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Essential Systems BiologyEssential Systems BiologyEssential Systems Biology
•The following slides are based on U. Alon’s papers 
& excellent introductory text book:

“An Introduction to Systems Biology: Design 
Principles of Biological Circuits”

•Also, you may want to check his group’s webpage 
for up-to-date papers/software:

http://www.weizmann.ac.il/mcb/UriAlon/

The Cell as an Information Processing 
Device

The Cell as an Information Processing The Cell as an Information Processing 
DeviceDevice

LeDuc et al. Towards an in vivo biologically inspired nanofactory. Nature (2007) 

•The Cell senses the environment and its own 
internal states
•Makes Plans, Takes Decisions and Act
•Evolution is the master programmer

The Cell as an Intelligent (Evolved) 
Machine

The Cell as an Intelligent (Evolved) The Cell as an Intelligent (Evolved) 
MachineMachine

Cell

Internal States

Environmental Inputs

Actions

Amir Mitchell, et al., Adaptive prediction of environmental changes by microorganisms. Nature June 2009.

Wikimedia Commons

Transcription NetworksTranscription NetworksTranscription Networks

Gene1 Gene2 Gene3 Genek
Genome

Transcription Factors

Signal2 Signal5Signal1 Signal3 Signal4 Signaln...Environment
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The Basic Unit: A Gene’s Transcription Regulation MechanicsThe Basic Unit: A GeneThe Basic Unit: A Gene’’s Transcription Regulation Mechanicss Transcription Regulation Mechanics
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Network Motifs: Evolution’s Preferred CircuitsNetwork Motifs: EvolutionNetwork Motifs: Evolution’’s Preferred Circuitss Preferred Circuits
•Biological networks are complex and vast
•To understand their functionality in a scalable way one must 
choose the correct abstraction

•Moreover, these patterns are organised in non-trivial/non-
random hierarchies

•Each network motif carries out a specific information-
processing function

“Patterns that occur in the real network significantly 
more often than in randomized networks are called 
network motifs” Shai S. Shen-Orr et al., Network motifs in the transcriptional regulation 

network of Escherichia coli. Nature Genetics  31, 64 - 68 (2002) 

Radu Dobrin et al., Aggregation of topological motifs in the Escherichia 
coli transcriptional regulatory network. BMC Bioinformatics. 2004; 5: 10. 

Y positively 
regulates X

Negative 
autoregulation

Positive 
autoregulation

Negative autoregulation

Simple regulation

Positive autoregulation

U. Alon. Network motifs: theory and experimental approaches. Nature Reviews Genetics (2007) vol. 8 (6) pp. 450-461

Y
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Shai S. Shen-Orr et al., Network motifs in the transcriptional regulation 
network of Escherichia coli. Nature Genetics  31, 64 - 68 (2002) 

A general transcription factor 
regulating a second TF, called 
specific TF, such that both 
regulate effector operon Z.

In a coherent FFL, the direct 
effect of the general 
transcription factor (X)  has the 
same sign (+/-) than the 
indirect net effect through Y in 
the effector operon.

If the arrow from X to Z has 
different sign than the internal 
ones then the loop is an 
incoherent FFL

most common
in E. Coli & S. 
Cerevisiae

The C1-FFL is a ‘sign-sensitive 
delay’ element and a persistence 
detector.

The I1-FFL is a pulse generator 
and response accelerator

U. Alon. Network motifs: theory and experimental approaches. Nature Reviews Genetics (2007) vol. 8 (6) pp. 450-461

The C1-FFL is a ‘sign-sensitive delay’ element and a persistence detector.

If the integration function is “OR” (rather than “AND”), C1-FFL has now 
delay after stimulation by Sx but, instead, manifests the delay when the 
stimulation stops.

U. Alon. Network motifs: theory and experimental approaches. Nature Reviews Genetics (2007) vol. 8 (6) pp. 450-461

The I1-FFL is a pulse 
generator and response 
accelerator

U. Alon. Network motifs: theory and 
experimental approaches. Nature Reviews 
Genetics (2007) vol. 8 (6) pp. 450-461
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Shai S. Shen-Orr et al., Network motifs in the transcriptional regulation 
network of Escherichia coli. Nature Genetics  31, 64 - 68 (2002) 

SIM is defined by one TF controlling a set of 
operons, with the same signs and no 
additional control.

TFs in SIMs are mostly negative 
autoregulatory (70% in E. coli)

U. Alon. Network motifs: theory and experimental approaches. 
Nature Reviews Genetics (2007) vol. 8 (6) pp. 450-461

As the activity of the 
master regulator X 
changes in time, it 
crosses the different 
activation threshold of 
the genes in the  SIM at 
different times, this 
prioritizing the activation 
of the operons Shai S. Shen-Orr et al., Network motifs in the transcriptional regulation 

network of Escherichia coli. Nature Genetics  31, 64 - 68 (2002) 

DORs are layers of dense sets 
of TFs affecting multiple 
operons.

To understand the specific 
function of these “gate-arrays”
one needs to know the input 
functions (AND/OR) for each 
output gene. This data is not 
currently available in most 
cases.

Shai S. Shen-Orr et al., Network motifs in the 
transcriptional regulation network of Escherichia 
coli. Nature Genetics  31, 64 - 68 (2002) 

•The correct abstractions 
facilitates understanding in 
complex systems.

•Provide a route to engineering & 
programming cells.
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What is Synthetic BiologyWhat is Synthetic BiologyWhat is Synthetic Biology

Synthetic Biology is

A) the design and construction of new biological parts, 
devices, and systems, and

B) the re-design of existing, natural biological systems for 
useful purposes.

Synthetic Biology is

A) the design and construction of new biological parts, 
devices, and systems, and

B) the re-design of existing, natural biological systems for 
useful purposes.

http://syntheticbiology.org/

C) Through rigorous mathematical, computational & 
engineering routes
C) Through rigorous mathematical, computational & 
engineering routes

Synthetic BiologySynthetic BiologySynthetic Biology
• Aims at designing, constructing and developing artificial biological 
systems

•Offers new routes to ‘genetically modified’ organisms, synthetic living 
entities, smart drugs and hybrid computational-biological devices. 

• Potentially enormous societal impact, e.g., healthcare, environmental 
protection and remediation, etc

• Synthetic Biology's basic assumption:
•Methods readily used to build non-biological systems could 
also be use to specify, design, implement, verify, test and 
deploy novel synthetic biosystems. 
•These method come from computer science, engineering and 
maths.
•Modeling and optimisation run through all of the above.
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Basic goal: to clarify current understandings by 
formalising what the constitutive elements of a system 
are and how they interact

Intermediate goal: to test current understandings 
against experimental data

Advanced goal: to predict beyond current 
understanding and available data

Dream goal: 
(1) to combinatorially combine in silico well-understood 

components/models for the design and generation of novel 
experiments and hypothesis and ultimately

(2) to design, program, optimise & control (new) biological 
systems

Synthetic & Systems Biology: 
Sisters Disciplines

Synthetic & Systems Biology: Synthetic & Systems Biology: 
Sisters DisciplinesSisters Disciplines

20

Top-Down Synthetic Biology: 
An Approach to Engineering Biology

 Cells are information 
processors. DNA is their 
programming language.

 DNA sequencing  and PCR:  
Identification and isolation of  
cellular parts.

 Recombinant DNA and DNA 
synthesis : Combination of  DNA 
and  construction of  new 
systems.

 Tools to make biology easier 
to engineer: Standardisation, 
modularisation and abstraction 
(blueprints).

E. coli

Vibrio fischeri

Pseudomonas 
aeruginosa

plasmids

DNA synthesis

Discosoma sp.

Aequorea
victoria

Circuit Blueprint
Chassis
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Synthetic Biology’s Brick & Mortar (I)Synthetic BiologySynthetic Biology’’s Brick & Mortar (I)s Brick & Mortar (I)

D. Sprinzak & M.B. Elowitz (2005). Reconstruction of genetic circuits,  Nature 438:24, 443-448.

Synthetic Biology’s Brick & Mortar (II)Synthetic BiologySynthetic Biology’’s Brick & Mortar (II)s Brick & Mortar (II)

D. Sprinzak & M.B. Elowitz (2005). Reconstruction of genetic circuits,  Nature 438:24, 443-448.

Example I: Elowitz & Leibler RepresilatorExample I: Elowitz & Leibler RepresilatorExample I: Elowitz & Leibler Represilator

M.B. Elowitz & S. Leibler (2000). A 
Synthetic Oscilatory Network of 
Transcriptional Regulators. Nature, 
403:20, 335-338

An Example: Elowitz & Leibler RepresilatorAn Example: Elowitz & Leibler RepresilatorAn Example: Elowitz & Leibler Represilator

M.B. Elowitz & S. Leibler (2000). A Synthetic Oscillatory Network of Transcriptional Regulators. Nature, 403:20, 335-338
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Example II: Combinatorial Synthetic 
Logic

Example II: Combinatorial Synthetic Example II: Combinatorial Synthetic 
LogicLogic

C.C. Guet et al., Combinatorial Synthesis of Genetic Networks, Science 296, 1466-1470, 2002

Example II: Combinatorial Synthetic LogicExample II: Combinatorial Synthetic LogicExample II: Combinatorial Synthetic Logic

C.C. Guet et al., Combinatorial Synthesis of Genetic Networks, Science 296, 1466-1470, 2002

Example II: Combinatorial Synthetic 
Logic

Example II: Combinatorial Synthetic Example II: Combinatorial Synthetic 
LogicLogic

C.C. Guet et al., Combinatorial Synthesis of Genetic Networks, Science 296, 1466-1470, 2002

Example III: Push-on/Push-off circuitExample III: PushExample III: Push--on/Pushon/Push--off circuitoff circuit

C. Lou et al., Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch, Molecular Systems 
Biology 6; Article number 350
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Example III: Push-on/Push-off circuitExample III: PushExample III: Push--on/Pushon/Push--off circuitoff circuit

C. Lou et al., Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch, Molecular Systems 
Biology 6; Article number 350

• Two different bacterial strains carrying specific synthetic 
gene regulatory networks are used. 

• The first strain produces a diffusible signal AHL.

• The second strain possesses a synthetic gene regulatory
network which produces a pulse of GFP after AHL sensing 
within a range of values (Band Pass).

Axample IV: Ron Weiss' Pulse GeneratorAxample IV: Ron Weiss' Pulse GeneratorAxample IV: Ron Weiss' Pulse Generator

S. Basu, R. Mehreja, et al. (2004) Spatiotemporal control of gene expression with pulse generating networks, PNAS, 
101, 6355-6360

The MIT Registry of Standard PartsThe MIT Registry of Standard PartsThe MIT Registry of Standard Parts

http://partsregistry.org/Main_Page
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What is modeling?What is What is modelingmodeling??

• Is an attempt at describing in a 
precise way an understanding of the 
elements of a system of interest, their 
states and interactions

• A model should be operational, i.e. it 
should be formal, detailed and 
“runnable” or “executable”.

•“feature selection” is the first issue one 
must confront when building a model

•One starts from a system of interest 
and then a decision should be taken as 
to what will the model include/leave out

•That is, at what level the model will be 
built

The goals of ModellingThe goals of ModellingThe goals of Modelling

•To capture the essential features of 
a biological entity/phenomenon
•To disambiguate the understanding 
behind those features and their 
interactions
•To move from qualitative knowledge 
towards quantitative knowledge
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Cells

Colonies

Networks

Systems Biology Synthetic Biology

• Understanding
• Integration
• Prediction
• Life as it is

•Control
• Design
• Engineering
•Life as it could be

Computational modelling to
elucidate and characterise
modular patterns exhibiting
robustness, signal filtering,
amplification, adaption, 
error correction, etc.

Computational modelling to
engineer and  evaluate
possible cellular designs
exhibiting a desired
behaviour by combining well 
studied and  characterised 
cellular modules

Modeling in Systems & Synthetic BiologyModeling in Systems & Synthetic BiologyModeling in Systems & Synthetic Biology There is  potentially a distinction between modeling for Synthetic Biology 
vs Systems Biology:

•Systems Biology is concerned with Biology as it is
•Synthetic Biology is concerned with Biology as it could be

“Our view of engineering biology focuses on the abstraction and 
standardization of biological components” by R. Rettberg @ MIT newsbite 
August 2006.

“Well-characterized components help lower the barriers to modeling. The 
use of control elements (such as temperature for a temperature-sensitive 
protein, or an exogenous small molecule affecting a reaction) helps model 
validation” by Di Ventura et al, Nature, 2006

Co-design of parts and their models hence improving and making both
more reliable

Model DevelopmentModel DevelopmentModel Development
From [E. Klipp et al, Systems Biology in Practice, 2005]:

1) Formulation of the problem
2) Verification of available information
3) Selection of model structure
4) Establishing a simple model
5) Sensitivity analysis
6) Experimental tests of the model predictions
7) Stating the agreements and divergences between 

experimental and modelling results
8) Iterative refinement of model

The Challenge of ScalesThe Challenge of ScalesThe Challenge of Scales

Within a cell the 
dissociation constants of 
DNA/ transcription factor 
binding to specific/non-
specific sites differ by 4-
6 orders of magnitude

DNA protein binding 
occurs at 1-10s time 
scale very fast in 
comparison to a cell’s 
life cycle.

R. Milo, et al., BioNumbers—the database of key numbers in molecular and cell biology.  Nucleic Acids 

Research, 1–4  (2009)  http://bionumbers.hms.harvard.edu/default.aspx
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• With sufficient data each process can be With sufficient data each process can be 
assigned its spaceassigned its space--time region unambiguouslytime region unambiguously

•• A given process may well have its A given process may well have its ΔΔx x 
(respectively (respectively ΔΔt)   > than anothert)   > than another’’s s ξξAA
(respectively (respectively ττAA))

•• Hence different processes in the SSM might Hence different processes in the SSM might 
require different modelling techniquesrequire different modelling techniques

Couplings, e.g. F
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Te
m

po
ra

l s
ca

le
 (l

og
)
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The Challenge of Small Numbers in Cellular SystemsThe Challenge of Small Numbers in Cellular SystemsThe Challenge of Small Numbers in Cellular Systems

 Most commonly recognised Most commonly recognised sources of noisesources of noise in cellular system are in cellular system are low low 
number of moleculesnumber of molecules and and slow molecular interactionsslow molecular interactions..

 Over 80% of genesOver 80% of genes in in E. coli E. coli express express fewer than a hundred proteinsfewer than a hundred proteins per cell.per cell.

 Mesoscopic, discrete and stochasticMesoscopic, discrete and stochastic approaches are more approaches are more suitablesuitable::
 Only relevant molecules are taken into account.Only relevant molecules are taken into account.
 Focus on the statistics of the molecular interactions and how ofFocus on the statistics of the molecular interactions and how often they ten they 

take place.take place.

Mads Karn et al. Stochasticity in Gene Expression: From Theories to Phenotypes. Nature Reviews, 6, 451-
464 (2005)

Purnananda Guptasarma. Does replication-induced transcription regulate synthesis of the myriad low copy 
number poteins of E. Coli. BioEssays, 17, 11, 987-997

Modelling ApproachesModelling ApproachesModelling Approaches

There exist many modeling approaches, each with its 
advantages and disadvantages.

Macroscopic, Microscopic and Mesoscopic
Quantitative and qualitative
Discrete and Continuous
Deterministic and Stochastic
Top-down or Bottom-up
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Modelling FrameworksModellingModelling FrameworksFrameworks
•Denotational Semantics Models:

Set of equations showing relationships between molecular 
quantities and how they change over time.
They are approximated numerically. 
(I.e. Ordinary Differential Equations, PDEs, etc)

•Operational Semantics Models:

Algorithm (list of instructions) executable by an abstract machine 
whose computation resembles the behaviour of the system under 
study. (i.e. Finite State Machine)

Jasmin Fisher and Thomas Henzinger. Executable cell biology. Nature Biotechnology, 25, 11, 1239-1249 (2008)

A. Regev, E. Shapiro. The π-calculus as an abstraction for biomolecular systems.  Modelling in Molecular 
Biology., pages 1–50. Springer Berlin., 2004.

D. Harel, "A Grand Challenge for Computing:  Full Reactive Modeling of a Multi-Cellular Animal", Bulletin of the 
EATCS ,  European Association for Theoretical Computer Science, no. 81, 2003, pp. 226-235

••From [D.E Goldberg, 2002] (adapted):From [D.E Goldberg, 2002] (adapted):
“Since science and math are in the description 

business, the model is the thing…The engineer 
or inventor has much different motives. The 
engineered object is the thing”

ε,
 e

rro
r

C, cost of modelling

Synthetic Biologist

Computer Scientist/Mathematician

Tools Suitability and CostTools Suitability and CostTools Suitability and Cost

• It is a hard process to design suitable models in 
systems/synthetic biology where one has to consider the choice 
of the model structure and model parameters at different points 
repeatedly.

• Some use of computer simulation has been mainly focused on 
the computation of the corresponding dynamics for a given model 
structure and model parameters.

• Ultimate goal: for a new biological system (spec) one would like 
to estimate the model structure and model parameters (that 
match reality/constructible) simultaneously and automatically.

• Models should be clear & understandable to the biologist 

Model Design in Systems/Synthetic BiologyModel Design in Systems/Synthetic Biology
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There are good reasons to think that There are good reasons to think that information information 
processingprocessing is a key viewpoint to take when modelingis a key viewpoint to take when modeling

Life as we know is:Life as we know is:
•• coded in coded in discrete unitsdiscrete units (DNA, RNA, Proteins)(DNA, RNA, Proteins)
•• combinatorially assembles interactionscombinatorially assembles interactions (DNA(DNA--RNA, DNARNA, DNA--Proteins,RNAProteins,RNA--
Proteins , etc) through evolution and selfProteins , etc) through evolution and self--organisationorganisation
•• Life emerges from these interacting partsLife emerges from these interacting parts
•• Information is:Information is:
•• transported in timetransported in time (heredity, memory e.g. neural, immune system, etc)(heredity, memory e.g. neural, immune system, etc)
•• transported in space (molecular transport processes, channels, transported in space (molecular transport processes, channels, pumps, pumps, 
etc) etc) 
•• Transport in time = storage/memory Transport in time = storage/memory  a computational processa computational process
•• Transport in space = communication Transport in space = communication  a computational processa computational process
•• Signal Transduction = processing Signal Transduction = processing  a computational processa computational process

Computer Science 
Contributions

Computer Science Computer Science 
ContributionsContributions

Methodologies designed to cope with:

• Languages to cope with complex, concurrent, 
systems of parts:

• ∏-calculus
• Process Calculi
• P Systems

• Tools to analyse and optimise:
• EA, ML
• Model Checking

J.Twycross, L.R. Band, M. J. Bennett, J.R. 
King, and N. Krasnogor. Stochastic and 
deterministic multiscale models for systems 
biology: an auxin-transport case study. 
BMC Systems Biology, 4(:34), March 2010

InfoBiotics Workbench and Dashboard

Sp
ec

ifi
ca

tio
n Distributed and parallel rewritting systems in 

compartmentalised hierarchical structures.

Compartments

Objects

Rewriting Rules

• Computational universality and efficiency.

• Modelling Framework
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P-Systems: Modelling PrinciplesPP--Systems: Modelling PrinciplesSystems: Modelling Principles
MoleculesMolecules
Structured MoleculesStructured Molecules

ObjectsObjects
StringsStrings

Molecular SpeciesMolecular Species Multisets of Multisets of 
objects/stringsobjects/strings

Membranes/organellesMembranes/organelles MembraneMembrane

Biochemical activityBiochemical activity rulesrules

Biochemical transportBiochemical transport Communication rulesCommunication rules

Stochastic P SystemsStochastic P SystemsStochastic P Systems

Rewriting RulesRewriting RulesRewriting Rules

used by Multi-volume Gillespie’s algorithm

Molecular SpeciesMolecular SpeciesMolecular Species
 A molecular species can be represented using  A molecular species can be represented using  

individual objectsindividual objects..

 A molecular species with relevant internal structure A molecular species with relevant internal structure 
can be represented can be represented using a stringusing a string..
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Molecular InteractionsMolecular InteractionsMolecular Interactions
 Comprehensive and relevant ruleComprehensive and relevant rule--based schemabased schema

for the most common molecular interactions taking for the most common molecular interactions taking 
place in living cells.place in living cells.

Transformation/DegradationTransformation/Degradation
Complex Formation and DissociationComplex Formation and Dissociation
Diffusion in / outDiffusion in / out
Binding and DebindingBinding and Debinding
Recruitment and ReleasingRecruitment and Releasing
Transcription Factor Binding/DebindingTranscription Factor Binding/Debinding
Transcription/TranslationTranscription/Translation

Compartments / Cells Compartments / Cells Compartments / Cells 
 Compartments and regions are explicitlyCompartments and regions are explicitly

specified using membrane structures.specified using membrane structures.

Colonies / TissuesColonies / TissuesColonies / Tissues
 Colonies and tissues are representing as Colonies and tissues are representing as 

collectioncollection of P systems distributed over a of P systems distributed over a latticelattice..

 Objects can travel around the lattice through Objects can travel around the lattice through 
translocation translocation rules.rules.

v

Molecular Interactions 
Inside Compartments
Molecular Interactions Molecular Interactions 
Inside CompartmentsInside Compartments
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Passive Diffusion of MoleculesPassive Diffusion of MoleculesPassive Diffusion of Molecules Signal Sensing and 
Active Transport

Signal Sensing and Signal Sensing and 
Active TransportActive Transport

Specification of Transcriptional 
Regulatory Networks 

Specification of Transcriptional Specification of Transcriptional 
Regulatory Networks Regulatory Networks Post-Transcriptional ProcessesPostPost--Transcriptional ProcessesTranscriptional Processes

 For each protein in the system, post-transcriptional processes like 
translational initiation, messenger and protein degradation, protein 
dimerisation, signal sensing, signal diffusion etc are represented using 
modules of rules.

 Modules can have also as parameters the stochastic kinetic constants 
associated with the corresponding rules in order to allow us to explore 
possible mutations in the promoters and ribosome binding sites in order to 
optimise the behaviour of the system.
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Scalability through ModularityScalability through ModularityScalability through Modularity

Cellular functions arise from orchestrated orchestrated 
interactions between motifsinteractions between motifs consisting of 
many molecular interacting species.

A P System model is a set of rulesset of rules
representing molecular interactions motifsmotifs that 
appear in many cellular systems.

Basic P System Modules Used Basic P System Modules Used Basic P System Modules Used 

21

Characterisation/Encapsulation of 
Cellular Parts: Gene Promoters

 A modeling language for 
the design of  synthetic bacterial 
colonies. 

 A module, set of rules 
describing the molecular 
interactions  involving a cellular 
part, provides encapsulation 
and abstraction.

 Collection or libraries of 
reusable cellular parts and 
reusable models.

LuxR
AHL

CI

01101110100001010100011110001011101010100011010100
PluxOR1({X},{c1, c2, c3, c4, c5, c6, c7, c8, c9},{l}) = {

type:  promoter

sequence:  ACCTGTAGGATCGTACAGGTTTACGCAAGAA
ATGGTTTGTATAGTCGAATACCTCTGGCGGTGATA

rules:
r1: [ LuxR2 + PluxPR.X ]_l -c1-> [ PluxPR.LuxR2.X ]_l 
r2: [ PluxPR.LuxR2.X ]_l -c2-> [ LuxR2 + PluxPR.X ]_l 

...
r5: [ CI2 + PluxPR.X ]_l -c5-> [ PluxPR.CI2.X ]_l
r6: [ PluxPR.CI2.X ]_l -c6-> [ CI2 + PluxPR.X ]_l

...
r9: [ PluxPR.LuxR2.X ]_l -c9-> [ PluxPR.LuxR2.X + RNAP.X ]_l

}E. Davidson (2006) The Regulatory Genome, Gene Regulation Networks in Development and Evolution, 
Elsevier

22

Module Variables: Recombinant DNA, 
Directed Evolution, Chassis selection

A

 Directed evolution: Variables for stochastic constants can be instantiated with specific 
values.

 Recombinant DNA: Objects variables can be instantiated with the name of specific 
genes.

PluxOR1({X=tetR})PluxOR1({X=Tet})

PluxOR1({X=GFP},{...,c4=10,...})
 Chassis Selection: The variable for the label can be instantiated with  the name of a 

chassis.
PluxOR1({X=GFP},{...,c4=10,...},{l=DH5α })
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23

Characterisation/Encapsulation of 
Cellular Parts: Riboswitches

 A riboswitch is a piece of RNA that folds in different ways depending on the 
presence of absence of specific molecules regulating translation.

ToppRibo({X},{c1, c2, c3, c4, c5, c6},{l}) = {

type:  riboswitch

sequence:GGTGATACCAGCATCGTCTTGATGCCCTTGG
CAGCACCCCGCTGCAAGACAACAAGATG

rules:
r1: [ RNAP.ToppRibo.X ]_l -c1-> [ ToppRibo.X ]_l 
r2: [ ToppRibo.X  ]_l -c2-> [  ]_l
r3: [ ToppRibo.X + theop ]_l –c3-> [ ToppRibo*.X ]_l 
r4: [ ToppRibo*.X ]_l –c4-> [ ToppRibo.X + theop ]_l 
r5: [ ToppRibo*.X ]_l –c5-> [ ]_l 
r6: [ ToppRibo*.X ]_l –c6-> [ToppRibo*.X + Rib.X ]_l

}

24

Characterisation/Encapsulation of 
Cellular Parts: Degradation Tags

 Degradation tags are amino acid sequences recognised by proteases. Once the 
corresponding DNA sequence is fused to a gene the half life of the protein is 
reduced considerably. 

degLVA({X},{c1, c2},{l}) = {

type:  degradation tag

sequence: CAGCAAACGACGAAAACTACGCTTTAGTAGCT

rules:
r1: [ Rib.X.degLVA ]_l -c1-> [ X.degLVA ]_l 
r2: [ X.degLVA  ]_l -c2-> [  ]_l

}

25

Higher Order Modules: Building 
Synthetic Gene Circuits

PluxOR1 geneXToppRibo degLVA

3OC6_repressible_sensor({X})  = {
PluxOR1({X=ToppRibo.geneX.degLVA},{...},{l=DH5α})
ToppRibo({X=geneX.degLVA},{...},{l=DH5α})
degLVA({X},{...},{l=DH5α})

}

X=GFP

Plux({X=ToppRibo.geneCI.degLVA},{...},{l=DH5α})
ToppRibo({X=geneCI.degLVA},{...},{l=DH5α})
degLVA({CI},{...},{l=DH5α})

PtetR({X=ToppRibo.geneLuxR.degLVA},{...},{l=DH5α})
Weiss_RBS({X=LuxR},{...},{l=DH5α})
Deg({X=LuxR},{...},{l=DH5α})

luxIPconst

LuxI AHL

AHL

luxR
Pconst

cI
Plux

gfp
PluxOR1

LuxR

CI

GFP
AHL

AHL
Specification of Multi-cellular 

Systems: LPP systems
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Infobiotics: An Integrated Framework
http://www.infobiotics.org/infobiotics-workbench/

Synthetic Multi-
cellular Systems

Libraries of 
Modules

P systems LPP systems

Multi Compartmental 
Stochastic Simulations 

based on Gillespie’s 
algorithm

Spatio-temporal 
Dynamics Analysis 

using Model Checking 
with PRISM and MC2

Automatic Design of 
Synthetic Gene Regulatory 

Circuits using 
Evolutionary Algorithms

A compiler based on a 
BNF grammar

Single CellsCellular 
Parts

Synthetic 
Circuits

Module 
Combinations

Stochastic P Systems Are 
Executable Programs

Stochastic P Systems Are Stochastic P Systems Are 
ExecutableExecutable ProgramsPrograms

The virtual machine running these programs is a The virtual machine running these programs is a ““Gillespie Algorithm Gillespie Algorithm 
(SSA)(SSA)””. It . It generates trajectories of a stochastic syste:

A stochastic constant is associated with each rule.
A propensity is computed for each rule by multiplying the 

stochastic constant by the number of distinct possible 
combinations of the elements on the left hand side of the rule.

F. J. Romero-Campero, J. Twycross, M. Camara, M. Bennett, M. Gheorghe, and N. Krasnogor. Modular 
assembly of cell systems biology models using p systems. International Journal of Foundations of 
Computer Science, 2009

Multicompartmental Gillespie 
Algorithm 

Multicompartmental Gillespie Multicompartmental Gillespie 
Algorithm Algorithm 

1

2

3 r1
1,…,r1

n1

M1

r2
1,…,r2

n2

M2

r3
1,…,r3

n3

M3

( 1, τ1, r0
1)

( 2, τ2, r0
2)

( 3, τ3, r0
3)

( 2, τ2, r0
2)

( 1, τ1, r0
1)

( 3, τ3, r0
3)

Sort Compartments
τ2 < τ1 < τ3

Local Gillespie

( 1, τ1-τ2, r0
1)

( 3, τ3-τ2, r0
3)

Update Waiting Times

( 2, τ2’, r0
2)( 1, τ1-τ2, r0

1)

( 2, τ2’, r0
2)

( 3, τ3-τ2, r0
3)

Insert new triplet
τ1-τ2 <τ2’ < τ3-τ2

‘

An Important Difference with “Normal”
Programs

An Important Difference with An Important Difference with ““NormalNormal””
ProgramsPrograms

•Executable Stochastic P systems are not
programs with stochastic behavior 

•A cell is a living example of distributed 
stochastic computing.

function f1(p1,p2,p3,p4)
{
if (p1<p2)

RND
print p3

RND
else

RND
print p4

RND
}

function f1(p1,p2,p3,p4)
{
if (p1<p2) and (rand<0.5)

print p3
else

print p4
}
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•Using P systems modules one can model a large variety of 
commonly occurring BRN:

•Gene Regulatory Networks
•Signaling Networks
•Metabolic Networks

•This can be done in an incremental way.
F. J. Romero-Campero, J. Twycross, M. Camara, M. Bennett, M. Gheorghe, and N. Krasnogor. Modular 
assembly of cell systems biology models using p systems. International Journal of Foundations of 
Computer Science, 2009

Rapid Model PrototypingRapid Model Prototyping

InfoBiotics Workbench and Dashboard

Sp
ec

ifi
ca

tio
n

Si
m

ul
at

io
n

Analysis

• Two different bacterial strains carrying specific synthetic 
gene regulatory networks are used. 

• The first strain produces a diffusible signal AHL.

• The second strain possesses a synthetic gene regulatory
network which produces a pulse of GFP after AHL sensing 
within a range of values (Band Pass).

An example: A Pulse GeneratorAn example: A Pulse GeneratorAn example: A Pulse Generator

S. Basu, R. Mehreja, et al. (2004) Spatiotemporal control of gene expression with pulse generating networks, PNAS, 
101, 6355-6360

Sender CellsSender CellsSender Cells

Pconst

LuxI AHL

AHL

SenderCell()=

{

Pconst({X = luxI },…)

PostTransc({X=LuxI},{c1=3.2,…})

Diff({X=AHL},{c=0.1})

}

luxI

1181



luxRPconst

cIPlux

gfp
PluxOR1

LuxR

CI

GFP
AHL

AHL

PulseGenerator()=

{

Pconst({X=luxR},…)

PluxOR1({X=gfp},…)

Plux({X=cI},…)

…

…

Diff({X=AHL},…)

}

Pulse Generating CellsPulse Generating CellsPulse Generating Cells Spatial Distribution of Senders 
and Pulse Generators

Spatial Distribution of Senders Spatial Distribution of Senders 
and Pulse Generatorsand Pulse Generators

luxIPconst

LuxI AHL

AHL

AHL

luxR
Pconst

cI
Plux

gfp
PluxOR1

LuxR

CI

GFP
AHL

AHL

Pulse propagation - simulation IPulse propagation Pulse propagation -- simulation Isimulation I

Simulation I

Pulse Generating Cells 
With Relay

Pulse Generating Cells Pulse Generating Cells 
With RelayWith Relay

luxRPconst

cIPlux

PluxOR1

LuxR

CI

AHL

AHL

luxI
Plux

LuxI

AHL

PulseGenerator(X ) = 

{ 
Pconst({X=luxR},…)

PluxOR1({X},…) ,

Plux({X=cI},…) ,

…

Diff({X=AHL},…) ,

Plux({X=luxI},…)

}
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Simulation II

Pulse propagation & Rely-
simulation II

Pulse propagation & RelyPulse propagation & Rely--
simulation IIsimulation II

A Signal Translator
for Pattern Formation
A Signal TranslatorA Signal Translator

for Pattern Formationfor Pattern Formation

act1
Prep2

act2
Prep1

rep1
Pact1

rep2
Pact2

rep3
Prep1

rep4
Prep2

I2
Prep3

I1
Prep4

FP2
Pact2

FP1Pact1

Uniform Spatial Distribution of 
Signal Translators for Pattern Formation

Uniform Spatial Distribution of Uniform Spatial Distribution of 
Signal Translators for Pattern FormationSignal Translators for Pattern Formation

Pattern Formation in 
synthetic bacterial colonies

Pattern Formation in Pattern Formation in 
synthetic bacterial coloniessynthetic bacterial colonies

Simulation III
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Pattern Formation in 
synthetic bacterial colonies

Pattern Formation in Pattern Formation in 
synthetic bacterial coloniessynthetic bacterial colonies

Spatial Distribution of Signal 
Translators and propagators
Spatial Distribution of Signal Spatial Distribution of Signal 
Translators and propagatorsTranslators and propagators

luxR
Pconst

cI
Plux

gfp
PluxOR1

LuxR GFP
Si

Si

luxI

LuxI

Si

Plux CI

Alternating signal pulses in 
synthetic bacterial colonies
Alternating signal pulses in Alternating signal pulses in 
synthetic bacterial coloniessynthetic bacterial colonies

Simulation IV

“What if?” Scenarios““What if?What if?”” ScenariosScenarios

Rate of diffusion of the signal molecules
(too high or too low)

Range of possible cross talk /leakiness 
between the various modules

1184



Outline
•Essential Systems Biology

•Synthetic Biology

•Computational Modeling for Synthetic Biology

•A Note on Ethical, Social and Legal Issues

•Conclusions

Synthetic BiologySynthetic BiologySynthetic Biology
The new science of synthetic biology aims 
to re-engineer life at the molecular level 
and even create completely new forms 
of life. It has the potential to create new 
medicines, biofuels, assist climate 
change through carbon capture, and 
develop solutions to help clean up the 
environment.

BLUE: Scare/Worries the public
GREEN: What governments and industries want
RED: where we are now and what scientists do

What is Synthetic Biology?What is Synthetic Biology?What is Synthetic Biology?
Synthetic Biology is
A) the design and construction of new biological 
parts, devices, and systems, and
B) the re-design of existing, natural biological 
systems for useful purposes.

Synthetic Biology is
A) the design and construction of new biological 
parts, devices, and systems, and
B) the re-design of existing, natural biological 
systems for useful purposes.

http://syntheticbiology.org/

Been There, Done ThatBeen There, Done ThatBeen There, Done That
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The Unjustified Fear of Chimera 
and Foreign Genes 

Transplantation

The Unjustified Fear of Chimera The Unjustified Fear of Chimera 
and Foreign Genes and Foreign Genes 

TransplantationTransplantation
Itaya, M., Tsuge, K. Koizumi, M., and 
Fujita, K. Combining two genomes in one 
Cell: Stable cloning of the Synechosystis
PCC6803 genome in the Bacillus subtilis
168 genome.Proc. Natl. Acad. Sci., USA, 
102, 15971-15976 (2005)

+ =

150 times larger than the 
human genome

A Technology Not a ProductA Technology Not a ProductA Technology Not a Product
“ The problem of deaths and injury as a result of road accidents is now 
acknowledge to be a global phenomenon.... publications show that in 1990 road 
accidents as a cause of death or dissability were in ninth place out of a total of 
over 100 identified causes.... by 2020 forecasts suggest... road accidents will 
move up to sixth...”And yet nobody seriously 
considers banning
mechanical engineering

Estimating global road fatalities. G. Jacobs & A. Aeron-Thomas. Global Road Safety Partnership

A Technology Not a ProductA Technology Not a ProductA Technology Not a Product

And yet nobody seriously 
considers banning printing 
technology

But ....But ....But ....
•Technologies are regulated:

•Cars have seat belts and laws establish speed limits
•Mein Kampf is banned in Germany and by, restricting 
google, China (e.g.) bans uncountable written material of 
all sorts!

•Societies must establish an informed dialogue involving:
•tax payers
•Scientists
•Lobbies of al sorts
•Government
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What IS Synthetic Biology?What What ISIS Synthetic Biology?Synthetic Biology?
Synthetic Biology is
A) the design and construction of new biological 
parts, devices, and systems, and
B) the re-design of existing, natural biological 
systems for useful purposes.

Synthetic Biology is
A) the design and construction of new biological 
parts, devices, and systems, and
B) the re-design of existing, natural biological 
systems for useful purposes.

http://syntheticbiology.org/

C) Through rigorous mathematical, computational engineering routesC) Through rigorous mathematical, computational engineering routes

Biology only smarter, safer and 
clearer

Biology only smarter, safer and Biology only smarter, safer and 
clearerclearer

OutlineOutline
•Essential Systems Biology

•Synthetic Biology

•Computational Modeling for Synthetic Biology

•A Note on Ethical, Social and Legal Issues

•Conclusions

Summary & ConclusionsSummary & ConclusionsSummary & Conclusions
•These lectures have focused on an integrative 
methodology for Systems & Synthetic Biology
•Executable Biology
•Parameter and Model Structure Discovery

•Computational models (or executable in Fisher & 
Henzinger’s jargon) adhere to (a degree) to an 
operational semantics.

•Refer to the excellent review [Fisher & 
Henzinger, Nature Biotechnology, 2007]

108
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•The gap present in mathematical models 
between the model and its algorithmic 
implementation disappears in computational 
models as all of them are algorithms.
•A new gap appears between the biology and 
the modeling technique and this can be 
solved by a judicious “feature selection”, i.e. 
the selection of the correct abstractions
•Good computational models are more 
intuitive and analysable

Summary & ConclusionsSummary & ConclusionsSummary & Conclusions

109

•Computational models can thus be executed 
(quite a few tools out there, lots still missing)
•Quantitative VS qualitative modelling: 
computational models can be very useful even 
when not every detail about a system is known.
•Missing Parameters/model structures can 
sometimes be fitted with of-the-shelf optimisation 
strategies (e.g. COPASI, GAs, etc)
•Computational models can be analysed by 
model checking: thus they can be used for 
testing hypothesis and expanding experimental 
data in a principled way

Summary & ConclusionsSummary & ConclusionsSummary & Conclusions
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Summary & ConclusionsSummary & ConclusionsSummary & Conclusions
•Some really nice tutorials and other sources:
•Luca Caderlli’s BraneCalculus & BioAmbients
•Simulating Biological Systems in the Stochastic 
π−calculus by Phillips and Cardelli
•From Pathway Databases to Network Models 
by Aguda and Goryachev
•Modeling and analysis of biological processes 
by Brane Calculi and Membrane Systems by 
Busi and Zandron
•D. Gilbert’s website contain several nice 
papers with related methods and tutorials

111

Other SourcesOther SourcesOther Sources
F. J. Romero-Campero, J. Twycross, M. Camara, M. Bennett, M. Gheorghe, and N.
Krasnogor. Modular assembly of cell systems biology models using p systems. 
International Journal of Foundations of Computer Science, (to appear), 2009.

F.J. Romero-Camero and N. Krasnogor. An approach to biomodel engineering based on 
p systems. In Proceedings of Computation In Europe (CIE 2009), 2009.

J. Smaldon, N. Krasnogor, M. Gheorghe, and A. Cameron. Liposome logic. In 
Proceedings of the 2009 Genetic and Evolutionary Computation Conference (GECCO 
2009), 2009

F. Romero-Campero, H.Cao, M. Camara, and N. Krasnogor. Structure and parameter 
estimation for cell systems biology models. In Maarten Keijzer et.al, editor, Proceedings 
of the Genetic and Evolutionary Computation Conference (GECCO-2008), pages 331-
338. ACM Publisher, 2008. This paper won the Best Paper award at the Bioinformatics 
track.

J. Smaldon, J. Blake, D. Lancet, and N. Krasnogor. A multi-scaled approach to artificial 
life simulation with p systems and dissipative particle dynamics. In Proceedings of the 
Genetic and Evolutionary Computation Conference (GECCO-2008). ACM Publisher, 
2008. 112
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Any Questions?Any Questions?Any Questions?

www.synbiont.org
Become a member and have access to a large
international community of Synthetic Biologists
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