12, 2011

60

11

General Scheme of Dominance-Based EMO

mating selection (stochastic)
7Y

fitness assignment
partitioning into
dominance classes

popula-tion (archiv) offspring

9%
o o
X o
)

rank refinement within
dominance classes

environmental selection (greedy heuristic)

Note: good in terms of set quality = good in terms of search?

© Dimo Brockhoff, LIX. Ecole Polytechnique




Ranking of the Population Using Dominance

... goes back to a proposal by David Goldberg in 1989.

... is based on pairwise comparisons of the individuals only.

= dominance rank:
many individuals is an
individual dominated?

» dominance count: how many
individuals does an individual
dominate?

= dominance depth: at which
front is an individual located?

by how

f2

dominance
rank

.....
......

dominance
count

f1

f,  dominance depth

lllustration of Dominance-based Partitioning

Refinement of Dominance Rankings

Goal: rank incomparable solutions within a dominance class

© Density information (good for search, but usually no refinements)

Kernel method k-th nearest neighbor

Histogram method

density = density = density =
function of the function of distance number of elements
distances to k-th neighbor within box

L Q Q
f
f

® Quality indicator (good for set quality): soon...

© Dimo Brockhoff, LIX. Ecole Polytechnique
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Example: SPEA2 Dominance Ranking

Basic idea: the less dominated, the fitter...

Principle: first assign each solution a weight (strength),
then add up weights of dominating solutions
f2
"\ g
Q
2 i
O . g
Qe 0 Q S (strength) =
4 O, #dominated solutions @
Q , _
Q 4+3Q ° R (raw fitness) =
2+1+4+3+2 2. strengths of
Q4+3+2 ; dominators o
1

1125




Example: SPEA2 Diversity Preservation

Density Estimation

k-th nearest neighbor method:

» Fitness=R+1/(2+ Dx)
N

<1

= Dk = distance to the k-th
nearest individual

= Usually used: k=2

Example: NSGA-Il Diversity Preservation

Density Estimation

crowding distance: f2
= sort solutions wrt. each @
objective 1 N
» crowding distance to neighbors: | ()
Q
- |fn(i = 1) = fin(i + 1) 5, :
objz.:m \)|
dy (i)
f7

Selection in SPEA2 and NSGA-II can result in

deteriorative cycles

non-dominated
solutions already
found can be lost

f

W5

4200

4000

3800

3600

3400 -

’\SGA II

T T
Pareto set -

Archive elements after t=5.000,000 ¢ -

Archive elements after t=10,000,000 o

T B, .

Hypervolume-Based Selection

Latest Approach (SMS-EMOA, MO-CMA-ES, HypE, ...)
use hypervolume |nd|cator to guide the search: refinement!

.............................................................. }( reference
Main idea oy v
Delete solutions with Hypervolume of A:
the smallest : (A = [ulZio
= |
hypervolume loss
ds)=IP-uP/gsh - | et
iteratively SV :
But: nirimize
ut: can also result WE)=0 finess of point _'
in cycles [Judt et al. 2011] conibution Io

Moreover: HypE [Bader and Zitzler 2011]
= Sampling
Contrlbutlon if more than 1 solutlon deleted



Variation in EMO

= At first sight not different from single-objective optimization
» Most algorithm design effort on selection until now
= But: convergence to a set # convergence to a point

Open Question:
= how to achieve fast convergence to a set?

Related work:
= multiobjective CMA-ES [igel et al. 2007] [VoR et al. 2010]
= set-based variation [Bader et al. 2009]
= set-based fitness landscapes [Verel et al. 2011]

Overview

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
= performance assessment

Selected Advanced Concepts
» indicator-based EMO
» preference articulation

A Few Examples From Practice

Once Upon a Time...

... multiobjective EAs were mainly compared visually:

B o PV Iy B
. s W Al
A, 4 N N b D
N o . ., AQAESA

a

ZDT6 benchmark problem: IBEA, SPEA2: NSGA-I[' *

Two Approaches for Empirical Studies

Attainment function approach: Quality indicator approach:

= Applies statistical tests directly = First, reduces each
to the samples of approximation approximation set to a single
sets value of quality

= Gives detailed information about = Applies statistical tests to the

how and where performance samples of quality values

differences occur

Aattains B attains

Indicator A B
Hypervolume indicator | 6.3431  7.1924
e-indicator | 1.2090  0.12722
Ry indicator | 0.2434  0.1643
Ry indicator | 0.6454  0.3475

see e.g. [Zitzler et al. 2003]




Empirical Attainment Functions

three runs of two multiobjective optimizers

Y 33 s w B
20 . X0 .
15 s A‘
; i »
10—+ N i N ' . ' ‘ ' N ; N ’ N ' N ’ ‘ ' N i ~ ' N ] N '
{ v s I
o 0
5 [ ] 5
b 13 *
[ [ ]
.................. @
5 10 15 20 . 5 10 i5 20

Attainment Plots

50% attainment surface for IBEA, SPEA2, NSGA2 (ZDT6)

>

1 35‘: “a .
: "‘“m“t‘ K
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1.25- 7t L
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§ e M
1.2£ XX oy
o A 4
1.15 - L
3 b .
‘ ‘ ‘ ‘H«.,_“ ‘
1.2 1.4 1.6 1.8 " "t 2

Aad

latest implementation online at
http://eden.dei.uc.pt/~cmfonsec/software.html
see [Fonseca et al. 2011]
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Quality Indicator Approach

Goal: compare two Pareto set approximations A and B

H hypervolume 432.34 420.13

o distance 0.3308 0.4532 . ,
o Sanee, T Ldiversity 0.3637 03463 — Abetter
% % % spread 0.3622  0.3601

BY * % cardinality 6 5

Comparison method C = quality measure(s) + Boolean function
quality Boolean

measure function
AB——" |H1 ————— statement

reduction interpretation

Example: Box Plots

epsilon indicator  hypervolume R indicator

IBEA NSGA-IISPEA2 IBEA NSGA-IISPEA2 IBEA NSGA-IISPEA2

.008+

0.08 0 0.00014 é
é 0.00012
0.06 0.006- 0.0001 ==
DTLZ2 0.004- 0.00008
0.04 : ; 0.00006
0.00004
0.02 0.002
: 0.00002
1 2 3 1 2 3 ! 2 3
0.6 T o= 0.8 0.4
0.5
0.6 — 0.3
Knapsacko.s
0.3 0.4 0.2
0.2 0.2 0.1
0.1
1 2 3 1 2 3 1 2 3
0.35 0.35 0.12
ZDT6 0053 0.25 0.1
5 0.08
0.15 0.15 0.06
0.05 0.05 0.02
0 ol — 00—
1 2 3 1 2 3 1 2 3




Statistical Assessment (Kruskal Test) Problems With Non-Compliant Indicators

5 | I I !
A A
ZDT6 DTLZ2 Indicator A B B +
Epsilon R & Generational distance | 346396 2.37411
, 4r Spacing (Schott) | 026476 0.19989 1
is better is better Max Pareto front error | 335489 331314
than than Extent | 3.56039  3.57319
f > IBEA |NSGA2 SPEA2 f > IBEA |NSGA2 SPEA2 " 3k g i
IBEA ~0 () [~0 © | IBEA ~0 ©® [0 © b= & |
‘E
NSGA2 |1 ~0 @ NSGA2 |1 1 ‘E 5
L L i
SPEA2 |1 1 SPEA2 |1 ~ ©® a %
A+ +
1 - + -
Overall p-value = 6.22079e-17. Overall p-value = 7.86834e-17. A Tt s
Null hypothesis rejected (alpha 0.05) Null hypothesis rejected (alpha 0.05)
0 | | | | |
Knapsack/Hypervolume: HO = No significance of any differences 0 02 04 0.6 08 '

What Are Good Set Quality Measures? Set Quality Indicators

There are three aspects [Zitzler et al. 2000] Open Questions:
= how to design a good benchmark suite?

= are there other unary indicators that are (weak)
refinements?

= how to achieve good indicator values?

\.‘llll\ll.llll\__, IeETeT HI'I'IIle..lIIUII [‘.L\"l]ql\l\ CXPCTITICTIT Y fl]“ﬂ.\ TIVOTVTS T TIOTIONT
of performance.  In the case of multiobjective optimizaton, the dehniton of quality is
substannially more complex than for single-objective aprimizacion prablems, because the
oprimization goal itself consists of multiple objectives:

o ‘The distance of the resulting nondominated set to the Parceo-opeimal frone should be
minimized.

e A good (in most cases uniform) distribution of the solutions found is desirable, The
assessment of this eriterion might be based on a cereain distanee metrie.

¢ The exrenr of the obrained nondominated frone should be maximized, i.c., for each
objective, a wide range of values should be covered by the nondominated solutions,

Loy b lirerarure sonne aerermnn_s can be fenned o formalize the alove definirion for nares

Wrong! [zitzler et al. 2003]

An infinite number of unary set measures is needed to detect
in general whether A is better than B
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Indicator-Based EMO: Optimization Goal

When the goal is to maximize a unary indicator...
= we have a single-objective set problem to solve
= but what is the optimum?
= important: population size u plays a role!

Multiobjective Indicator

Problem

Single-objective
Problem

Optimal p-Distribution:
A set of p solutions that maximizes a certain unary
indicator | among all sets of p solutions is called
optimal p-distribution for I.

[Auger et al. 2009a]

Optimal p-Distributions for the Hypervolume

Hypervolume indicator refines dominance relation
—> most results on optimal y-distributions for hypervolume

Optimal p-Distributions (example results)

[Auger et al. 2009a]:
= contain equally spaced points iff front is linear
= density of points o« /—f/(z) with f’ the slope of the front

[Friedrich et al. 2011]:
optimal p-distributions for the opr o lemnid/e PR
hypervolume correspond to HYP
g-approximations of the front

- VAfa' + \/B/b
n—4
Vloa(4 fa) log(B/b)

logHYP 1+ p—}
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Articulating User Preferences During Search Incorporation of Preferences During Search

What we thought: EMO is preference-less Nevertheless...

gIvenrOy U [Zitzler 1999] = the more (known) preferences incorporated the better
Search before ?ﬂisiﬂﬂ making: C:ptimizaltion is}. perfomlled without any pref- = in partiCulal’ if search space is too |arge

erence information given, The result of the search process is a set of : i

(ideally Pareto-optimal) candidate solutions from which the final choice [Branke 2008], [Rachmawati and Srinivasan 2006], [Coe']lf Coello 2000]

is made by the DM. ’
N e o e © Refine/modify dominance relation, e.g.:|"

= using goals, priorities, constraints ’

What we learnt: EMO just uses weaker preference [Fonseca and Fleming 1998a,b]

information = using different types of cones
o [Branke and Deb 2004]
environmental Q preferable?
selection i indi .
3 out of 6 *40 ® Use quality indicators, e.g.: fi
EEEEEEERER ™

based on reference points and directions [Deb and Sundar
2006, Deb and Kumar 2007]

= based on binary quality indicators [Zitzler and Kiinzli 2004]
= based on the hypervolume indicator (now) [Zitzler et al. 2007]

© Dimo Brockhoff, LIX. Ecole Polytechnique Evolutionary Multiobjective Optimization, GECCO 2011, July 12, 2011

Example: Weighted Hypervolume Indicator Weighted Hypervolume in Practice

[Zitzler et al. 2007] IBEA ‘ IHEA

T 55 1
W — =N s L
Iy(A) = ;fut(z)dz _,_4—* 5
weighted
hypervolume
— 0 L\
ety : f. F@ fg f'e f‘r, f@ f!
peneral : . P
wefght - o weighied )
welght 1§ Hypervolme welghted
i : Hmmlume two preference
1} ) i
e
&
L T
D o

f; N . & & &
[Auger et al. 2009b]




Application: Design Space Exploration

The Big Picture ‘ |

Specification — Optimization }—» Evaluation — Implementation

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
» performance assessment

fae]

Selected Advanced Concepts 1T
» indicator-based EMO

= preference articulation

A Few Examples From Practice G

Application: Design Space Exploration Application: Design Space Exploration

Truss Bridge Design Truss Bridge Design
[Bader 2010]

d ridge waten Bust

Network Processor Design
[Bader 2010] [Thiele et al. 2002]

d ridge waten Bust

— Implementation

AL
/ N/ ‘\_ V4 X

e G NS

] o

no robustness HYPE cona




Application: Design Space Exploration

ige warmen muss

Truss Bridge Design | Network Processor Architecture
[Bader 2010] [Thiele et al. 2002]

688 ¥

207 Water resource
management

[Siegfried et al. 2009]

no robustness

10’ .

v

Application: Trade-Off Analysis

Module identification from biological data [Calonder et al. 2006]

Find group of genes wrt Dg} " _ e GEf,vs GEL
. . ! GEfi\.'s.PPI[2
different data types: T s 4 GE,vs. metabolct,
1
5 o7 e
" similarity of gene I, % .
expression profiles 5 Mx& et
8 % 5
. 8 o0ar % |
. pverlap.of protein § ok % "
interaction partners | "
] 01 cissnsabis \.\"\}( o 1 ot
* metabolic pathway o Neeee g et g E
map distances 0 02 04 06 08 i

distance objective l1 (A.LU)

A modeling

¥

Conclusions: EMO as Interactive Decision Support

adjustment

analysis

’{specification }— optimization

preference |

visualization

articulation

~

7> decision making

96
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The EMO Community

Links:

» EMO mailing list: http://w3.ualg.pt/lists/emo-list/

= EMO bibliography: hitp.//www.lania.mx/~ccoello/EMOO/

= EMO conference series: http://www.mat.ufmg.br/emo2011/

Books:

=  Multi-Objective Optimization using Evolutionary Algorithms
Kalyanmoy Deb, Wiley, 2001

= Evolutionary Algorithms for Solving Multi Evolutionary Algorithms
for Solving Multi-Objective Problems Objective Problems, Carlos A.
Coello Coello, David A. Van Veldhuizen & Gary B. Lamont, Kluwer, 2nd
Ed. 2007

= Multiobjective Optimization—Interactive and Evolutionary
Approaches, J. Branke, K. Deb, K. Miettinen, and R. Slowinski, editors,
volume 5252 of LNCS. Springer, 2008 [many open questions!]

= and more...




Wesa This page contains the cumently avada sel Erncpies of PISA) as well as performance
i Princigies and tools [see also ). The vari are mainty test and benchmark problems that -
Documantation can be used to assess the performance of dfferent optimizers. EXPO is 2 complex apphcation form the are of «
computer design that can be used a5 2 benchmark problem too, The: SeleCtors are state-of the-art evoltionary
P15A for Beginners
@ Mo pective ODBMZAtON Methods. I You Wank 1o wiite or subME 3 Modkse, Dlease ok 3t YIke nd Submdt 3
Module. Links to documentation on the PISA specfication can be found at Domumentaticn.
Ji Downlasds Jaroslin Hajk ponkad out & Boens Bug in the IWEG Selector, pleass redownload the madule # your waeson i older
than 2010/02/03.
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Module Optimization Problems Optimization Algorithms
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