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ABSTRACT
This paper proposes an Evolution Strategy to find a shuffle
of M that suits to a batch of datasets that serve as bench-
mark. Results are compared with wavelet estimation.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statis-
tics—Evolution Strategies and Evolutionary Programming

General Terms
Algorithms

Keywords
Evolution strategies, Copula functions, Shuffles of M , Prob-
ability distribution functions, Non-parametric estimation.

1. INTRODUCTION
Due to Sklar’s theorem any bivariate joint cumulative

probability distribution function (JCDF) FXY (x, y) can be
decomposed in a copula function C that describes the scale-
free dependence structure and two margins FX(x) and FY (y)
that model the distribution of each random variable involved
[9]. In other words

FXY (x, y) = C(u, v) , u = FX(x) , v = FY (y).

This separation is the reason why copula functions are gain-
ing an increasing interest in diverse fields. A recent compi-
lation of applications can be found in [3]. A comprehensive
introduction to copula functions can be found in [4] and [8].

Any copula can be approximated by a Shuffle of M , be-
ing M the copula known as Fréchet-Hoeffding upper bound
M(u, v) = min(u, v) [6]. Shuffles of M are simply character-
ized by a permutation of the array [0, . . . , n − 1].

The importance of shuffles of M has been highlighted in
[1, 5, 7] for instance. Motivated by its potential interest, this
paper aims to find the permutation such that the resulting
shuffle of M fits to a given dataset {(ui, vi)}i=1,2,...,Ns ∈
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[0, 1]2. Since n different elements yield to n! possible per-
mutations this work presents an evolution strategy to carry
out the search. Outcomes are compared with wavelet based
estimation of the empirical copula in order to validate the
proposal.

2. EVOLUTION STRATEGY PROPOSAL
In our proposal a single individual gives birth to two de-

scendants and, after a tournament scoring their fitness only
the best one remains. It is therefore a (1+2)-ES.

Representation. Each shuffle of M is to be considered
an individual of the solution space. A straight shuffle of M
(the only one considered here) is characterized by a permu-
tation without repetition of the array [0, 1, . . . , n − 1]. We
will call chromosome to the array and gene to one element
in it.

Split in two. A chromosome is splited in two ways, each
one carrying half of the genes and erasing the other half.

Recombination. Each offspring completes the empty
half with the genes of the another half in a random order.
Hence offspring’s representation will always be correct.

Mutation. Mutation implies replacement of one gene
from the transmited half with one gene of the completed
half. Genes to be exchanged are chosen randomly and the
mutation happens with probability pm, which is a parameter
of the algorithm.

Fitness. The starting point is a 3D histogram giv-
ing the relative frequency of the pairs {(ui, vi)}, with i =
1, 2, . . . , Ns. Usually the number of bins is n × n, where
n = 2J and J =

⌊
log2

√
Ns

⌋
. By means of the cumulative

sum of the relative frequencies in the histogram, the empir-

ical copula C is obtained. Let Ĉ be the individual being
tested, then the estimation of the fitness that we propose is:

f =
n∑

j,k=1

ε2j,k, with εj,k = Ĉ(sj , tk) − C(sj , tk),

for sj = j−1
n−1

and tk = k−1
n−1

.
(1)

No extra constraints are needed.
Stop condition. The algorithm ends either when a min-

imum value of the fitness (fε∗) has been attained, or when
a maximum number of generations maxT have been com-
pleted. The former is provided assuming that the difference

Ĉ(sj , tk) − C(sj , tk) = ε∗

for every pair (sj , tk) evaluated. Thus, ε∗ is a fixed expected
value of the difference between the estimated and the em-
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Table 1: Results of the batch
Code a μ1 μ2 μ3 μ4

×10−2 ×10−4 ×10−4

C1. 0.5 0.129 2.694 2.181 8.306
C2. 2 0.123 2.1 2.288 12.3
C3. 10 0.212 10.98 2.734 2.534
G1. 1 0.255 15.31 2.999 2.912
G2. 2 0.296 19.37 3.323 3.664
G3. 5 0.099 −0.276 2.263 8.531
F1. −12 0.121 1.82 2.3 16.19
F2. −6 0.171 6.813 2.512 15.24
F3. −2 0.235 13.27 2.794 7.385
F4. 2 0.202 9.996 2.701 2
F5. 6 0.177 7.483 2.473 2.306
F6. 12 0.173 7.011 2.536 2.337
X1. −1 0.244 24.39 3.94 2.94
X2. 1 0.258 25.83 4 3

C=Clayton, G=Gumbel, F=Frank, X=Eq.(3)
a=parameter of the copula.

pirical copula; which leads to

fε∗ = ε∗2n2. (2)

3. PERFORMANCE AND DISCUSSION
For the sake of keeping the focus of this paper on the al-

gorithm, hereafter only pairs {(ui, vi)}i=1,...,Ns , both ui and
vi uniformly distributed, are considered. Thus, the problem
of estimating the margins is left aside as an statistical issue.

We present a batch of 12 datasets of Ns = 1024 iid pairs
drawn from three different copulas (Clayton, Gumbel and
Frank) plus 2 datasets drawn from the copula

C(u, v) = uv + a(2u − 1)(2v − 1)(u − 1)(v − 1)uv, (3)

All together they represent a wide range of dependence struc-
tures and are listed in Table 1. The choice of Ns = 210 leads
to n = 32. The value of ε∗ for all the cases was set to
10−2 so ε∗2 = 10−4 and fε∗ = 0.1024. Such a demanding
value was selected in order to complete 1000 generations so
a study of the convergence can also be made. In addition
a non-parametric estimation of the copula following the re-
cent procedure given in [2] is done in order to compare and
validate the method here proposed.

According to the good practice in heuristic optimisation,
the algorithm was ran ten times for every copula of the
batch. Each iteration i produces the following elements:
fi is the value of the best fitness at the end of the execu-
tion i, Δfi = fi − fε∗ is the deviation of the prior from the
maximum value imposed, hi(ε

2
j,k) is the distribution of ε2j,k

obtained from a histrogram of ten bins within the interval
[0, 3·10−3] (the cumulative distribution is then Hi(ε

2
j,k) ),

Si = Ehi(εj,k)2 is the expected value according to the dis-
trubution hi of the squared differences between the shuffle of
M obtained (the estimated copula) and the empirical cop-
ula, and finally ΔSi = Si − ε∗2 is the deviation of the prior
from the maximum value imposed.

Then the following averages are computed for each copula:

μ1 = μ({fi}), μ2 = μ({Δfi}), μ3 = μ({ΔSi}), (4)

for i = 1, . . . , 10, and where the operation μ(x) returns the
mean of x. Results are shown in columns μ1, μ2 and μ3, of

Table 1. Variances are all at least two orders of magnitude
smaller than its corresponding mean; thus, for the sake of
clariry they do not appear in the table.

In addition a non-parametric wavelet estimation using
Daubechies-8 second approximation as proposed in [2] has
been done. The estimated copula obtained with this method

will be denoted ĈW . Consider the distribution of the squared

differences bewteen ĈW and C, denoted by

hW

((
ĈW (sj , tk) − C(sj , tk)

)2
)

.

Then constructing the histogram of ten bins within the same
interval than h(ε2j,k) it is possible to compute the expected
value

μ4 = EhW

((
ĈW (sj , tk) − C(sj , tk)

)2
)

. (5)

Results of (5) are shown in column μ4, in Table 1.
Comparison and Validation. From column μ2 in Ta-

ble 1 a first classification can be made, considering those
cases with μ2 ≥ 0.1 and the rest of them, i.e. a different
order of magnitude in the expected deviation from fε∗ . The
latter shows a very good outcome of the fitness at the end
of the execution. Moreover, despite the demanding value
of fε∗ , it has been attained by G3, with μ1 = 0.099. Con-
cerning the former it is interesting to separate C1, G1, F3,
F4 from G2. The first group are those close to the limit
case in which Clayton, Gumbel and Frank copulas turn into
Π(u, v) = uv (independence). Thus, it is clear that they
will all give similar results. In addition, performance in
X1 y X2 are similar to the first group. Although differ-
ent from Π(u, v), their density is quite spread in the unit
square; hence results are close to the worst.

Comparing columns μ3 and μ4, wavelet estimation per-
forms clearly better only for F4. For the rest of cases close
to copula Π it performs similarly, such as C3 or G1, or even
much worse than the proposal as in F1.
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