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ABSTRACT 
In this paper, we make a brief study on the effect of exchange rate 
in quasi-parallel genetic algorithms. The exchange rate is 
determined by two elements: the communication topology of the 
parallel populations and the communication capacity on each link. 
Here we formulate the communication capacity as the number of 
chromosomes one population exchanges with its neighbors. To 
study the effect of the two elements of exchange rate separately 
we did some tests on the minimization of the Weierstrass Function. 
Our results show that topology with a larger number of exchanged 
chromosomes generally yields better performance.  

Categories and Subject Descriptors 
G.1.6 [Optimization]: Global Optimization; I.6.8 [Types of 
Simulation]: Parallel; F.1.2 [Theory of Computation]: 
Computation by Abstract Devices – Modes of Computation – 
interactive and reactive computation, parallelism and 
concurrency, probabilistic computation. 

General Terms 
Algorithms, Design, Performance 

Keywords 
Parallel Genetic algorithms, Exchange Rate, Topology, 
Optimization, Weierstrass Function 

 

1. INTRODUCTION 
We consider parallel computing nodes as independent populations 
and run programs on each population before allowing their 
communication. This is all done in one computer to ensure the 
equality of computing resources. In this formulation, we archive 
an implementation of a real parallel genetic algorithm by a 
simulation on one computer, and we call this formulation   
“Quasi-Parallel Genetic algorithms” [1]-[4]. We study the 
information exchange by varying the topology and adjusting the 
information flow capacity on each link. The benchmark problem 
presented is the Weierstrass Function minimization problem. The 
0-1 knapsack problem is also tested and the result is similar. 

2. QUASI-PARALLEL GENETIC 
ALGORITHMS AND EXCHANGE RATE 
We focus on the coarse-grained parallel genetic algorithms, in 
which each node is an independent sub-population. We simplify 
the model by assuming that every sub-population runs Mutation 
Matrix Genetic Algorithms [5] and has the same number (Nc) of 
chromosomes. As to the communication between sub-populations, 
the only form of exchange allowed is the exchange of 
chromosomes between neighboring sub-populations connected in 
the communication network. One population gets the best M 
chromosomes from each of its K neighbors in the communication 
network to replace its worst M·K chromosomes. Both the 
topology of the communication network and the rule of 
communication contribute to the performance of the parallel 
genetic algorithms, so that the exchange rate (ER) depends on 
both of them: 

/ cER M K N                           (1) 
Since it is reasonable to assume that the exchanged-in 
chromosomes are different from the exchanged-out chromosomes, 
we can deduce the limit: 

(1 ) cM M K M K N                        (2)  

 

3. EXPERIMENT 
Our algorithms will be performed on the Weierstrass Function. 
The definition of Weierstrass’s Function is: 
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where a = 0.5, b = 3, kmax = 20, xi [−0.5, 0.5]. D is the 
dimensionality of the function. The global minimum of the 
function is obtained when all xi = 0, and fmin = 0. This problem is 
different from the Knapsack Problem because its variables are 
continuous. Therefore, we do not expect to find the global optima 
exactly using discrete encoding. Here we employ a binary string 
to encode each {xi}. Hence the binary string of length 15 can 
represent an integer I whose value ranges from 0 to 215 − 1 in 
decimal notation. For a chromosome s, its value after decoding is 

 15/ (2 1) 0.5s sC I                                        (4) 
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where Is is the integer represented by chromosome s. Because the 
Weierstrass’s Function have D variables, the total length of the 
chromosome is L = D × 15. 

3.1 Different Exchange Rates by Changing the 
Number of Links in the Topology 
We focus on the test of the effect of ER on the performance of the 
algorithm by varying the average of degree K with the same M. 
We start from a fully connected network, so that K is at the 
maximum. We randomly cut links until the network becomes a 
ring, which is the topology of a connected network with minimum 
K. Every step after we cut one link we run our algorithm on the 
current topology for 30 times and obtain the average as well as the 
standard deviation of the results. Each time we run for 3 
generations before one round of communication, and the results 
are collected after 5 rounds of communications. As the 
intermediate networks are generated by randomly cutting links in 
the initially fully connected network, the exchange rate for each 
population can be quite different. In order to illustrate the effect of 
exchange rate we define the Global Exchange Rate: 

2 /GER M N Nlinks c                           (5) 

Nlinks is the total number of links in the topology. The exchange 
rate is normalized by the total number of chromosomes. The 
factor 2 in Equation (5) comes from the fact that the link is 
undirected so that the exchanged chromosomes will be doubled. 
Recall that the constraint on ER in Equation (2) requires that 
K≤Nc/M-1. We will use a topology with 16 computing nodes so 
that the maximum K for a fully connected network is 15. If we fix 
M=1, then the minimum size of our sub-population is Nc = 16. 
We perform numerical experiment on the optimization of the 
Weierstrass Function of D=1 for different exchange rates by 
changing the topology of the network from a fully connected one 
to a ring. The number of nodes is 16 and number of chromosomes 
in each node is 16. For each given exchange rate, we run for 30 
times and take average. The results show that as the exchange rate 
decreases from 0.93 to 0.13 by decreasing K, the difference 
between the calculated and the actually minimum of the 1D 
Weierstrass function first decreases from 0.020 to 0.006 (when the 
exchange rate is 0.44) and then increases back to 0.021, indicating 
that the performance increases first and then decreases. A best 
performance plateau is achieved when the exchange rate is in the 
range of 0.4 to 0.7.  

3.2 Different Exchange Rates by Changing the 
Number of Exchanged Chromosomes M 
Now we focus on the information flow capacity on each link. We 
test the performance of the quasi-parallel genetic algorithms under 
the same topology with different M. We fix K to see the 
performance under different M. Because of the limit in Equation 
(2) we have Mmax=Nc/(K+1), with a corresponding maximum 
exchange rate ERmax=Mmax*K/ Nc=K/(K+1). 

We now investigate the effect exchange rate induced by different 
numbers of exchanged chromosome M. We test this on the 
optimization of the 3D Weierstrass Function using the fully 
connected network. The total number of chromosomes Nc is 320 
and the number of links is K=15. For this fully connected 
network, Mmax=320/16=20 and ERmax=15/16. The results of our 
test show that as we increase the exchange rate increases from 
0.047 to 0.938 by increasing M, the difference between the 

calculated and the actually minimum of the 3D Weierstrass 
function decreases from 0.58 to 0.32, indicating an improved 
performance. In this investigation, we fixed the topology and 
adjust M to achieve different exchange rates. When M is large, 
each population receives quite a few middle-ranking and even 
low-ranking chromosomes from its neighbors to replace its own 
worst chromosomes. The difference between the members of the 
subpopulations before and after the exchange is not as large as the 
case when we only exchange a few good chromosomes from our 
neighbors. For large M, the sub-populations are spending most of 
the time in the exploration on the chromosomes that are of 
average fitness, rather than spending time in the exploitation of 
the best chromosomes. The increased exchange rate through 
increasing M for a fixed topology is not so efficient in the 
improvement of performance.  

 

4. CONCLUSION AND DISCUSSION 
Within the confine of numerical tests on two benchmark functions 
(0-1 Knapsack and Weierstrass function), we can say that there 
exists a basin for best performance in terms of communicating 
topologies. Our tests show that increasing M alone for improving 
performance is actually not very efficient. A good strategy for the 
optimization on these benchmark functions is to first choose a 
topology by selecting a value of K so that the global exchange rate 
is in the range of 0.4 to 0.7, and then increase M to obtain the best 
performance. In application, we should select a topology with the 
global rate around 0.4 since the cost of hardware can be reduced 
by using less links. We then assign a reasonable M to control the 
algorithm complexity to obtain the best performance. 
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