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ABSTRACT
Fitness function design is often both a design and perfor-
mance bottleneck for evolutionary algorithms. The fitness
function for a given problem is directly related to the spec-
ifications for that problem. This paper outlines a guide for
transforming problem specifications into a fitness function.
The target audience for this guide are both non-expert prac-
titioners and those interested in formalizing fitness function
design. The goal is to investigate and formalize the fit-
ness function generation process that expert developers go
through and in doing so make fitness function design less
of a bottleneck. Solution requirements in the problem spec-
ifications are identified and classified, then an appropriate
fitness function component is generated based on its classi-
fications, and finally the fitness function components com-
bined to yield a fitness function for the problem in question.
The competitive performance of a guide generated fitness
function is demonstrated by comparing it to that of an ex-
pert designed fitness function.

Categories and Subject Descriptors: I.2.8 [Artificial In-
telligence]: Problem Solving, Control Methods, and Search

General Terms: Design, Algorithms

Keywords: Evolutionary Algorithm, Fitness Function De-
sign, Fitness Function Classification

1. INTRODUCTION
The design of an effective fitness function for a given prob-

lem is often difficult, even for experienced designers. The
goal of this research is to both create a guide to assist non-
expert practitioners in the design of high performance fitness
functions, and the formalization of fitness function design to
provide a foundation for rigorous investigation.

The purpose of a fitness function is to guide the evolu-
tionary process through the problem environment to an op-
timal solution. EA performance is strongly related to the
quality of the fitness functions. The fitness function is the
primary point in the EA where the problem specifications
are enforced. For this reason, the problem specifications are
an ideal location to start the fitness function design pro-
cess. The presented guide starts by identifying the require-
ments that define a solution from the specifications. Each
requirement is classified using the provided taxonomy and
then a fitness function component is generated, based on
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Figure 1: Requirement Classification Taxonomy

the classifications applied, that is responsible for enforcing
the requirement in the fitness function. These components
are finally combined into a fitness function for the problem,
which can be either composite or multi-objective.

2. FITNESS FUNCTION GENERATION
In order to generate an effective fitness function, the char-

acteristics of a valid solution to the problem must be defined.
If properly indicated, the Problem Specifications should con-
tain this information. Each solution requirement obtained
from the problem specifications will ultimately yield a fitness
function component. After the Problem Requirements have
been identified, the next step is to begin bridging the gap
between written problem requirements and a fitness func-
tion. The method proposed addresses this task by defining
a taxonomy, which classifies the Problem Requirements and
in doing so provides information on the nature of the fitness
function. The taxonomy is shown in Figure 1.

Based on the given problem specifications, an appropri-
ate solution representation and EA Configuration must be
determined. There may be solution requirements that arise
based on the algorithm selected. These Algorithm Induced
Requirements arise due solely to the selected EA Configura-
tion and as such cannot be expected to be included in the
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Problem Specifications, since for a given problem there may
be a number of applicable algorithms to use.

The first classification addresses how the requirement will
be assessed. A Phenotypic requirement is based on some
aspect of a candidate solution’s expression in the problem
environment, independent of the candidate’s genetic repre-
sentation. Conversely, a Genotypic requirement is based
on some aspect of a candidate solution’s genetic structure.
Since the problem specifications are stated independent of a
specific algorithm, it is impossible for a problem requirement
to be Genotypic. Similarly, algorithm induced requirements
are based solely on the algorithm selected and are indepen-
dent of the specific problem being addressed and as such are
always Genotypic. In many cases, it is advantageous to con-
vert Phenotypic requirements to Genotypic, if possible. The
reasoning behind this is that if desirable phenotypic behavior
can be mapped to a genotypic configuration, then promot-
ing this configuration will be much easier and convergence
will occur much quicker.

The second classification is concerned with the practicality
of assessing a given requirement. Essentially this classifica-
tion determines if the resulting fitness function component
will calculate the true fitness value (i.e., Tractable) or an
approximation to the true fitness value (i.e., Intractable).
Tractble requirements will operate on the entire problem do-
main for the requirement. Intractable requirements will op-
erate on a sample set taken from the problem domain, which
means a sampling method must also be decided upon for
the fitness function component. Since the primary concern
is practicality, a requirement may be classified as Tractable
in one case and yet in another case, where fewer resources
are available, the same requirement could be classified as In-
tractable. Genotypic requirements are based on the genetic
structure of a candidate solution, which implies that the cal-
culation of the true fitness of such a requirement should be
feasible as long as the candidate solution representation is
practical, thus these requirements are always Tractable.

The third classification defines the basic nature of the re-
quirement. If a requirement is either satisfied or it is not,
then it is a decision requirement. If there are intermediate
levels of satisfaction of the requirement, then it is an opti-
mization requirement. In order to create a graduated fitness
function for the EA, any requirement that is classified as a
decision requirement should be transformed into an opti-
mization requirement. Additionally, the more gradient that
each fitness function has, the better. So, some requirements
may be classified as optimization, but will still need to be
refined in order to generate a more effective fitness function.

The last step is to combine all of the fitness function com-
ponents into the fitness function for the problem. One ap-
proach for this step is to combine the fitness function compo-
nents into a single function in which the component fitness
values are combined into a single fitness value. This option
may work well for some cases; however, combining the vari-
ous component fitness values can sometimes be difficult. A
second approach is to use Multi-Objective EA [3] methods to
calculate a fitness rank based on the Pareto Front generated
by using each fitness function component as an objective.

3. GUIDE COMPARISON
[4] presents a comparison on eight buggy programs of the

system presented by Arcuri et al. [2] with the CASC system.
Results are presented on both CASC using a guide gener-

ated fitness function and using a close approximation of the
fitness function used by Arcuri et al. The published results
provide evidence that the guide generated fitness function
performs at least as well as the Arcuri fitness function (and
even performs better in some cases) for the first three bugs
considered. For the fourth bug the guide fitness function is
still competitive, though it does not perform as well as Ar-
curi’s fitness function. In many of the CASC experiments us-
ing the Arcuri fitness function, one component of the fitness
function dominated the others; similar observations were re-
ported by Arcuri [1]. The guide generated fitness function,
however, had no occurrences of a dominant fitness function
component. The significance of these results is that they
provide evidence that the guide can be used by a practi-
tioner to generate a competitive fitness function (in terms
of quality).

4. CONCLUSIONS AND FUTURE WORK
This paper presents a guide for fitness function design for

non-expert practitioners as well as formalizes fitness func-
tion design, establishing a foundation for rigorous investiga-
tion of this critical EA component. A requirement classifica-
tion taxonomy for fitness function design is presented which
can, in a structured manner, be used to transform problem
specifications into a set of fitness function components and
ultimately their composition into a fitness function. Exper-
iments are discussed that demonstrate the guide’s ability to
generate fitness functions that are competitive with expertly
designed fitness functions. Future avenues of investigation
for the guide include: inclusion of methods to determine
the quality of fitness functions generated, development of
tools to allow the use of advanced/specialized fitness func-
tion design techniques, extension of the guide to allow fitness
function generation for black box search algorithms, and the
usage of code templates to perform/assist in the implemen-
tation of fitness functions generated.
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