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Introduction

Evolutionary algorithms are in particular successful for multi-
objective optimization problems

* Why?
* Multi-objective problems deal with several (conflicting)

objective functions.

* Compute different trade offs with respect to the given

objective functions (Pareto front, Pareto optimal set).

Population of an EA may be used to compute/approximate the
Pareto front.

This tutorial: Theoretical understanding of EAs for multi-objective optimization

Analyze basic features of such algorithms and point out differences
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Multi-Objective Optimization

f:B" —» R™

Dominance in the objective space

u weakly dominates v (u = v) iff u; > v; for all ¢ € {1,...,m}
u dominates v (u > v) iff u > v and u # v.

Concept may be translated to search points

z =y iff f(z) = f(y)
z =y iff f(z) = f(y)

Non-dominated objective vectors constitute the Pareto front

Classical goal:
Compute for each Pareto optimal objective vector a corresponding solution
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Large Pareto Front

Problem: Pareto front may be large
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Approximations of large fronts

36

32

28

24

20

16

12

12 16 20 24 28 32 36
Life Impact | The University of Adelaide 1214

Approximations

Large Fronts can not be computed in polynomial
time
Goal: Compute a good approximation

Two measures of approximation
« Multiplicative epsilon dominance

u e-dominates v (u =, v) iff (1 +¢€)-u; >v; forall ¢ € {1,...,m}.

» Additive epsilon dominance

u e-dominates v (u =, v) iff u; + e >wv; for all i € {1,...,m}.
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Simple Evolutionary Multi-objective Optimizer (SEMO)

% choose an initial population P with |P| = 1 uniformly at random
# Repeat

» choose a parent z € P uniformly at random

» create an offspring y by flipping each bit of x with probability 1/n
> If(Jz€ P:z2>y),set P« (P\{z€P|y=2})U{y}

* SEMO keeps for each non-dominated objective vector found
so far, one single individual.
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Theory

Point of interest in the following:

* Runtime to compute the compute/approximate the Pareto front

¢ Number of fitness evaluations

* Expected polynomial time

* Exponential time with probability exponentially close to 1

Frank Neumann
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Diversity Mechanisms
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SEMO on LF
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Diversity Evolutionary Multi-Objective Optimizer (DEMO)

Ensure diversity with respect to objective vectors

b(x) = (b1(z),...,bm(x)) with b;(x) := | fi(x)/d]

Laumanns, Thiele, Zitzler (2003)

s choose an initial population P with |P| =1 uniformly at random
 Repeat

» choose a parent x € P uniformly at random

» create an offspring y by flipping each bit of  with probability 1/n

> If (Bz € P: 2= yVb(z) = b(y)), set P« (P\{z € P|bly) = b2)})U{y}

DEMO keeps an additive delta-approximation of the search points
examined so far.
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Rank- And Distance-based Evolutionary Multi-objective Optimizer (RADEMO)

% choose an initial population P with |P| = p uniformly at random

DEMO on LF ’1 T * Repeat .
369 » choose a parent x € P uniformly at random
32 = . » create an offspring y by flipping each bit of  with probability 1/n
L@ ® » choose an individual z € P U {y} for removal.
28 e d=e > set P (PU{y})\ {z}
o .
24 ® - Runt2|me Input: set of search points Q
- e O(n*logn) H set Q' < argmaxgeg rankg(x)
Q * set Q" + argmingcq distanceg(x)
16 . % z € Q" chosen uniformly at random
12 @ rankq(z) :={y € @ |y - =}
@

8 o . distanceq(z) := (distanced)(x), . .., distance‘QQ‘_l(w))

4 PY distanceg(z): distance d(f(x), f(y)) from = € Q to its k-th nearest neighbor

o ‘ ’._ maximum metric: d(u,v) 1= max;cq1, . my [wi — vi
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RaDEMO onte 36 « Delta-Dominance and density estimator
2 '
PR help to approximate a large Pareto front

28 Runtime
24 O(unlogn) Now:
20
g + Point out the differences of the two
12 approaches

g | « Show where they even fail on small Pareto
. o fronts
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» Delta-Dominance approach does random
search if the size of the boxes is too large.

« Even simple problems can not be
approximated well

» Consider the drawback of the density
estimator

» Which structures are difficult when using
this approach?
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SEMO on TF
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RADEMO on TF

2

2< = O(n1/276)

Exponential time
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Summary Summary on Diversity

« Many multi-objective problems have large Pareto

SEMO DEMO RADEMO fronts

 Diversity mechanisms are necessary to achieve a
F |exp poly poly good approximation (see SPEA2, NSGA-II)

» Rigorous results for the use of such mechanisms
sF | poly exp poly  Delta-dominance and density estimator help to

spread over a large front

TF | poly poly exp » Simple situations where such mechanisms fail

* Might even fail to approximate small Pareto front

that is easily computable by SEMO

Life Impact | The University of Adelaide Life Impact | The University of Adelaide
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Hypervolume Indicator

= A Multi-objective fitness function:

The Hypervolume Indicator

Dominates parts of
the population

Dominated by
the population

2nd Objective (to be maximized)

1st Objective (to be maximized)

1219
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Hypervolume Indicator Bt Hypervolume Indicator

= Which population is better? = Given: n axis-parallel boxes in d-dimensional space
(boxes all have (0,...,0) as bottom corner)

HYP({®,®,8})=5.3 = Task: Measure (volume) of their union
HYP({® @ 0})=4.9
= Property of “strict Pareto compliance”:

= Consider two Pareto sets A and B:

= Hypervolume indicator values A higher than B
if the Pareto set A dominates the Pareto set B

2nd Objective (to be maximized)

>

1st Objective (to be maximized)

Tobias Friedrich Tobias Friedrich
]
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Hypervolume Indicator e s i

= Given: n axis-parallel boxes in d-dimensional space
(boxes all have (0,...,0) as bottom corner)

= Task: Measure (volume) of their union Computational Complexity of
= Popular Algorithms: the Hypervolume Indicator

= HSO: O(n?) izitzlerot, Knowles'02]

= BR: O(n%?logn) [Beume Rudolph'0é]

= Many (heuristical) improvements and
specialized algorithms for small dimensions

= Only Lower Bound: ©2(nlogn) [Beume etal.07]
1220
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#P-hardness of HYP ".kk #P-hardness of HYP s i
= P = deterministic polynomial time = Consider #MON-CNF:
= NP = non-deterministic polynomial time = Given: monotone Bgolean formula in CNF
(Is there an accepting path?) J = Ni=r viECk i
= #P = counting in polynomial time (“sharp-P”) with clauses Cr C {1,...,d}

' ?
(How many accepting paths?) = Task: Compute number of satisfying assignment

=1
- .% = Known: #P-hard
| S n
A pa = Plan: reduce #MON-CNF to HYP
= <
=

Tobias Friedrich ‘-
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mmp1 mmpl
#P-hardness of HYP #P-hardness of HYP

= This proves that the hypervo|ume is #P-hard in the
number of objectives, i.e., it cannot be solved in

B} R time polynomial in the number of objectives
For each clause Aicc, % (unless P=NP)

construct a box [0,a%] x - -+ x [0, a*]

o = Note that the hypervolume is not hard in the
with o — L, if 1€Cj number of boxes, i.e., it can be solved in polytime
“= Y2, otherwise for constant d
= Example: 2}
2 l(ﬁﬂh A —'-’132)1 V T2 1
= {1} C, ='{1,2} Cy = {2} 0y g
1221
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Approximation of HYP

= Given: boxes {Bi,..., By} in d-dimensional space
and an error rate e

Approximation of = Task: Compute V such that
the Hypervolume Indicator Pr [(1 — V<V <(1+e) v] > %
with V= vor( UL, B:)
= Time: polynomial in n, d and 1/e

- Gives fully polynomial-time randomized
approximation scheme (FPRAS)

Tobias Friedrich Tobias Friedrich
-] -]
i . ini | . . (4 |
Approximation of HYP Approximation of HYP
= Given: boxes {B4i,..., By} in d-dimensional space = Given: boxes {Bi,..., By} in d-dimensional space
and an error rate e and an error rate €

= Algorithm: e V; := voL(B;) = Easy to see that

e S:=31"Vi ~

e c(z) := number of boxes B; with z € B; = Resulting V' has correct expectation

e loop Q(n?/€?) often

_ , , v = |t's sufficiently concentrated to be an FPRAS
— pick random i € {1,...,n} with prob. 2
— pick random x € B; uniformly = Gives runtime (’)(n2d/62)
— set Zp := %

. @) = Can be improved to O(nd/e?) with self-adjusting
return V' :=average Z algorithm [Karp Luby J.Complexity ‘85]

1222
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Approximation of HYP

= This shows that the Hypervolume can be
approximated efficiently, i.e., in time

= polynomial in the number of objectives Computational Complexity of

= polynomial in the number of solutions HypeN°|ume Contributions

= polynomial in the approximation quality

Tobias Friedrich [Bringmann and F., ISAAC 2008, CGTA 2010] Tobias Friedrich
] ]
mmpi . . Imnpi
Hypervolume Hypervolume Contribution
= Recall Hypervolume HYP(M) = Recall the Hypervolume Contribution

CON(M,z) := HYP(M) — HYP(M \ z)

= We have seen:
= #P-hard to calculate exactly
= Approximable by FPRAS

= #P-hard to solve exactly
= NP-hard to approximate by a
factor of 2¢ ~ forany e > 0

2nd Objective (to be maximized)
2nd Objective (to be maximized)

1st Objective (to be maximized) 1st Objective (to be maximized)

1223
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Hypervolume Contribution Least Contributor
= We are actually interested in the box with = We actually only want to calculate which
the minimal hypervolume contribution, i.e., box has the least contribution, i.e.,

MINCON(M) := mingep CON(M, z) LC(M) := argmin . ,, CON(M, z)

= #P-hard to solve exactly = NP-hard to decide
= NP-hard to approximate by a

factor of 2¢'~ forany e > 0

2nd Objective (to be maximized)
2nd Objective (to be maximized)

> S

1st Objective (to be maximized) 1st Objective (to be maximized)
Tobias Friedrich [Bringmann and F., EMO 2009] Tobias Friedrich [Bringmann and F., EMO 2009]
| LTI ]
Approximate Least Contributor gt ot

= |t usually suffices to find a box with contribution at most
(1+¢) times the minimal contribution of any box in M, i.e.,

CON(M,eLC(M)) < (1+¢) MINCON(M)
Approximation of

- NP-hard to decide Hypervolume Contributions

2nd Objective (to be maximized)

1st Objective (to be maximized)

1224
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Approximate Least Contributor p

= Unless NP=BPP, there is no worst-case
polynomial time algorithm for approximately
determining a solution with a small contributor

= But there are several approximation algorithms:
= [Bringmann and F., EMO 2009]

= [Bader, Deb, and Zitzler, MCDM 2008]
[Bader and Zitzler, ECJ 2010]

= [Ishibuchi, GECCO 2010]

Tobias Friedrich [Bringmann and F., EMO 2009]
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Experimental evaluation
= dataset:
= d=3:

= d=10: | ¥

10° 0 10 0 0 10' 10
number of points number of points number of points.

runtime [
ime

a) Spherical dataset. b) Linear dataset. c¢) Concave dataset.
I

Tobias Friedrich [Bringmann and F., EMO 2009]
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Approximate Least Contributor

= There is an algorithm for determining a small contributor,
i.e., given a set M, 0 and §>0, with probability 1-¢ it finds a
box with contribution at most (1 + ¢) MINCON(M)

= Algorithm Idea:

= Determine for each box the minimal bounding box of the
space that is uniquely overlapped by the box

= Sample randomly in the bounding boxes and count how
many random points are uniquely dominated and how
many are not

= Estimate contributions and deviations until least
contributor found with good probability

Tobias Friedrich [Bringmann and F., EMO 2009]
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Approximate Least Contributor

= The higher the dimension, the higher the speed-up of the
approximation algorithm:

= For d=100 within 100 seconds, the approximation
algorithm solved all problems with n<6000 while HSO
and BR could not solve any problem for n=6

= seven solutions on the 100-dimensional linear front take
7 hours with BR, 13 minutes with HSO and 0.5
milliseconds with the approximation algorithm

Tobias Friedrich
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What is approximation? nf

= We restrict our attention to the bi-objective case

= Let f: D —» R be a monotonically decreasing function

Finally: Is the Hypervo|ume describing the Pareto front
the right measure, at all? = We look for a (small) set of points '_\’:i%
’ X = {(z1, f(@1)), - (@, f(20))} ;

which “nicely” approximates the front

= The approximation ratio of a set X is the least «
such that for each = € D there is an (z,,f(x,))e X with
z<az and f(z) < «a f(z;)

= Aim: Find a set of points with a small approximation ratio.

= Question: Is this what we get from maximizing HYP?

Tobias Friedrich Tobias Friedrich
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“Optimal” approximation HYP’s approximation
= Let us restrict to Pareto fronts feF where f: [a,A]—[b,B] = The overall aim of all hypervolume-based algorithms is to

is a monotonically decreasing, upper semi-continuous find for a front f a population which maximizes HYP:

function with f(a)=B and f(A)=b Xl = {Xex | HYP(X) = max HYP(Y)}

= Let X be the set of all populations B
Pop T = This gives a worst-case approximation factor of

of a fixed size n
DH Qyyp = SUP  Sup a(va)

. Le’ga(f,)_() be the approximation b feF xexd,
ratio achieved by the set X
with respect to the front f

@ A = Question: How large is ayy» compared to
= Then the optimal approximation ratio achievable by sets Qopr = SUp )ggv a(f,X) ?
from X with respect to fronts from the function class Fis fer
= inf X
Qopr Jsflelg)-“ )%IéX O‘(fa )
1226
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HYP’s approximation "

= One can prove aopr = 1 + ©(1/n)

= Hence maximizing HYP is “asymptotically optimal”

= Plot of bounds for functions
f: [a,A]—[b,B] with
a=b=1 and A=B=100:

EI
4i
i

gl
3l s
i
i

approximation factor

1

010 25 50 75 100 125 150 175 200
number of points n

Tobias Friedrich [Bringmann and F., GECCO 2010]
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Additive approximation

= So what about additive approximation instead?

= Recall: The multiplicative approximation ratio of a set X is
the least o such that for each = € D there is an (z,,f(z,))e X
with z < a z; and f(z) < a f(z;)

= Analogously: The additive approximation ratio of a set X is
the least o such that for each = € D there is an (z,,f(z,))e X
with z < a4z, and f(z) < a+f(x,)

= Then for the additive approximation ratio we can prove that

at = A-a —
orr = T Hence maximizing HYP
A—a yields a close-to-optimal
o, < additive approximation ratio
n—2

Tobias Friedrich [Bringmann and F., PPSN 2010]
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HYP’s approximation

= One can prove aopr = 1 + O(1/n)

= Hence maximizing HYP is “asymptotically optimal”
= But how large are the constants hidden in the © ?

= Let us now for an easier presentation assume that
the front is symmetric, that is, A/a=B/b

= Then one can prove that

Qopr ~ 1+ log(4/a) Hence maximizing HYP

q n does not yield the optimal
an VAla mult. approximation ratio

avazl“‘T

Tobias Friedrich [Bringmann and F., GECCO 2010]
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Logarithmic Hypervolume "R
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= How to achieve a good multiplicative approximation?
= Answer: Logarithm all axes before computing HYP!

= This defines a new indicator whose multiplicative
approximation factor is much better:

Qopr = 1+ —log(A/a)
n Hence maximizing logHYP
Qo 22 1 4 VAla yields a close-to-optimal
e = n mult. approximation ratio
log(A/a)

Qocuyr ~ 1
n— 2

Tobias Friedrich [F., Bringmann, VoR, and Igel, FOGA 2011]
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Executive Summary i

= |f you want a good additive approximation ratio,
you should maximize HYP

= |If you want a good multiplicative approximation ratio,
you should maximize logHYP

Tobias Friedrich

Single-Objective vs. Multi-Objective Optimization

General assumption:

» Multi-objective optimization is more (as least as)
difficult as single-objective optimization.

» True, if criteria to be optimized are independent.

Examples:

* Minimum Spanning Tree Problem (MST) (in P).
« MST with at least 2 weight functions (NP-hard).
» Shortest paths (SP) (in P).

« SP with at least 2 weight functions (NP-hard).

Life Impact | The University of Adelaide 1228

Multi-Objective Models for
Single-Objective Problems

Life Impact | The University of Adelaide

* Assume that the criteria to be optimized are not independent.

* Question: Can a multi-objective model give better hints for the
optimization of single-objective problems by evolutionary
algorithms ?

e Yeslll

Examples:
¢ Minimum Spanning Trees (N., Wegener (2006)).
e (Multi)-Cut Problems (N., Reichel (2008)).

* Helper Objectives (Brockhoff, Friedrich, Hebbinghaus, Klein, N.,
Zitzler (2007)).

Interest here:
» Theoretical investigations for the Vertex Cover Problem.

Life Impact | The University of Adelaide



The Problem The Problem

The Vertex Cover Problem: The Vertex Cover Problem: | - e
t i
Given an undirected graph G=(V,E). Given an undirected graph G=(V,E). n'eggn near Program (1LP)
min ) .., T;
s.t.xi—&—x]-lZl vV{ijteFE
x; € {0, 1}

Linear Program (LP)

min y7,
stz +x; >1 V{ijtekE
x; € [0, 1]

Find a minimum subset of vertices such that each edge is covered at least once. Decision problem:
Is there a set of vertices of size at most k covering all edges?
Fixed parameter algorithm runs in time O(1:2738 + kn) (Chen et al 2006)

NP-hard, several 2-approximation algorithms.
Our parameter: Value of an optimal solution (OPT)

Simple single-objective evolutionary algorithms fail!!!
Life Impact | The University of Adelaide
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Evolutionary Algorithm Evolutionary Algorithm

Representation: Bitstrings of length n Minimize fitness function:

=1 23 =1 25 =0 fi(x) = (Jz|1, |U(2)]) 1/n 1/n 1/2
fl(l') = (2a2)
fa(z) = (|z]1, LP(z))
fa(z) = (2,1)
1/n 1/2 1/2

Two mutation operations:
1. Standard bit mutation with probability 1/n
U(z): Edges not covered by z 2. Mutation probability 1/2 for vertices adjacent to edges of U(z).
G(z) = G(V,U(z)) Otherwise mutation probability 1/n.
Decide uniformly at random which operator to use in next iteration

LP(z): value of LP applied to G(z)
1229 Life Impact | The University of Adelaide

22 =0 x4 =0 zg =0
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|x|1 Standard single-objective approach:
Minimize f with respect to lexicographic order
. 1. Minimize number of uncovered edges
® 2. Minimize number of vertices
. Question: When does it fail?
>
U ()|
Life Impact | The University of Adelaide
|z| Multi-Objective Approach:

W,

Treat the different objectives in the same way

Keep trade-offs of the two criteria

>
U ()|

Life Impact | The University of Adelaide
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|z[1

(1+1) EA and Vertex Cover Problem
Friedrich, He, Hebbinghaus, N., Witt (2007)

Exponential expected optimization time

Approximation may be arbitrary bad

vertex cover

Life Impact | The University of Adelaide

® Empty set included
in the population

U ()]

Life Impact | The University of Adelaide



|z]1

= —

Optimal solution

Expected time g(OPT)* poly(n)
Fixed parameter evolutionary algorithm

What can we say about these solutions?
(log n)-approximation (Friedrich, Hebbinghaus, He, N., Witt (2010))

Approach can be generalized to the SetCover Problem
(best possible approximation in polynomial time)

Kernelization in expected polynomial time
*Subset of a minimum vertex cover

*G(x) has at most OPT + OPT?
non-isolated vertices

.\0—>

U ()|

Life Impact | The University of Adelaide

Linear Programming

Combination with Linear Programming
» LP-relaxation is half integral, i.e.
z;€{0,1/2,1},1<i<n

Theorem (Nemhauser, Trotter (1975)):

Let x* be an optimal solution of the LP. Then there is a minimum vertex cover

that contains all vertices v; where x} = 1.

Lemma:

All search points x with LP(z) = LP(0™) — |z|; are Pareto optimal.
They can be extended to minimum vertex cover by selecting additional

vertices.

Can we also say something about approximations?

Life Impact | The University of Adelaide

*G(x) has maximum degree at most OPT

1231

|z[1

|z[1

- —

Kernelization in expected polynomial time

*Subset of a minimum vertex cover
*G(x) has at most 20PT non-isolated
vertices

Optimal solution
Expected time O(4°F7 - poly(n)) /
Fixed parameter evolutionary algorithm .‘\ I

| LP(z)]

Life Impact | The University of Adelaide

Approximations

|z]1 < (14 €)OPT

7

|z]1 +2LP(z) < (1+¢€)OPT

/ Kernelization in expected polynomial time

Expected time ha
041 = OFT . poly(n))

|LP(x)]

Life Impact | The University of Adelaide



Summary Multi-objective Models

Multi-Objective models can be helpful for solving
single-objective optimization problems.

Give additional hints for the search process.

Example study for the NP-hard vertex cover
problem.

Single-objective approach fails.
Good approximations for multi-objective EAs.
Fixed-parameter evolutionary algorithms.

Thank you!

Life Impact | The University of Adelaide
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