Foundations of Evolutionary Multi-Objective Optimization

Tobias Friedrich
Algorithms and Complexity
Max Planck Institute for
Informatics

Copyright is held by the author/owner(s). GECCO'11, July 12–16, 2011, Dublin, Ireland. ACM 978-1-4503-0690-4/11/07.

Frank Neumann
School of Computer Science
University of Adelaide

Multi-Objective Optimization

Introduction

- Evolutionary algorithms are in particular successful for multiobjective optimization problems
- Why?
- Multi-objective problems deal with several (conflicting) objective functions.
- Compute different trade offs with respect to the given objective functions (Pareto front, Pareto optimal set).
- Population of an EA may be used to compute/approximate the Pareto front.

This tutorial: Theoretical understanding of EAs for multi-objective optimization

Analyze basic features of such algorithms and point out differences

Frank Neumann

Life Impact | The University of Adelaide

Multi-Objective Optimization

$$f \colon \mathbb{B}^n \to \mathbb{R}^m$$

Dominance in the objective space

```
u weakly dominates v (u \succeq v) iff u_i \geq v_i for all i \in \{1, \ldots, m\} u dominates v (u \succ v) iff u \succeq v and u \neq v.
```

Concept may be translated to search points

$$x \succeq y \text{ iff } f(x) \succeq f(y)$$

 $x \succ y \text{ iff } f(x) \succ f(y)$

Non-dominated objective vectors constitute the Pareto front

Classical goal:

Compute for each Pareto optimal objective vector a corresponding solution

Large Pareto Front

Problem: Pareto front may be large

Approximations of large fronts

Approximations

Large Fronts can not be computed in polynomial time

Goal: Compute a good approximation

Two measures of approximation

- Multiplicative epsilon dominance $u \in \text{-dominates } v \ (u \succeq_{\epsilon} v) \text{ iff } (1+\epsilon) \cdot u_i \geq v_i \text{ for all } i \in \{1,\ldots,m\}.$
- Additive epsilon dominance

```
u \in \text{-dominates } v \ (u \succeq_{\epsilon} v) \text{ iff } u_i + \epsilon \geq v_i \text{ for all } i \in \{1, \dots, m\}.
```

Frank Neumann

Life Impact | The University of Adelaide

Simple Evolutionary Multi-objective Optimizer (SEMO)

- \star choose an initial population P with |P|=1 uniformly at random
- * Repeat

Frank Neumann

- \triangleright choose a parent $x \in P$ uniformly at random
- \triangleright create an offspring y by flipping each bit of x with probability 1/n
- $If (\nexists z \in P : z \succ y), set P \leftarrow (P \setminus \{z \in P \mid y \succeq z\}) \cup \{y\}$
- SEMO keeps for each non-dominated objective vector found so far, one single individual.

Theory

Point of interest in the following:

- Runtime to compute the compute/approximate the Pareto front
- Number of fitness evaluations
- Expected polynomial time
- Exponential time with probability exponentially close to 1

Frank Neumann

Life Impact | The University of Adelaide

Diversity Mechanisms

SEMO on LF

Frank Neumann

Diversity Evolutionary Multi-Objective Optimizer (DEMO)

Ensure diversity with respect to objective vectors

$$b(x) = (b_1(x), \dots, b_m(x))$$
 with $b_i(x) := \lfloor f_i(x)/\delta \rfloor$

Laumanns, Thiele, Zitzler (2003)

- \bigstar choose an initial population P with |P|=1 uniformly at random
- ★ Repeat
 - ightharpoonup choose a parent $x \in P$ uniformly at random
 - \blacktriangleright create an offspring y by flipping each bit of x with probability 1/n
 - $\blacktriangleright \text{ If } (\nexists z \in P \colon z \succ y \lor b(z) \succ b(y)), \text{ set } P \leftarrow (P \setminus \{z \in P \mid b(y) \succeq b(z)\}) \cup \{y\}$

DEMO keeps an additive delta-approximation of the search points examined so far.

 \star choose an initial population P with $|P| = \mu$ uniformly at random * Repeat

- ightharpoonup choose a parent $x \in P$ uniformly at random
 - \triangleright create an offspring y by flipping each bit of x with probability 1/n
 - \triangleright choose an individual $z \in P \cup \{y\}$ for removal.
 - ightharpoonup set $P \leftarrow (P \cup \{y\}) \setminus \{z\}$

Input: set of search points Q

- \star set $Q' \leftarrow \arg\max_{x \in Q} rank_Q(x)$
- \star set $Q'' \leftarrow \arg\min_{x \in Q'} distance_Q(x)$
- $\star z \in Q''$ chosen uniformly at random

$$rank_Q(x) := |\{y \in Q \mid y \succ x\}|$$

 $distance_Q(x) := (distance_Q^0(x), \dots, distance_Q^{|Q|-1}(x))$

 $distance_{Q}^{k}(x)$: distance d(f(x), f(y)) from $x \in Q$ to its k-th nearest neighbor

maximum metric: $d(u,v) := \max_{i \in \{1,\ldots,m\}} |u_i - v_i|$

Life Impact | The University of Adelaide

 Delta-Dominance and density estimator help to approximate a large Pareto front

Now:

- Point out the differences of the two approaches
- Show where they even fail on small Pareto fronts

Small Front SF

Frank Neumann

1217

Life Impact | The University of Adelaide

- Delta-Dominance approach does random search if the size of the boxes is too large.
- Even simple problems can not be approximated well
- Consider the drawback of the density estimator
- · Which structures are difficult when using this approach?

RADEMO on TF

1218

Life Impact | The University of Adelaide

Summary

	SEMO	DEMO	RADEMO
LF	exp	poly	poly
SF	poly	exp	poly
TF	poly	poly	exp

Life Impact | The University of Adelaide

Frank Neumann

The Hypervolume Indicator

Summary on Diversity

- Many multi-objective problems have large Pareto fronts
- Diversity mechanisms are necessary to achieve a good approximation (see SPEA2, NSGA-II)
- Rigorous results for the use of such mechanisms
- Delta-dominance and density estimator help to spread over a large front
- Simple situations where such mechanisms fail
- Might even fail to approximate small Pareto front that is easily computable by SEMO

Hypervolume Indicator

A Multi-objective fitness function:

1219

Hypervolume Indicator

max planck institut

Which population is better?

Tobias Friedrich

Hypervolume Indicator

- Given: n axis-parallel boxes in d-dimensional space (boxes all have (0,...,0) as bottom corner)
- Task: Measure (volume) of their union
- Popular Algorithms:
 - HSO: $\mathcal{O}(n^d)$ [Zitzler'01, Knowles'02]
 - **BR**: $\mathcal{O}(n^{d/2}\log n)$ [Beume Rudolph'06]
 - Many (heuristical) improvements and specialized algorithms for small dimensions
 - Only Lower Bound: $\Omega(n \log n)$ [Beume et al.'07]

Hypervolume Indicator

- Given: n axis-parallel boxes in d-dimensional space (boxes all have (0,...,0) as bottom corner)
- Task: Measure (volume) of their union
- Property of "strict Pareto compliance":
 - Consider two Pareto sets A and B:
 - Hypervolume indicator values A higher than B if the Pareto set A dominates the Pareto set B

Tobias Friedrich

Computational Complexity of the Hypervolume Indicator

Tobias Friedrich

#P-hardness of HYP

- P = deterministic polynomial time
- NP = non-deterministic polynomial time (Is there an accepting path?)
- #P = counting in polynomial time ("sharp-P") (How many accepting paths?)

Tobias Friedrich

#P-hardness of HYP

- Take a MON-CNF $f = \bigwedge_{k=1}^{n} \bigvee_{i \in C_k} x_i$
- Consider its negated formula $\bar{f} = \bigvee_{k=1}^{n} \bigwedge_{i \in C_k} \neg x_i$
- For each clause $\bigwedge_{i \in C_k} \neg x_i$ construct a box $[0, a_1^k] \times \cdots \times [0, a_d^k]$ with $a_i^k = \begin{cases} 1, & \text{if } i \in C_k \\ 2, & \text{otherwise} \end{cases}$
- Example:

$$\neg x_1 \lor (\neg x_1 \land \neg x_2) \lor \neg x_2$$
 $C_1 = \{1\}$
 $C_2 = \{1,2\}$
 $C_3 = \{2\}$

#P-hardness of HYP

- Consider #MON-CNF:
- Given: monotone Boolean formula in CNF

$$f = \bigwedge_{k=1}^{n} \bigvee_{i \in C_k} x_i$$

with clauses $C_k \subseteq \{1, \ldots, d\}$

- Task: Compute number of satisfying assignment
- Known: #P-hard
- Plan: reduce #MON-CNF to HYP

Tobias Friedrich

#P-hardness of HYP

- This proves that the hypervolume is #P-hard in the number of objectives, i.e., it cannot be solved in time polynomial in the number of objectives (unless P=NP)
- Note that the hypervolume is not hard in the number of boxes, i.e., it can be solved in polytime for constant d

Approximation of the Hypervolume Indicator

Tobias Friedrich

Approximation of HYP

- Given: boxes $\{B_1, \ldots, B_n\}$ in d-dimensional space and an error rate ϵ
- Algorithm: $V_i := VOL(B_i)$
 - $S := \sum_{i=1}^{n} V_i$
 - $c(x) := \text{number of boxes } B_i \text{ with } x \in B_i$
 - loop $\Omega(n^2/\epsilon^2)$ often
 - pick random $i \in \{1, \ldots, n\}$ with prob. $\frac{V_i}{S}$
 - pick random $x \in B_i$ uniformly
 - $\operatorname{set} Z_k := \frac{S}{c(x)}$
 - return \tilde{V} :=average Z_k

Approximation of HYP

- Given: boxes $\{B_1, \ldots, B_n\}$ in d-dimensional space and an error rate ϵ
- Task: Compute \tilde{V} such that

$$\Pr\left[\left(1 - \epsilon\right) V \le \tilde{V} \le \left(1 + \epsilon\right) V\right] \ge \frac{3}{4}$$
 with $V := \operatorname{VOL}\left(\bigcup_{i=1}^{n} B_{i}\right)$

- Time: polynomial in n, d and $1/\epsilon$
- → Gives fully polynomial-time randomized approximation scheme (FPRAS)

Tobias Friedrich

Tobias Friedrich

Approximation of HYP

- Given: boxes $\{B_1, \ldots, B_n\}$ in *d*-dimensional space and an error rate ϵ
- Easy to see that
 - Resulting \tilde{V} has correct expectation
 - It's sufficiently concentrated to be an FPRAS
- Gives runtime $\mathcal{O}(n^2d/\epsilon^2)$
- Can be improved to $\mathcal{O}(nd/\epsilon^2)$ with self-adjusting algorithm [Karp Luby J.Complexity '85]

Approximation of HYP

- This shows that the Hypervolume can be approximated efficiently, i.e., in time
 - polynomial in the number of objectives
 - polynomial in the number of solutions
 - polynomial in the approximation quality

Tobias Friedrich

[Bringmann and F., ISAAC 2008, CGTA 2010]

Hypervolume

Recall Hypervolume HYP(M)

Computational Complexity of Hypervolume Contributions

Tobias Friedrich

Tobias Friedrich

Hypervolume Contribution

Recall the Hypervolume Contribution

$$CON(M, x) := HYP(M) - HYP(M \setminus x)$$

Hypervolume Contribution

 We are actually interested in the box with the minimal hypervolume contribution, i.e.,

Tobias Friedrich

[Bringmann and F., EMO 2009]

Approximate Least Contributor

• It usually suffices to find a box with contribution at most $(1+\epsilon)$ times the minimal contribution of any box in M, i.e.,

Least Contributor

 We actually only want to calculate which box has the least contribution, i.e.,

Tobias Friedrich

[Bringmann and F., EMO 2009]

Approximation of Hypervolume Contributions

1224 Tobias Friedrich

Approximate Least Contributor

- Unless NP=BPP, there is no worst-case polynomial time algorithm for approximately determining a solution with a small contributor
- But there are several approximation algorithms:
 - [Bringmann and F., EMO 2009]
 - [Bader, Deb, and Zitzler, MCDM 2008] [Bader and Zitzler, ECJ 2010]
 - [Ishibuchi, GECCO 2010]

Tobias Friedrich

[Bringmann and F., EMO 2009]

Experimental evaluation

dataset:

d=3:

d=10:

Tobias Friedrich

(c) Concave dataset

[Bringmann and F., EMO 2009]

Approximate Least Contributor

- There is an algorithm for determining a small contributor. i.e., given a set M, ϵ >0 and δ >0, with probability 1- δ it finds a box with contribution at most $(1 + \epsilon) MINCON(M)$
- Algorithm Idea:
 - Determine for each box the minimal bounding box of the space that is uniquely overlapped by the box
 - Sample randomly in the bounding boxes and count how many random points are uniquely dominated and how many are not
 - Estimate contributions and deviations until least contributor found with good probability

Tobias Friedrich

[Bringmann and F., EMO 2009]

Approximate Least Contributor

- The higher the dimension, the higher the speed-up of the approximation algorithm:
 - For d=100 within 100 seconds, the approximation algorithm solved all problems with n≤6000 while HSO and BR could not solve any problem for n≥6
 - seven solutions on the 100-dimensional linear front take 7 hours with BR. 13 minutes with HSO and 0.5 milliseconds with the approximation algorithm

Tobias Friedrich

1225

Finally: Is the Hypervolume the right measure, at all?

Tobias Friedrich

"Optimal" approximation

- Let us restrict to Pareto fronts $f \in \mathcal{F}$ where $f: [a,A] \rightarrow [b,B]$ is a monotonically decreasing, upper semi-continuous function with f(a) = B and f(A) = b
- Let X be the set of all populations of a fixed size n
- Let α(f,X) be the approximation ratio achieved by the set X with respect to the front f

• Then the optimal approximation ratio achievable by sets from \mathcal{X} with respect to fronts from the function class \mathcal{F} is

$$\alpha_{\text{OPT}} = \sup_{f \in \mathcal{F}} \inf_{X \in \mathcal{X}} \alpha(f, X)$$

What is approximation?

- We restrict our attention to the bi-objective case
- Let $f: D \to \mathbb{R}$ be a monotonically decreasing function describing the Pareto front
- We look for a (small) set of points $X = \{(x_1, f(x_1)), \dots, (x_n, f(x_n))\}$ which "nicely" approximates the front
- The approximation ratio of a set X is the least α such that for each $x \in D$ there is an $(x_i, f(x_i)) \in X$ with $x \leq \alpha \ x_i$ and $f(x) \leq \alpha \ f(x_i)$
- Aim: Find a set of points with a small approximation ratio.
- Question: Is this what we get from maximizing HYP?

Tobias Friedrich

HYP's approximation

The overall aim of all hypervolume-based algorithms is to find for a front f a population which maximizes HYP:

$$\mathcal{X}_{\mathrm{HYP}}^f = \left\{ X \in \mathcal{X} \ \middle| \ \mathrm{HYP}(X) = \max_{Y \in \mathcal{X}} \mathrm{HYP}(Y) \right\}$$

This gives a worst-case approximation factor of

$$\alpha_{\text{HYP}} = \sup_{f \in \mathcal{F}} \sup_{X \in \mathcal{X}_{\text{HYP}}^f} \alpha(f, X)$$

• Question: How large is $\alpha_{\rm HYP}$ compared to

$$\alpha_{\mathrm{OPT}} = \sup_{f \in \mathcal{F}} \inf_{X \in \mathcal{X}} \ \alpha(f, X)$$
 ?

Tobias Friedrich 1226 Tobias Friedrich

HYP's approximation

- One can prove $lpha_{ ext{OPT}} = 1 + \Theta(1/n)$ and $lpha_{ ext{HYP}} = 1 + \Theta(1/n)$
- Hence maximizing HYP is "asymptotically optimal"
- Plot of bounds for functions $f: [a,A] \rightarrow [b,B]$ with a=b=1 and A=B=100:

Tobias Friedrich

[Bringmann and F., GECCO 2010]

Additive approximation

- So what about additive approximation instead?
- Recall: The *multiplicative approximation ratio* of a set X is the least α such that for each $x \in D$ there is an $(x_i, f(x_i)) \in X$ with $x \le \alpha \ x_i$ and $f(x) \le \alpha \ f(x_i)$
- Analogously: The additive approximation ratio of a set X is the least α such that for each $x \in D$ there is an $(x_i, f(x_i)) \in X$ with $x \le \alpha + x_i$ and $f(x) \le \alpha + f(x_i)$
- Then for the additive approximation ratio we can prove that

$$lpha_{ ext{OPT}}^+ = rac{A-a}{n}$$
 $lpha_{ ext{HYP}}^+ \leq rac{A-a}{n-2}$

Hence maximizing HYP yields a close-to-optimal additive approximation ratio

HYP's approximation

- One can prove $lpha_{ ext{OPT}}=1+\Theta(1/n)$ and $lpha_{ ext{HYP}}=1+\Theta(1/n)$
- Hence maximizing HYP is "asymptotically optimal"
- But how large are the constants hidden in the Θ ?
- Let us now for an easier presentation assume that the front is symmetric, that is, A/a=B/b
- Then one can prove that

and
$$\alpha_{\rm OPT} \approx 1 + \frac{\log(A/a)}{n}$$

$$\alpha_{\rm HYP} \approx 1 + \frac{\sqrt{A/a}}{n}$$

Hence maximizing HYP does *not* yield the optimal mult. approximation ratio

Tobias Friedrich

[Bringmann and F., GECCO 2010]

Logarithmic Hypervolume

- How to achieve a good multiplicative approximation?
- Answer: Logarithm all axes before computing HYP!
- This defines a new indicator whose multiplicative approximation factor is much better:

$$lpha_{ ext{OPT}} pprox 1 + rac{\log(A/a)}{n}$$
 $lpha_{ ext{HYP}} pprox 1 + rac{\sqrt{A/a}}{n}$ $lpha_{ ext{LOGHYP}} pprox 1 + rac{\log(A/a)}{n}$

Hence maximizing logHYP yields a close-to-optimal mult. approximation ratio

Executive Summary

- If you want a good additive approximation ratio, you should maximize HYP
- If you want a good multiplicative approximation ratio, you should maximize logHYP

Tobias Friedrich

Single-Objective vs. Multi-Objective Optimization

General assumption:

- Multi-objective optimization is more (as least as) difficult as single-objective optimization.
- True, if criteria to be optimized are independent.

Examples:

- Minimum Spanning Tree Problem (MST) (in P).
- MST with at least 2 weight functions (NP-hard).
- Shortest paths (SP) (in P).
- SP with at least 2 weight functions (NP-hard).

•

Multi-Objective Models for Single-Objective Problems

- Assume that the criteria to be optimized are not independent.
- Question: Can a multi-objective model give better hints for the optimization of single-objective problems by evolutionary algorithms?
- Yes!!!

Examples:

- Minimum Spanning Trees (N., Wegener (2006)).
- (Multi)-Cut Problems (N., Reichel (2008)).
- Helper Objectives (Brockhoff, Friedrich, Hebbinghaus, Klein, N., Zitzler (2007)).

Interest here:

• Theoretical investigations for the Vertex Cover Problem.

The Problem

The Vertex Cover Problem: Given an undirected graph G=(V,E).

Find a minimum subset of vertices such that each edge is covered at least once.

NP-hard, several 2-approximation algorithms.

Simple single-objective evolutionary algorithms fail!!!

The Problem

The Vertex Cover Problem: Given an undirected graph G=(V,E).

Integer Linear Program (ILP) $\min \sum_{i=1}^{n} x_i$

$$\min \sum_{i=1}^{n} x_i$$
 s.t. $x_i + x_j \ge 1$ $\forall \{i, j\} \in E$ $x_i \in \{0, 1\}$

Linear Program (LP)

$$\min \sum_{i=1}^{n} x_i$$
 s.t. $x_i + x_j \ge 1$ $\forall \{i, j\} \in E$ $x_i \in [0, 1]$

Decision problem:

Is there a set of vertices of size at most k covering all edges?

Fixed parameter algorithm runs in time $O(1:2738^k + kn)$ (Chen et al 2006)

Our parameter: Value of an optimal solution (OPT)

Evolutionary Algorithm

Representation: Bitstrings of length n

Minimize fitness function:

$$f_1(x) = (|x|_1, |U(x)|)$$

$$f_1(x) = (2,2)$$

$$f_2(x) = (|x|_1, LP(x))$$

$$f_2(x) = (2,1)$$

U(x): Edges not covered by x

G(x) = G(V, U(x))

LP(x): value of LP applied to G(x)

Evolutionary Algorithm

Two mutation operations:

- 1. Standard bit mutation with probability 1/n
- 2. Mutation probability 1/2 for vertices adjacent to edges of U(x). Otherwise mutation probability 1/n.

Decide uniformly at random which operator to use in next iteration

(1+1) EA and Vertex Cover Problem

Friedrich, He, Hebbinghaus, N., Witt (2007)

Exponential expected optimization time
Approximation may be arbitrary bad

Linear Programming

Combination with Linear Programming

• LP-relaxation is half integral, i.e.

$$x_i \in \{0, 1/2, 1\}, 1 \le i \le n$$

Theorem (Nemhauser, Trotter (1975)):

Let x^* be an optimal solution of the LP. Then there is a minimum vertex cover that contains all vertices v_i where $x_i^* = 1$.

Lemma:

All search points x with $LP(x) = LP(0^n) - |x|_1$ are Pareto optimal. They can be extended to minimum vertex cover by selecting additional vertices.

Can we also say something about approximations?

Approximations

Summary Multi-objective Models

- Multi-Objective models can be helpful for solving single-objective optimization problems.
- Give additional hints for the search process.
- Example study for the NP-hard vertex cover problem.
- Single-objective approach fails.
- Good approximations for multi-objective EAs.
- Fixed-parameter evolutionary algorithms.

Thank you!

Life Impact | The University of Adelaide